1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "evlist.h" 30 #include "dso.h" 31 #include "map.h" 32 #include "pmu.h" 33 #include "evsel.h" 34 #include "evsel_config.h" 35 #include "symbol.h" 36 #include "util/synthetic-events.h" 37 #include "thread_map.h" 38 #include "asm/bug.h" 39 #include "auxtrace.h" 40 41 #include <linux/hash.h> 42 43 #include "event.h" 44 #include "record.h" 45 #include "session.h" 46 #include "debug.h" 47 #include <subcmd/parse-options.h> 48 49 #include "cs-etm.h" 50 #include "intel-pt.h" 51 #include "intel-bts.h" 52 #include "arm-spe.h" 53 #include "s390-cpumsf.h" 54 #include "util/mmap.h" 55 56 #include <linux/ctype.h> 57 #include <linux/kernel.h> 58 #include "symbol/kallsyms.h" 59 #include <internal/lib.h> 60 61 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel) 62 { 63 struct perf_pmu *pmu = NULL; 64 65 while ((pmu = perf_pmu__scan(pmu)) != NULL) { 66 if (pmu->type == evsel->core.attr.type) 67 break; 68 } 69 70 return pmu; 71 } 72 73 static bool perf_evsel__is_aux_event(struct evsel *evsel) 74 { 75 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel); 76 77 return pmu && pmu->auxtrace; 78 } 79 80 /* 81 * Make a group from 'leader' to 'last', requiring that the events were not 82 * already grouped to a different leader. 83 */ 84 static int perf_evlist__regroup(struct evlist *evlist, 85 struct evsel *leader, 86 struct evsel *last) 87 { 88 struct evsel *evsel; 89 bool grp; 90 91 if (!perf_evsel__is_group_leader(leader)) 92 return -EINVAL; 93 94 grp = false; 95 evlist__for_each_entry(evlist, evsel) { 96 if (grp) { 97 if (!(evsel->leader == leader || 98 (evsel->leader == evsel && 99 evsel->core.nr_members <= 1))) 100 return -EINVAL; 101 } else if (evsel == leader) { 102 grp = true; 103 } 104 if (evsel == last) 105 break; 106 } 107 108 grp = false; 109 evlist__for_each_entry(evlist, evsel) { 110 if (grp) { 111 if (evsel->leader != leader) { 112 evsel->leader = leader; 113 if (leader->core.nr_members < 1) 114 leader->core.nr_members = 1; 115 leader->core.nr_members += 1; 116 } 117 } else if (evsel == leader) { 118 grp = true; 119 } 120 if (evsel == last) 121 break; 122 } 123 124 return 0; 125 } 126 127 static bool auxtrace__dont_decode(struct perf_session *session) 128 { 129 return !session->itrace_synth_opts || 130 session->itrace_synth_opts->dont_decode; 131 } 132 133 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 134 struct auxtrace_mmap_params *mp, 135 void *userpg, int fd) 136 { 137 struct perf_event_mmap_page *pc = userpg; 138 139 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 140 141 mm->userpg = userpg; 142 mm->mask = mp->mask; 143 mm->len = mp->len; 144 mm->prev = 0; 145 mm->idx = mp->idx; 146 mm->tid = mp->tid; 147 mm->cpu = mp->cpu; 148 149 if (!mp->len) { 150 mm->base = NULL; 151 return 0; 152 } 153 154 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 155 pr_err("Cannot use AUX area tracing mmaps\n"); 156 return -1; 157 #endif 158 159 pc->aux_offset = mp->offset; 160 pc->aux_size = mp->len; 161 162 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 163 if (mm->base == MAP_FAILED) { 164 pr_debug2("failed to mmap AUX area\n"); 165 mm->base = NULL; 166 return -1; 167 } 168 169 return 0; 170 } 171 172 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 173 { 174 if (mm->base) { 175 munmap(mm->base, mm->len); 176 mm->base = NULL; 177 } 178 } 179 180 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 181 off_t auxtrace_offset, 182 unsigned int auxtrace_pages, 183 bool auxtrace_overwrite) 184 { 185 if (auxtrace_pages) { 186 mp->offset = auxtrace_offset; 187 mp->len = auxtrace_pages * (size_t)page_size; 188 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 189 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 190 pr_debug2("AUX area mmap length %zu\n", mp->len); 191 } else { 192 mp->len = 0; 193 } 194 } 195 196 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 197 struct evlist *evlist, int idx, 198 bool per_cpu) 199 { 200 mp->idx = idx; 201 202 if (per_cpu) { 203 mp->cpu = evlist->core.cpus->map[idx]; 204 if (evlist->core.threads) 205 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 206 else 207 mp->tid = -1; 208 } else { 209 mp->cpu = -1; 210 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 211 } 212 } 213 214 #define AUXTRACE_INIT_NR_QUEUES 32 215 216 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 217 { 218 struct auxtrace_queue *queue_array; 219 unsigned int max_nr_queues, i; 220 221 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 222 if (nr_queues > max_nr_queues) 223 return NULL; 224 225 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 226 if (!queue_array) 227 return NULL; 228 229 for (i = 0; i < nr_queues; i++) { 230 INIT_LIST_HEAD(&queue_array[i].head); 231 queue_array[i].priv = NULL; 232 } 233 234 return queue_array; 235 } 236 237 int auxtrace_queues__init(struct auxtrace_queues *queues) 238 { 239 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 240 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 241 if (!queues->queue_array) 242 return -ENOMEM; 243 return 0; 244 } 245 246 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 247 unsigned int new_nr_queues) 248 { 249 unsigned int nr_queues = queues->nr_queues; 250 struct auxtrace_queue *queue_array; 251 unsigned int i; 252 253 if (!nr_queues) 254 nr_queues = AUXTRACE_INIT_NR_QUEUES; 255 256 while (nr_queues && nr_queues < new_nr_queues) 257 nr_queues <<= 1; 258 259 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 260 return -EINVAL; 261 262 queue_array = auxtrace_alloc_queue_array(nr_queues); 263 if (!queue_array) 264 return -ENOMEM; 265 266 for (i = 0; i < queues->nr_queues; i++) { 267 list_splice_tail(&queues->queue_array[i].head, 268 &queue_array[i].head); 269 queue_array[i].tid = queues->queue_array[i].tid; 270 queue_array[i].cpu = queues->queue_array[i].cpu; 271 queue_array[i].set = queues->queue_array[i].set; 272 queue_array[i].priv = queues->queue_array[i].priv; 273 } 274 275 queues->nr_queues = nr_queues; 276 queues->queue_array = queue_array; 277 278 return 0; 279 } 280 281 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 282 { 283 int fd = perf_data__fd(session->data); 284 void *p; 285 ssize_t ret; 286 287 if (size > SSIZE_MAX) 288 return NULL; 289 290 p = malloc(size); 291 if (!p) 292 return NULL; 293 294 ret = readn(fd, p, size); 295 if (ret != (ssize_t)size) { 296 free(p); 297 return NULL; 298 } 299 300 return p; 301 } 302 303 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 304 unsigned int idx, 305 struct auxtrace_buffer *buffer) 306 { 307 struct auxtrace_queue *queue; 308 int err; 309 310 if (idx >= queues->nr_queues) { 311 err = auxtrace_queues__grow(queues, idx + 1); 312 if (err) 313 return err; 314 } 315 316 queue = &queues->queue_array[idx]; 317 318 if (!queue->set) { 319 queue->set = true; 320 queue->tid = buffer->tid; 321 queue->cpu = buffer->cpu; 322 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 323 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 324 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 325 return -EINVAL; 326 } 327 328 buffer->buffer_nr = queues->next_buffer_nr++; 329 330 list_add_tail(&buffer->list, &queue->head); 331 332 queues->new_data = true; 333 queues->populated = true; 334 335 return 0; 336 } 337 338 /* Limit buffers to 32MiB on 32-bit */ 339 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 340 341 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 342 unsigned int idx, 343 struct auxtrace_buffer *buffer) 344 { 345 u64 sz = buffer->size; 346 bool consecutive = false; 347 struct auxtrace_buffer *b; 348 int err; 349 350 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 351 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 352 if (!b) 353 return -ENOMEM; 354 b->size = BUFFER_LIMIT_FOR_32_BIT; 355 b->consecutive = consecutive; 356 err = auxtrace_queues__queue_buffer(queues, idx, b); 357 if (err) { 358 auxtrace_buffer__free(b); 359 return err; 360 } 361 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 362 sz -= BUFFER_LIMIT_FOR_32_BIT; 363 consecutive = true; 364 } 365 366 buffer->size = sz; 367 buffer->consecutive = consecutive; 368 369 return 0; 370 } 371 372 static bool filter_cpu(struct perf_session *session, int cpu) 373 { 374 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 375 376 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 377 } 378 379 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 380 struct perf_session *session, 381 unsigned int idx, 382 struct auxtrace_buffer *buffer, 383 struct auxtrace_buffer **buffer_ptr) 384 { 385 int err = -ENOMEM; 386 387 if (filter_cpu(session, buffer->cpu)) 388 return 0; 389 390 buffer = memdup(buffer, sizeof(*buffer)); 391 if (!buffer) 392 return -ENOMEM; 393 394 if (session->one_mmap) { 395 buffer->data = buffer->data_offset - session->one_mmap_offset + 396 session->one_mmap_addr; 397 } else if (perf_data__is_pipe(session->data)) { 398 buffer->data = auxtrace_copy_data(buffer->size, session); 399 if (!buffer->data) 400 goto out_free; 401 buffer->data_needs_freeing = true; 402 } else if (BITS_PER_LONG == 32 && 403 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 404 err = auxtrace_queues__split_buffer(queues, idx, buffer); 405 if (err) 406 goto out_free; 407 } 408 409 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 410 if (err) 411 goto out_free; 412 413 /* FIXME: Doesn't work for split buffer */ 414 if (buffer_ptr) 415 *buffer_ptr = buffer; 416 417 return 0; 418 419 out_free: 420 auxtrace_buffer__free(buffer); 421 return err; 422 } 423 424 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 425 struct perf_session *session, 426 union perf_event *event, off_t data_offset, 427 struct auxtrace_buffer **buffer_ptr) 428 { 429 struct auxtrace_buffer buffer = { 430 .pid = -1, 431 .tid = event->auxtrace.tid, 432 .cpu = event->auxtrace.cpu, 433 .data_offset = data_offset, 434 .offset = event->auxtrace.offset, 435 .reference = event->auxtrace.reference, 436 .size = event->auxtrace.size, 437 }; 438 unsigned int idx = event->auxtrace.idx; 439 440 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 441 buffer_ptr); 442 } 443 444 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 445 struct perf_session *session, 446 off_t file_offset, size_t sz) 447 { 448 union perf_event *event; 449 int err; 450 char buf[PERF_SAMPLE_MAX_SIZE]; 451 452 err = perf_session__peek_event(session, file_offset, buf, 453 PERF_SAMPLE_MAX_SIZE, &event, NULL); 454 if (err) 455 return err; 456 457 if (event->header.type == PERF_RECORD_AUXTRACE) { 458 if (event->header.size < sizeof(struct perf_record_auxtrace) || 459 event->header.size != sz) { 460 err = -EINVAL; 461 goto out; 462 } 463 file_offset += event->header.size; 464 err = auxtrace_queues__add_event(queues, session, event, 465 file_offset, NULL); 466 } 467 out: 468 return err; 469 } 470 471 void auxtrace_queues__free(struct auxtrace_queues *queues) 472 { 473 unsigned int i; 474 475 for (i = 0; i < queues->nr_queues; i++) { 476 while (!list_empty(&queues->queue_array[i].head)) { 477 struct auxtrace_buffer *buffer; 478 479 buffer = list_entry(queues->queue_array[i].head.next, 480 struct auxtrace_buffer, list); 481 list_del_init(&buffer->list); 482 auxtrace_buffer__free(buffer); 483 } 484 } 485 486 zfree(&queues->queue_array); 487 queues->nr_queues = 0; 488 } 489 490 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 491 unsigned int pos, unsigned int queue_nr, 492 u64 ordinal) 493 { 494 unsigned int parent; 495 496 while (pos) { 497 parent = (pos - 1) >> 1; 498 if (heap_array[parent].ordinal <= ordinal) 499 break; 500 heap_array[pos] = heap_array[parent]; 501 pos = parent; 502 } 503 heap_array[pos].queue_nr = queue_nr; 504 heap_array[pos].ordinal = ordinal; 505 } 506 507 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 508 u64 ordinal) 509 { 510 struct auxtrace_heap_item *heap_array; 511 512 if (queue_nr >= heap->heap_sz) { 513 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 514 515 while (heap_sz <= queue_nr) 516 heap_sz <<= 1; 517 heap_array = realloc(heap->heap_array, 518 heap_sz * sizeof(struct auxtrace_heap_item)); 519 if (!heap_array) 520 return -ENOMEM; 521 heap->heap_array = heap_array; 522 heap->heap_sz = heap_sz; 523 } 524 525 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 526 527 return 0; 528 } 529 530 void auxtrace_heap__free(struct auxtrace_heap *heap) 531 { 532 zfree(&heap->heap_array); 533 heap->heap_cnt = 0; 534 heap->heap_sz = 0; 535 } 536 537 void auxtrace_heap__pop(struct auxtrace_heap *heap) 538 { 539 unsigned int pos, last, heap_cnt = heap->heap_cnt; 540 struct auxtrace_heap_item *heap_array; 541 542 if (!heap_cnt) 543 return; 544 545 heap->heap_cnt -= 1; 546 547 heap_array = heap->heap_array; 548 549 pos = 0; 550 while (1) { 551 unsigned int left, right; 552 553 left = (pos << 1) + 1; 554 if (left >= heap_cnt) 555 break; 556 right = left + 1; 557 if (right >= heap_cnt) { 558 heap_array[pos] = heap_array[left]; 559 return; 560 } 561 if (heap_array[left].ordinal < heap_array[right].ordinal) { 562 heap_array[pos] = heap_array[left]; 563 pos = left; 564 } else { 565 heap_array[pos] = heap_array[right]; 566 pos = right; 567 } 568 } 569 570 last = heap_cnt - 1; 571 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 572 heap_array[last].ordinal); 573 } 574 575 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 576 struct evlist *evlist) 577 { 578 if (itr) 579 return itr->info_priv_size(itr, evlist); 580 return 0; 581 } 582 583 static int auxtrace_not_supported(void) 584 { 585 pr_err("AUX area tracing is not supported on this architecture\n"); 586 return -EINVAL; 587 } 588 589 int auxtrace_record__info_fill(struct auxtrace_record *itr, 590 struct perf_session *session, 591 struct perf_record_auxtrace_info *auxtrace_info, 592 size_t priv_size) 593 { 594 if (itr) 595 return itr->info_fill(itr, session, auxtrace_info, priv_size); 596 return auxtrace_not_supported(); 597 } 598 599 void auxtrace_record__free(struct auxtrace_record *itr) 600 { 601 if (itr) 602 itr->free(itr); 603 } 604 605 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 606 { 607 if (itr && itr->snapshot_start) 608 return itr->snapshot_start(itr); 609 return 0; 610 } 611 612 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 613 { 614 if (!on_exit && itr && itr->snapshot_finish) 615 return itr->snapshot_finish(itr); 616 return 0; 617 } 618 619 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 620 struct auxtrace_mmap *mm, 621 unsigned char *data, u64 *head, u64 *old) 622 { 623 if (itr && itr->find_snapshot) 624 return itr->find_snapshot(itr, idx, mm, data, head, old); 625 return 0; 626 } 627 628 int auxtrace_record__options(struct auxtrace_record *itr, 629 struct evlist *evlist, 630 struct record_opts *opts) 631 { 632 if (itr) { 633 itr->evlist = evlist; 634 return itr->recording_options(itr, evlist, opts); 635 } 636 return 0; 637 } 638 639 u64 auxtrace_record__reference(struct auxtrace_record *itr) 640 { 641 if (itr) 642 return itr->reference(itr); 643 return 0; 644 } 645 646 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 647 struct record_opts *opts, const char *str) 648 { 649 if (!str) 650 return 0; 651 652 /* PMU-agnostic options */ 653 switch (*str) { 654 case 'e': 655 opts->auxtrace_snapshot_on_exit = true; 656 str++; 657 break; 658 default: 659 break; 660 } 661 662 if (itr) 663 return itr->parse_snapshot_options(itr, opts, str); 664 665 pr_err("No AUX area tracing to snapshot\n"); 666 return -EINVAL; 667 } 668 669 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 670 { 671 struct evsel *evsel; 672 673 if (!itr->evlist || !itr->pmu) 674 return -EINVAL; 675 676 evlist__for_each_entry(itr->evlist, evsel) { 677 if (evsel->core.attr.type == itr->pmu->type) { 678 if (evsel->disabled) 679 return 0; 680 return perf_evlist__enable_event_idx(itr->evlist, evsel, 681 idx); 682 } 683 } 684 return -EINVAL; 685 } 686 687 /* 688 * Event record size is 16-bit which results in a maximum size of about 64KiB. 689 * Allow about 4KiB for the rest of the sample record, to give a maximum 690 * AUX area sample size of 60KiB. 691 */ 692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 693 694 /* Arbitrary default size if no other default provided */ 695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 696 697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 698 struct record_opts *opts) 699 { 700 struct evsel *evsel; 701 bool has_aux_leader = false; 702 u32 sz; 703 704 evlist__for_each_entry(evlist, evsel) { 705 sz = evsel->core.attr.aux_sample_size; 706 if (perf_evsel__is_group_leader(evsel)) { 707 has_aux_leader = perf_evsel__is_aux_event(evsel); 708 if (sz) { 709 if (has_aux_leader) 710 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 711 else 712 pr_err("Cannot add AUX area sampling to a group leader\n"); 713 return -EINVAL; 714 } 715 } 716 if (sz > MAX_AUX_SAMPLE_SIZE) { 717 pr_err("AUX area sample size %u too big, max. %d\n", 718 sz, MAX_AUX_SAMPLE_SIZE); 719 return -EINVAL; 720 } 721 if (sz) { 722 if (!has_aux_leader) { 723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 724 return -EINVAL; 725 } 726 perf_evsel__set_sample_bit(evsel, AUX); 727 opts->auxtrace_sample_mode = true; 728 } else { 729 perf_evsel__reset_sample_bit(evsel, AUX); 730 } 731 } 732 733 if (!opts->auxtrace_sample_mode) { 734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 735 return -EINVAL; 736 } 737 738 if (!perf_can_aux_sample()) { 739 pr_err("AUX area sampling is not supported by kernel\n"); 740 return -EINVAL; 741 } 742 743 return 0; 744 } 745 746 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 747 struct evlist *evlist, 748 struct record_opts *opts, const char *str) 749 { 750 struct perf_evsel_config_term *term; 751 struct evsel *aux_evsel; 752 bool has_aux_sample_size = false; 753 bool has_aux_leader = false; 754 struct evsel *evsel; 755 char *endptr; 756 unsigned long sz; 757 758 if (!str) 759 goto no_opt; 760 761 if (!itr) { 762 pr_err("No AUX area event to sample\n"); 763 return -EINVAL; 764 } 765 766 sz = strtoul(str, &endptr, 0); 767 if (*endptr || sz > UINT_MAX) { 768 pr_err("Bad AUX area sampling option: '%s'\n", str); 769 return -EINVAL; 770 } 771 772 if (!sz) 773 sz = itr->default_aux_sample_size; 774 775 if (!sz) 776 sz = DEFAULT_AUX_SAMPLE_SIZE; 777 778 /* Set aux_sample_size based on --aux-sample option */ 779 evlist__for_each_entry(evlist, evsel) { 780 if (perf_evsel__is_group_leader(evsel)) { 781 has_aux_leader = perf_evsel__is_aux_event(evsel); 782 } else if (has_aux_leader) { 783 evsel->core.attr.aux_sample_size = sz; 784 } 785 } 786 no_opt: 787 aux_evsel = NULL; 788 /* Override with aux_sample_size from config term */ 789 evlist__for_each_entry(evlist, evsel) { 790 if (perf_evsel__is_aux_event(evsel)) 791 aux_evsel = evsel; 792 term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 793 if (term) { 794 has_aux_sample_size = true; 795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 796 /* If possible, group with the AUX event */ 797 if (aux_evsel && evsel->core.attr.aux_sample_size) 798 perf_evlist__regroup(evlist, aux_evsel, evsel); 799 } 800 } 801 802 if (!str && !has_aux_sample_size) 803 return 0; 804 805 if (!itr) { 806 pr_err("No AUX area event to sample\n"); 807 return -EINVAL; 808 } 809 810 return auxtrace_validate_aux_sample_size(evlist, opts); 811 } 812 813 struct auxtrace_record *__weak 814 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 815 { 816 *err = 0; 817 return NULL; 818 } 819 820 static int auxtrace_index__alloc(struct list_head *head) 821 { 822 struct auxtrace_index *auxtrace_index; 823 824 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 825 if (!auxtrace_index) 826 return -ENOMEM; 827 828 auxtrace_index->nr = 0; 829 INIT_LIST_HEAD(&auxtrace_index->list); 830 831 list_add_tail(&auxtrace_index->list, head); 832 833 return 0; 834 } 835 836 void auxtrace_index__free(struct list_head *head) 837 { 838 struct auxtrace_index *auxtrace_index, *n; 839 840 list_for_each_entry_safe(auxtrace_index, n, head, list) { 841 list_del_init(&auxtrace_index->list); 842 free(auxtrace_index); 843 } 844 } 845 846 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 847 { 848 struct auxtrace_index *auxtrace_index; 849 int err; 850 851 if (list_empty(head)) { 852 err = auxtrace_index__alloc(head); 853 if (err) 854 return NULL; 855 } 856 857 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 858 859 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 860 err = auxtrace_index__alloc(head); 861 if (err) 862 return NULL; 863 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 864 list); 865 } 866 867 return auxtrace_index; 868 } 869 870 int auxtrace_index__auxtrace_event(struct list_head *head, 871 union perf_event *event, off_t file_offset) 872 { 873 struct auxtrace_index *auxtrace_index; 874 size_t nr; 875 876 auxtrace_index = auxtrace_index__last(head); 877 if (!auxtrace_index) 878 return -ENOMEM; 879 880 nr = auxtrace_index->nr; 881 auxtrace_index->entries[nr].file_offset = file_offset; 882 auxtrace_index->entries[nr].sz = event->header.size; 883 auxtrace_index->nr += 1; 884 885 return 0; 886 } 887 888 static int auxtrace_index__do_write(int fd, 889 struct auxtrace_index *auxtrace_index) 890 { 891 struct auxtrace_index_entry ent; 892 size_t i; 893 894 for (i = 0; i < auxtrace_index->nr; i++) { 895 ent.file_offset = auxtrace_index->entries[i].file_offset; 896 ent.sz = auxtrace_index->entries[i].sz; 897 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 898 return -errno; 899 } 900 return 0; 901 } 902 903 int auxtrace_index__write(int fd, struct list_head *head) 904 { 905 struct auxtrace_index *auxtrace_index; 906 u64 total = 0; 907 int err; 908 909 list_for_each_entry(auxtrace_index, head, list) 910 total += auxtrace_index->nr; 911 912 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 913 return -errno; 914 915 list_for_each_entry(auxtrace_index, head, list) { 916 err = auxtrace_index__do_write(fd, auxtrace_index); 917 if (err) 918 return err; 919 } 920 921 return 0; 922 } 923 924 static int auxtrace_index__process_entry(int fd, struct list_head *head, 925 bool needs_swap) 926 { 927 struct auxtrace_index *auxtrace_index; 928 struct auxtrace_index_entry ent; 929 size_t nr; 930 931 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 932 return -1; 933 934 auxtrace_index = auxtrace_index__last(head); 935 if (!auxtrace_index) 936 return -1; 937 938 nr = auxtrace_index->nr; 939 if (needs_swap) { 940 auxtrace_index->entries[nr].file_offset = 941 bswap_64(ent.file_offset); 942 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 943 } else { 944 auxtrace_index->entries[nr].file_offset = ent.file_offset; 945 auxtrace_index->entries[nr].sz = ent.sz; 946 } 947 948 auxtrace_index->nr = nr + 1; 949 950 return 0; 951 } 952 953 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 954 bool needs_swap) 955 { 956 struct list_head *head = &session->auxtrace_index; 957 u64 nr; 958 959 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 960 return -1; 961 962 if (needs_swap) 963 nr = bswap_64(nr); 964 965 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 966 return -1; 967 968 while (nr--) { 969 int err; 970 971 err = auxtrace_index__process_entry(fd, head, needs_swap); 972 if (err) 973 return -1; 974 } 975 976 return 0; 977 } 978 979 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 980 struct perf_session *session, 981 struct auxtrace_index_entry *ent) 982 { 983 return auxtrace_queues__add_indexed_event(queues, session, 984 ent->file_offset, ent->sz); 985 } 986 987 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 988 struct perf_session *session) 989 { 990 struct auxtrace_index *auxtrace_index; 991 struct auxtrace_index_entry *ent; 992 size_t i; 993 int err; 994 995 if (auxtrace__dont_decode(session)) 996 return 0; 997 998 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 999 for (i = 0; i < auxtrace_index->nr; i++) { 1000 ent = &auxtrace_index->entries[i]; 1001 err = auxtrace_queues__process_index_entry(queues, 1002 session, 1003 ent); 1004 if (err) 1005 return err; 1006 } 1007 } 1008 return 0; 1009 } 1010 1011 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1012 struct auxtrace_buffer *buffer) 1013 { 1014 if (buffer) { 1015 if (list_is_last(&buffer->list, &queue->head)) 1016 return NULL; 1017 return list_entry(buffer->list.next, struct auxtrace_buffer, 1018 list); 1019 } else { 1020 if (list_empty(&queue->head)) 1021 return NULL; 1022 return list_entry(queue->head.next, struct auxtrace_buffer, 1023 list); 1024 } 1025 } 1026 1027 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1028 struct perf_sample *sample, 1029 struct perf_session *session) 1030 { 1031 struct perf_sample_id *sid; 1032 unsigned int idx; 1033 u64 id; 1034 1035 id = sample->id; 1036 if (!id) 1037 return NULL; 1038 1039 sid = perf_evlist__id2sid(session->evlist, id); 1040 if (!sid) 1041 return NULL; 1042 1043 idx = sid->idx; 1044 1045 if (idx >= queues->nr_queues) 1046 return NULL; 1047 1048 return &queues->queue_array[idx]; 1049 } 1050 1051 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1052 struct perf_session *session, 1053 struct perf_sample *sample, u64 data_offset, 1054 u64 reference) 1055 { 1056 struct auxtrace_buffer buffer = { 1057 .pid = -1, 1058 .data_offset = data_offset, 1059 .reference = reference, 1060 .size = sample->aux_sample.size, 1061 }; 1062 struct perf_sample_id *sid; 1063 u64 id = sample->id; 1064 unsigned int idx; 1065 1066 if (!id) 1067 return -EINVAL; 1068 1069 sid = perf_evlist__id2sid(session->evlist, id); 1070 if (!sid) 1071 return -ENOENT; 1072 1073 idx = sid->idx; 1074 buffer.tid = sid->tid; 1075 buffer.cpu = sid->cpu; 1076 1077 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1078 } 1079 1080 struct queue_data { 1081 bool samples; 1082 bool events; 1083 }; 1084 1085 static int auxtrace_queue_data_cb(struct perf_session *session, 1086 union perf_event *event, u64 offset, 1087 void *data) 1088 { 1089 struct queue_data *qd = data; 1090 struct perf_sample sample; 1091 int err; 1092 1093 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1094 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1095 return -EINVAL; 1096 offset += event->header.size; 1097 return session->auxtrace->queue_data(session, NULL, event, 1098 offset); 1099 } 1100 1101 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1102 return 0; 1103 1104 err = perf_evlist__parse_sample(session->evlist, event, &sample); 1105 if (err) 1106 return err; 1107 1108 if (!sample.aux_sample.size) 1109 return 0; 1110 1111 offset += sample.aux_sample.data - (void *)event; 1112 1113 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1114 } 1115 1116 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1117 { 1118 struct queue_data qd = { 1119 .samples = samples, 1120 .events = events, 1121 }; 1122 1123 if (auxtrace__dont_decode(session)) 1124 return 0; 1125 1126 if (!session->auxtrace || !session->auxtrace->queue_data) 1127 return -EINVAL; 1128 1129 return perf_session__peek_events(session, session->header.data_offset, 1130 session->header.data_size, 1131 auxtrace_queue_data_cb, &qd); 1132 } 1133 1134 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 1135 { 1136 size_t adj = buffer->data_offset & (page_size - 1); 1137 size_t size = buffer->size + adj; 1138 off_t file_offset = buffer->data_offset - adj; 1139 void *addr; 1140 1141 if (buffer->data) 1142 return buffer->data; 1143 1144 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 1145 if (addr == MAP_FAILED) 1146 return NULL; 1147 1148 buffer->mmap_addr = addr; 1149 buffer->mmap_size = size; 1150 1151 buffer->data = addr + adj; 1152 1153 return buffer->data; 1154 } 1155 1156 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1157 { 1158 if (!buffer->data || !buffer->mmap_addr) 1159 return; 1160 munmap(buffer->mmap_addr, buffer->mmap_size); 1161 buffer->mmap_addr = NULL; 1162 buffer->mmap_size = 0; 1163 buffer->data = NULL; 1164 buffer->use_data = NULL; 1165 } 1166 1167 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1168 { 1169 auxtrace_buffer__put_data(buffer); 1170 if (buffer->data_needs_freeing) { 1171 buffer->data_needs_freeing = false; 1172 zfree(&buffer->data); 1173 buffer->use_data = NULL; 1174 buffer->size = 0; 1175 } 1176 } 1177 1178 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1179 { 1180 auxtrace_buffer__drop_data(buffer); 1181 free(buffer); 1182 } 1183 1184 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1185 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1186 const char *msg, u64 timestamp) 1187 { 1188 size_t size; 1189 1190 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1191 1192 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1193 auxtrace_error->type = type; 1194 auxtrace_error->code = code; 1195 auxtrace_error->cpu = cpu; 1196 auxtrace_error->pid = pid; 1197 auxtrace_error->tid = tid; 1198 auxtrace_error->fmt = 1; 1199 auxtrace_error->ip = ip; 1200 auxtrace_error->time = timestamp; 1201 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1202 1203 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1204 strlen(auxtrace_error->msg) + 1; 1205 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1206 } 1207 1208 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1209 struct perf_tool *tool, 1210 struct perf_session *session, 1211 perf_event__handler_t process) 1212 { 1213 union perf_event *ev; 1214 size_t priv_size; 1215 int err; 1216 1217 pr_debug2("Synthesizing auxtrace information\n"); 1218 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1219 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1220 if (!ev) 1221 return -ENOMEM; 1222 1223 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1224 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1225 priv_size; 1226 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1227 priv_size); 1228 if (err) 1229 goto out_free; 1230 1231 err = process(tool, ev, NULL, NULL); 1232 out_free: 1233 free(ev); 1234 return err; 1235 } 1236 1237 int perf_event__process_auxtrace_info(struct perf_session *session, 1238 union perf_event *event) 1239 { 1240 enum auxtrace_type type = event->auxtrace_info.type; 1241 1242 if (dump_trace) 1243 fprintf(stdout, " type: %u\n", type); 1244 1245 switch (type) { 1246 case PERF_AUXTRACE_INTEL_PT: 1247 return intel_pt_process_auxtrace_info(event, session); 1248 case PERF_AUXTRACE_INTEL_BTS: 1249 return intel_bts_process_auxtrace_info(event, session); 1250 case PERF_AUXTRACE_ARM_SPE: 1251 return arm_spe_process_auxtrace_info(event, session); 1252 case PERF_AUXTRACE_CS_ETM: 1253 return cs_etm__process_auxtrace_info(event, session); 1254 case PERF_AUXTRACE_S390_CPUMSF: 1255 return s390_cpumsf_process_auxtrace_info(event, session); 1256 case PERF_AUXTRACE_UNKNOWN: 1257 default: 1258 return -EINVAL; 1259 } 1260 } 1261 1262 s64 perf_event__process_auxtrace(struct perf_session *session, 1263 union perf_event *event) 1264 { 1265 s64 err; 1266 1267 if (dump_trace) 1268 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1269 event->auxtrace.size, event->auxtrace.offset, 1270 event->auxtrace.reference, event->auxtrace.idx, 1271 event->auxtrace.tid, event->auxtrace.cpu); 1272 1273 if (auxtrace__dont_decode(session)) 1274 return event->auxtrace.size; 1275 1276 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1277 return -EINVAL; 1278 1279 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1280 if (err < 0) 1281 return err; 1282 1283 return event->auxtrace.size; 1284 } 1285 1286 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1287 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1288 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1289 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1290 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1291 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1292 1293 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1294 bool no_sample) 1295 { 1296 synth_opts->branches = true; 1297 synth_opts->transactions = true; 1298 synth_opts->ptwrites = true; 1299 synth_opts->pwr_events = true; 1300 synth_opts->other_events = true; 1301 synth_opts->errors = true; 1302 if (no_sample) { 1303 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1304 synth_opts->period = 1; 1305 synth_opts->calls = true; 1306 } else { 1307 synth_opts->instructions = true; 1308 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1309 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1310 } 1311 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1312 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1313 synth_opts->initial_skip = 0; 1314 } 1315 1316 /* 1317 * Please check tools/perf/Documentation/perf-script.txt for information 1318 * about the options parsed here, which is introduced after this cset, 1319 * when support in 'perf script' for these options is introduced. 1320 */ 1321 int itrace_parse_synth_opts(const struct option *opt, const char *str, 1322 int unset) 1323 { 1324 struct itrace_synth_opts *synth_opts = opt->value; 1325 const char *p; 1326 char *endptr; 1327 bool period_type_set = false; 1328 bool period_set = false; 1329 1330 synth_opts->set = true; 1331 1332 if (unset) { 1333 synth_opts->dont_decode = true; 1334 return 0; 1335 } 1336 1337 if (!str) { 1338 itrace_synth_opts__set_default(synth_opts, 1339 synth_opts->default_no_sample); 1340 return 0; 1341 } 1342 1343 for (p = str; *p;) { 1344 switch (*p++) { 1345 case 'i': 1346 synth_opts->instructions = true; 1347 while (*p == ' ' || *p == ',') 1348 p += 1; 1349 if (isdigit(*p)) { 1350 synth_opts->period = strtoull(p, &endptr, 10); 1351 period_set = true; 1352 p = endptr; 1353 while (*p == ' ' || *p == ',') 1354 p += 1; 1355 switch (*p++) { 1356 case 'i': 1357 synth_opts->period_type = 1358 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1359 period_type_set = true; 1360 break; 1361 case 't': 1362 synth_opts->period_type = 1363 PERF_ITRACE_PERIOD_TICKS; 1364 period_type_set = true; 1365 break; 1366 case 'm': 1367 synth_opts->period *= 1000; 1368 /* Fall through */ 1369 case 'u': 1370 synth_opts->period *= 1000; 1371 /* Fall through */ 1372 case 'n': 1373 if (*p++ != 's') 1374 goto out_err; 1375 synth_opts->period_type = 1376 PERF_ITRACE_PERIOD_NANOSECS; 1377 period_type_set = true; 1378 break; 1379 case '\0': 1380 goto out; 1381 default: 1382 goto out_err; 1383 } 1384 } 1385 break; 1386 case 'b': 1387 synth_opts->branches = true; 1388 break; 1389 case 'x': 1390 synth_opts->transactions = true; 1391 break; 1392 case 'w': 1393 synth_opts->ptwrites = true; 1394 break; 1395 case 'p': 1396 synth_opts->pwr_events = true; 1397 break; 1398 case 'o': 1399 synth_opts->other_events = true; 1400 break; 1401 case 'e': 1402 synth_opts->errors = true; 1403 break; 1404 case 'd': 1405 synth_opts->log = true; 1406 break; 1407 case 'c': 1408 synth_opts->branches = true; 1409 synth_opts->calls = true; 1410 break; 1411 case 'r': 1412 synth_opts->branches = true; 1413 synth_opts->returns = true; 1414 break; 1415 case 'g': 1416 synth_opts->callchain = true; 1417 synth_opts->callchain_sz = 1418 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1419 while (*p == ' ' || *p == ',') 1420 p += 1; 1421 if (isdigit(*p)) { 1422 unsigned int val; 1423 1424 val = strtoul(p, &endptr, 10); 1425 p = endptr; 1426 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1427 goto out_err; 1428 synth_opts->callchain_sz = val; 1429 } 1430 break; 1431 case 'l': 1432 synth_opts->last_branch = true; 1433 synth_opts->last_branch_sz = 1434 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1435 while (*p == ' ' || *p == ',') 1436 p += 1; 1437 if (isdigit(*p)) { 1438 unsigned int val; 1439 1440 val = strtoul(p, &endptr, 10); 1441 p = endptr; 1442 if (!val || 1443 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1444 goto out_err; 1445 synth_opts->last_branch_sz = val; 1446 } 1447 break; 1448 case 's': 1449 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1450 if (p == endptr) 1451 goto out_err; 1452 p = endptr; 1453 break; 1454 case ' ': 1455 case ',': 1456 break; 1457 default: 1458 goto out_err; 1459 } 1460 } 1461 out: 1462 if (synth_opts->instructions) { 1463 if (!period_type_set) 1464 synth_opts->period_type = 1465 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1466 if (!period_set) 1467 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1468 } 1469 1470 return 0; 1471 1472 out_err: 1473 pr_err("Bad Instruction Tracing options '%s'\n", str); 1474 return -EINVAL; 1475 } 1476 1477 static const char * const auxtrace_error_type_name[] = { 1478 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1479 }; 1480 1481 static const char *auxtrace_error_name(int type) 1482 { 1483 const char *error_type_name = NULL; 1484 1485 if (type < PERF_AUXTRACE_ERROR_MAX) 1486 error_type_name = auxtrace_error_type_name[type]; 1487 if (!error_type_name) 1488 error_type_name = "unknown AUX"; 1489 return error_type_name; 1490 } 1491 1492 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1493 { 1494 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1495 unsigned long long nsecs = e->time; 1496 const char *msg = e->msg; 1497 int ret; 1498 1499 ret = fprintf(fp, " %s error type %u", 1500 auxtrace_error_name(e->type), e->type); 1501 1502 if (e->fmt && nsecs) { 1503 unsigned long secs = nsecs / NSEC_PER_SEC; 1504 1505 nsecs -= secs * NSEC_PER_SEC; 1506 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1507 } else { 1508 ret += fprintf(fp, " time 0"); 1509 } 1510 1511 if (!e->fmt) 1512 msg = (const char *)&e->time; 1513 1514 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1515 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1516 return ret; 1517 } 1518 1519 void perf_session__auxtrace_error_inc(struct perf_session *session, 1520 union perf_event *event) 1521 { 1522 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1523 1524 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1525 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1526 } 1527 1528 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1529 { 1530 int i; 1531 1532 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1533 if (!stats->nr_auxtrace_errors[i]) 1534 continue; 1535 ui__warning("%u %s errors\n", 1536 stats->nr_auxtrace_errors[i], 1537 auxtrace_error_name(i)); 1538 } 1539 } 1540 1541 int perf_event__process_auxtrace_error(struct perf_session *session, 1542 union perf_event *event) 1543 { 1544 if (auxtrace__dont_decode(session)) 1545 return 0; 1546 1547 perf_event__fprintf_auxtrace_error(event, stdout); 1548 return 0; 1549 } 1550 1551 static int __auxtrace_mmap__read(struct mmap *map, 1552 struct auxtrace_record *itr, 1553 struct perf_tool *tool, process_auxtrace_t fn, 1554 bool snapshot, size_t snapshot_size) 1555 { 1556 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1557 u64 head, old = mm->prev, offset, ref; 1558 unsigned char *data = mm->base; 1559 size_t size, head_off, old_off, len1, len2, padding; 1560 union perf_event ev; 1561 void *data1, *data2; 1562 1563 if (snapshot) { 1564 head = auxtrace_mmap__read_snapshot_head(mm); 1565 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1566 &head, &old)) 1567 return -1; 1568 } else { 1569 head = auxtrace_mmap__read_head(mm); 1570 } 1571 1572 if (old == head) 1573 return 0; 1574 1575 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1576 mm->idx, old, head, head - old); 1577 1578 if (mm->mask) { 1579 head_off = head & mm->mask; 1580 old_off = old & mm->mask; 1581 } else { 1582 head_off = head % mm->len; 1583 old_off = old % mm->len; 1584 } 1585 1586 if (head_off > old_off) 1587 size = head_off - old_off; 1588 else 1589 size = mm->len - (old_off - head_off); 1590 1591 if (snapshot && size > snapshot_size) 1592 size = snapshot_size; 1593 1594 ref = auxtrace_record__reference(itr); 1595 1596 if (head > old || size <= head || mm->mask) { 1597 offset = head - size; 1598 } else { 1599 /* 1600 * When the buffer size is not a power of 2, 'head' wraps at the 1601 * highest multiple of the buffer size, so we have to subtract 1602 * the remainder here. 1603 */ 1604 u64 rem = (0ULL - mm->len) % mm->len; 1605 1606 offset = head - size - rem; 1607 } 1608 1609 if (size > head_off) { 1610 len1 = size - head_off; 1611 data1 = &data[mm->len - len1]; 1612 len2 = head_off; 1613 data2 = &data[0]; 1614 } else { 1615 len1 = size; 1616 data1 = &data[head_off - len1]; 1617 len2 = 0; 1618 data2 = NULL; 1619 } 1620 1621 if (itr->alignment) { 1622 unsigned int unwanted = len1 % itr->alignment; 1623 1624 len1 -= unwanted; 1625 size -= unwanted; 1626 } 1627 1628 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1629 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1630 if (padding) 1631 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1632 1633 memset(&ev, 0, sizeof(ev)); 1634 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1635 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1636 ev.auxtrace.size = size + padding; 1637 ev.auxtrace.offset = offset; 1638 ev.auxtrace.reference = ref; 1639 ev.auxtrace.idx = mm->idx; 1640 ev.auxtrace.tid = mm->tid; 1641 ev.auxtrace.cpu = mm->cpu; 1642 1643 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1644 return -1; 1645 1646 mm->prev = head; 1647 1648 if (!snapshot) { 1649 auxtrace_mmap__write_tail(mm, head); 1650 if (itr->read_finish) { 1651 int err; 1652 1653 err = itr->read_finish(itr, mm->idx); 1654 if (err < 0) 1655 return err; 1656 } 1657 } 1658 1659 return 1; 1660 } 1661 1662 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1663 struct perf_tool *tool, process_auxtrace_t fn) 1664 { 1665 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1666 } 1667 1668 int auxtrace_mmap__read_snapshot(struct mmap *map, 1669 struct auxtrace_record *itr, 1670 struct perf_tool *tool, process_auxtrace_t fn, 1671 size_t snapshot_size) 1672 { 1673 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1674 } 1675 1676 /** 1677 * struct auxtrace_cache - hash table to implement a cache 1678 * @hashtable: the hashtable 1679 * @sz: hashtable size (number of hlists) 1680 * @entry_size: size of an entry 1681 * @limit: limit the number of entries to this maximum, when reached the cache 1682 * is dropped and caching begins again with an empty cache 1683 * @cnt: current number of entries 1684 * @bits: hashtable size (@sz = 2^@bits) 1685 */ 1686 struct auxtrace_cache { 1687 struct hlist_head *hashtable; 1688 size_t sz; 1689 size_t entry_size; 1690 size_t limit; 1691 size_t cnt; 1692 unsigned int bits; 1693 }; 1694 1695 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1696 unsigned int limit_percent) 1697 { 1698 struct auxtrace_cache *c; 1699 struct hlist_head *ht; 1700 size_t sz, i; 1701 1702 c = zalloc(sizeof(struct auxtrace_cache)); 1703 if (!c) 1704 return NULL; 1705 1706 sz = 1UL << bits; 1707 1708 ht = calloc(sz, sizeof(struct hlist_head)); 1709 if (!ht) 1710 goto out_free; 1711 1712 for (i = 0; i < sz; i++) 1713 INIT_HLIST_HEAD(&ht[i]); 1714 1715 c->hashtable = ht; 1716 c->sz = sz; 1717 c->entry_size = entry_size; 1718 c->limit = (c->sz * limit_percent) / 100; 1719 c->bits = bits; 1720 1721 return c; 1722 1723 out_free: 1724 free(c); 1725 return NULL; 1726 } 1727 1728 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1729 { 1730 struct auxtrace_cache_entry *entry; 1731 struct hlist_node *tmp; 1732 size_t i; 1733 1734 if (!c) 1735 return; 1736 1737 for (i = 0; i < c->sz; i++) { 1738 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1739 hlist_del(&entry->hash); 1740 auxtrace_cache__free_entry(c, entry); 1741 } 1742 } 1743 1744 c->cnt = 0; 1745 } 1746 1747 void auxtrace_cache__free(struct auxtrace_cache *c) 1748 { 1749 if (!c) 1750 return; 1751 1752 auxtrace_cache__drop(c); 1753 zfree(&c->hashtable); 1754 free(c); 1755 } 1756 1757 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1758 { 1759 return malloc(c->entry_size); 1760 } 1761 1762 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1763 void *entry) 1764 { 1765 free(entry); 1766 } 1767 1768 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1769 struct auxtrace_cache_entry *entry) 1770 { 1771 if (c->limit && ++c->cnt > c->limit) 1772 auxtrace_cache__drop(c); 1773 1774 entry->key = key; 1775 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1776 1777 return 0; 1778 } 1779 1780 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 1781 u32 key) 1782 { 1783 struct auxtrace_cache_entry *entry; 1784 struct hlist_head *hlist; 1785 struct hlist_node *n; 1786 1787 if (!c) 1788 return NULL; 1789 1790 hlist = &c->hashtable[hash_32(key, c->bits)]; 1791 hlist_for_each_entry_safe(entry, n, hlist, hash) { 1792 if (entry->key == key) { 1793 hlist_del(&entry->hash); 1794 return entry; 1795 } 1796 } 1797 1798 return NULL; 1799 } 1800 1801 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 1802 { 1803 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 1804 1805 auxtrace_cache__free_entry(c, entry); 1806 } 1807 1808 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1809 { 1810 struct auxtrace_cache_entry *entry; 1811 struct hlist_head *hlist; 1812 1813 if (!c) 1814 return NULL; 1815 1816 hlist = &c->hashtable[hash_32(key, c->bits)]; 1817 hlist_for_each_entry(entry, hlist, hash) { 1818 if (entry->key == key) 1819 return entry; 1820 } 1821 1822 return NULL; 1823 } 1824 1825 static void addr_filter__free_str(struct addr_filter *filt) 1826 { 1827 zfree(&filt->str); 1828 filt->action = NULL; 1829 filt->sym_from = NULL; 1830 filt->sym_to = NULL; 1831 filt->filename = NULL; 1832 } 1833 1834 static struct addr_filter *addr_filter__new(void) 1835 { 1836 struct addr_filter *filt = zalloc(sizeof(*filt)); 1837 1838 if (filt) 1839 INIT_LIST_HEAD(&filt->list); 1840 1841 return filt; 1842 } 1843 1844 static void addr_filter__free(struct addr_filter *filt) 1845 { 1846 if (filt) 1847 addr_filter__free_str(filt); 1848 free(filt); 1849 } 1850 1851 static void addr_filters__add(struct addr_filters *filts, 1852 struct addr_filter *filt) 1853 { 1854 list_add_tail(&filt->list, &filts->head); 1855 filts->cnt += 1; 1856 } 1857 1858 static void addr_filters__del(struct addr_filters *filts, 1859 struct addr_filter *filt) 1860 { 1861 list_del_init(&filt->list); 1862 filts->cnt -= 1; 1863 } 1864 1865 void addr_filters__init(struct addr_filters *filts) 1866 { 1867 INIT_LIST_HEAD(&filts->head); 1868 filts->cnt = 0; 1869 } 1870 1871 void addr_filters__exit(struct addr_filters *filts) 1872 { 1873 struct addr_filter *filt, *n; 1874 1875 list_for_each_entry_safe(filt, n, &filts->head, list) { 1876 addr_filters__del(filts, filt); 1877 addr_filter__free(filt); 1878 } 1879 } 1880 1881 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1882 const char *str_delim) 1883 { 1884 *inp += strspn(*inp, " "); 1885 1886 if (isdigit(**inp)) { 1887 char *endptr; 1888 1889 if (!num) 1890 return -EINVAL; 1891 errno = 0; 1892 *num = strtoull(*inp, &endptr, 0); 1893 if (errno) 1894 return -errno; 1895 if (endptr == *inp) 1896 return -EINVAL; 1897 *inp = endptr; 1898 } else { 1899 size_t n; 1900 1901 if (!str) 1902 return -EINVAL; 1903 *inp += strspn(*inp, " "); 1904 *str = *inp; 1905 n = strcspn(*inp, str_delim); 1906 if (!n) 1907 return -EINVAL; 1908 *inp += n; 1909 if (**inp) { 1910 **inp = '\0'; 1911 *inp += 1; 1912 } 1913 } 1914 return 0; 1915 } 1916 1917 static int parse_action(struct addr_filter *filt) 1918 { 1919 if (!strcmp(filt->action, "filter")) { 1920 filt->start = true; 1921 filt->range = true; 1922 } else if (!strcmp(filt->action, "start")) { 1923 filt->start = true; 1924 } else if (!strcmp(filt->action, "stop")) { 1925 filt->start = false; 1926 } else if (!strcmp(filt->action, "tracestop")) { 1927 filt->start = false; 1928 filt->range = true; 1929 filt->action += 5; /* Change 'tracestop' to 'stop' */ 1930 } else { 1931 return -EINVAL; 1932 } 1933 return 0; 1934 } 1935 1936 static int parse_sym_idx(char **inp, int *idx) 1937 { 1938 *idx = -1; 1939 1940 *inp += strspn(*inp, " "); 1941 1942 if (**inp != '#') 1943 return 0; 1944 1945 *inp += 1; 1946 1947 if (**inp == 'g' || **inp == 'G') { 1948 *inp += 1; 1949 *idx = 0; 1950 } else { 1951 unsigned long num; 1952 char *endptr; 1953 1954 errno = 0; 1955 num = strtoul(*inp, &endptr, 0); 1956 if (errno) 1957 return -errno; 1958 if (endptr == *inp || num > INT_MAX) 1959 return -EINVAL; 1960 *inp = endptr; 1961 *idx = num; 1962 } 1963 1964 return 0; 1965 } 1966 1967 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 1968 { 1969 int err = parse_num_or_str(inp, num, str, " "); 1970 1971 if (!err && *str) 1972 err = parse_sym_idx(inp, idx); 1973 1974 return err; 1975 } 1976 1977 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 1978 { 1979 char *fstr; 1980 int err; 1981 1982 filt->str = fstr = strdup(*filter_inp); 1983 if (!fstr) 1984 return -ENOMEM; 1985 1986 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 1987 if (err) 1988 goto out_err; 1989 1990 err = parse_action(filt); 1991 if (err) 1992 goto out_err; 1993 1994 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 1995 &filt->sym_from_idx); 1996 if (err) 1997 goto out_err; 1998 1999 fstr += strspn(fstr, " "); 2000 2001 if (*fstr == '/') { 2002 fstr += 1; 2003 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2004 &filt->sym_to_idx); 2005 if (err) 2006 goto out_err; 2007 filt->range = true; 2008 } 2009 2010 fstr += strspn(fstr, " "); 2011 2012 if (*fstr == '@') { 2013 fstr += 1; 2014 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2015 if (err) 2016 goto out_err; 2017 } 2018 2019 fstr += strspn(fstr, " ,"); 2020 2021 *filter_inp += fstr - filt->str; 2022 2023 return 0; 2024 2025 out_err: 2026 addr_filter__free_str(filt); 2027 2028 return err; 2029 } 2030 2031 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2032 const char *filter) 2033 { 2034 struct addr_filter *filt; 2035 const char *fstr = filter; 2036 int err; 2037 2038 while (*fstr) { 2039 filt = addr_filter__new(); 2040 err = parse_one_filter(filt, &fstr); 2041 if (err) { 2042 addr_filter__free(filt); 2043 addr_filters__exit(filts); 2044 return err; 2045 } 2046 addr_filters__add(filts, filt); 2047 } 2048 2049 return 0; 2050 } 2051 2052 struct sym_args { 2053 const char *name; 2054 u64 start; 2055 u64 size; 2056 int idx; 2057 int cnt; 2058 bool started; 2059 bool global; 2060 bool selected; 2061 bool duplicate; 2062 bool near; 2063 }; 2064 2065 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2066 { 2067 /* A function with the same name, and global or the n'th found or any */ 2068 return kallsyms__is_function(type) && 2069 !strcmp(name, args->name) && 2070 ((args->global && isupper(type)) || 2071 (args->selected && ++(args->cnt) == args->idx) || 2072 (!args->global && !args->selected)); 2073 } 2074 2075 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2076 { 2077 struct sym_args *args = arg; 2078 2079 if (args->started) { 2080 if (!args->size) 2081 args->size = start - args->start; 2082 if (args->selected) { 2083 if (args->size) 2084 return 1; 2085 } else if (kern_sym_match(args, name, type)) { 2086 args->duplicate = true; 2087 return 1; 2088 } 2089 } else if (kern_sym_match(args, name, type)) { 2090 args->started = true; 2091 args->start = start; 2092 } 2093 2094 return 0; 2095 } 2096 2097 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2098 { 2099 struct sym_args *args = arg; 2100 2101 if (kern_sym_match(args, name, type)) { 2102 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2103 ++args->cnt, start, type, name); 2104 args->near = true; 2105 } else if (args->near) { 2106 args->near = false; 2107 pr_err("\t\twhich is near\t\t%s\n", name); 2108 } 2109 2110 return 0; 2111 } 2112 2113 static int sym_not_found_error(const char *sym_name, int idx) 2114 { 2115 if (idx > 0) { 2116 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2117 idx, sym_name); 2118 } else if (!idx) { 2119 pr_err("Global symbol '%s' not found.\n", sym_name); 2120 } else { 2121 pr_err("Symbol '%s' not found.\n", sym_name); 2122 } 2123 pr_err("Note that symbols must be functions.\n"); 2124 2125 return -EINVAL; 2126 } 2127 2128 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2129 { 2130 struct sym_args args = { 2131 .name = sym_name, 2132 .idx = idx, 2133 .global = !idx, 2134 .selected = idx > 0, 2135 }; 2136 int err; 2137 2138 *start = 0; 2139 *size = 0; 2140 2141 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2142 if (err < 0) { 2143 pr_err("Failed to parse /proc/kallsyms\n"); 2144 return err; 2145 } 2146 2147 if (args.duplicate) { 2148 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2149 args.cnt = 0; 2150 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2151 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2152 sym_name); 2153 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2154 return -EINVAL; 2155 } 2156 2157 if (!args.started) { 2158 pr_err("Kernel symbol lookup: "); 2159 return sym_not_found_error(sym_name, idx); 2160 } 2161 2162 *start = args.start; 2163 *size = args.size; 2164 2165 return 0; 2166 } 2167 2168 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2169 char type, u64 start) 2170 { 2171 struct sym_args *args = arg; 2172 2173 if (!kallsyms__is_function(type)) 2174 return 0; 2175 2176 if (!args->started) { 2177 args->started = true; 2178 args->start = start; 2179 } 2180 /* Don't know exactly where the kernel ends, so we add a page */ 2181 args->size = round_up(start, page_size) + page_size - args->start; 2182 2183 return 0; 2184 } 2185 2186 static int addr_filter__entire_kernel(struct addr_filter *filt) 2187 { 2188 struct sym_args args = { .started = false }; 2189 int err; 2190 2191 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2192 if (err < 0 || !args.started) { 2193 pr_err("Failed to parse /proc/kallsyms\n"); 2194 return err; 2195 } 2196 2197 filt->addr = args.start; 2198 filt->size = args.size; 2199 2200 return 0; 2201 } 2202 2203 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2204 { 2205 if (start + size >= filt->addr) 2206 return 0; 2207 2208 if (filt->sym_from) { 2209 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2210 filt->sym_to, start, filt->sym_from, filt->addr); 2211 } else { 2212 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2213 filt->sym_to, start, filt->addr); 2214 } 2215 2216 return -EINVAL; 2217 } 2218 2219 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2220 { 2221 bool no_size = false; 2222 u64 start, size; 2223 int err; 2224 2225 if (symbol_conf.kptr_restrict) { 2226 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2227 return -EINVAL; 2228 } 2229 2230 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2231 return addr_filter__entire_kernel(filt); 2232 2233 if (filt->sym_from) { 2234 err = find_kern_sym(filt->sym_from, &start, &size, 2235 filt->sym_from_idx); 2236 if (err) 2237 return err; 2238 filt->addr = start; 2239 if (filt->range && !filt->size && !filt->sym_to) { 2240 filt->size = size; 2241 no_size = !size; 2242 } 2243 } 2244 2245 if (filt->sym_to) { 2246 err = find_kern_sym(filt->sym_to, &start, &size, 2247 filt->sym_to_idx); 2248 if (err) 2249 return err; 2250 2251 err = check_end_after_start(filt, start, size); 2252 if (err) 2253 return err; 2254 filt->size = start + size - filt->addr; 2255 no_size = !size; 2256 } 2257 2258 /* The very last symbol in kallsyms does not imply a particular size */ 2259 if (no_size) { 2260 pr_err("Cannot determine size of symbol '%s'\n", 2261 filt->sym_to ? filt->sym_to : filt->sym_from); 2262 return -EINVAL; 2263 } 2264 2265 return 0; 2266 } 2267 2268 static struct dso *load_dso(const char *name) 2269 { 2270 struct map *map; 2271 struct dso *dso; 2272 2273 map = dso__new_map(name); 2274 if (!map) 2275 return NULL; 2276 2277 if (map__load(map) < 0) 2278 pr_err("File '%s' not found or has no symbols.\n", name); 2279 2280 dso = dso__get(map->dso); 2281 2282 map__put(map); 2283 2284 return dso; 2285 } 2286 2287 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2288 int idx) 2289 { 2290 /* Same name, and global or the n'th found or any */ 2291 return !arch__compare_symbol_names(name, sym->name) && 2292 ((!idx && sym->binding == STB_GLOBAL) || 2293 (idx > 0 && ++*cnt == idx) || 2294 idx < 0); 2295 } 2296 2297 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2298 { 2299 struct symbol *sym; 2300 bool near = false; 2301 int cnt = 0; 2302 2303 pr_err("Multiple symbols with name '%s'\n", sym_name); 2304 2305 sym = dso__first_symbol(dso); 2306 while (sym) { 2307 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2308 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2309 ++cnt, sym->start, 2310 sym->binding == STB_GLOBAL ? 'g' : 2311 sym->binding == STB_LOCAL ? 'l' : 'w', 2312 sym->name); 2313 near = true; 2314 } else if (near) { 2315 near = false; 2316 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2317 } 2318 sym = dso__next_symbol(sym); 2319 } 2320 2321 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2322 sym_name); 2323 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2324 } 2325 2326 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2327 u64 *size, int idx) 2328 { 2329 struct symbol *sym; 2330 int cnt = 0; 2331 2332 *start = 0; 2333 *size = 0; 2334 2335 sym = dso__first_symbol(dso); 2336 while (sym) { 2337 if (*start) { 2338 if (!*size) 2339 *size = sym->start - *start; 2340 if (idx > 0) { 2341 if (*size) 2342 return 1; 2343 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2344 print_duplicate_syms(dso, sym_name); 2345 return -EINVAL; 2346 } 2347 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2348 *start = sym->start; 2349 *size = sym->end - sym->start; 2350 } 2351 sym = dso__next_symbol(sym); 2352 } 2353 2354 if (!*start) 2355 return sym_not_found_error(sym_name, idx); 2356 2357 return 0; 2358 } 2359 2360 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2361 { 2362 if (dso__data_file_size(dso, NULL)) { 2363 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2364 filt->filename); 2365 return -EINVAL; 2366 } 2367 2368 filt->addr = 0; 2369 filt->size = dso->data.file_size; 2370 2371 return 0; 2372 } 2373 2374 static int addr_filter__resolve_syms(struct addr_filter *filt) 2375 { 2376 u64 start, size; 2377 struct dso *dso; 2378 int err = 0; 2379 2380 if (!filt->sym_from && !filt->sym_to) 2381 return 0; 2382 2383 if (!filt->filename) 2384 return addr_filter__resolve_kernel_syms(filt); 2385 2386 dso = load_dso(filt->filename); 2387 if (!dso) { 2388 pr_err("Failed to load symbols from: %s\n", filt->filename); 2389 return -EINVAL; 2390 } 2391 2392 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2393 err = addr_filter__entire_dso(filt, dso); 2394 goto put_dso; 2395 } 2396 2397 if (filt->sym_from) { 2398 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2399 filt->sym_from_idx); 2400 if (err) 2401 goto put_dso; 2402 filt->addr = start; 2403 if (filt->range && !filt->size && !filt->sym_to) 2404 filt->size = size; 2405 } 2406 2407 if (filt->sym_to) { 2408 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2409 filt->sym_to_idx); 2410 if (err) 2411 goto put_dso; 2412 2413 err = check_end_after_start(filt, start, size); 2414 if (err) 2415 return err; 2416 2417 filt->size = start + size - filt->addr; 2418 } 2419 2420 put_dso: 2421 dso__put(dso); 2422 2423 return err; 2424 } 2425 2426 static char *addr_filter__to_str(struct addr_filter *filt) 2427 { 2428 char filename_buf[PATH_MAX]; 2429 const char *at = ""; 2430 const char *fn = ""; 2431 char *filter; 2432 int err; 2433 2434 if (filt->filename) { 2435 at = "@"; 2436 fn = realpath(filt->filename, filename_buf); 2437 if (!fn) 2438 return NULL; 2439 } 2440 2441 if (filt->range) { 2442 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2443 filt->action, filt->addr, filt->size, at, fn); 2444 } else { 2445 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2446 filt->action, filt->addr, at, fn); 2447 } 2448 2449 return err < 0 ? NULL : filter; 2450 } 2451 2452 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2453 int max_nr) 2454 { 2455 struct addr_filters filts; 2456 struct addr_filter *filt; 2457 int err; 2458 2459 addr_filters__init(&filts); 2460 2461 err = addr_filters__parse_bare_filter(&filts, filter); 2462 if (err) 2463 goto out_exit; 2464 2465 if (filts.cnt > max_nr) { 2466 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2467 filts.cnt, max_nr); 2468 err = -EINVAL; 2469 goto out_exit; 2470 } 2471 2472 list_for_each_entry(filt, &filts.head, list) { 2473 char *new_filter; 2474 2475 err = addr_filter__resolve_syms(filt); 2476 if (err) 2477 goto out_exit; 2478 2479 new_filter = addr_filter__to_str(filt); 2480 if (!new_filter) { 2481 err = -ENOMEM; 2482 goto out_exit; 2483 } 2484 2485 if (perf_evsel__append_addr_filter(evsel, new_filter)) { 2486 err = -ENOMEM; 2487 goto out_exit; 2488 } 2489 } 2490 2491 out_exit: 2492 addr_filters__exit(&filts); 2493 2494 if (err) { 2495 pr_err("Failed to parse address filter: '%s'\n", filter); 2496 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2497 pr_err("Where multiple filters are separated by space or comma.\n"); 2498 } 2499 2500 return err; 2501 } 2502 2503 static int perf_evsel__nr_addr_filter(struct evsel *evsel) 2504 { 2505 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel); 2506 int nr_addr_filters = 0; 2507 2508 if (!pmu) 2509 return 0; 2510 2511 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2512 2513 return nr_addr_filters; 2514 } 2515 2516 int auxtrace_parse_filters(struct evlist *evlist) 2517 { 2518 struct evsel *evsel; 2519 char *filter; 2520 int err, max_nr; 2521 2522 evlist__for_each_entry(evlist, evsel) { 2523 filter = evsel->filter; 2524 max_nr = perf_evsel__nr_addr_filter(evsel); 2525 if (!filter || !max_nr) 2526 continue; 2527 evsel->filter = NULL; 2528 err = parse_addr_filter(evsel, filter, max_nr); 2529 free(filter); 2530 if (err) 2531 return err; 2532 pr_debug("Address filter: %s\n", evsel->filter); 2533 } 2534 2535 return 0; 2536 } 2537 2538 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2539 struct perf_sample *sample, struct perf_tool *tool) 2540 { 2541 if (!session->auxtrace) 2542 return 0; 2543 2544 return session->auxtrace->process_event(session, event, sample, tool); 2545 } 2546 2547 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2548 struct perf_sample *sample) 2549 { 2550 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2551 auxtrace__dont_decode(session)) 2552 return; 2553 2554 session->auxtrace->dump_auxtrace_sample(session, sample); 2555 } 2556 2557 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2558 { 2559 if (!session->auxtrace) 2560 return 0; 2561 2562 return session->auxtrace->flush_events(session, tool); 2563 } 2564 2565 void auxtrace__free_events(struct perf_session *session) 2566 { 2567 if (!session->auxtrace) 2568 return; 2569 2570 return session->auxtrace->free_events(session); 2571 } 2572 2573 void auxtrace__free(struct perf_session *session) 2574 { 2575 if (!session->auxtrace) 2576 return; 2577 2578 return session->auxtrace->free(session); 2579 } 2580