xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision ae213c44)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 
32 #include <sys/param.h>
33 #include <stdlib.h>
34 #include <stdio.h>
35 #include <linux/list.h>
36 
37 #include "../perf.h"
38 #include "util.h"
39 #include "evlist.h"
40 #include "dso.h"
41 #include "map.h"
42 #include "pmu.h"
43 #include "evsel.h"
44 #include "cpumap.h"
45 #include "symbol.h"
46 #include "thread_map.h"
47 #include "asm/bug.h"
48 #include "auxtrace.h"
49 
50 #include <linux/hash.h>
51 
52 #include "event.h"
53 #include "session.h"
54 #include "debug.h"
55 #include <subcmd/parse-options.h>
56 
57 #include "cs-etm.h"
58 #include "intel-pt.h"
59 #include "intel-bts.h"
60 #include "arm-spe.h"
61 #include "s390-cpumsf.h"
62 
63 #include "sane_ctype.h"
64 #include "symbol/kallsyms.h"
65 
66 static bool auxtrace__dont_decode(struct perf_session *session)
67 {
68 	return !session->itrace_synth_opts ||
69 	       session->itrace_synth_opts->dont_decode;
70 }
71 
72 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
73 			struct auxtrace_mmap_params *mp,
74 			void *userpg, int fd)
75 {
76 	struct perf_event_mmap_page *pc = userpg;
77 
78 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
79 
80 	mm->userpg = userpg;
81 	mm->mask = mp->mask;
82 	mm->len = mp->len;
83 	mm->prev = 0;
84 	mm->idx = mp->idx;
85 	mm->tid = mp->tid;
86 	mm->cpu = mp->cpu;
87 
88 	if (!mp->len) {
89 		mm->base = NULL;
90 		return 0;
91 	}
92 
93 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
94 	pr_err("Cannot use AUX area tracing mmaps\n");
95 	return -1;
96 #endif
97 
98 	pc->aux_offset = mp->offset;
99 	pc->aux_size = mp->len;
100 
101 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
102 	if (mm->base == MAP_FAILED) {
103 		pr_debug2("failed to mmap AUX area\n");
104 		mm->base = NULL;
105 		return -1;
106 	}
107 
108 	return 0;
109 }
110 
111 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
112 {
113 	if (mm->base) {
114 		munmap(mm->base, mm->len);
115 		mm->base = NULL;
116 	}
117 }
118 
119 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
120 				off_t auxtrace_offset,
121 				unsigned int auxtrace_pages,
122 				bool auxtrace_overwrite)
123 {
124 	if (auxtrace_pages) {
125 		mp->offset = auxtrace_offset;
126 		mp->len = auxtrace_pages * (size_t)page_size;
127 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
128 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
129 		pr_debug2("AUX area mmap length %zu\n", mp->len);
130 	} else {
131 		mp->len = 0;
132 	}
133 }
134 
135 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
136 				   struct perf_evlist *evlist, int idx,
137 				   bool per_cpu)
138 {
139 	mp->idx = idx;
140 
141 	if (per_cpu) {
142 		mp->cpu = evlist->cpus->map[idx];
143 		if (evlist->threads)
144 			mp->tid = thread_map__pid(evlist->threads, 0);
145 		else
146 			mp->tid = -1;
147 	} else {
148 		mp->cpu = -1;
149 		mp->tid = thread_map__pid(evlist->threads, idx);
150 	}
151 }
152 
153 #define AUXTRACE_INIT_NR_QUEUES	32
154 
155 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
156 {
157 	struct auxtrace_queue *queue_array;
158 	unsigned int max_nr_queues, i;
159 
160 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
161 	if (nr_queues > max_nr_queues)
162 		return NULL;
163 
164 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
165 	if (!queue_array)
166 		return NULL;
167 
168 	for (i = 0; i < nr_queues; i++) {
169 		INIT_LIST_HEAD(&queue_array[i].head);
170 		queue_array[i].priv = NULL;
171 	}
172 
173 	return queue_array;
174 }
175 
176 int auxtrace_queues__init(struct auxtrace_queues *queues)
177 {
178 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
179 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
180 	if (!queues->queue_array)
181 		return -ENOMEM;
182 	return 0;
183 }
184 
185 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
186 				 unsigned int new_nr_queues)
187 {
188 	unsigned int nr_queues = queues->nr_queues;
189 	struct auxtrace_queue *queue_array;
190 	unsigned int i;
191 
192 	if (!nr_queues)
193 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
194 
195 	while (nr_queues && nr_queues < new_nr_queues)
196 		nr_queues <<= 1;
197 
198 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
199 		return -EINVAL;
200 
201 	queue_array = auxtrace_alloc_queue_array(nr_queues);
202 	if (!queue_array)
203 		return -ENOMEM;
204 
205 	for (i = 0; i < queues->nr_queues; i++) {
206 		list_splice_tail(&queues->queue_array[i].head,
207 				 &queue_array[i].head);
208 		queue_array[i].tid = queues->queue_array[i].tid;
209 		queue_array[i].cpu = queues->queue_array[i].cpu;
210 		queue_array[i].set = queues->queue_array[i].set;
211 		queue_array[i].priv = queues->queue_array[i].priv;
212 	}
213 
214 	queues->nr_queues = nr_queues;
215 	queues->queue_array = queue_array;
216 
217 	return 0;
218 }
219 
220 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
221 {
222 	int fd = perf_data__fd(session->data);
223 	void *p;
224 	ssize_t ret;
225 
226 	if (size > SSIZE_MAX)
227 		return NULL;
228 
229 	p = malloc(size);
230 	if (!p)
231 		return NULL;
232 
233 	ret = readn(fd, p, size);
234 	if (ret != (ssize_t)size) {
235 		free(p);
236 		return NULL;
237 	}
238 
239 	return p;
240 }
241 
242 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
243 					 unsigned int idx,
244 					 struct auxtrace_buffer *buffer)
245 {
246 	struct auxtrace_queue *queue;
247 	int err;
248 
249 	if (idx >= queues->nr_queues) {
250 		err = auxtrace_queues__grow(queues, idx + 1);
251 		if (err)
252 			return err;
253 	}
254 
255 	queue = &queues->queue_array[idx];
256 
257 	if (!queue->set) {
258 		queue->set = true;
259 		queue->tid = buffer->tid;
260 		queue->cpu = buffer->cpu;
261 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
262 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
263 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
264 		return -EINVAL;
265 	}
266 
267 	buffer->buffer_nr = queues->next_buffer_nr++;
268 
269 	list_add_tail(&buffer->list, &queue->head);
270 
271 	queues->new_data = true;
272 	queues->populated = true;
273 
274 	return 0;
275 }
276 
277 /* Limit buffers to 32MiB on 32-bit */
278 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
279 
280 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
281 					 unsigned int idx,
282 					 struct auxtrace_buffer *buffer)
283 {
284 	u64 sz = buffer->size;
285 	bool consecutive = false;
286 	struct auxtrace_buffer *b;
287 	int err;
288 
289 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
290 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
291 		if (!b)
292 			return -ENOMEM;
293 		b->size = BUFFER_LIMIT_FOR_32_BIT;
294 		b->consecutive = consecutive;
295 		err = auxtrace_queues__queue_buffer(queues, idx, b);
296 		if (err) {
297 			auxtrace_buffer__free(b);
298 			return err;
299 		}
300 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
301 		sz -= BUFFER_LIMIT_FOR_32_BIT;
302 		consecutive = true;
303 	}
304 
305 	buffer->size = sz;
306 	buffer->consecutive = consecutive;
307 
308 	return 0;
309 }
310 
311 static bool filter_cpu(struct perf_session *session, int cpu)
312 {
313 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
314 
315 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
316 }
317 
318 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
319 				       struct perf_session *session,
320 				       unsigned int idx,
321 				       struct auxtrace_buffer *buffer,
322 				       struct auxtrace_buffer **buffer_ptr)
323 {
324 	int err = -ENOMEM;
325 
326 	if (filter_cpu(session, buffer->cpu))
327 		return 0;
328 
329 	buffer = memdup(buffer, sizeof(*buffer));
330 	if (!buffer)
331 		return -ENOMEM;
332 
333 	if (session->one_mmap) {
334 		buffer->data = buffer->data_offset - session->one_mmap_offset +
335 			       session->one_mmap_addr;
336 	} else if (perf_data__is_pipe(session->data)) {
337 		buffer->data = auxtrace_copy_data(buffer->size, session);
338 		if (!buffer->data)
339 			goto out_free;
340 		buffer->data_needs_freeing = true;
341 	} else if (BITS_PER_LONG == 32 &&
342 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
343 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
344 		if (err)
345 			goto out_free;
346 	}
347 
348 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
349 	if (err)
350 		goto out_free;
351 
352 	/* FIXME: Doesn't work for split buffer */
353 	if (buffer_ptr)
354 		*buffer_ptr = buffer;
355 
356 	return 0;
357 
358 out_free:
359 	auxtrace_buffer__free(buffer);
360 	return err;
361 }
362 
363 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
364 			       struct perf_session *session,
365 			       union perf_event *event, off_t data_offset,
366 			       struct auxtrace_buffer **buffer_ptr)
367 {
368 	struct auxtrace_buffer buffer = {
369 		.pid = -1,
370 		.tid = event->auxtrace.tid,
371 		.cpu = event->auxtrace.cpu,
372 		.data_offset = data_offset,
373 		.offset = event->auxtrace.offset,
374 		.reference = event->auxtrace.reference,
375 		.size = event->auxtrace.size,
376 	};
377 	unsigned int idx = event->auxtrace.idx;
378 
379 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
380 					   buffer_ptr);
381 }
382 
383 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
384 					      struct perf_session *session,
385 					      off_t file_offset, size_t sz)
386 {
387 	union perf_event *event;
388 	int err;
389 	char buf[PERF_SAMPLE_MAX_SIZE];
390 
391 	err = perf_session__peek_event(session, file_offset, buf,
392 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
393 	if (err)
394 		return err;
395 
396 	if (event->header.type == PERF_RECORD_AUXTRACE) {
397 		if (event->header.size < sizeof(struct auxtrace_event) ||
398 		    event->header.size != sz) {
399 			err = -EINVAL;
400 			goto out;
401 		}
402 		file_offset += event->header.size;
403 		err = auxtrace_queues__add_event(queues, session, event,
404 						 file_offset, NULL);
405 	}
406 out:
407 	return err;
408 }
409 
410 void auxtrace_queues__free(struct auxtrace_queues *queues)
411 {
412 	unsigned int i;
413 
414 	for (i = 0; i < queues->nr_queues; i++) {
415 		while (!list_empty(&queues->queue_array[i].head)) {
416 			struct auxtrace_buffer *buffer;
417 
418 			buffer = list_entry(queues->queue_array[i].head.next,
419 					    struct auxtrace_buffer, list);
420 			list_del(&buffer->list);
421 			auxtrace_buffer__free(buffer);
422 		}
423 	}
424 
425 	zfree(&queues->queue_array);
426 	queues->nr_queues = 0;
427 }
428 
429 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
430 			     unsigned int pos, unsigned int queue_nr,
431 			     u64 ordinal)
432 {
433 	unsigned int parent;
434 
435 	while (pos) {
436 		parent = (pos - 1) >> 1;
437 		if (heap_array[parent].ordinal <= ordinal)
438 			break;
439 		heap_array[pos] = heap_array[parent];
440 		pos = parent;
441 	}
442 	heap_array[pos].queue_nr = queue_nr;
443 	heap_array[pos].ordinal = ordinal;
444 }
445 
446 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
447 		       u64 ordinal)
448 {
449 	struct auxtrace_heap_item *heap_array;
450 
451 	if (queue_nr >= heap->heap_sz) {
452 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
453 
454 		while (heap_sz <= queue_nr)
455 			heap_sz <<= 1;
456 		heap_array = realloc(heap->heap_array,
457 				     heap_sz * sizeof(struct auxtrace_heap_item));
458 		if (!heap_array)
459 			return -ENOMEM;
460 		heap->heap_array = heap_array;
461 		heap->heap_sz = heap_sz;
462 	}
463 
464 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
465 
466 	return 0;
467 }
468 
469 void auxtrace_heap__free(struct auxtrace_heap *heap)
470 {
471 	zfree(&heap->heap_array);
472 	heap->heap_cnt = 0;
473 	heap->heap_sz = 0;
474 }
475 
476 void auxtrace_heap__pop(struct auxtrace_heap *heap)
477 {
478 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
479 	struct auxtrace_heap_item *heap_array;
480 
481 	if (!heap_cnt)
482 		return;
483 
484 	heap->heap_cnt -= 1;
485 
486 	heap_array = heap->heap_array;
487 
488 	pos = 0;
489 	while (1) {
490 		unsigned int left, right;
491 
492 		left = (pos << 1) + 1;
493 		if (left >= heap_cnt)
494 			break;
495 		right = left + 1;
496 		if (right >= heap_cnt) {
497 			heap_array[pos] = heap_array[left];
498 			return;
499 		}
500 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
501 			heap_array[pos] = heap_array[left];
502 			pos = left;
503 		} else {
504 			heap_array[pos] = heap_array[right];
505 			pos = right;
506 		}
507 	}
508 
509 	last = heap_cnt - 1;
510 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
511 			 heap_array[last].ordinal);
512 }
513 
514 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
515 				       struct perf_evlist *evlist)
516 {
517 	if (itr)
518 		return itr->info_priv_size(itr, evlist);
519 	return 0;
520 }
521 
522 static int auxtrace_not_supported(void)
523 {
524 	pr_err("AUX area tracing is not supported on this architecture\n");
525 	return -EINVAL;
526 }
527 
528 int auxtrace_record__info_fill(struct auxtrace_record *itr,
529 			       struct perf_session *session,
530 			       struct auxtrace_info_event *auxtrace_info,
531 			       size_t priv_size)
532 {
533 	if (itr)
534 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
535 	return auxtrace_not_supported();
536 }
537 
538 void auxtrace_record__free(struct auxtrace_record *itr)
539 {
540 	if (itr)
541 		itr->free(itr);
542 }
543 
544 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
545 {
546 	if (itr && itr->snapshot_start)
547 		return itr->snapshot_start(itr);
548 	return 0;
549 }
550 
551 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
552 {
553 	if (itr && itr->snapshot_finish)
554 		return itr->snapshot_finish(itr);
555 	return 0;
556 }
557 
558 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
559 				   struct auxtrace_mmap *mm,
560 				   unsigned char *data, u64 *head, u64 *old)
561 {
562 	if (itr && itr->find_snapshot)
563 		return itr->find_snapshot(itr, idx, mm, data, head, old);
564 	return 0;
565 }
566 
567 int auxtrace_record__options(struct auxtrace_record *itr,
568 			     struct perf_evlist *evlist,
569 			     struct record_opts *opts)
570 {
571 	if (itr)
572 		return itr->recording_options(itr, evlist, opts);
573 	return 0;
574 }
575 
576 u64 auxtrace_record__reference(struct auxtrace_record *itr)
577 {
578 	if (itr)
579 		return itr->reference(itr);
580 	return 0;
581 }
582 
583 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
584 				    struct record_opts *opts, const char *str)
585 {
586 	if (!str)
587 		return 0;
588 
589 	if (itr)
590 		return itr->parse_snapshot_options(itr, opts, str);
591 
592 	pr_err("No AUX area tracing to snapshot\n");
593 	return -EINVAL;
594 }
595 
596 struct auxtrace_record *__weak
597 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
598 {
599 	*err = 0;
600 	return NULL;
601 }
602 
603 static int auxtrace_index__alloc(struct list_head *head)
604 {
605 	struct auxtrace_index *auxtrace_index;
606 
607 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
608 	if (!auxtrace_index)
609 		return -ENOMEM;
610 
611 	auxtrace_index->nr = 0;
612 	INIT_LIST_HEAD(&auxtrace_index->list);
613 
614 	list_add_tail(&auxtrace_index->list, head);
615 
616 	return 0;
617 }
618 
619 void auxtrace_index__free(struct list_head *head)
620 {
621 	struct auxtrace_index *auxtrace_index, *n;
622 
623 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
624 		list_del(&auxtrace_index->list);
625 		free(auxtrace_index);
626 	}
627 }
628 
629 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
630 {
631 	struct auxtrace_index *auxtrace_index;
632 	int err;
633 
634 	if (list_empty(head)) {
635 		err = auxtrace_index__alloc(head);
636 		if (err)
637 			return NULL;
638 	}
639 
640 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
641 
642 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
643 		err = auxtrace_index__alloc(head);
644 		if (err)
645 			return NULL;
646 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
647 					    list);
648 	}
649 
650 	return auxtrace_index;
651 }
652 
653 int auxtrace_index__auxtrace_event(struct list_head *head,
654 				   union perf_event *event, off_t file_offset)
655 {
656 	struct auxtrace_index *auxtrace_index;
657 	size_t nr;
658 
659 	auxtrace_index = auxtrace_index__last(head);
660 	if (!auxtrace_index)
661 		return -ENOMEM;
662 
663 	nr = auxtrace_index->nr;
664 	auxtrace_index->entries[nr].file_offset = file_offset;
665 	auxtrace_index->entries[nr].sz = event->header.size;
666 	auxtrace_index->nr += 1;
667 
668 	return 0;
669 }
670 
671 static int auxtrace_index__do_write(int fd,
672 				    struct auxtrace_index *auxtrace_index)
673 {
674 	struct auxtrace_index_entry ent;
675 	size_t i;
676 
677 	for (i = 0; i < auxtrace_index->nr; i++) {
678 		ent.file_offset = auxtrace_index->entries[i].file_offset;
679 		ent.sz = auxtrace_index->entries[i].sz;
680 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
681 			return -errno;
682 	}
683 	return 0;
684 }
685 
686 int auxtrace_index__write(int fd, struct list_head *head)
687 {
688 	struct auxtrace_index *auxtrace_index;
689 	u64 total = 0;
690 	int err;
691 
692 	list_for_each_entry(auxtrace_index, head, list)
693 		total += auxtrace_index->nr;
694 
695 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
696 		return -errno;
697 
698 	list_for_each_entry(auxtrace_index, head, list) {
699 		err = auxtrace_index__do_write(fd, auxtrace_index);
700 		if (err)
701 			return err;
702 	}
703 
704 	return 0;
705 }
706 
707 static int auxtrace_index__process_entry(int fd, struct list_head *head,
708 					 bool needs_swap)
709 {
710 	struct auxtrace_index *auxtrace_index;
711 	struct auxtrace_index_entry ent;
712 	size_t nr;
713 
714 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
715 		return -1;
716 
717 	auxtrace_index = auxtrace_index__last(head);
718 	if (!auxtrace_index)
719 		return -1;
720 
721 	nr = auxtrace_index->nr;
722 	if (needs_swap) {
723 		auxtrace_index->entries[nr].file_offset =
724 						bswap_64(ent.file_offset);
725 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
726 	} else {
727 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
728 		auxtrace_index->entries[nr].sz = ent.sz;
729 	}
730 
731 	auxtrace_index->nr = nr + 1;
732 
733 	return 0;
734 }
735 
736 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
737 			    bool needs_swap)
738 {
739 	struct list_head *head = &session->auxtrace_index;
740 	u64 nr;
741 
742 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
743 		return -1;
744 
745 	if (needs_swap)
746 		nr = bswap_64(nr);
747 
748 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
749 		return -1;
750 
751 	while (nr--) {
752 		int err;
753 
754 		err = auxtrace_index__process_entry(fd, head, needs_swap);
755 		if (err)
756 			return -1;
757 	}
758 
759 	return 0;
760 }
761 
762 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
763 						struct perf_session *session,
764 						struct auxtrace_index_entry *ent)
765 {
766 	return auxtrace_queues__add_indexed_event(queues, session,
767 						  ent->file_offset, ent->sz);
768 }
769 
770 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
771 				   struct perf_session *session)
772 {
773 	struct auxtrace_index *auxtrace_index;
774 	struct auxtrace_index_entry *ent;
775 	size_t i;
776 	int err;
777 
778 	if (auxtrace__dont_decode(session))
779 		return 0;
780 
781 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
782 		for (i = 0; i < auxtrace_index->nr; i++) {
783 			ent = &auxtrace_index->entries[i];
784 			err = auxtrace_queues__process_index_entry(queues,
785 								   session,
786 								   ent);
787 			if (err)
788 				return err;
789 		}
790 	}
791 	return 0;
792 }
793 
794 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
795 					      struct auxtrace_buffer *buffer)
796 {
797 	if (buffer) {
798 		if (list_is_last(&buffer->list, &queue->head))
799 			return NULL;
800 		return list_entry(buffer->list.next, struct auxtrace_buffer,
801 				  list);
802 	} else {
803 		if (list_empty(&queue->head))
804 			return NULL;
805 		return list_entry(queue->head.next, struct auxtrace_buffer,
806 				  list);
807 	}
808 }
809 
810 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
811 {
812 	size_t adj = buffer->data_offset & (page_size - 1);
813 	size_t size = buffer->size + adj;
814 	off_t file_offset = buffer->data_offset - adj;
815 	void *addr;
816 
817 	if (buffer->data)
818 		return buffer->data;
819 
820 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
821 	if (addr == MAP_FAILED)
822 		return NULL;
823 
824 	buffer->mmap_addr = addr;
825 	buffer->mmap_size = size;
826 
827 	buffer->data = addr + adj;
828 
829 	return buffer->data;
830 }
831 
832 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
833 {
834 	if (!buffer->data || !buffer->mmap_addr)
835 		return;
836 	munmap(buffer->mmap_addr, buffer->mmap_size);
837 	buffer->mmap_addr = NULL;
838 	buffer->mmap_size = 0;
839 	buffer->data = NULL;
840 	buffer->use_data = NULL;
841 }
842 
843 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
844 {
845 	auxtrace_buffer__put_data(buffer);
846 	if (buffer->data_needs_freeing) {
847 		buffer->data_needs_freeing = false;
848 		zfree(&buffer->data);
849 		buffer->use_data = NULL;
850 		buffer->size = 0;
851 	}
852 }
853 
854 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
855 {
856 	auxtrace_buffer__drop_data(buffer);
857 	free(buffer);
858 }
859 
860 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
861 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
862 			  const char *msg, u64 timestamp)
863 {
864 	size_t size;
865 
866 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
867 
868 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
869 	auxtrace_error->type = type;
870 	auxtrace_error->code = code;
871 	auxtrace_error->cpu = cpu;
872 	auxtrace_error->pid = pid;
873 	auxtrace_error->tid = tid;
874 	auxtrace_error->fmt = 1;
875 	auxtrace_error->ip = ip;
876 	auxtrace_error->time = timestamp;
877 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
878 
879 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
880 	       strlen(auxtrace_error->msg) + 1;
881 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
882 }
883 
884 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
885 					 struct perf_tool *tool,
886 					 struct perf_session *session,
887 					 perf_event__handler_t process)
888 {
889 	union perf_event *ev;
890 	size_t priv_size;
891 	int err;
892 
893 	pr_debug2("Synthesizing auxtrace information\n");
894 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
895 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
896 	if (!ev)
897 		return -ENOMEM;
898 
899 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
900 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
901 					priv_size;
902 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
903 					 priv_size);
904 	if (err)
905 		goto out_free;
906 
907 	err = process(tool, ev, NULL, NULL);
908 out_free:
909 	free(ev);
910 	return err;
911 }
912 
913 int perf_event__process_auxtrace_info(struct perf_session *session,
914 				      union perf_event *event)
915 {
916 	enum auxtrace_type type = event->auxtrace_info.type;
917 
918 	if (dump_trace)
919 		fprintf(stdout, " type: %u\n", type);
920 
921 	switch (type) {
922 	case PERF_AUXTRACE_INTEL_PT:
923 		return intel_pt_process_auxtrace_info(event, session);
924 	case PERF_AUXTRACE_INTEL_BTS:
925 		return intel_bts_process_auxtrace_info(event, session);
926 	case PERF_AUXTRACE_ARM_SPE:
927 		return arm_spe_process_auxtrace_info(event, session);
928 	case PERF_AUXTRACE_CS_ETM:
929 		return cs_etm__process_auxtrace_info(event, session);
930 	case PERF_AUXTRACE_S390_CPUMSF:
931 		return s390_cpumsf_process_auxtrace_info(event, session);
932 	case PERF_AUXTRACE_UNKNOWN:
933 	default:
934 		return -EINVAL;
935 	}
936 }
937 
938 s64 perf_event__process_auxtrace(struct perf_session *session,
939 				 union perf_event *event)
940 {
941 	s64 err;
942 
943 	if (dump_trace)
944 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
945 			event->auxtrace.size, event->auxtrace.offset,
946 			event->auxtrace.reference, event->auxtrace.idx,
947 			event->auxtrace.tid, event->auxtrace.cpu);
948 
949 	if (auxtrace__dont_decode(session))
950 		return event->auxtrace.size;
951 
952 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
953 		return -EINVAL;
954 
955 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
956 	if (err < 0)
957 		return err;
958 
959 	return event->auxtrace.size;
960 }
961 
962 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
963 #define PERF_ITRACE_DEFAULT_PERIOD		100000
964 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
965 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
966 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
967 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
968 
969 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
970 				    bool no_sample)
971 {
972 	synth_opts->branches = true;
973 	synth_opts->transactions = true;
974 	synth_opts->ptwrites = true;
975 	synth_opts->pwr_events = true;
976 	synth_opts->errors = true;
977 	if (no_sample) {
978 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
979 		synth_opts->period = 1;
980 		synth_opts->calls = true;
981 	} else {
982 		synth_opts->instructions = true;
983 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
984 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
985 	}
986 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
987 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
988 	synth_opts->initial_skip = 0;
989 }
990 
991 /*
992  * Please check tools/perf/Documentation/perf-script.txt for information
993  * about the options parsed here, which is introduced after this cset,
994  * when support in 'perf script' for these options is introduced.
995  */
996 int itrace_parse_synth_opts(const struct option *opt, const char *str,
997 			    int unset)
998 {
999 	struct itrace_synth_opts *synth_opts = opt->value;
1000 	const char *p;
1001 	char *endptr;
1002 	bool period_type_set = false;
1003 	bool period_set = false;
1004 
1005 	synth_opts->set = true;
1006 
1007 	if (unset) {
1008 		synth_opts->dont_decode = true;
1009 		return 0;
1010 	}
1011 
1012 	if (!str) {
1013 		itrace_synth_opts__set_default(synth_opts, false);
1014 		return 0;
1015 	}
1016 
1017 	for (p = str; *p;) {
1018 		switch (*p++) {
1019 		case 'i':
1020 			synth_opts->instructions = true;
1021 			while (*p == ' ' || *p == ',')
1022 				p += 1;
1023 			if (isdigit(*p)) {
1024 				synth_opts->period = strtoull(p, &endptr, 10);
1025 				period_set = true;
1026 				p = endptr;
1027 				while (*p == ' ' || *p == ',')
1028 					p += 1;
1029 				switch (*p++) {
1030 				case 'i':
1031 					synth_opts->period_type =
1032 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1033 					period_type_set = true;
1034 					break;
1035 				case 't':
1036 					synth_opts->period_type =
1037 						PERF_ITRACE_PERIOD_TICKS;
1038 					period_type_set = true;
1039 					break;
1040 				case 'm':
1041 					synth_opts->period *= 1000;
1042 					/* Fall through */
1043 				case 'u':
1044 					synth_opts->period *= 1000;
1045 					/* Fall through */
1046 				case 'n':
1047 					if (*p++ != 's')
1048 						goto out_err;
1049 					synth_opts->period_type =
1050 						PERF_ITRACE_PERIOD_NANOSECS;
1051 					period_type_set = true;
1052 					break;
1053 				case '\0':
1054 					goto out;
1055 				default:
1056 					goto out_err;
1057 				}
1058 			}
1059 			break;
1060 		case 'b':
1061 			synth_opts->branches = true;
1062 			break;
1063 		case 'x':
1064 			synth_opts->transactions = true;
1065 			break;
1066 		case 'w':
1067 			synth_opts->ptwrites = true;
1068 			break;
1069 		case 'p':
1070 			synth_opts->pwr_events = true;
1071 			break;
1072 		case 'e':
1073 			synth_opts->errors = true;
1074 			break;
1075 		case 'd':
1076 			synth_opts->log = true;
1077 			break;
1078 		case 'c':
1079 			synth_opts->branches = true;
1080 			synth_opts->calls = true;
1081 			break;
1082 		case 'r':
1083 			synth_opts->branches = true;
1084 			synth_opts->returns = true;
1085 			break;
1086 		case 'g':
1087 			synth_opts->callchain = true;
1088 			synth_opts->callchain_sz =
1089 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1090 			while (*p == ' ' || *p == ',')
1091 				p += 1;
1092 			if (isdigit(*p)) {
1093 				unsigned int val;
1094 
1095 				val = strtoul(p, &endptr, 10);
1096 				p = endptr;
1097 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1098 					goto out_err;
1099 				synth_opts->callchain_sz = val;
1100 			}
1101 			break;
1102 		case 'l':
1103 			synth_opts->last_branch = true;
1104 			synth_opts->last_branch_sz =
1105 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1106 			while (*p == ' ' || *p == ',')
1107 				p += 1;
1108 			if (isdigit(*p)) {
1109 				unsigned int val;
1110 
1111 				val = strtoul(p, &endptr, 10);
1112 				p = endptr;
1113 				if (!val ||
1114 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1115 					goto out_err;
1116 				synth_opts->last_branch_sz = val;
1117 			}
1118 			break;
1119 		case 's':
1120 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1121 			if (p == endptr)
1122 				goto out_err;
1123 			p = endptr;
1124 			break;
1125 		case ' ':
1126 		case ',':
1127 			break;
1128 		default:
1129 			goto out_err;
1130 		}
1131 	}
1132 out:
1133 	if (synth_opts->instructions) {
1134 		if (!period_type_set)
1135 			synth_opts->period_type =
1136 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1137 		if (!period_set)
1138 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1139 	}
1140 
1141 	return 0;
1142 
1143 out_err:
1144 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1145 	return -EINVAL;
1146 }
1147 
1148 static const char * const auxtrace_error_type_name[] = {
1149 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1150 };
1151 
1152 static const char *auxtrace_error_name(int type)
1153 {
1154 	const char *error_type_name = NULL;
1155 
1156 	if (type < PERF_AUXTRACE_ERROR_MAX)
1157 		error_type_name = auxtrace_error_type_name[type];
1158 	if (!error_type_name)
1159 		error_type_name = "unknown AUX";
1160 	return error_type_name;
1161 }
1162 
1163 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1164 {
1165 	struct auxtrace_error_event *e = &event->auxtrace_error;
1166 	unsigned long long nsecs = e->time;
1167 	const char *msg = e->msg;
1168 	int ret;
1169 
1170 	ret = fprintf(fp, " %s error type %u",
1171 		      auxtrace_error_name(e->type), e->type);
1172 
1173 	if (e->fmt && nsecs) {
1174 		unsigned long secs = nsecs / NSEC_PER_SEC;
1175 
1176 		nsecs -= secs * NSEC_PER_SEC;
1177 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1178 	} else {
1179 		ret += fprintf(fp, " time 0");
1180 	}
1181 
1182 	if (!e->fmt)
1183 		msg = (const char *)&e->time;
1184 
1185 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1186 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1187 	return ret;
1188 }
1189 
1190 void perf_session__auxtrace_error_inc(struct perf_session *session,
1191 				      union perf_event *event)
1192 {
1193 	struct auxtrace_error_event *e = &event->auxtrace_error;
1194 
1195 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1196 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1197 }
1198 
1199 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1200 {
1201 	int i;
1202 
1203 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1204 		if (!stats->nr_auxtrace_errors[i])
1205 			continue;
1206 		ui__warning("%u %s errors\n",
1207 			    stats->nr_auxtrace_errors[i],
1208 			    auxtrace_error_name(i));
1209 	}
1210 }
1211 
1212 int perf_event__process_auxtrace_error(struct perf_session *session,
1213 				       union perf_event *event)
1214 {
1215 	if (auxtrace__dont_decode(session))
1216 		return 0;
1217 
1218 	perf_event__fprintf_auxtrace_error(event, stdout);
1219 	return 0;
1220 }
1221 
1222 static int __auxtrace_mmap__read(struct perf_mmap *map,
1223 				 struct auxtrace_record *itr,
1224 				 struct perf_tool *tool, process_auxtrace_t fn,
1225 				 bool snapshot, size_t snapshot_size)
1226 {
1227 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1228 	u64 head, old = mm->prev, offset, ref;
1229 	unsigned char *data = mm->base;
1230 	size_t size, head_off, old_off, len1, len2, padding;
1231 	union perf_event ev;
1232 	void *data1, *data2;
1233 
1234 	if (snapshot) {
1235 		head = auxtrace_mmap__read_snapshot_head(mm);
1236 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1237 						   &head, &old))
1238 			return -1;
1239 	} else {
1240 		head = auxtrace_mmap__read_head(mm);
1241 	}
1242 
1243 	if (old == head)
1244 		return 0;
1245 
1246 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1247 		  mm->idx, old, head, head - old);
1248 
1249 	if (mm->mask) {
1250 		head_off = head & mm->mask;
1251 		old_off = old & mm->mask;
1252 	} else {
1253 		head_off = head % mm->len;
1254 		old_off = old % mm->len;
1255 	}
1256 
1257 	if (head_off > old_off)
1258 		size = head_off - old_off;
1259 	else
1260 		size = mm->len - (old_off - head_off);
1261 
1262 	if (snapshot && size > snapshot_size)
1263 		size = snapshot_size;
1264 
1265 	ref = auxtrace_record__reference(itr);
1266 
1267 	if (head > old || size <= head || mm->mask) {
1268 		offset = head - size;
1269 	} else {
1270 		/*
1271 		 * When the buffer size is not a power of 2, 'head' wraps at the
1272 		 * highest multiple of the buffer size, so we have to subtract
1273 		 * the remainder here.
1274 		 */
1275 		u64 rem = (0ULL - mm->len) % mm->len;
1276 
1277 		offset = head - size - rem;
1278 	}
1279 
1280 	if (size > head_off) {
1281 		len1 = size - head_off;
1282 		data1 = &data[mm->len - len1];
1283 		len2 = head_off;
1284 		data2 = &data[0];
1285 	} else {
1286 		len1 = size;
1287 		data1 = &data[head_off - len1];
1288 		len2 = 0;
1289 		data2 = NULL;
1290 	}
1291 
1292 	if (itr->alignment) {
1293 		unsigned int unwanted = len1 % itr->alignment;
1294 
1295 		len1 -= unwanted;
1296 		size -= unwanted;
1297 	}
1298 
1299 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1300 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1301 	if (padding)
1302 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1303 
1304 	memset(&ev, 0, sizeof(ev));
1305 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1306 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1307 	ev.auxtrace.size = size + padding;
1308 	ev.auxtrace.offset = offset;
1309 	ev.auxtrace.reference = ref;
1310 	ev.auxtrace.idx = mm->idx;
1311 	ev.auxtrace.tid = mm->tid;
1312 	ev.auxtrace.cpu = mm->cpu;
1313 
1314 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1315 		return -1;
1316 
1317 	mm->prev = head;
1318 
1319 	if (!snapshot) {
1320 		auxtrace_mmap__write_tail(mm, head);
1321 		if (itr->read_finish) {
1322 			int err;
1323 
1324 			err = itr->read_finish(itr, mm->idx);
1325 			if (err < 0)
1326 				return err;
1327 		}
1328 	}
1329 
1330 	return 1;
1331 }
1332 
1333 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr,
1334 			struct perf_tool *tool, process_auxtrace_t fn)
1335 {
1336 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1337 }
1338 
1339 int auxtrace_mmap__read_snapshot(struct perf_mmap *map,
1340 				 struct auxtrace_record *itr,
1341 				 struct perf_tool *tool, process_auxtrace_t fn,
1342 				 size_t snapshot_size)
1343 {
1344 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1345 }
1346 
1347 /**
1348  * struct auxtrace_cache - hash table to implement a cache
1349  * @hashtable: the hashtable
1350  * @sz: hashtable size (number of hlists)
1351  * @entry_size: size of an entry
1352  * @limit: limit the number of entries to this maximum, when reached the cache
1353  *         is dropped and caching begins again with an empty cache
1354  * @cnt: current number of entries
1355  * @bits: hashtable size (@sz = 2^@bits)
1356  */
1357 struct auxtrace_cache {
1358 	struct hlist_head *hashtable;
1359 	size_t sz;
1360 	size_t entry_size;
1361 	size_t limit;
1362 	size_t cnt;
1363 	unsigned int bits;
1364 };
1365 
1366 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1367 					   unsigned int limit_percent)
1368 {
1369 	struct auxtrace_cache *c;
1370 	struct hlist_head *ht;
1371 	size_t sz, i;
1372 
1373 	c = zalloc(sizeof(struct auxtrace_cache));
1374 	if (!c)
1375 		return NULL;
1376 
1377 	sz = 1UL << bits;
1378 
1379 	ht = calloc(sz, sizeof(struct hlist_head));
1380 	if (!ht)
1381 		goto out_free;
1382 
1383 	for (i = 0; i < sz; i++)
1384 		INIT_HLIST_HEAD(&ht[i]);
1385 
1386 	c->hashtable = ht;
1387 	c->sz = sz;
1388 	c->entry_size = entry_size;
1389 	c->limit = (c->sz * limit_percent) / 100;
1390 	c->bits = bits;
1391 
1392 	return c;
1393 
1394 out_free:
1395 	free(c);
1396 	return NULL;
1397 }
1398 
1399 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1400 {
1401 	struct auxtrace_cache_entry *entry;
1402 	struct hlist_node *tmp;
1403 	size_t i;
1404 
1405 	if (!c)
1406 		return;
1407 
1408 	for (i = 0; i < c->sz; i++) {
1409 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1410 			hlist_del(&entry->hash);
1411 			auxtrace_cache__free_entry(c, entry);
1412 		}
1413 	}
1414 
1415 	c->cnt = 0;
1416 }
1417 
1418 void auxtrace_cache__free(struct auxtrace_cache *c)
1419 {
1420 	if (!c)
1421 		return;
1422 
1423 	auxtrace_cache__drop(c);
1424 	free(c->hashtable);
1425 	free(c);
1426 }
1427 
1428 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1429 {
1430 	return malloc(c->entry_size);
1431 }
1432 
1433 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1434 				void *entry)
1435 {
1436 	free(entry);
1437 }
1438 
1439 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1440 			struct auxtrace_cache_entry *entry)
1441 {
1442 	if (c->limit && ++c->cnt > c->limit)
1443 		auxtrace_cache__drop(c);
1444 
1445 	entry->key = key;
1446 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1447 
1448 	return 0;
1449 }
1450 
1451 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1452 {
1453 	struct auxtrace_cache_entry *entry;
1454 	struct hlist_head *hlist;
1455 
1456 	if (!c)
1457 		return NULL;
1458 
1459 	hlist = &c->hashtable[hash_32(key, c->bits)];
1460 	hlist_for_each_entry(entry, hlist, hash) {
1461 		if (entry->key == key)
1462 			return entry;
1463 	}
1464 
1465 	return NULL;
1466 }
1467 
1468 static void addr_filter__free_str(struct addr_filter *filt)
1469 {
1470 	free(filt->str);
1471 	filt->action   = NULL;
1472 	filt->sym_from = NULL;
1473 	filt->sym_to   = NULL;
1474 	filt->filename = NULL;
1475 	filt->str      = NULL;
1476 }
1477 
1478 static struct addr_filter *addr_filter__new(void)
1479 {
1480 	struct addr_filter *filt = zalloc(sizeof(*filt));
1481 
1482 	if (filt)
1483 		INIT_LIST_HEAD(&filt->list);
1484 
1485 	return filt;
1486 }
1487 
1488 static void addr_filter__free(struct addr_filter *filt)
1489 {
1490 	if (filt)
1491 		addr_filter__free_str(filt);
1492 	free(filt);
1493 }
1494 
1495 static void addr_filters__add(struct addr_filters *filts,
1496 			      struct addr_filter *filt)
1497 {
1498 	list_add_tail(&filt->list, &filts->head);
1499 	filts->cnt += 1;
1500 }
1501 
1502 static void addr_filters__del(struct addr_filters *filts,
1503 			      struct addr_filter *filt)
1504 {
1505 	list_del_init(&filt->list);
1506 	filts->cnt -= 1;
1507 }
1508 
1509 void addr_filters__init(struct addr_filters *filts)
1510 {
1511 	INIT_LIST_HEAD(&filts->head);
1512 	filts->cnt = 0;
1513 }
1514 
1515 void addr_filters__exit(struct addr_filters *filts)
1516 {
1517 	struct addr_filter *filt, *n;
1518 
1519 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1520 		addr_filters__del(filts, filt);
1521 		addr_filter__free(filt);
1522 	}
1523 }
1524 
1525 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1526 			    const char *str_delim)
1527 {
1528 	*inp += strspn(*inp, " ");
1529 
1530 	if (isdigit(**inp)) {
1531 		char *endptr;
1532 
1533 		if (!num)
1534 			return -EINVAL;
1535 		errno = 0;
1536 		*num = strtoull(*inp, &endptr, 0);
1537 		if (errno)
1538 			return -errno;
1539 		if (endptr == *inp)
1540 			return -EINVAL;
1541 		*inp = endptr;
1542 	} else {
1543 		size_t n;
1544 
1545 		if (!str)
1546 			return -EINVAL;
1547 		*inp += strspn(*inp, " ");
1548 		*str = *inp;
1549 		n = strcspn(*inp, str_delim);
1550 		if (!n)
1551 			return -EINVAL;
1552 		*inp += n;
1553 		if (**inp) {
1554 			**inp = '\0';
1555 			*inp += 1;
1556 		}
1557 	}
1558 	return 0;
1559 }
1560 
1561 static int parse_action(struct addr_filter *filt)
1562 {
1563 	if (!strcmp(filt->action, "filter")) {
1564 		filt->start = true;
1565 		filt->range = true;
1566 	} else if (!strcmp(filt->action, "start")) {
1567 		filt->start = true;
1568 	} else if (!strcmp(filt->action, "stop")) {
1569 		filt->start = false;
1570 	} else if (!strcmp(filt->action, "tracestop")) {
1571 		filt->start = false;
1572 		filt->range = true;
1573 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1574 	} else {
1575 		return -EINVAL;
1576 	}
1577 	return 0;
1578 }
1579 
1580 static int parse_sym_idx(char **inp, int *idx)
1581 {
1582 	*idx = -1;
1583 
1584 	*inp += strspn(*inp, " ");
1585 
1586 	if (**inp != '#')
1587 		return 0;
1588 
1589 	*inp += 1;
1590 
1591 	if (**inp == 'g' || **inp == 'G') {
1592 		*inp += 1;
1593 		*idx = 0;
1594 	} else {
1595 		unsigned long num;
1596 		char *endptr;
1597 
1598 		errno = 0;
1599 		num = strtoul(*inp, &endptr, 0);
1600 		if (errno)
1601 			return -errno;
1602 		if (endptr == *inp || num > INT_MAX)
1603 			return -EINVAL;
1604 		*inp = endptr;
1605 		*idx = num;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1612 {
1613 	int err = parse_num_or_str(inp, num, str, " ");
1614 
1615 	if (!err && *str)
1616 		err = parse_sym_idx(inp, idx);
1617 
1618 	return err;
1619 }
1620 
1621 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1622 {
1623 	char *fstr;
1624 	int err;
1625 
1626 	filt->str = fstr = strdup(*filter_inp);
1627 	if (!fstr)
1628 		return -ENOMEM;
1629 
1630 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1631 	if (err)
1632 		goto out_err;
1633 
1634 	err = parse_action(filt);
1635 	if (err)
1636 		goto out_err;
1637 
1638 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1639 			      &filt->sym_from_idx);
1640 	if (err)
1641 		goto out_err;
1642 
1643 	fstr += strspn(fstr, " ");
1644 
1645 	if (*fstr == '/') {
1646 		fstr += 1;
1647 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1648 				      &filt->sym_to_idx);
1649 		if (err)
1650 			goto out_err;
1651 		filt->range = true;
1652 	}
1653 
1654 	fstr += strspn(fstr, " ");
1655 
1656 	if (*fstr == '@') {
1657 		fstr += 1;
1658 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1659 		if (err)
1660 			goto out_err;
1661 	}
1662 
1663 	fstr += strspn(fstr, " ,");
1664 
1665 	*filter_inp += fstr - filt->str;
1666 
1667 	return 0;
1668 
1669 out_err:
1670 	addr_filter__free_str(filt);
1671 
1672 	return err;
1673 }
1674 
1675 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1676 				    const char *filter)
1677 {
1678 	struct addr_filter *filt;
1679 	const char *fstr = filter;
1680 	int err;
1681 
1682 	while (*fstr) {
1683 		filt = addr_filter__new();
1684 		err = parse_one_filter(filt, &fstr);
1685 		if (err) {
1686 			addr_filter__free(filt);
1687 			addr_filters__exit(filts);
1688 			return err;
1689 		}
1690 		addr_filters__add(filts, filt);
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 struct sym_args {
1697 	const char	*name;
1698 	u64		start;
1699 	u64		size;
1700 	int		idx;
1701 	int		cnt;
1702 	bool		started;
1703 	bool		global;
1704 	bool		selected;
1705 	bool		duplicate;
1706 	bool		near;
1707 };
1708 
1709 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1710 {
1711 	/* A function with the same name, and global or the n'th found or any */
1712 	return kallsyms__is_function(type) &&
1713 	       !strcmp(name, args->name) &&
1714 	       ((args->global && isupper(type)) ||
1715 		(args->selected && ++(args->cnt) == args->idx) ||
1716 		(!args->global && !args->selected));
1717 }
1718 
1719 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1720 {
1721 	struct sym_args *args = arg;
1722 
1723 	if (args->started) {
1724 		if (!args->size)
1725 			args->size = start - args->start;
1726 		if (args->selected) {
1727 			if (args->size)
1728 				return 1;
1729 		} else if (kern_sym_match(args, name, type)) {
1730 			args->duplicate = true;
1731 			return 1;
1732 		}
1733 	} else if (kern_sym_match(args, name, type)) {
1734 		args->started = true;
1735 		args->start = start;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1742 {
1743 	struct sym_args *args = arg;
1744 
1745 	if (kern_sym_match(args, name, type)) {
1746 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1747 		       ++args->cnt, start, type, name);
1748 		args->near = true;
1749 	} else if (args->near) {
1750 		args->near = false;
1751 		pr_err("\t\twhich is near\t\t%s\n", name);
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static int sym_not_found_error(const char *sym_name, int idx)
1758 {
1759 	if (idx > 0) {
1760 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1761 		       idx, sym_name);
1762 	} else if (!idx) {
1763 		pr_err("Global symbol '%s' not found.\n", sym_name);
1764 	} else {
1765 		pr_err("Symbol '%s' not found.\n", sym_name);
1766 	}
1767 	pr_err("Note that symbols must be functions.\n");
1768 
1769 	return -EINVAL;
1770 }
1771 
1772 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1773 {
1774 	struct sym_args args = {
1775 		.name = sym_name,
1776 		.idx = idx,
1777 		.global = !idx,
1778 		.selected = idx > 0,
1779 	};
1780 	int err;
1781 
1782 	*start = 0;
1783 	*size = 0;
1784 
1785 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1786 	if (err < 0) {
1787 		pr_err("Failed to parse /proc/kallsyms\n");
1788 		return err;
1789 	}
1790 
1791 	if (args.duplicate) {
1792 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1793 		args.cnt = 0;
1794 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1795 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1796 		       sym_name);
1797 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	if (!args.started) {
1802 		pr_err("Kernel symbol lookup: ");
1803 		return sym_not_found_error(sym_name, idx);
1804 	}
1805 
1806 	*start = args.start;
1807 	*size = args.size;
1808 
1809 	return 0;
1810 }
1811 
1812 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1813 			       char type, u64 start)
1814 {
1815 	struct sym_args *args = arg;
1816 
1817 	if (!kallsyms__is_function(type))
1818 		return 0;
1819 
1820 	if (!args->started) {
1821 		args->started = true;
1822 		args->start = start;
1823 	}
1824 	/* Don't know exactly where the kernel ends, so we add a page */
1825 	args->size = round_up(start, page_size) + page_size - args->start;
1826 
1827 	return 0;
1828 }
1829 
1830 static int addr_filter__entire_kernel(struct addr_filter *filt)
1831 {
1832 	struct sym_args args = { .started = false };
1833 	int err;
1834 
1835 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1836 	if (err < 0 || !args.started) {
1837 		pr_err("Failed to parse /proc/kallsyms\n");
1838 		return err;
1839 	}
1840 
1841 	filt->addr = args.start;
1842 	filt->size = args.size;
1843 
1844 	return 0;
1845 }
1846 
1847 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1848 {
1849 	if (start + size >= filt->addr)
1850 		return 0;
1851 
1852 	if (filt->sym_from) {
1853 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1854 		       filt->sym_to, start, filt->sym_from, filt->addr);
1855 	} else {
1856 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1857 		       filt->sym_to, start, filt->addr);
1858 	}
1859 
1860 	return -EINVAL;
1861 }
1862 
1863 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1864 {
1865 	bool no_size = false;
1866 	u64 start, size;
1867 	int err;
1868 
1869 	if (symbol_conf.kptr_restrict) {
1870 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1871 		return -EINVAL;
1872 	}
1873 
1874 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1875 		return addr_filter__entire_kernel(filt);
1876 
1877 	if (filt->sym_from) {
1878 		err = find_kern_sym(filt->sym_from, &start, &size,
1879 				    filt->sym_from_idx);
1880 		if (err)
1881 			return err;
1882 		filt->addr = start;
1883 		if (filt->range && !filt->size && !filt->sym_to) {
1884 			filt->size = size;
1885 			no_size = !size;
1886 		}
1887 	}
1888 
1889 	if (filt->sym_to) {
1890 		err = find_kern_sym(filt->sym_to, &start, &size,
1891 				    filt->sym_to_idx);
1892 		if (err)
1893 			return err;
1894 
1895 		err = check_end_after_start(filt, start, size);
1896 		if (err)
1897 			return err;
1898 		filt->size = start + size - filt->addr;
1899 		no_size = !size;
1900 	}
1901 
1902 	/* The very last symbol in kallsyms does not imply a particular size */
1903 	if (no_size) {
1904 		pr_err("Cannot determine size of symbol '%s'\n",
1905 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1906 		return -EINVAL;
1907 	}
1908 
1909 	return 0;
1910 }
1911 
1912 static struct dso *load_dso(const char *name)
1913 {
1914 	struct map *map;
1915 	struct dso *dso;
1916 
1917 	map = dso__new_map(name);
1918 	if (!map)
1919 		return NULL;
1920 
1921 	if (map__load(map) < 0)
1922 		pr_err("File '%s' not found or has no symbols.\n", name);
1923 
1924 	dso = dso__get(map->dso);
1925 
1926 	map__put(map);
1927 
1928 	return dso;
1929 }
1930 
1931 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1932 			  int idx)
1933 {
1934 	/* Same name, and global or the n'th found or any */
1935 	return !arch__compare_symbol_names(name, sym->name) &&
1936 	       ((!idx && sym->binding == STB_GLOBAL) ||
1937 		(idx > 0 && ++*cnt == idx) ||
1938 		idx < 0);
1939 }
1940 
1941 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1942 {
1943 	struct symbol *sym;
1944 	bool near = false;
1945 	int cnt = 0;
1946 
1947 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1948 
1949 	sym = dso__first_symbol(dso);
1950 	while (sym) {
1951 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1952 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1953 			       ++cnt, sym->start,
1954 			       sym->binding == STB_GLOBAL ? 'g' :
1955 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1956 			       sym->name);
1957 			near = true;
1958 		} else if (near) {
1959 			near = false;
1960 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1961 		}
1962 		sym = dso__next_symbol(sym);
1963 	}
1964 
1965 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1966 	       sym_name);
1967 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1968 }
1969 
1970 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1971 			u64 *size, int idx)
1972 {
1973 	struct symbol *sym;
1974 	int cnt = 0;
1975 
1976 	*start = 0;
1977 	*size = 0;
1978 
1979 	sym = dso__first_symbol(dso);
1980 	while (sym) {
1981 		if (*start) {
1982 			if (!*size)
1983 				*size = sym->start - *start;
1984 			if (idx > 0) {
1985 				if (*size)
1986 					return 1;
1987 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1988 				print_duplicate_syms(dso, sym_name);
1989 				return -EINVAL;
1990 			}
1991 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1992 			*start = sym->start;
1993 			*size = sym->end - sym->start;
1994 		}
1995 		sym = dso__next_symbol(sym);
1996 	}
1997 
1998 	if (!*start)
1999 		return sym_not_found_error(sym_name, idx);
2000 
2001 	return 0;
2002 }
2003 
2004 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2005 {
2006 	if (dso__data_file_size(dso, NULL)) {
2007 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2008 		       filt->filename);
2009 		return -EINVAL;
2010 	}
2011 
2012 	filt->addr = 0;
2013 	filt->size = dso->data.file_size;
2014 
2015 	return 0;
2016 }
2017 
2018 static int addr_filter__resolve_syms(struct addr_filter *filt)
2019 {
2020 	u64 start, size;
2021 	struct dso *dso;
2022 	int err = 0;
2023 
2024 	if (!filt->sym_from && !filt->sym_to)
2025 		return 0;
2026 
2027 	if (!filt->filename)
2028 		return addr_filter__resolve_kernel_syms(filt);
2029 
2030 	dso = load_dso(filt->filename);
2031 	if (!dso) {
2032 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2033 		return -EINVAL;
2034 	}
2035 
2036 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2037 		err = addr_filter__entire_dso(filt, dso);
2038 		goto put_dso;
2039 	}
2040 
2041 	if (filt->sym_from) {
2042 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2043 				   filt->sym_from_idx);
2044 		if (err)
2045 			goto put_dso;
2046 		filt->addr = start;
2047 		if (filt->range && !filt->size && !filt->sym_to)
2048 			filt->size = size;
2049 	}
2050 
2051 	if (filt->sym_to) {
2052 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2053 				   filt->sym_to_idx);
2054 		if (err)
2055 			goto put_dso;
2056 
2057 		err = check_end_after_start(filt, start, size);
2058 		if (err)
2059 			return err;
2060 
2061 		filt->size = start + size - filt->addr;
2062 	}
2063 
2064 put_dso:
2065 	dso__put(dso);
2066 
2067 	return err;
2068 }
2069 
2070 static char *addr_filter__to_str(struct addr_filter *filt)
2071 {
2072 	char filename_buf[PATH_MAX];
2073 	const char *at = "";
2074 	const char *fn = "";
2075 	char *filter;
2076 	int err;
2077 
2078 	if (filt->filename) {
2079 		at = "@";
2080 		fn = realpath(filt->filename, filename_buf);
2081 		if (!fn)
2082 			return NULL;
2083 	}
2084 
2085 	if (filt->range) {
2086 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2087 			       filt->action, filt->addr, filt->size, at, fn);
2088 	} else {
2089 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2090 			       filt->action, filt->addr, at, fn);
2091 	}
2092 
2093 	return err < 0 ? NULL : filter;
2094 }
2095 
2096 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2097 			     int max_nr)
2098 {
2099 	struct addr_filters filts;
2100 	struct addr_filter *filt;
2101 	int err;
2102 
2103 	addr_filters__init(&filts);
2104 
2105 	err = addr_filters__parse_bare_filter(&filts, filter);
2106 	if (err)
2107 		goto out_exit;
2108 
2109 	if (filts.cnt > max_nr) {
2110 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2111 		       filts.cnt, max_nr);
2112 		err = -EINVAL;
2113 		goto out_exit;
2114 	}
2115 
2116 	list_for_each_entry(filt, &filts.head, list) {
2117 		char *new_filter;
2118 
2119 		err = addr_filter__resolve_syms(filt);
2120 		if (err)
2121 			goto out_exit;
2122 
2123 		new_filter = addr_filter__to_str(filt);
2124 		if (!new_filter) {
2125 			err = -ENOMEM;
2126 			goto out_exit;
2127 		}
2128 
2129 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2130 			err = -ENOMEM;
2131 			goto out_exit;
2132 		}
2133 	}
2134 
2135 out_exit:
2136 	addr_filters__exit(&filts);
2137 
2138 	if (err) {
2139 		pr_err("Failed to parse address filter: '%s'\n", filter);
2140 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2141 		pr_err("Where multiple filters are separated by space or comma.\n");
2142 	}
2143 
2144 	return err;
2145 }
2146 
2147 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2148 {
2149 	struct perf_pmu *pmu = NULL;
2150 
2151 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2152 		if (pmu->type == evsel->attr.type)
2153 			break;
2154 	}
2155 
2156 	return pmu;
2157 }
2158 
2159 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2160 {
2161 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2162 	int nr_addr_filters = 0;
2163 
2164 	if (!pmu)
2165 		return 0;
2166 
2167 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2168 
2169 	return nr_addr_filters;
2170 }
2171 
2172 int auxtrace_parse_filters(struct perf_evlist *evlist)
2173 {
2174 	struct perf_evsel *evsel;
2175 	char *filter;
2176 	int err, max_nr;
2177 
2178 	evlist__for_each_entry(evlist, evsel) {
2179 		filter = evsel->filter;
2180 		max_nr = perf_evsel__nr_addr_filter(evsel);
2181 		if (!filter || !max_nr)
2182 			continue;
2183 		evsel->filter = NULL;
2184 		err = parse_addr_filter(evsel, filter, max_nr);
2185 		free(filter);
2186 		if (err)
2187 			return err;
2188 		pr_debug("Address filter: %s\n", evsel->filter);
2189 	}
2190 
2191 	return 0;
2192 }
2193