xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41 
42 #include <linux/hash.h>
43 
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49 
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56 
57 #include <linux/ctype.h>
58 #include <linux/kernel.h>
59 #include "symbol/kallsyms.h"
60 #include <internal/lib.h>
61 
62 /*
63  * Make a group from 'leader' to 'last', requiring that the events were not
64  * already grouped to a different leader.
65  */
66 static int perf_evlist__regroup(struct evlist *evlist,
67 				struct evsel *leader,
68 				struct evsel *last)
69 {
70 	struct evsel *evsel;
71 	bool grp;
72 
73 	if (!evsel__is_group_leader(leader))
74 		return -EINVAL;
75 
76 	grp = false;
77 	evlist__for_each_entry(evlist, evsel) {
78 		if (grp) {
79 			if (!(evsel->leader == leader ||
80 			     (evsel->leader == evsel &&
81 			      evsel->core.nr_members <= 1)))
82 				return -EINVAL;
83 		} else if (evsel == leader) {
84 			grp = true;
85 		}
86 		if (evsel == last)
87 			break;
88 	}
89 
90 	grp = false;
91 	evlist__for_each_entry(evlist, evsel) {
92 		if (grp) {
93 			if (evsel->leader != leader) {
94 				evsel->leader = leader;
95 				if (leader->core.nr_members < 1)
96 					leader->core.nr_members = 1;
97 				leader->core.nr_members += 1;
98 			}
99 		} else if (evsel == leader) {
100 			grp = true;
101 		}
102 		if (evsel == last)
103 			break;
104 	}
105 
106 	return 0;
107 }
108 
109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 	return !session->itrace_synth_opts ||
112 	       session->itrace_synth_opts->dont_decode;
113 }
114 
115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 			struct auxtrace_mmap_params *mp,
117 			void *userpg, int fd)
118 {
119 	struct perf_event_mmap_page *pc = userpg;
120 
121 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122 
123 	mm->userpg = userpg;
124 	mm->mask = mp->mask;
125 	mm->len = mp->len;
126 	mm->prev = 0;
127 	mm->idx = mp->idx;
128 	mm->tid = mp->tid;
129 	mm->cpu = mp->cpu;
130 
131 	if (!mp->len) {
132 		mm->base = NULL;
133 		return 0;
134 	}
135 
136 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
137 	pr_err("Cannot use AUX area tracing mmaps\n");
138 	return -1;
139 #endif
140 
141 	pc->aux_offset = mp->offset;
142 	pc->aux_size = mp->len;
143 
144 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
145 	if (mm->base == MAP_FAILED) {
146 		pr_debug2("failed to mmap AUX area\n");
147 		mm->base = NULL;
148 		return -1;
149 	}
150 
151 	return 0;
152 }
153 
154 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
155 {
156 	if (mm->base) {
157 		munmap(mm->base, mm->len);
158 		mm->base = NULL;
159 	}
160 }
161 
162 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
163 				off_t auxtrace_offset,
164 				unsigned int auxtrace_pages,
165 				bool auxtrace_overwrite)
166 {
167 	if (auxtrace_pages) {
168 		mp->offset = auxtrace_offset;
169 		mp->len = auxtrace_pages * (size_t)page_size;
170 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
171 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
172 		pr_debug2("AUX area mmap length %zu\n", mp->len);
173 	} else {
174 		mp->len = 0;
175 	}
176 }
177 
178 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
179 				   struct evlist *evlist, int idx,
180 				   bool per_cpu)
181 {
182 	mp->idx = idx;
183 
184 	if (per_cpu) {
185 		mp->cpu = evlist->core.cpus->map[idx];
186 		if (evlist->core.threads)
187 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
188 		else
189 			mp->tid = -1;
190 	} else {
191 		mp->cpu = -1;
192 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
193 	}
194 }
195 
196 #define AUXTRACE_INIT_NR_QUEUES	32
197 
198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
199 {
200 	struct auxtrace_queue *queue_array;
201 	unsigned int max_nr_queues, i;
202 
203 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
204 	if (nr_queues > max_nr_queues)
205 		return NULL;
206 
207 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
208 	if (!queue_array)
209 		return NULL;
210 
211 	for (i = 0; i < nr_queues; i++) {
212 		INIT_LIST_HEAD(&queue_array[i].head);
213 		queue_array[i].priv = NULL;
214 	}
215 
216 	return queue_array;
217 }
218 
219 int auxtrace_queues__init(struct auxtrace_queues *queues)
220 {
221 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
222 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
223 	if (!queues->queue_array)
224 		return -ENOMEM;
225 	return 0;
226 }
227 
228 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
229 				 unsigned int new_nr_queues)
230 {
231 	unsigned int nr_queues = queues->nr_queues;
232 	struct auxtrace_queue *queue_array;
233 	unsigned int i;
234 
235 	if (!nr_queues)
236 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
237 
238 	while (nr_queues && nr_queues < new_nr_queues)
239 		nr_queues <<= 1;
240 
241 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
242 		return -EINVAL;
243 
244 	queue_array = auxtrace_alloc_queue_array(nr_queues);
245 	if (!queue_array)
246 		return -ENOMEM;
247 
248 	for (i = 0; i < queues->nr_queues; i++) {
249 		list_splice_tail(&queues->queue_array[i].head,
250 				 &queue_array[i].head);
251 		queue_array[i].tid = queues->queue_array[i].tid;
252 		queue_array[i].cpu = queues->queue_array[i].cpu;
253 		queue_array[i].set = queues->queue_array[i].set;
254 		queue_array[i].priv = queues->queue_array[i].priv;
255 	}
256 
257 	queues->nr_queues = nr_queues;
258 	queues->queue_array = queue_array;
259 
260 	return 0;
261 }
262 
263 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
264 {
265 	int fd = perf_data__fd(session->data);
266 	void *p;
267 	ssize_t ret;
268 
269 	if (size > SSIZE_MAX)
270 		return NULL;
271 
272 	p = malloc(size);
273 	if (!p)
274 		return NULL;
275 
276 	ret = readn(fd, p, size);
277 	if (ret != (ssize_t)size) {
278 		free(p);
279 		return NULL;
280 	}
281 
282 	return p;
283 }
284 
285 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
286 					 unsigned int idx,
287 					 struct auxtrace_buffer *buffer)
288 {
289 	struct auxtrace_queue *queue;
290 	int err;
291 
292 	if (idx >= queues->nr_queues) {
293 		err = auxtrace_queues__grow(queues, idx + 1);
294 		if (err)
295 			return err;
296 	}
297 
298 	queue = &queues->queue_array[idx];
299 
300 	if (!queue->set) {
301 		queue->set = true;
302 		queue->tid = buffer->tid;
303 		queue->cpu = buffer->cpu;
304 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
305 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
306 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
307 		return -EINVAL;
308 	}
309 
310 	buffer->buffer_nr = queues->next_buffer_nr++;
311 
312 	list_add_tail(&buffer->list, &queue->head);
313 
314 	queues->new_data = true;
315 	queues->populated = true;
316 
317 	return 0;
318 }
319 
320 /* Limit buffers to 32MiB on 32-bit */
321 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
322 
323 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
324 					 unsigned int idx,
325 					 struct auxtrace_buffer *buffer)
326 {
327 	u64 sz = buffer->size;
328 	bool consecutive = false;
329 	struct auxtrace_buffer *b;
330 	int err;
331 
332 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
333 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
334 		if (!b)
335 			return -ENOMEM;
336 		b->size = BUFFER_LIMIT_FOR_32_BIT;
337 		b->consecutive = consecutive;
338 		err = auxtrace_queues__queue_buffer(queues, idx, b);
339 		if (err) {
340 			auxtrace_buffer__free(b);
341 			return err;
342 		}
343 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
344 		sz -= BUFFER_LIMIT_FOR_32_BIT;
345 		consecutive = true;
346 	}
347 
348 	buffer->size = sz;
349 	buffer->consecutive = consecutive;
350 
351 	return 0;
352 }
353 
354 static bool filter_cpu(struct perf_session *session, int cpu)
355 {
356 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
357 
358 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
359 }
360 
361 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
362 				       struct perf_session *session,
363 				       unsigned int idx,
364 				       struct auxtrace_buffer *buffer,
365 				       struct auxtrace_buffer **buffer_ptr)
366 {
367 	int err = -ENOMEM;
368 
369 	if (filter_cpu(session, buffer->cpu))
370 		return 0;
371 
372 	buffer = memdup(buffer, sizeof(*buffer));
373 	if (!buffer)
374 		return -ENOMEM;
375 
376 	if (session->one_mmap) {
377 		buffer->data = buffer->data_offset - session->one_mmap_offset +
378 			       session->one_mmap_addr;
379 	} else if (perf_data__is_pipe(session->data)) {
380 		buffer->data = auxtrace_copy_data(buffer->size, session);
381 		if (!buffer->data)
382 			goto out_free;
383 		buffer->data_needs_freeing = true;
384 	} else if (BITS_PER_LONG == 32 &&
385 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
386 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
387 		if (err)
388 			goto out_free;
389 	}
390 
391 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
392 	if (err)
393 		goto out_free;
394 
395 	/* FIXME: Doesn't work for split buffer */
396 	if (buffer_ptr)
397 		*buffer_ptr = buffer;
398 
399 	return 0;
400 
401 out_free:
402 	auxtrace_buffer__free(buffer);
403 	return err;
404 }
405 
406 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
407 			       struct perf_session *session,
408 			       union perf_event *event, off_t data_offset,
409 			       struct auxtrace_buffer **buffer_ptr)
410 {
411 	struct auxtrace_buffer buffer = {
412 		.pid = -1,
413 		.tid = event->auxtrace.tid,
414 		.cpu = event->auxtrace.cpu,
415 		.data_offset = data_offset,
416 		.offset = event->auxtrace.offset,
417 		.reference = event->auxtrace.reference,
418 		.size = event->auxtrace.size,
419 	};
420 	unsigned int idx = event->auxtrace.idx;
421 
422 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
423 					   buffer_ptr);
424 }
425 
426 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
427 					      struct perf_session *session,
428 					      off_t file_offset, size_t sz)
429 {
430 	union perf_event *event;
431 	int err;
432 	char buf[PERF_SAMPLE_MAX_SIZE];
433 
434 	err = perf_session__peek_event(session, file_offset, buf,
435 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
436 	if (err)
437 		return err;
438 
439 	if (event->header.type == PERF_RECORD_AUXTRACE) {
440 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
441 		    event->header.size != sz) {
442 			err = -EINVAL;
443 			goto out;
444 		}
445 		file_offset += event->header.size;
446 		err = auxtrace_queues__add_event(queues, session, event,
447 						 file_offset, NULL);
448 	}
449 out:
450 	return err;
451 }
452 
453 void auxtrace_queues__free(struct auxtrace_queues *queues)
454 {
455 	unsigned int i;
456 
457 	for (i = 0; i < queues->nr_queues; i++) {
458 		while (!list_empty(&queues->queue_array[i].head)) {
459 			struct auxtrace_buffer *buffer;
460 
461 			buffer = list_entry(queues->queue_array[i].head.next,
462 					    struct auxtrace_buffer, list);
463 			list_del_init(&buffer->list);
464 			auxtrace_buffer__free(buffer);
465 		}
466 	}
467 
468 	zfree(&queues->queue_array);
469 	queues->nr_queues = 0;
470 }
471 
472 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
473 			     unsigned int pos, unsigned int queue_nr,
474 			     u64 ordinal)
475 {
476 	unsigned int parent;
477 
478 	while (pos) {
479 		parent = (pos - 1) >> 1;
480 		if (heap_array[parent].ordinal <= ordinal)
481 			break;
482 		heap_array[pos] = heap_array[parent];
483 		pos = parent;
484 	}
485 	heap_array[pos].queue_nr = queue_nr;
486 	heap_array[pos].ordinal = ordinal;
487 }
488 
489 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
490 		       u64 ordinal)
491 {
492 	struct auxtrace_heap_item *heap_array;
493 
494 	if (queue_nr >= heap->heap_sz) {
495 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
496 
497 		while (heap_sz <= queue_nr)
498 			heap_sz <<= 1;
499 		heap_array = realloc(heap->heap_array,
500 				     heap_sz * sizeof(struct auxtrace_heap_item));
501 		if (!heap_array)
502 			return -ENOMEM;
503 		heap->heap_array = heap_array;
504 		heap->heap_sz = heap_sz;
505 	}
506 
507 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
508 
509 	return 0;
510 }
511 
512 void auxtrace_heap__free(struct auxtrace_heap *heap)
513 {
514 	zfree(&heap->heap_array);
515 	heap->heap_cnt = 0;
516 	heap->heap_sz = 0;
517 }
518 
519 void auxtrace_heap__pop(struct auxtrace_heap *heap)
520 {
521 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
522 	struct auxtrace_heap_item *heap_array;
523 
524 	if (!heap_cnt)
525 		return;
526 
527 	heap->heap_cnt -= 1;
528 
529 	heap_array = heap->heap_array;
530 
531 	pos = 0;
532 	while (1) {
533 		unsigned int left, right;
534 
535 		left = (pos << 1) + 1;
536 		if (left >= heap_cnt)
537 			break;
538 		right = left + 1;
539 		if (right >= heap_cnt) {
540 			heap_array[pos] = heap_array[left];
541 			return;
542 		}
543 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
544 			heap_array[pos] = heap_array[left];
545 			pos = left;
546 		} else {
547 			heap_array[pos] = heap_array[right];
548 			pos = right;
549 		}
550 	}
551 
552 	last = heap_cnt - 1;
553 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
554 			 heap_array[last].ordinal);
555 }
556 
557 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
558 				       struct evlist *evlist)
559 {
560 	if (itr)
561 		return itr->info_priv_size(itr, evlist);
562 	return 0;
563 }
564 
565 static int auxtrace_not_supported(void)
566 {
567 	pr_err("AUX area tracing is not supported on this architecture\n");
568 	return -EINVAL;
569 }
570 
571 int auxtrace_record__info_fill(struct auxtrace_record *itr,
572 			       struct perf_session *session,
573 			       struct perf_record_auxtrace_info *auxtrace_info,
574 			       size_t priv_size)
575 {
576 	if (itr)
577 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
578 	return auxtrace_not_supported();
579 }
580 
581 void auxtrace_record__free(struct auxtrace_record *itr)
582 {
583 	if (itr)
584 		itr->free(itr);
585 }
586 
587 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
588 {
589 	if (itr && itr->snapshot_start)
590 		return itr->snapshot_start(itr);
591 	return 0;
592 }
593 
594 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
595 {
596 	if (!on_exit && itr && itr->snapshot_finish)
597 		return itr->snapshot_finish(itr);
598 	return 0;
599 }
600 
601 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
602 				   struct auxtrace_mmap *mm,
603 				   unsigned char *data, u64 *head, u64 *old)
604 {
605 	if (itr && itr->find_snapshot)
606 		return itr->find_snapshot(itr, idx, mm, data, head, old);
607 	return 0;
608 }
609 
610 int auxtrace_record__options(struct auxtrace_record *itr,
611 			     struct evlist *evlist,
612 			     struct record_opts *opts)
613 {
614 	if (itr) {
615 		itr->evlist = evlist;
616 		return itr->recording_options(itr, evlist, opts);
617 	}
618 	return 0;
619 }
620 
621 u64 auxtrace_record__reference(struct auxtrace_record *itr)
622 {
623 	if (itr)
624 		return itr->reference(itr);
625 	return 0;
626 }
627 
628 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
629 				    struct record_opts *opts, const char *str)
630 {
631 	if (!str)
632 		return 0;
633 
634 	/* PMU-agnostic options */
635 	switch (*str) {
636 	case 'e':
637 		opts->auxtrace_snapshot_on_exit = true;
638 		str++;
639 		break;
640 	default:
641 		break;
642 	}
643 
644 	if (itr)
645 		return itr->parse_snapshot_options(itr, opts, str);
646 
647 	pr_err("No AUX area tracing to snapshot\n");
648 	return -EINVAL;
649 }
650 
651 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
652 {
653 	struct evsel *evsel;
654 
655 	if (!itr->evlist || !itr->pmu)
656 		return -EINVAL;
657 
658 	evlist__for_each_entry(itr->evlist, evsel) {
659 		if (evsel->core.attr.type == itr->pmu->type) {
660 			if (evsel->disabled)
661 				return 0;
662 			return perf_evlist__enable_event_idx(itr->evlist, evsel,
663 							     idx);
664 		}
665 	}
666 	return -EINVAL;
667 }
668 
669 /*
670  * Event record size is 16-bit which results in a maximum size of about 64KiB.
671  * Allow about 4KiB for the rest of the sample record, to give a maximum
672  * AUX area sample size of 60KiB.
673  */
674 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
675 
676 /* Arbitrary default size if no other default provided */
677 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
678 
679 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
680 					     struct record_opts *opts)
681 {
682 	struct evsel *evsel;
683 	bool has_aux_leader = false;
684 	u32 sz;
685 
686 	evlist__for_each_entry(evlist, evsel) {
687 		sz = evsel->core.attr.aux_sample_size;
688 		if (evsel__is_group_leader(evsel)) {
689 			has_aux_leader = evsel__is_aux_event(evsel);
690 			if (sz) {
691 				if (has_aux_leader)
692 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
693 				else
694 					pr_err("Cannot add AUX area sampling to a group leader\n");
695 				return -EINVAL;
696 			}
697 		}
698 		if (sz > MAX_AUX_SAMPLE_SIZE) {
699 			pr_err("AUX area sample size %u too big, max. %d\n",
700 			       sz, MAX_AUX_SAMPLE_SIZE);
701 			return -EINVAL;
702 		}
703 		if (sz) {
704 			if (!has_aux_leader) {
705 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
706 				return -EINVAL;
707 			}
708 			evsel__set_sample_bit(evsel, AUX);
709 			opts->auxtrace_sample_mode = true;
710 		} else {
711 			evsel__reset_sample_bit(evsel, AUX);
712 		}
713 	}
714 
715 	if (!opts->auxtrace_sample_mode) {
716 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
717 		return -EINVAL;
718 	}
719 
720 	if (!perf_can_aux_sample()) {
721 		pr_err("AUX area sampling is not supported by kernel\n");
722 		return -EINVAL;
723 	}
724 
725 	return 0;
726 }
727 
728 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
729 				  struct evlist *evlist,
730 				  struct record_opts *opts, const char *str)
731 {
732 	struct perf_evsel_config_term *term;
733 	struct evsel *aux_evsel;
734 	bool has_aux_sample_size = false;
735 	bool has_aux_leader = false;
736 	struct evsel *evsel;
737 	char *endptr;
738 	unsigned long sz;
739 
740 	if (!str)
741 		goto no_opt;
742 
743 	if (!itr) {
744 		pr_err("No AUX area event to sample\n");
745 		return -EINVAL;
746 	}
747 
748 	sz = strtoul(str, &endptr, 0);
749 	if (*endptr || sz > UINT_MAX) {
750 		pr_err("Bad AUX area sampling option: '%s'\n", str);
751 		return -EINVAL;
752 	}
753 
754 	if (!sz)
755 		sz = itr->default_aux_sample_size;
756 
757 	if (!sz)
758 		sz = DEFAULT_AUX_SAMPLE_SIZE;
759 
760 	/* Set aux_sample_size based on --aux-sample option */
761 	evlist__for_each_entry(evlist, evsel) {
762 		if (evsel__is_group_leader(evsel)) {
763 			has_aux_leader = evsel__is_aux_event(evsel);
764 		} else if (has_aux_leader) {
765 			evsel->core.attr.aux_sample_size = sz;
766 		}
767 	}
768 no_opt:
769 	aux_evsel = NULL;
770 	/* Override with aux_sample_size from config term */
771 	evlist__for_each_entry(evlist, evsel) {
772 		if (evsel__is_aux_event(evsel))
773 			aux_evsel = evsel;
774 		term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
775 		if (term) {
776 			has_aux_sample_size = true;
777 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
778 			/* If possible, group with the AUX event */
779 			if (aux_evsel && evsel->core.attr.aux_sample_size)
780 				perf_evlist__regroup(evlist, aux_evsel, evsel);
781 		}
782 	}
783 
784 	if (!str && !has_aux_sample_size)
785 		return 0;
786 
787 	if (!itr) {
788 		pr_err("No AUX area event to sample\n");
789 		return -EINVAL;
790 	}
791 
792 	return auxtrace_validate_aux_sample_size(evlist, opts);
793 }
794 
795 struct auxtrace_record *__weak
796 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
797 {
798 	*err = 0;
799 	return NULL;
800 }
801 
802 static int auxtrace_index__alloc(struct list_head *head)
803 {
804 	struct auxtrace_index *auxtrace_index;
805 
806 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
807 	if (!auxtrace_index)
808 		return -ENOMEM;
809 
810 	auxtrace_index->nr = 0;
811 	INIT_LIST_HEAD(&auxtrace_index->list);
812 
813 	list_add_tail(&auxtrace_index->list, head);
814 
815 	return 0;
816 }
817 
818 void auxtrace_index__free(struct list_head *head)
819 {
820 	struct auxtrace_index *auxtrace_index, *n;
821 
822 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
823 		list_del_init(&auxtrace_index->list);
824 		free(auxtrace_index);
825 	}
826 }
827 
828 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
829 {
830 	struct auxtrace_index *auxtrace_index;
831 	int err;
832 
833 	if (list_empty(head)) {
834 		err = auxtrace_index__alloc(head);
835 		if (err)
836 			return NULL;
837 	}
838 
839 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
840 
841 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
842 		err = auxtrace_index__alloc(head);
843 		if (err)
844 			return NULL;
845 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
846 					    list);
847 	}
848 
849 	return auxtrace_index;
850 }
851 
852 int auxtrace_index__auxtrace_event(struct list_head *head,
853 				   union perf_event *event, off_t file_offset)
854 {
855 	struct auxtrace_index *auxtrace_index;
856 	size_t nr;
857 
858 	auxtrace_index = auxtrace_index__last(head);
859 	if (!auxtrace_index)
860 		return -ENOMEM;
861 
862 	nr = auxtrace_index->nr;
863 	auxtrace_index->entries[nr].file_offset = file_offset;
864 	auxtrace_index->entries[nr].sz = event->header.size;
865 	auxtrace_index->nr += 1;
866 
867 	return 0;
868 }
869 
870 static int auxtrace_index__do_write(int fd,
871 				    struct auxtrace_index *auxtrace_index)
872 {
873 	struct auxtrace_index_entry ent;
874 	size_t i;
875 
876 	for (i = 0; i < auxtrace_index->nr; i++) {
877 		ent.file_offset = auxtrace_index->entries[i].file_offset;
878 		ent.sz = auxtrace_index->entries[i].sz;
879 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
880 			return -errno;
881 	}
882 	return 0;
883 }
884 
885 int auxtrace_index__write(int fd, struct list_head *head)
886 {
887 	struct auxtrace_index *auxtrace_index;
888 	u64 total = 0;
889 	int err;
890 
891 	list_for_each_entry(auxtrace_index, head, list)
892 		total += auxtrace_index->nr;
893 
894 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
895 		return -errno;
896 
897 	list_for_each_entry(auxtrace_index, head, list) {
898 		err = auxtrace_index__do_write(fd, auxtrace_index);
899 		if (err)
900 			return err;
901 	}
902 
903 	return 0;
904 }
905 
906 static int auxtrace_index__process_entry(int fd, struct list_head *head,
907 					 bool needs_swap)
908 {
909 	struct auxtrace_index *auxtrace_index;
910 	struct auxtrace_index_entry ent;
911 	size_t nr;
912 
913 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
914 		return -1;
915 
916 	auxtrace_index = auxtrace_index__last(head);
917 	if (!auxtrace_index)
918 		return -1;
919 
920 	nr = auxtrace_index->nr;
921 	if (needs_swap) {
922 		auxtrace_index->entries[nr].file_offset =
923 						bswap_64(ent.file_offset);
924 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
925 	} else {
926 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
927 		auxtrace_index->entries[nr].sz = ent.sz;
928 	}
929 
930 	auxtrace_index->nr = nr + 1;
931 
932 	return 0;
933 }
934 
935 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
936 			    bool needs_swap)
937 {
938 	struct list_head *head = &session->auxtrace_index;
939 	u64 nr;
940 
941 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
942 		return -1;
943 
944 	if (needs_swap)
945 		nr = bswap_64(nr);
946 
947 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
948 		return -1;
949 
950 	while (nr--) {
951 		int err;
952 
953 		err = auxtrace_index__process_entry(fd, head, needs_swap);
954 		if (err)
955 			return -1;
956 	}
957 
958 	return 0;
959 }
960 
961 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
962 						struct perf_session *session,
963 						struct auxtrace_index_entry *ent)
964 {
965 	return auxtrace_queues__add_indexed_event(queues, session,
966 						  ent->file_offset, ent->sz);
967 }
968 
969 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
970 				   struct perf_session *session)
971 {
972 	struct auxtrace_index *auxtrace_index;
973 	struct auxtrace_index_entry *ent;
974 	size_t i;
975 	int err;
976 
977 	if (auxtrace__dont_decode(session))
978 		return 0;
979 
980 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
981 		for (i = 0; i < auxtrace_index->nr; i++) {
982 			ent = &auxtrace_index->entries[i];
983 			err = auxtrace_queues__process_index_entry(queues,
984 								   session,
985 								   ent);
986 			if (err)
987 				return err;
988 		}
989 	}
990 	return 0;
991 }
992 
993 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
994 					      struct auxtrace_buffer *buffer)
995 {
996 	if (buffer) {
997 		if (list_is_last(&buffer->list, &queue->head))
998 			return NULL;
999 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1000 				  list);
1001 	} else {
1002 		if (list_empty(&queue->head))
1003 			return NULL;
1004 		return list_entry(queue->head.next, struct auxtrace_buffer,
1005 				  list);
1006 	}
1007 }
1008 
1009 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1010 						     struct perf_sample *sample,
1011 						     struct perf_session *session)
1012 {
1013 	struct perf_sample_id *sid;
1014 	unsigned int idx;
1015 	u64 id;
1016 
1017 	id = sample->id;
1018 	if (!id)
1019 		return NULL;
1020 
1021 	sid = perf_evlist__id2sid(session->evlist, id);
1022 	if (!sid)
1023 		return NULL;
1024 
1025 	idx = sid->idx;
1026 
1027 	if (idx >= queues->nr_queues)
1028 		return NULL;
1029 
1030 	return &queues->queue_array[idx];
1031 }
1032 
1033 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1034 				struct perf_session *session,
1035 				struct perf_sample *sample, u64 data_offset,
1036 				u64 reference)
1037 {
1038 	struct auxtrace_buffer buffer = {
1039 		.pid = -1,
1040 		.data_offset = data_offset,
1041 		.reference = reference,
1042 		.size = sample->aux_sample.size,
1043 	};
1044 	struct perf_sample_id *sid;
1045 	u64 id = sample->id;
1046 	unsigned int idx;
1047 
1048 	if (!id)
1049 		return -EINVAL;
1050 
1051 	sid = perf_evlist__id2sid(session->evlist, id);
1052 	if (!sid)
1053 		return -ENOENT;
1054 
1055 	idx = sid->idx;
1056 	buffer.tid = sid->tid;
1057 	buffer.cpu = sid->cpu;
1058 
1059 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1060 }
1061 
1062 struct queue_data {
1063 	bool samples;
1064 	bool events;
1065 };
1066 
1067 static int auxtrace_queue_data_cb(struct perf_session *session,
1068 				  union perf_event *event, u64 offset,
1069 				  void *data)
1070 {
1071 	struct queue_data *qd = data;
1072 	struct perf_sample sample;
1073 	int err;
1074 
1075 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1076 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1077 			return -EINVAL;
1078 		offset += event->header.size;
1079 		return session->auxtrace->queue_data(session, NULL, event,
1080 						     offset);
1081 	}
1082 
1083 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1084 		return 0;
1085 
1086 	err = perf_evlist__parse_sample(session->evlist, event, &sample);
1087 	if (err)
1088 		return err;
1089 
1090 	if (!sample.aux_sample.size)
1091 		return 0;
1092 
1093 	offset += sample.aux_sample.data - (void *)event;
1094 
1095 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1096 }
1097 
1098 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1099 {
1100 	struct queue_data qd = {
1101 		.samples = samples,
1102 		.events = events,
1103 	};
1104 
1105 	if (auxtrace__dont_decode(session))
1106 		return 0;
1107 
1108 	if (!session->auxtrace || !session->auxtrace->queue_data)
1109 		return -EINVAL;
1110 
1111 	return perf_session__peek_events(session, session->header.data_offset,
1112 					 session->header.data_size,
1113 					 auxtrace_queue_data_cb, &qd);
1114 }
1115 
1116 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1117 {
1118 	size_t adj = buffer->data_offset & (page_size - 1);
1119 	size_t size = buffer->size + adj;
1120 	off_t file_offset = buffer->data_offset - adj;
1121 	void *addr;
1122 
1123 	if (buffer->data)
1124 		return buffer->data;
1125 
1126 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1127 	if (addr == MAP_FAILED)
1128 		return NULL;
1129 
1130 	buffer->mmap_addr = addr;
1131 	buffer->mmap_size = size;
1132 
1133 	buffer->data = addr + adj;
1134 
1135 	return buffer->data;
1136 }
1137 
1138 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1139 {
1140 	if (!buffer->data || !buffer->mmap_addr)
1141 		return;
1142 	munmap(buffer->mmap_addr, buffer->mmap_size);
1143 	buffer->mmap_addr = NULL;
1144 	buffer->mmap_size = 0;
1145 	buffer->data = NULL;
1146 	buffer->use_data = NULL;
1147 }
1148 
1149 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1150 {
1151 	auxtrace_buffer__put_data(buffer);
1152 	if (buffer->data_needs_freeing) {
1153 		buffer->data_needs_freeing = false;
1154 		zfree(&buffer->data);
1155 		buffer->use_data = NULL;
1156 		buffer->size = 0;
1157 	}
1158 }
1159 
1160 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1161 {
1162 	auxtrace_buffer__drop_data(buffer);
1163 	free(buffer);
1164 }
1165 
1166 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1167 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1168 			  const char *msg, u64 timestamp)
1169 {
1170 	size_t size;
1171 
1172 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1173 
1174 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1175 	auxtrace_error->type = type;
1176 	auxtrace_error->code = code;
1177 	auxtrace_error->cpu = cpu;
1178 	auxtrace_error->pid = pid;
1179 	auxtrace_error->tid = tid;
1180 	auxtrace_error->fmt = 1;
1181 	auxtrace_error->ip = ip;
1182 	auxtrace_error->time = timestamp;
1183 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1184 
1185 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1186 	       strlen(auxtrace_error->msg) + 1;
1187 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1188 }
1189 
1190 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1191 					 struct perf_tool *tool,
1192 					 struct perf_session *session,
1193 					 perf_event__handler_t process)
1194 {
1195 	union perf_event *ev;
1196 	size_t priv_size;
1197 	int err;
1198 
1199 	pr_debug2("Synthesizing auxtrace information\n");
1200 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1201 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1202 	if (!ev)
1203 		return -ENOMEM;
1204 
1205 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1206 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1207 					priv_size;
1208 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1209 					 priv_size);
1210 	if (err)
1211 		goto out_free;
1212 
1213 	err = process(tool, ev, NULL, NULL);
1214 out_free:
1215 	free(ev);
1216 	return err;
1217 }
1218 
1219 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1220 {
1221 	struct evsel *new_leader = NULL;
1222 	struct evsel *evsel;
1223 
1224 	/* Find new leader for the group */
1225 	evlist__for_each_entry(evlist, evsel) {
1226 		if (evsel->leader != leader || evsel == leader)
1227 			continue;
1228 		if (!new_leader)
1229 			new_leader = evsel;
1230 		evsel->leader = new_leader;
1231 	}
1232 
1233 	/* Update group information */
1234 	if (new_leader) {
1235 		zfree(&new_leader->group_name);
1236 		new_leader->group_name = leader->group_name;
1237 		leader->group_name = NULL;
1238 
1239 		new_leader->core.nr_members = leader->core.nr_members - 1;
1240 		leader->core.nr_members = 1;
1241 	}
1242 }
1243 
1244 static void unleader_auxtrace(struct perf_session *session)
1245 {
1246 	struct evsel *evsel;
1247 
1248 	evlist__for_each_entry(session->evlist, evsel) {
1249 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1250 		    evsel__is_group_leader(evsel)) {
1251 			unleader_evsel(session->evlist, evsel);
1252 		}
1253 	}
1254 }
1255 
1256 int perf_event__process_auxtrace_info(struct perf_session *session,
1257 				      union perf_event *event)
1258 {
1259 	enum auxtrace_type type = event->auxtrace_info.type;
1260 	int err;
1261 
1262 	if (dump_trace)
1263 		fprintf(stdout, " type: %u\n", type);
1264 
1265 	switch (type) {
1266 	case PERF_AUXTRACE_INTEL_PT:
1267 		err = intel_pt_process_auxtrace_info(event, session);
1268 		break;
1269 	case PERF_AUXTRACE_INTEL_BTS:
1270 		err = intel_bts_process_auxtrace_info(event, session);
1271 		break;
1272 	case PERF_AUXTRACE_ARM_SPE:
1273 		err = arm_spe_process_auxtrace_info(event, session);
1274 		break;
1275 	case PERF_AUXTRACE_CS_ETM:
1276 		err = cs_etm__process_auxtrace_info(event, session);
1277 		break;
1278 	case PERF_AUXTRACE_S390_CPUMSF:
1279 		err = s390_cpumsf_process_auxtrace_info(event, session);
1280 		break;
1281 	case PERF_AUXTRACE_UNKNOWN:
1282 	default:
1283 		return -EINVAL;
1284 	}
1285 
1286 	if (err)
1287 		return err;
1288 
1289 	unleader_auxtrace(session);
1290 
1291 	return 0;
1292 }
1293 
1294 s64 perf_event__process_auxtrace(struct perf_session *session,
1295 				 union perf_event *event)
1296 {
1297 	s64 err;
1298 
1299 	if (dump_trace)
1300 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1301 			event->auxtrace.size, event->auxtrace.offset,
1302 			event->auxtrace.reference, event->auxtrace.idx,
1303 			event->auxtrace.tid, event->auxtrace.cpu);
1304 
1305 	if (auxtrace__dont_decode(session))
1306 		return event->auxtrace.size;
1307 
1308 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1309 		return -EINVAL;
1310 
1311 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1312 	if (err < 0)
1313 		return err;
1314 
1315 	return event->auxtrace.size;
1316 }
1317 
1318 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1319 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1320 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1321 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1322 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1323 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1324 
1325 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1326 				    bool no_sample)
1327 {
1328 	synth_opts->branches = true;
1329 	synth_opts->transactions = true;
1330 	synth_opts->ptwrites = true;
1331 	synth_opts->pwr_events = true;
1332 	synth_opts->other_events = true;
1333 	synth_opts->errors = true;
1334 	if (no_sample) {
1335 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1336 		synth_opts->period = 1;
1337 		synth_opts->calls = true;
1338 	} else {
1339 		synth_opts->instructions = true;
1340 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1341 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1342 	}
1343 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1344 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1345 	synth_opts->initial_skip = 0;
1346 }
1347 
1348 /*
1349  * Please check tools/perf/Documentation/perf-script.txt for information
1350  * about the options parsed here, which is introduced after this cset,
1351  * when support in 'perf script' for these options is introduced.
1352  */
1353 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1354 			    int unset)
1355 {
1356 	struct itrace_synth_opts *synth_opts = opt->value;
1357 	const char *p;
1358 	char *endptr;
1359 	bool period_type_set = false;
1360 	bool period_set = false;
1361 
1362 	synth_opts->set = true;
1363 
1364 	if (unset) {
1365 		synth_opts->dont_decode = true;
1366 		return 0;
1367 	}
1368 
1369 	if (!str) {
1370 		itrace_synth_opts__set_default(synth_opts,
1371 					       synth_opts->default_no_sample);
1372 		return 0;
1373 	}
1374 
1375 	for (p = str; *p;) {
1376 		switch (*p++) {
1377 		case 'i':
1378 			synth_opts->instructions = true;
1379 			while (*p == ' ' || *p == ',')
1380 				p += 1;
1381 			if (isdigit(*p)) {
1382 				synth_opts->period = strtoull(p, &endptr, 10);
1383 				period_set = true;
1384 				p = endptr;
1385 				while (*p == ' ' || *p == ',')
1386 					p += 1;
1387 				switch (*p++) {
1388 				case 'i':
1389 					synth_opts->period_type =
1390 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1391 					period_type_set = true;
1392 					break;
1393 				case 't':
1394 					synth_opts->period_type =
1395 						PERF_ITRACE_PERIOD_TICKS;
1396 					period_type_set = true;
1397 					break;
1398 				case 'm':
1399 					synth_opts->period *= 1000;
1400 					/* Fall through */
1401 				case 'u':
1402 					synth_opts->period *= 1000;
1403 					/* Fall through */
1404 				case 'n':
1405 					if (*p++ != 's')
1406 						goto out_err;
1407 					synth_opts->period_type =
1408 						PERF_ITRACE_PERIOD_NANOSECS;
1409 					period_type_set = true;
1410 					break;
1411 				case '\0':
1412 					goto out;
1413 				default:
1414 					goto out_err;
1415 				}
1416 			}
1417 			break;
1418 		case 'b':
1419 			synth_opts->branches = true;
1420 			break;
1421 		case 'x':
1422 			synth_opts->transactions = true;
1423 			break;
1424 		case 'w':
1425 			synth_opts->ptwrites = true;
1426 			break;
1427 		case 'p':
1428 			synth_opts->pwr_events = true;
1429 			break;
1430 		case 'o':
1431 			synth_opts->other_events = true;
1432 			break;
1433 		case 'e':
1434 			synth_opts->errors = true;
1435 			break;
1436 		case 'd':
1437 			synth_opts->log = true;
1438 			break;
1439 		case 'c':
1440 			synth_opts->branches = true;
1441 			synth_opts->calls = true;
1442 			break;
1443 		case 'r':
1444 			synth_opts->branches = true;
1445 			synth_opts->returns = true;
1446 			break;
1447 		case 'G':
1448 		case 'g':
1449 			if (p[-1] == 'G')
1450 				synth_opts->add_callchain = true;
1451 			else
1452 				synth_opts->callchain = true;
1453 			synth_opts->callchain_sz =
1454 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1455 			while (*p == ' ' || *p == ',')
1456 				p += 1;
1457 			if (isdigit(*p)) {
1458 				unsigned int val;
1459 
1460 				val = strtoul(p, &endptr, 10);
1461 				p = endptr;
1462 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1463 					goto out_err;
1464 				synth_opts->callchain_sz = val;
1465 			}
1466 			break;
1467 		case 'L':
1468 		case 'l':
1469 			if (p[-1] == 'L')
1470 				synth_opts->add_last_branch = true;
1471 			else
1472 				synth_opts->last_branch = true;
1473 			synth_opts->last_branch_sz =
1474 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1475 			while (*p == ' ' || *p == ',')
1476 				p += 1;
1477 			if (isdigit(*p)) {
1478 				unsigned int val;
1479 
1480 				val = strtoul(p, &endptr, 10);
1481 				p = endptr;
1482 				if (!val ||
1483 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1484 					goto out_err;
1485 				synth_opts->last_branch_sz = val;
1486 			}
1487 			break;
1488 		case 's':
1489 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1490 			if (p == endptr)
1491 				goto out_err;
1492 			p = endptr;
1493 			break;
1494 		case ' ':
1495 		case ',':
1496 			break;
1497 		default:
1498 			goto out_err;
1499 		}
1500 	}
1501 out:
1502 	if (synth_opts->instructions) {
1503 		if (!period_type_set)
1504 			synth_opts->period_type =
1505 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1506 		if (!period_set)
1507 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1508 	}
1509 
1510 	return 0;
1511 
1512 out_err:
1513 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1514 	return -EINVAL;
1515 }
1516 
1517 static const char * const auxtrace_error_type_name[] = {
1518 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1519 };
1520 
1521 static const char *auxtrace_error_name(int type)
1522 {
1523 	const char *error_type_name = NULL;
1524 
1525 	if (type < PERF_AUXTRACE_ERROR_MAX)
1526 		error_type_name = auxtrace_error_type_name[type];
1527 	if (!error_type_name)
1528 		error_type_name = "unknown AUX";
1529 	return error_type_name;
1530 }
1531 
1532 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1533 {
1534 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1535 	unsigned long long nsecs = e->time;
1536 	const char *msg = e->msg;
1537 	int ret;
1538 
1539 	ret = fprintf(fp, " %s error type %u",
1540 		      auxtrace_error_name(e->type), e->type);
1541 
1542 	if (e->fmt && nsecs) {
1543 		unsigned long secs = nsecs / NSEC_PER_SEC;
1544 
1545 		nsecs -= secs * NSEC_PER_SEC;
1546 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1547 	} else {
1548 		ret += fprintf(fp, " time 0");
1549 	}
1550 
1551 	if (!e->fmt)
1552 		msg = (const char *)&e->time;
1553 
1554 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1555 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1556 	return ret;
1557 }
1558 
1559 void perf_session__auxtrace_error_inc(struct perf_session *session,
1560 				      union perf_event *event)
1561 {
1562 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1563 
1564 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1565 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1566 }
1567 
1568 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1569 {
1570 	int i;
1571 
1572 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1573 		if (!stats->nr_auxtrace_errors[i])
1574 			continue;
1575 		ui__warning("%u %s errors\n",
1576 			    stats->nr_auxtrace_errors[i],
1577 			    auxtrace_error_name(i));
1578 	}
1579 }
1580 
1581 int perf_event__process_auxtrace_error(struct perf_session *session,
1582 				       union perf_event *event)
1583 {
1584 	if (auxtrace__dont_decode(session))
1585 		return 0;
1586 
1587 	perf_event__fprintf_auxtrace_error(event, stdout);
1588 	return 0;
1589 }
1590 
1591 static int __auxtrace_mmap__read(struct mmap *map,
1592 				 struct auxtrace_record *itr,
1593 				 struct perf_tool *tool, process_auxtrace_t fn,
1594 				 bool snapshot, size_t snapshot_size)
1595 {
1596 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1597 	u64 head, old = mm->prev, offset, ref;
1598 	unsigned char *data = mm->base;
1599 	size_t size, head_off, old_off, len1, len2, padding;
1600 	union perf_event ev;
1601 	void *data1, *data2;
1602 
1603 	if (snapshot) {
1604 		head = auxtrace_mmap__read_snapshot_head(mm);
1605 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1606 						   &head, &old))
1607 			return -1;
1608 	} else {
1609 		head = auxtrace_mmap__read_head(mm);
1610 	}
1611 
1612 	if (old == head)
1613 		return 0;
1614 
1615 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1616 		  mm->idx, old, head, head - old);
1617 
1618 	if (mm->mask) {
1619 		head_off = head & mm->mask;
1620 		old_off = old & mm->mask;
1621 	} else {
1622 		head_off = head % mm->len;
1623 		old_off = old % mm->len;
1624 	}
1625 
1626 	if (head_off > old_off)
1627 		size = head_off - old_off;
1628 	else
1629 		size = mm->len - (old_off - head_off);
1630 
1631 	if (snapshot && size > snapshot_size)
1632 		size = snapshot_size;
1633 
1634 	ref = auxtrace_record__reference(itr);
1635 
1636 	if (head > old || size <= head || mm->mask) {
1637 		offset = head - size;
1638 	} else {
1639 		/*
1640 		 * When the buffer size is not a power of 2, 'head' wraps at the
1641 		 * highest multiple of the buffer size, so we have to subtract
1642 		 * the remainder here.
1643 		 */
1644 		u64 rem = (0ULL - mm->len) % mm->len;
1645 
1646 		offset = head - size - rem;
1647 	}
1648 
1649 	if (size > head_off) {
1650 		len1 = size - head_off;
1651 		data1 = &data[mm->len - len1];
1652 		len2 = head_off;
1653 		data2 = &data[0];
1654 	} else {
1655 		len1 = size;
1656 		data1 = &data[head_off - len1];
1657 		len2 = 0;
1658 		data2 = NULL;
1659 	}
1660 
1661 	if (itr->alignment) {
1662 		unsigned int unwanted = len1 % itr->alignment;
1663 
1664 		len1 -= unwanted;
1665 		size -= unwanted;
1666 	}
1667 
1668 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1669 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1670 	if (padding)
1671 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1672 
1673 	memset(&ev, 0, sizeof(ev));
1674 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1675 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1676 	ev.auxtrace.size = size + padding;
1677 	ev.auxtrace.offset = offset;
1678 	ev.auxtrace.reference = ref;
1679 	ev.auxtrace.idx = mm->idx;
1680 	ev.auxtrace.tid = mm->tid;
1681 	ev.auxtrace.cpu = mm->cpu;
1682 
1683 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1684 		return -1;
1685 
1686 	mm->prev = head;
1687 
1688 	if (!snapshot) {
1689 		auxtrace_mmap__write_tail(mm, head);
1690 		if (itr->read_finish) {
1691 			int err;
1692 
1693 			err = itr->read_finish(itr, mm->idx);
1694 			if (err < 0)
1695 				return err;
1696 		}
1697 	}
1698 
1699 	return 1;
1700 }
1701 
1702 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1703 			struct perf_tool *tool, process_auxtrace_t fn)
1704 {
1705 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1706 }
1707 
1708 int auxtrace_mmap__read_snapshot(struct mmap *map,
1709 				 struct auxtrace_record *itr,
1710 				 struct perf_tool *tool, process_auxtrace_t fn,
1711 				 size_t snapshot_size)
1712 {
1713 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1714 }
1715 
1716 /**
1717  * struct auxtrace_cache - hash table to implement a cache
1718  * @hashtable: the hashtable
1719  * @sz: hashtable size (number of hlists)
1720  * @entry_size: size of an entry
1721  * @limit: limit the number of entries to this maximum, when reached the cache
1722  *         is dropped and caching begins again with an empty cache
1723  * @cnt: current number of entries
1724  * @bits: hashtable size (@sz = 2^@bits)
1725  */
1726 struct auxtrace_cache {
1727 	struct hlist_head *hashtable;
1728 	size_t sz;
1729 	size_t entry_size;
1730 	size_t limit;
1731 	size_t cnt;
1732 	unsigned int bits;
1733 };
1734 
1735 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1736 					   unsigned int limit_percent)
1737 {
1738 	struct auxtrace_cache *c;
1739 	struct hlist_head *ht;
1740 	size_t sz, i;
1741 
1742 	c = zalloc(sizeof(struct auxtrace_cache));
1743 	if (!c)
1744 		return NULL;
1745 
1746 	sz = 1UL << bits;
1747 
1748 	ht = calloc(sz, sizeof(struct hlist_head));
1749 	if (!ht)
1750 		goto out_free;
1751 
1752 	for (i = 0; i < sz; i++)
1753 		INIT_HLIST_HEAD(&ht[i]);
1754 
1755 	c->hashtable = ht;
1756 	c->sz = sz;
1757 	c->entry_size = entry_size;
1758 	c->limit = (c->sz * limit_percent) / 100;
1759 	c->bits = bits;
1760 
1761 	return c;
1762 
1763 out_free:
1764 	free(c);
1765 	return NULL;
1766 }
1767 
1768 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1769 {
1770 	struct auxtrace_cache_entry *entry;
1771 	struct hlist_node *tmp;
1772 	size_t i;
1773 
1774 	if (!c)
1775 		return;
1776 
1777 	for (i = 0; i < c->sz; i++) {
1778 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1779 			hlist_del(&entry->hash);
1780 			auxtrace_cache__free_entry(c, entry);
1781 		}
1782 	}
1783 
1784 	c->cnt = 0;
1785 }
1786 
1787 void auxtrace_cache__free(struct auxtrace_cache *c)
1788 {
1789 	if (!c)
1790 		return;
1791 
1792 	auxtrace_cache__drop(c);
1793 	zfree(&c->hashtable);
1794 	free(c);
1795 }
1796 
1797 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1798 {
1799 	return malloc(c->entry_size);
1800 }
1801 
1802 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1803 				void *entry)
1804 {
1805 	free(entry);
1806 }
1807 
1808 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1809 			struct auxtrace_cache_entry *entry)
1810 {
1811 	if (c->limit && ++c->cnt > c->limit)
1812 		auxtrace_cache__drop(c);
1813 
1814 	entry->key = key;
1815 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1816 
1817 	return 0;
1818 }
1819 
1820 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1821 						       u32 key)
1822 {
1823 	struct auxtrace_cache_entry *entry;
1824 	struct hlist_head *hlist;
1825 	struct hlist_node *n;
1826 
1827 	if (!c)
1828 		return NULL;
1829 
1830 	hlist = &c->hashtable[hash_32(key, c->bits)];
1831 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
1832 		if (entry->key == key) {
1833 			hlist_del(&entry->hash);
1834 			return entry;
1835 		}
1836 	}
1837 
1838 	return NULL;
1839 }
1840 
1841 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1842 {
1843 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1844 
1845 	auxtrace_cache__free_entry(c, entry);
1846 }
1847 
1848 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1849 {
1850 	struct auxtrace_cache_entry *entry;
1851 	struct hlist_head *hlist;
1852 
1853 	if (!c)
1854 		return NULL;
1855 
1856 	hlist = &c->hashtable[hash_32(key, c->bits)];
1857 	hlist_for_each_entry(entry, hlist, hash) {
1858 		if (entry->key == key)
1859 			return entry;
1860 	}
1861 
1862 	return NULL;
1863 }
1864 
1865 static void addr_filter__free_str(struct addr_filter *filt)
1866 {
1867 	zfree(&filt->str);
1868 	filt->action   = NULL;
1869 	filt->sym_from = NULL;
1870 	filt->sym_to   = NULL;
1871 	filt->filename = NULL;
1872 }
1873 
1874 static struct addr_filter *addr_filter__new(void)
1875 {
1876 	struct addr_filter *filt = zalloc(sizeof(*filt));
1877 
1878 	if (filt)
1879 		INIT_LIST_HEAD(&filt->list);
1880 
1881 	return filt;
1882 }
1883 
1884 static void addr_filter__free(struct addr_filter *filt)
1885 {
1886 	if (filt)
1887 		addr_filter__free_str(filt);
1888 	free(filt);
1889 }
1890 
1891 static void addr_filters__add(struct addr_filters *filts,
1892 			      struct addr_filter *filt)
1893 {
1894 	list_add_tail(&filt->list, &filts->head);
1895 	filts->cnt += 1;
1896 }
1897 
1898 static void addr_filters__del(struct addr_filters *filts,
1899 			      struct addr_filter *filt)
1900 {
1901 	list_del_init(&filt->list);
1902 	filts->cnt -= 1;
1903 }
1904 
1905 void addr_filters__init(struct addr_filters *filts)
1906 {
1907 	INIT_LIST_HEAD(&filts->head);
1908 	filts->cnt = 0;
1909 }
1910 
1911 void addr_filters__exit(struct addr_filters *filts)
1912 {
1913 	struct addr_filter *filt, *n;
1914 
1915 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1916 		addr_filters__del(filts, filt);
1917 		addr_filter__free(filt);
1918 	}
1919 }
1920 
1921 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1922 			    const char *str_delim)
1923 {
1924 	*inp += strspn(*inp, " ");
1925 
1926 	if (isdigit(**inp)) {
1927 		char *endptr;
1928 
1929 		if (!num)
1930 			return -EINVAL;
1931 		errno = 0;
1932 		*num = strtoull(*inp, &endptr, 0);
1933 		if (errno)
1934 			return -errno;
1935 		if (endptr == *inp)
1936 			return -EINVAL;
1937 		*inp = endptr;
1938 	} else {
1939 		size_t n;
1940 
1941 		if (!str)
1942 			return -EINVAL;
1943 		*inp += strspn(*inp, " ");
1944 		*str = *inp;
1945 		n = strcspn(*inp, str_delim);
1946 		if (!n)
1947 			return -EINVAL;
1948 		*inp += n;
1949 		if (**inp) {
1950 			**inp = '\0';
1951 			*inp += 1;
1952 		}
1953 	}
1954 	return 0;
1955 }
1956 
1957 static int parse_action(struct addr_filter *filt)
1958 {
1959 	if (!strcmp(filt->action, "filter")) {
1960 		filt->start = true;
1961 		filt->range = true;
1962 	} else if (!strcmp(filt->action, "start")) {
1963 		filt->start = true;
1964 	} else if (!strcmp(filt->action, "stop")) {
1965 		filt->start = false;
1966 	} else if (!strcmp(filt->action, "tracestop")) {
1967 		filt->start = false;
1968 		filt->range = true;
1969 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1970 	} else {
1971 		return -EINVAL;
1972 	}
1973 	return 0;
1974 }
1975 
1976 static int parse_sym_idx(char **inp, int *idx)
1977 {
1978 	*idx = -1;
1979 
1980 	*inp += strspn(*inp, " ");
1981 
1982 	if (**inp != '#')
1983 		return 0;
1984 
1985 	*inp += 1;
1986 
1987 	if (**inp == 'g' || **inp == 'G') {
1988 		*inp += 1;
1989 		*idx = 0;
1990 	} else {
1991 		unsigned long num;
1992 		char *endptr;
1993 
1994 		errno = 0;
1995 		num = strtoul(*inp, &endptr, 0);
1996 		if (errno)
1997 			return -errno;
1998 		if (endptr == *inp || num > INT_MAX)
1999 			return -EINVAL;
2000 		*inp = endptr;
2001 		*idx = num;
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2008 {
2009 	int err = parse_num_or_str(inp, num, str, " ");
2010 
2011 	if (!err && *str)
2012 		err = parse_sym_idx(inp, idx);
2013 
2014 	return err;
2015 }
2016 
2017 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2018 {
2019 	char *fstr;
2020 	int err;
2021 
2022 	filt->str = fstr = strdup(*filter_inp);
2023 	if (!fstr)
2024 		return -ENOMEM;
2025 
2026 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2027 	if (err)
2028 		goto out_err;
2029 
2030 	err = parse_action(filt);
2031 	if (err)
2032 		goto out_err;
2033 
2034 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2035 			      &filt->sym_from_idx);
2036 	if (err)
2037 		goto out_err;
2038 
2039 	fstr += strspn(fstr, " ");
2040 
2041 	if (*fstr == '/') {
2042 		fstr += 1;
2043 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2044 				      &filt->sym_to_idx);
2045 		if (err)
2046 			goto out_err;
2047 		filt->range = true;
2048 	}
2049 
2050 	fstr += strspn(fstr, " ");
2051 
2052 	if (*fstr == '@') {
2053 		fstr += 1;
2054 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2055 		if (err)
2056 			goto out_err;
2057 	}
2058 
2059 	fstr += strspn(fstr, " ,");
2060 
2061 	*filter_inp += fstr - filt->str;
2062 
2063 	return 0;
2064 
2065 out_err:
2066 	addr_filter__free_str(filt);
2067 
2068 	return err;
2069 }
2070 
2071 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2072 				    const char *filter)
2073 {
2074 	struct addr_filter *filt;
2075 	const char *fstr = filter;
2076 	int err;
2077 
2078 	while (*fstr) {
2079 		filt = addr_filter__new();
2080 		err = parse_one_filter(filt, &fstr);
2081 		if (err) {
2082 			addr_filter__free(filt);
2083 			addr_filters__exit(filts);
2084 			return err;
2085 		}
2086 		addr_filters__add(filts, filt);
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 struct sym_args {
2093 	const char	*name;
2094 	u64		start;
2095 	u64		size;
2096 	int		idx;
2097 	int		cnt;
2098 	bool		started;
2099 	bool		global;
2100 	bool		selected;
2101 	bool		duplicate;
2102 	bool		near;
2103 };
2104 
2105 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2106 {
2107 	/* A function with the same name, and global or the n'th found or any */
2108 	return kallsyms__is_function(type) &&
2109 	       !strcmp(name, args->name) &&
2110 	       ((args->global && isupper(type)) ||
2111 		(args->selected && ++(args->cnt) == args->idx) ||
2112 		(!args->global && !args->selected));
2113 }
2114 
2115 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2116 {
2117 	struct sym_args *args = arg;
2118 
2119 	if (args->started) {
2120 		if (!args->size)
2121 			args->size = start - args->start;
2122 		if (args->selected) {
2123 			if (args->size)
2124 				return 1;
2125 		} else if (kern_sym_match(args, name, type)) {
2126 			args->duplicate = true;
2127 			return 1;
2128 		}
2129 	} else if (kern_sym_match(args, name, type)) {
2130 		args->started = true;
2131 		args->start = start;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2138 {
2139 	struct sym_args *args = arg;
2140 
2141 	if (kern_sym_match(args, name, type)) {
2142 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2143 		       ++args->cnt, start, type, name);
2144 		args->near = true;
2145 	} else if (args->near) {
2146 		args->near = false;
2147 		pr_err("\t\twhich is near\t\t%s\n", name);
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static int sym_not_found_error(const char *sym_name, int idx)
2154 {
2155 	if (idx > 0) {
2156 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2157 		       idx, sym_name);
2158 	} else if (!idx) {
2159 		pr_err("Global symbol '%s' not found.\n", sym_name);
2160 	} else {
2161 		pr_err("Symbol '%s' not found.\n", sym_name);
2162 	}
2163 	pr_err("Note that symbols must be functions.\n");
2164 
2165 	return -EINVAL;
2166 }
2167 
2168 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2169 {
2170 	struct sym_args args = {
2171 		.name = sym_name,
2172 		.idx = idx,
2173 		.global = !idx,
2174 		.selected = idx > 0,
2175 	};
2176 	int err;
2177 
2178 	*start = 0;
2179 	*size = 0;
2180 
2181 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2182 	if (err < 0) {
2183 		pr_err("Failed to parse /proc/kallsyms\n");
2184 		return err;
2185 	}
2186 
2187 	if (args.duplicate) {
2188 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2189 		args.cnt = 0;
2190 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2191 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2192 		       sym_name);
2193 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2194 		return -EINVAL;
2195 	}
2196 
2197 	if (!args.started) {
2198 		pr_err("Kernel symbol lookup: ");
2199 		return sym_not_found_error(sym_name, idx);
2200 	}
2201 
2202 	*start = args.start;
2203 	*size = args.size;
2204 
2205 	return 0;
2206 }
2207 
2208 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2209 			       char type, u64 start)
2210 {
2211 	struct sym_args *args = arg;
2212 
2213 	if (!kallsyms__is_function(type))
2214 		return 0;
2215 
2216 	if (!args->started) {
2217 		args->started = true;
2218 		args->start = start;
2219 	}
2220 	/* Don't know exactly where the kernel ends, so we add a page */
2221 	args->size = round_up(start, page_size) + page_size - args->start;
2222 
2223 	return 0;
2224 }
2225 
2226 static int addr_filter__entire_kernel(struct addr_filter *filt)
2227 {
2228 	struct sym_args args = { .started = false };
2229 	int err;
2230 
2231 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2232 	if (err < 0 || !args.started) {
2233 		pr_err("Failed to parse /proc/kallsyms\n");
2234 		return err;
2235 	}
2236 
2237 	filt->addr = args.start;
2238 	filt->size = args.size;
2239 
2240 	return 0;
2241 }
2242 
2243 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2244 {
2245 	if (start + size >= filt->addr)
2246 		return 0;
2247 
2248 	if (filt->sym_from) {
2249 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2250 		       filt->sym_to, start, filt->sym_from, filt->addr);
2251 	} else {
2252 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2253 		       filt->sym_to, start, filt->addr);
2254 	}
2255 
2256 	return -EINVAL;
2257 }
2258 
2259 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2260 {
2261 	bool no_size = false;
2262 	u64 start, size;
2263 	int err;
2264 
2265 	if (symbol_conf.kptr_restrict) {
2266 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2267 		return -EINVAL;
2268 	}
2269 
2270 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2271 		return addr_filter__entire_kernel(filt);
2272 
2273 	if (filt->sym_from) {
2274 		err = find_kern_sym(filt->sym_from, &start, &size,
2275 				    filt->sym_from_idx);
2276 		if (err)
2277 			return err;
2278 		filt->addr = start;
2279 		if (filt->range && !filt->size && !filt->sym_to) {
2280 			filt->size = size;
2281 			no_size = !size;
2282 		}
2283 	}
2284 
2285 	if (filt->sym_to) {
2286 		err = find_kern_sym(filt->sym_to, &start, &size,
2287 				    filt->sym_to_idx);
2288 		if (err)
2289 			return err;
2290 
2291 		err = check_end_after_start(filt, start, size);
2292 		if (err)
2293 			return err;
2294 		filt->size = start + size - filt->addr;
2295 		no_size = !size;
2296 	}
2297 
2298 	/* The very last symbol in kallsyms does not imply a particular size */
2299 	if (no_size) {
2300 		pr_err("Cannot determine size of symbol '%s'\n",
2301 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2302 		return -EINVAL;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 static struct dso *load_dso(const char *name)
2309 {
2310 	struct map *map;
2311 	struct dso *dso;
2312 
2313 	map = dso__new_map(name);
2314 	if (!map)
2315 		return NULL;
2316 
2317 	if (map__load(map) < 0)
2318 		pr_err("File '%s' not found or has no symbols.\n", name);
2319 
2320 	dso = dso__get(map->dso);
2321 
2322 	map__put(map);
2323 
2324 	return dso;
2325 }
2326 
2327 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2328 			  int idx)
2329 {
2330 	/* Same name, and global or the n'th found or any */
2331 	return !arch__compare_symbol_names(name, sym->name) &&
2332 	       ((!idx && sym->binding == STB_GLOBAL) ||
2333 		(idx > 0 && ++*cnt == idx) ||
2334 		idx < 0);
2335 }
2336 
2337 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2338 {
2339 	struct symbol *sym;
2340 	bool near = false;
2341 	int cnt = 0;
2342 
2343 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2344 
2345 	sym = dso__first_symbol(dso);
2346 	while (sym) {
2347 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2348 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2349 			       ++cnt, sym->start,
2350 			       sym->binding == STB_GLOBAL ? 'g' :
2351 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2352 			       sym->name);
2353 			near = true;
2354 		} else if (near) {
2355 			near = false;
2356 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2357 		}
2358 		sym = dso__next_symbol(sym);
2359 	}
2360 
2361 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2362 	       sym_name);
2363 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2364 }
2365 
2366 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2367 			u64 *size, int idx)
2368 {
2369 	struct symbol *sym;
2370 	int cnt = 0;
2371 
2372 	*start = 0;
2373 	*size = 0;
2374 
2375 	sym = dso__first_symbol(dso);
2376 	while (sym) {
2377 		if (*start) {
2378 			if (!*size)
2379 				*size = sym->start - *start;
2380 			if (idx > 0) {
2381 				if (*size)
2382 					return 1;
2383 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2384 				print_duplicate_syms(dso, sym_name);
2385 				return -EINVAL;
2386 			}
2387 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2388 			*start = sym->start;
2389 			*size = sym->end - sym->start;
2390 		}
2391 		sym = dso__next_symbol(sym);
2392 	}
2393 
2394 	if (!*start)
2395 		return sym_not_found_error(sym_name, idx);
2396 
2397 	return 0;
2398 }
2399 
2400 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2401 {
2402 	if (dso__data_file_size(dso, NULL)) {
2403 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2404 		       filt->filename);
2405 		return -EINVAL;
2406 	}
2407 
2408 	filt->addr = 0;
2409 	filt->size = dso->data.file_size;
2410 
2411 	return 0;
2412 }
2413 
2414 static int addr_filter__resolve_syms(struct addr_filter *filt)
2415 {
2416 	u64 start, size;
2417 	struct dso *dso;
2418 	int err = 0;
2419 
2420 	if (!filt->sym_from && !filt->sym_to)
2421 		return 0;
2422 
2423 	if (!filt->filename)
2424 		return addr_filter__resolve_kernel_syms(filt);
2425 
2426 	dso = load_dso(filt->filename);
2427 	if (!dso) {
2428 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2429 		return -EINVAL;
2430 	}
2431 
2432 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2433 		err = addr_filter__entire_dso(filt, dso);
2434 		goto put_dso;
2435 	}
2436 
2437 	if (filt->sym_from) {
2438 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2439 				   filt->sym_from_idx);
2440 		if (err)
2441 			goto put_dso;
2442 		filt->addr = start;
2443 		if (filt->range && !filt->size && !filt->sym_to)
2444 			filt->size = size;
2445 	}
2446 
2447 	if (filt->sym_to) {
2448 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2449 				   filt->sym_to_idx);
2450 		if (err)
2451 			goto put_dso;
2452 
2453 		err = check_end_after_start(filt, start, size);
2454 		if (err)
2455 			return err;
2456 
2457 		filt->size = start + size - filt->addr;
2458 	}
2459 
2460 put_dso:
2461 	dso__put(dso);
2462 
2463 	return err;
2464 }
2465 
2466 static char *addr_filter__to_str(struct addr_filter *filt)
2467 {
2468 	char filename_buf[PATH_MAX];
2469 	const char *at = "";
2470 	const char *fn = "";
2471 	char *filter;
2472 	int err;
2473 
2474 	if (filt->filename) {
2475 		at = "@";
2476 		fn = realpath(filt->filename, filename_buf);
2477 		if (!fn)
2478 			return NULL;
2479 	}
2480 
2481 	if (filt->range) {
2482 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2483 			       filt->action, filt->addr, filt->size, at, fn);
2484 	} else {
2485 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2486 			       filt->action, filt->addr, at, fn);
2487 	}
2488 
2489 	return err < 0 ? NULL : filter;
2490 }
2491 
2492 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2493 			     int max_nr)
2494 {
2495 	struct addr_filters filts;
2496 	struct addr_filter *filt;
2497 	int err;
2498 
2499 	addr_filters__init(&filts);
2500 
2501 	err = addr_filters__parse_bare_filter(&filts, filter);
2502 	if (err)
2503 		goto out_exit;
2504 
2505 	if (filts.cnt > max_nr) {
2506 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2507 		       filts.cnt, max_nr);
2508 		err = -EINVAL;
2509 		goto out_exit;
2510 	}
2511 
2512 	list_for_each_entry(filt, &filts.head, list) {
2513 		char *new_filter;
2514 
2515 		err = addr_filter__resolve_syms(filt);
2516 		if (err)
2517 			goto out_exit;
2518 
2519 		new_filter = addr_filter__to_str(filt);
2520 		if (!new_filter) {
2521 			err = -ENOMEM;
2522 			goto out_exit;
2523 		}
2524 
2525 		if (evsel__append_addr_filter(evsel, new_filter)) {
2526 			err = -ENOMEM;
2527 			goto out_exit;
2528 		}
2529 	}
2530 
2531 out_exit:
2532 	addr_filters__exit(&filts);
2533 
2534 	if (err) {
2535 		pr_err("Failed to parse address filter: '%s'\n", filter);
2536 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2537 		pr_err("Where multiple filters are separated by space or comma.\n");
2538 	}
2539 
2540 	return err;
2541 }
2542 
2543 static int evsel__nr_addr_filter(struct evsel *evsel)
2544 {
2545 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2546 	int nr_addr_filters = 0;
2547 
2548 	if (!pmu)
2549 		return 0;
2550 
2551 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2552 
2553 	return nr_addr_filters;
2554 }
2555 
2556 int auxtrace_parse_filters(struct evlist *evlist)
2557 {
2558 	struct evsel *evsel;
2559 	char *filter;
2560 	int err, max_nr;
2561 
2562 	evlist__for_each_entry(evlist, evsel) {
2563 		filter = evsel->filter;
2564 		max_nr = evsel__nr_addr_filter(evsel);
2565 		if (!filter || !max_nr)
2566 			continue;
2567 		evsel->filter = NULL;
2568 		err = parse_addr_filter(evsel, filter, max_nr);
2569 		free(filter);
2570 		if (err)
2571 			return err;
2572 		pr_debug("Address filter: %s\n", evsel->filter);
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2579 			    struct perf_sample *sample, struct perf_tool *tool)
2580 {
2581 	if (!session->auxtrace)
2582 		return 0;
2583 
2584 	return session->auxtrace->process_event(session, event, sample, tool);
2585 }
2586 
2587 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2588 				    struct perf_sample *sample)
2589 {
2590 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2591 	    auxtrace__dont_decode(session))
2592 		return;
2593 
2594 	session->auxtrace->dump_auxtrace_sample(session, sample);
2595 }
2596 
2597 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2598 {
2599 	if (!session->auxtrace)
2600 		return 0;
2601 
2602 	return session->auxtrace->flush_events(session, tool);
2603 }
2604 
2605 void auxtrace__free_events(struct perf_session *session)
2606 {
2607 	if (!session->auxtrace)
2608 		return;
2609 
2610 	return session->auxtrace->free_events(session);
2611 }
2612 
2613 void auxtrace__free(struct perf_session *session)
2614 {
2615 	if (!session->auxtrace)
2616 		return;
2617 
2618 	return session->auxtrace->free(session);
2619 }
2620 
2621 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2622 				 struct evsel *evsel)
2623 {
2624 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2625 		return false;
2626 
2627 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2628 }
2629