1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "evlist.h" 30 #include "dso.h" 31 #include "map.h" 32 #include "pmu.h" 33 #include "evsel.h" 34 #include "evsel_config.h" 35 #include "symbol.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "thread_map.h" 39 #include "asm/bug.h" 40 #include "auxtrace.h" 41 42 #include <linux/hash.h> 43 44 #include "event.h" 45 #include "record.h" 46 #include "session.h" 47 #include "debug.h" 48 #include <subcmd/parse-options.h> 49 50 #include "cs-etm.h" 51 #include "intel-pt.h" 52 #include "intel-bts.h" 53 #include "arm-spe.h" 54 #include "s390-cpumsf.h" 55 #include "util/mmap.h" 56 57 #include <linux/ctype.h> 58 #include <linux/kernel.h> 59 #include "symbol/kallsyms.h" 60 #include <internal/lib.h> 61 62 /* 63 * Make a group from 'leader' to 'last', requiring that the events were not 64 * already grouped to a different leader. 65 */ 66 static int perf_evlist__regroup(struct evlist *evlist, 67 struct evsel *leader, 68 struct evsel *last) 69 { 70 struct evsel *evsel; 71 bool grp; 72 73 if (!evsel__is_group_leader(leader)) 74 return -EINVAL; 75 76 grp = false; 77 evlist__for_each_entry(evlist, evsel) { 78 if (grp) { 79 if (!(evsel->leader == leader || 80 (evsel->leader == evsel && 81 evsel->core.nr_members <= 1))) 82 return -EINVAL; 83 } else if (evsel == leader) { 84 grp = true; 85 } 86 if (evsel == last) 87 break; 88 } 89 90 grp = false; 91 evlist__for_each_entry(evlist, evsel) { 92 if (grp) { 93 if (evsel->leader != leader) { 94 evsel->leader = leader; 95 if (leader->core.nr_members < 1) 96 leader->core.nr_members = 1; 97 leader->core.nr_members += 1; 98 } 99 } else if (evsel == leader) { 100 grp = true; 101 } 102 if (evsel == last) 103 break; 104 } 105 106 return 0; 107 } 108 109 static bool auxtrace__dont_decode(struct perf_session *session) 110 { 111 return !session->itrace_synth_opts || 112 session->itrace_synth_opts->dont_decode; 113 } 114 115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 116 struct auxtrace_mmap_params *mp, 117 void *userpg, int fd) 118 { 119 struct perf_event_mmap_page *pc = userpg; 120 121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 122 123 mm->userpg = userpg; 124 mm->mask = mp->mask; 125 mm->len = mp->len; 126 mm->prev = 0; 127 mm->idx = mp->idx; 128 mm->tid = mp->tid; 129 mm->cpu = mp->cpu; 130 131 if (!mp->len) { 132 mm->base = NULL; 133 return 0; 134 } 135 136 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 137 pr_err("Cannot use AUX area tracing mmaps\n"); 138 return -1; 139 #endif 140 141 pc->aux_offset = mp->offset; 142 pc->aux_size = mp->len; 143 144 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 145 if (mm->base == MAP_FAILED) { 146 pr_debug2("failed to mmap AUX area\n"); 147 mm->base = NULL; 148 return -1; 149 } 150 151 return 0; 152 } 153 154 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 155 { 156 if (mm->base) { 157 munmap(mm->base, mm->len); 158 mm->base = NULL; 159 } 160 } 161 162 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 163 off_t auxtrace_offset, 164 unsigned int auxtrace_pages, 165 bool auxtrace_overwrite) 166 { 167 if (auxtrace_pages) { 168 mp->offset = auxtrace_offset; 169 mp->len = auxtrace_pages * (size_t)page_size; 170 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 171 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 172 pr_debug2("AUX area mmap length %zu\n", mp->len); 173 } else { 174 mp->len = 0; 175 } 176 } 177 178 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 179 struct evlist *evlist, int idx, 180 bool per_cpu) 181 { 182 mp->idx = idx; 183 184 if (per_cpu) { 185 mp->cpu = evlist->core.cpus->map[idx]; 186 if (evlist->core.threads) 187 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 188 else 189 mp->tid = -1; 190 } else { 191 mp->cpu = -1; 192 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 193 } 194 } 195 196 #define AUXTRACE_INIT_NR_QUEUES 32 197 198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 199 { 200 struct auxtrace_queue *queue_array; 201 unsigned int max_nr_queues, i; 202 203 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 204 if (nr_queues > max_nr_queues) 205 return NULL; 206 207 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 208 if (!queue_array) 209 return NULL; 210 211 for (i = 0; i < nr_queues; i++) { 212 INIT_LIST_HEAD(&queue_array[i].head); 213 queue_array[i].priv = NULL; 214 } 215 216 return queue_array; 217 } 218 219 int auxtrace_queues__init(struct auxtrace_queues *queues) 220 { 221 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 222 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 223 if (!queues->queue_array) 224 return -ENOMEM; 225 return 0; 226 } 227 228 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 229 unsigned int new_nr_queues) 230 { 231 unsigned int nr_queues = queues->nr_queues; 232 struct auxtrace_queue *queue_array; 233 unsigned int i; 234 235 if (!nr_queues) 236 nr_queues = AUXTRACE_INIT_NR_QUEUES; 237 238 while (nr_queues && nr_queues < new_nr_queues) 239 nr_queues <<= 1; 240 241 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 242 return -EINVAL; 243 244 queue_array = auxtrace_alloc_queue_array(nr_queues); 245 if (!queue_array) 246 return -ENOMEM; 247 248 for (i = 0; i < queues->nr_queues; i++) { 249 list_splice_tail(&queues->queue_array[i].head, 250 &queue_array[i].head); 251 queue_array[i].tid = queues->queue_array[i].tid; 252 queue_array[i].cpu = queues->queue_array[i].cpu; 253 queue_array[i].set = queues->queue_array[i].set; 254 queue_array[i].priv = queues->queue_array[i].priv; 255 } 256 257 queues->nr_queues = nr_queues; 258 queues->queue_array = queue_array; 259 260 return 0; 261 } 262 263 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 264 { 265 int fd = perf_data__fd(session->data); 266 void *p; 267 ssize_t ret; 268 269 if (size > SSIZE_MAX) 270 return NULL; 271 272 p = malloc(size); 273 if (!p) 274 return NULL; 275 276 ret = readn(fd, p, size); 277 if (ret != (ssize_t)size) { 278 free(p); 279 return NULL; 280 } 281 282 return p; 283 } 284 285 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 286 unsigned int idx, 287 struct auxtrace_buffer *buffer) 288 { 289 struct auxtrace_queue *queue; 290 int err; 291 292 if (idx >= queues->nr_queues) { 293 err = auxtrace_queues__grow(queues, idx + 1); 294 if (err) 295 return err; 296 } 297 298 queue = &queues->queue_array[idx]; 299 300 if (!queue->set) { 301 queue->set = true; 302 queue->tid = buffer->tid; 303 queue->cpu = buffer->cpu; 304 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 305 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 306 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 307 return -EINVAL; 308 } 309 310 buffer->buffer_nr = queues->next_buffer_nr++; 311 312 list_add_tail(&buffer->list, &queue->head); 313 314 queues->new_data = true; 315 queues->populated = true; 316 317 return 0; 318 } 319 320 /* Limit buffers to 32MiB on 32-bit */ 321 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 322 323 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 324 unsigned int idx, 325 struct auxtrace_buffer *buffer) 326 { 327 u64 sz = buffer->size; 328 bool consecutive = false; 329 struct auxtrace_buffer *b; 330 int err; 331 332 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 333 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 334 if (!b) 335 return -ENOMEM; 336 b->size = BUFFER_LIMIT_FOR_32_BIT; 337 b->consecutive = consecutive; 338 err = auxtrace_queues__queue_buffer(queues, idx, b); 339 if (err) { 340 auxtrace_buffer__free(b); 341 return err; 342 } 343 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 344 sz -= BUFFER_LIMIT_FOR_32_BIT; 345 consecutive = true; 346 } 347 348 buffer->size = sz; 349 buffer->consecutive = consecutive; 350 351 return 0; 352 } 353 354 static bool filter_cpu(struct perf_session *session, int cpu) 355 { 356 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 357 358 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 359 } 360 361 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 362 struct perf_session *session, 363 unsigned int idx, 364 struct auxtrace_buffer *buffer, 365 struct auxtrace_buffer **buffer_ptr) 366 { 367 int err = -ENOMEM; 368 369 if (filter_cpu(session, buffer->cpu)) 370 return 0; 371 372 buffer = memdup(buffer, sizeof(*buffer)); 373 if (!buffer) 374 return -ENOMEM; 375 376 if (session->one_mmap) { 377 buffer->data = buffer->data_offset - session->one_mmap_offset + 378 session->one_mmap_addr; 379 } else if (perf_data__is_pipe(session->data)) { 380 buffer->data = auxtrace_copy_data(buffer->size, session); 381 if (!buffer->data) 382 goto out_free; 383 buffer->data_needs_freeing = true; 384 } else if (BITS_PER_LONG == 32 && 385 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 386 err = auxtrace_queues__split_buffer(queues, idx, buffer); 387 if (err) 388 goto out_free; 389 } 390 391 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 392 if (err) 393 goto out_free; 394 395 /* FIXME: Doesn't work for split buffer */ 396 if (buffer_ptr) 397 *buffer_ptr = buffer; 398 399 return 0; 400 401 out_free: 402 auxtrace_buffer__free(buffer); 403 return err; 404 } 405 406 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 407 struct perf_session *session, 408 union perf_event *event, off_t data_offset, 409 struct auxtrace_buffer **buffer_ptr) 410 { 411 struct auxtrace_buffer buffer = { 412 .pid = -1, 413 .tid = event->auxtrace.tid, 414 .cpu = event->auxtrace.cpu, 415 .data_offset = data_offset, 416 .offset = event->auxtrace.offset, 417 .reference = event->auxtrace.reference, 418 .size = event->auxtrace.size, 419 }; 420 unsigned int idx = event->auxtrace.idx; 421 422 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 423 buffer_ptr); 424 } 425 426 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 427 struct perf_session *session, 428 off_t file_offset, size_t sz) 429 { 430 union perf_event *event; 431 int err; 432 char buf[PERF_SAMPLE_MAX_SIZE]; 433 434 err = perf_session__peek_event(session, file_offset, buf, 435 PERF_SAMPLE_MAX_SIZE, &event, NULL); 436 if (err) 437 return err; 438 439 if (event->header.type == PERF_RECORD_AUXTRACE) { 440 if (event->header.size < sizeof(struct perf_record_auxtrace) || 441 event->header.size != sz) { 442 err = -EINVAL; 443 goto out; 444 } 445 file_offset += event->header.size; 446 err = auxtrace_queues__add_event(queues, session, event, 447 file_offset, NULL); 448 } 449 out: 450 return err; 451 } 452 453 void auxtrace_queues__free(struct auxtrace_queues *queues) 454 { 455 unsigned int i; 456 457 for (i = 0; i < queues->nr_queues; i++) { 458 while (!list_empty(&queues->queue_array[i].head)) { 459 struct auxtrace_buffer *buffer; 460 461 buffer = list_entry(queues->queue_array[i].head.next, 462 struct auxtrace_buffer, list); 463 list_del_init(&buffer->list); 464 auxtrace_buffer__free(buffer); 465 } 466 } 467 468 zfree(&queues->queue_array); 469 queues->nr_queues = 0; 470 } 471 472 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 473 unsigned int pos, unsigned int queue_nr, 474 u64 ordinal) 475 { 476 unsigned int parent; 477 478 while (pos) { 479 parent = (pos - 1) >> 1; 480 if (heap_array[parent].ordinal <= ordinal) 481 break; 482 heap_array[pos] = heap_array[parent]; 483 pos = parent; 484 } 485 heap_array[pos].queue_nr = queue_nr; 486 heap_array[pos].ordinal = ordinal; 487 } 488 489 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 490 u64 ordinal) 491 { 492 struct auxtrace_heap_item *heap_array; 493 494 if (queue_nr >= heap->heap_sz) { 495 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 496 497 while (heap_sz <= queue_nr) 498 heap_sz <<= 1; 499 heap_array = realloc(heap->heap_array, 500 heap_sz * sizeof(struct auxtrace_heap_item)); 501 if (!heap_array) 502 return -ENOMEM; 503 heap->heap_array = heap_array; 504 heap->heap_sz = heap_sz; 505 } 506 507 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 508 509 return 0; 510 } 511 512 void auxtrace_heap__free(struct auxtrace_heap *heap) 513 { 514 zfree(&heap->heap_array); 515 heap->heap_cnt = 0; 516 heap->heap_sz = 0; 517 } 518 519 void auxtrace_heap__pop(struct auxtrace_heap *heap) 520 { 521 unsigned int pos, last, heap_cnt = heap->heap_cnt; 522 struct auxtrace_heap_item *heap_array; 523 524 if (!heap_cnt) 525 return; 526 527 heap->heap_cnt -= 1; 528 529 heap_array = heap->heap_array; 530 531 pos = 0; 532 while (1) { 533 unsigned int left, right; 534 535 left = (pos << 1) + 1; 536 if (left >= heap_cnt) 537 break; 538 right = left + 1; 539 if (right >= heap_cnt) { 540 heap_array[pos] = heap_array[left]; 541 return; 542 } 543 if (heap_array[left].ordinal < heap_array[right].ordinal) { 544 heap_array[pos] = heap_array[left]; 545 pos = left; 546 } else { 547 heap_array[pos] = heap_array[right]; 548 pos = right; 549 } 550 } 551 552 last = heap_cnt - 1; 553 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 554 heap_array[last].ordinal); 555 } 556 557 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 558 struct evlist *evlist) 559 { 560 if (itr) 561 return itr->info_priv_size(itr, evlist); 562 return 0; 563 } 564 565 static int auxtrace_not_supported(void) 566 { 567 pr_err("AUX area tracing is not supported on this architecture\n"); 568 return -EINVAL; 569 } 570 571 int auxtrace_record__info_fill(struct auxtrace_record *itr, 572 struct perf_session *session, 573 struct perf_record_auxtrace_info *auxtrace_info, 574 size_t priv_size) 575 { 576 if (itr) 577 return itr->info_fill(itr, session, auxtrace_info, priv_size); 578 return auxtrace_not_supported(); 579 } 580 581 void auxtrace_record__free(struct auxtrace_record *itr) 582 { 583 if (itr) 584 itr->free(itr); 585 } 586 587 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 588 { 589 if (itr && itr->snapshot_start) 590 return itr->snapshot_start(itr); 591 return 0; 592 } 593 594 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 595 { 596 if (!on_exit && itr && itr->snapshot_finish) 597 return itr->snapshot_finish(itr); 598 return 0; 599 } 600 601 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 602 struct auxtrace_mmap *mm, 603 unsigned char *data, u64 *head, u64 *old) 604 { 605 if (itr && itr->find_snapshot) 606 return itr->find_snapshot(itr, idx, mm, data, head, old); 607 return 0; 608 } 609 610 int auxtrace_record__options(struct auxtrace_record *itr, 611 struct evlist *evlist, 612 struct record_opts *opts) 613 { 614 if (itr) { 615 itr->evlist = evlist; 616 return itr->recording_options(itr, evlist, opts); 617 } 618 return 0; 619 } 620 621 u64 auxtrace_record__reference(struct auxtrace_record *itr) 622 { 623 if (itr) 624 return itr->reference(itr); 625 return 0; 626 } 627 628 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 629 struct record_opts *opts, const char *str) 630 { 631 if (!str) 632 return 0; 633 634 /* PMU-agnostic options */ 635 switch (*str) { 636 case 'e': 637 opts->auxtrace_snapshot_on_exit = true; 638 str++; 639 break; 640 default: 641 break; 642 } 643 644 if (itr) 645 return itr->parse_snapshot_options(itr, opts, str); 646 647 pr_err("No AUX area tracing to snapshot\n"); 648 return -EINVAL; 649 } 650 651 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 652 { 653 struct evsel *evsel; 654 655 if (!itr->evlist || !itr->pmu) 656 return -EINVAL; 657 658 evlist__for_each_entry(itr->evlist, evsel) { 659 if (evsel->core.attr.type == itr->pmu->type) { 660 if (evsel->disabled) 661 return 0; 662 return perf_evlist__enable_event_idx(itr->evlist, evsel, 663 idx); 664 } 665 } 666 return -EINVAL; 667 } 668 669 /* 670 * Event record size is 16-bit which results in a maximum size of about 64KiB. 671 * Allow about 4KiB for the rest of the sample record, to give a maximum 672 * AUX area sample size of 60KiB. 673 */ 674 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 675 676 /* Arbitrary default size if no other default provided */ 677 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 678 679 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 680 struct record_opts *opts) 681 { 682 struct evsel *evsel; 683 bool has_aux_leader = false; 684 u32 sz; 685 686 evlist__for_each_entry(evlist, evsel) { 687 sz = evsel->core.attr.aux_sample_size; 688 if (evsel__is_group_leader(evsel)) { 689 has_aux_leader = evsel__is_aux_event(evsel); 690 if (sz) { 691 if (has_aux_leader) 692 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 693 else 694 pr_err("Cannot add AUX area sampling to a group leader\n"); 695 return -EINVAL; 696 } 697 } 698 if (sz > MAX_AUX_SAMPLE_SIZE) { 699 pr_err("AUX area sample size %u too big, max. %d\n", 700 sz, MAX_AUX_SAMPLE_SIZE); 701 return -EINVAL; 702 } 703 if (sz) { 704 if (!has_aux_leader) { 705 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 706 return -EINVAL; 707 } 708 evsel__set_sample_bit(evsel, AUX); 709 opts->auxtrace_sample_mode = true; 710 } else { 711 evsel__reset_sample_bit(evsel, AUX); 712 } 713 } 714 715 if (!opts->auxtrace_sample_mode) { 716 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 717 return -EINVAL; 718 } 719 720 if (!perf_can_aux_sample()) { 721 pr_err("AUX area sampling is not supported by kernel\n"); 722 return -EINVAL; 723 } 724 725 return 0; 726 } 727 728 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 729 struct evlist *evlist, 730 struct record_opts *opts, const char *str) 731 { 732 struct perf_evsel_config_term *term; 733 struct evsel *aux_evsel; 734 bool has_aux_sample_size = false; 735 bool has_aux_leader = false; 736 struct evsel *evsel; 737 char *endptr; 738 unsigned long sz; 739 740 if (!str) 741 goto no_opt; 742 743 if (!itr) { 744 pr_err("No AUX area event to sample\n"); 745 return -EINVAL; 746 } 747 748 sz = strtoul(str, &endptr, 0); 749 if (*endptr || sz > UINT_MAX) { 750 pr_err("Bad AUX area sampling option: '%s'\n", str); 751 return -EINVAL; 752 } 753 754 if (!sz) 755 sz = itr->default_aux_sample_size; 756 757 if (!sz) 758 sz = DEFAULT_AUX_SAMPLE_SIZE; 759 760 /* Set aux_sample_size based on --aux-sample option */ 761 evlist__for_each_entry(evlist, evsel) { 762 if (evsel__is_group_leader(evsel)) { 763 has_aux_leader = evsel__is_aux_event(evsel); 764 } else if (has_aux_leader) { 765 evsel->core.attr.aux_sample_size = sz; 766 } 767 } 768 no_opt: 769 aux_evsel = NULL; 770 /* Override with aux_sample_size from config term */ 771 evlist__for_each_entry(evlist, evsel) { 772 if (evsel__is_aux_event(evsel)) 773 aux_evsel = evsel; 774 term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 775 if (term) { 776 has_aux_sample_size = true; 777 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 778 /* If possible, group with the AUX event */ 779 if (aux_evsel && evsel->core.attr.aux_sample_size) 780 perf_evlist__regroup(evlist, aux_evsel, evsel); 781 } 782 } 783 784 if (!str && !has_aux_sample_size) 785 return 0; 786 787 if (!itr) { 788 pr_err("No AUX area event to sample\n"); 789 return -EINVAL; 790 } 791 792 return auxtrace_validate_aux_sample_size(evlist, opts); 793 } 794 795 struct auxtrace_record *__weak 796 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 797 { 798 *err = 0; 799 return NULL; 800 } 801 802 static int auxtrace_index__alloc(struct list_head *head) 803 { 804 struct auxtrace_index *auxtrace_index; 805 806 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 807 if (!auxtrace_index) 808 return -ENOMEM; 809 810 auxtrace_index->nr = 0; 811 INIT_LIST_HEAD(&auxtrace_index->list); 812 813 list_add_tail(&auxtrace_index->list, head); 814 815 return 0; 816 } 817 818 void auxtrace_index__free(struct list_head *head) 819 { 820 struct auxtrace_index *auxtrace_index, *n; 821 822 list_for_each_entry_safe(auxtrace_index, n, head, list) { 823 list_del_init(&auxtrace_index->list); 824 free(auxtrace_index); 825 } 826 } 827 828 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 829 { 830 struct auxtrace_index *auxtrace_index; 831 int err; 832 833 if (list_empty(head)) { 834 err = auxtrace_index__alloc(head); 835 if (err) 836 return NULL; 837 } 838 839 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 840 841 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 842 err = auxtrace_index__alloc(head); 843 if (err) 844 return NULL; 845 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 846 list); 847 } 848 849 return auxtrace_index; 850 } 851 852 int auxtrace_index__auxtrace_event(struct list_head *head, 853 union perf_event *event, off_t file_offset) 854 { 855 struct auxtrace_index *auxtrace_index; 856 size_t nr; 857 858 auxtrace_index = auxtrace_index__last(head); 859 if (!auxtrace_index) 860 return -ENOMEM; 861 862 nr = auxtrace_index->nr; 863 auxtrace_index->entries[nr].file_offset = file_offset; 864 auxtrace_index->entries[nr].sz = event->header.size; 865 auxtrace_index->nr += 1; 866 867 return 0; 868 } 869 870 static int auxtrace_index__do_write(int fd, 871 struct auxtrace_index *auxtrace_index) 872 { 873 struct auxtrace_index_entry ent; 874 size_t i; 875 876 for (i = 0; i < auxtrace_index->nr; i++) { 877 ent.file_offset = auxtrace_index->entries[i].file_offset; 878 ent.sz = auxtrace_index->entries[i].sz; 879 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 880 return -errno; 881 } 882 return 0; 883 } 884 885 int auxtrace_index__write(int fd, struct list_head *head) 886 { 887 struct auxtrace_index *auxtrace_index; 888 u64 total = 0; 889 int err; 890 891 list_for_each_entry(auxtrace_index, head, list) 892 total += auxtrace_index->nr; 893 894 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 895 return -errno; 896 897 list_for_each_entry(auxtrace_index, head, list) { 898 err = auxtrace_index__do_write(fd, auxtrace_index); 899 if (err) 900 return err; 901 } 902 903 return 0; 904 } 905 906 static int auxtrace_index__process_entry(int fd, struct list_head *head, 907 bool needs_swap) 908 { 909 struct auxtrace_index *auxtrace_index; 910 struct auxtrace_index_entry ent; 911 size_t nr; 912 913 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 914 return -1; 915 916 auxtrace_index = auxtrace_index__last(head); 917 if (!auxtrace_index) 918 return -1; 919 920 nr = auxtrace_index->nr; 921 if (needs_swap) { 922 auxtrace_index->entries[nr].file_offset = 923 bswap_64(ent.file_offset); 924 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 925 } else { 926 auxtrace_index->entries[nr].file_offset = ent.file_offset; 927 auxtrace_index->entries[nr].sz = ent.sz; 928 } 929 930 auxtrace_index->nr = nr + 1; 931 932 return 0; 933 } 934 935 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 936 bool needs_swap) 937 { 938 struct list_head *head = &session->auxtrace_index; 939 u64 nr; 940 941 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 942 return -1; 943 944 if (needs_swap) 945 nr = bswap_64(nr); 946 947 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 948 return -1; 949 950 while (nr--) { 951 int err; 952 953 err = auxtrace_index__process_entry(fd, head, needs_swap); 954 if (err) 955 return -1; 956 } 957 958 return 0; 959 } 960 961 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 962 struct perf_session *session, 963 struct auxtrace_index_entry *ent) 964 { 965 return auxtrace_queues__add_indexed_event(queues, session, 966 ent->file_offset, ent->sz); 967 } 968 969 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 970 struct perf_session *session) 971 { 972 struct auxtrace_index *auxtrace_index; 973 struct auxtrace_index_entry *ent; 974 size_t i; 975 int err; 976 977 if (auxtrace__dont_decode(session)) 978 return 0; 979 980 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 981 for (i = 0; i < auxtrace_index->nr; i++) { 982 ent = &auxtrace_index->entries[i]; 983 err = auxtrace_queues__process_index_entry(queues, 984 session, 985 ent); 986 if (err) 987 return err; 988 } 989 } 990 return 0; 991 } 992 993 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 994 struct auxtrace_buffer *buffer) 995 { 996 if (buffer) { 997 if (list_is_last(&buffer->list, &queue->head)) 998 return NULL; 999 return list_entry(buffer->list.next, struct auxtrace_buffer, 1000 list); 1001 } else { 1002 if (list_empty(&queue->head)) 1003 return NULL; 1004 return list_entry(queue->head.next, struct auxtrace_buffer, 1005 list); 1006 } 1007 } 1008 1009 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1010 struct perf_sample *sample, 1011 struct perf_session *session) 1012 { 1013 struct perf_sample_id *sid; 1014 unsigned int idx; 1015 u64 id; 1016 1017 id = sample->id; 1018 if (!id) 1019 return NULL; 1020 1021 sid = perf_evlist__id2sid(session->evlist, id); 1022 if (!sid) 1023 return NULL; 1024 1025 idx = sid->idx; 1026 1027 if (idx >= queues->nr_queues) 1028 return NULL; 1029 1030 return &queues->queue_array[idx]; 1031 } 1032 1033 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1034 struct perf_session *session, 1035 struct perf_sample *sample, u64 data_offset, 1036 u64 reference) 1037 { 1038 struct auxtrace_buffer buffer = { 1039 .pid = -1, 1040 .data_offset = data_offset, 1041 .reference = reference, 1042 .size = sample->aux_sample.size, 1043 }; 1044 struct perf_sample_id *sid; 1045 u64 id = sample->id; 1046 unsigned int idx; 1047 1048 if (!id) 1049 return -EINVAL; 1050 1051 sid = perf_evlist__id2sid(session->evlist, id); 1052 if (!sid) 1053 return -ENOENT; 1054 1055 idx = sid->idx; 1056 buffer.tid = sid->tid; 1057 buffer.cpu = sid->cpu; 1058 1059 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1060 } 1061 1062 struct queue_data { 1063 bool samples; 1064 bool events; 1065 }; 1066 1067 static int auxtrace_queue_data_cb(struct perf_session *session, 1068 union perf_event *event, u64 offset, 1069 void *data) 1070 { 1071 struct queue_data *qd = data; 1072 struct perf_sample sample; 1073 int err; 1074 1075 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1076 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1077 return -EINVAL; 1078 offset += event->header.size; 1079 return session->auxtrace->queue_data(session, NULL, event, 1080 offset); 1081 } 1082 1083 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1084 return 0; 1085 1086 err = perf_evlist__parse_sample(session->evlist, event, &sample); 1087 if (err) 1088 return err; 1089 1090 if (!sample.aux_sample.size) 1091 return 0; 1092 1093 offset += sample.aux_sample.data - (void *)event; 1094 1095 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1096 } 1097 1098 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1099 { 1100 struct queue_data qd = { 1101 .samples = samples, 1102 .events = events, 1103 }; 1104 1105 if (auxtrace__dont_decode(session)) 1106 return 0; 1107 1108 if (!session->auxtrace || !session->auxtrace->queue_data) 1109 return -EINVAL; 1110 1111 return perf_session__peek_events(session, session->header.data_offset, 1112 session->header.data_size, 1113 auxtrace_queue_data_cb, &qd); 1114 } 1115 1116 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 1117 { 1118 size_t adj = buffer->data_offset & (page_size - 1); 1119 size_t size = buffer->size + adj; 1120 off_t file_offset = buffer->data_offset - adj; 1121 void *addr; 1122 1123 if (buffer->data) 1124 return buffer->data; 1125 1126 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 1127 if (addr == MAP_FAILED) 1128 return NULL; 1129 1130 buffer->mmap_addr = addr; 1131 buffer->mmap_size = size; 1132 1133 buffer->data = addr + adj; 1134 1135 return buffer->data; 1136 } 1137 1138 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1139 { 1140 if (!buffer->data || !buffer->mmap_addr) 1141 return; 1142 munmap(buffer->mmap_addr, buffer->mmap_size); 1143 buffer->mmap_addr = NULL; 1144 buffer->mmap_size = 0; 1145 buffer->data = NULL; 1146 buffer->use_data = NULL; 1147 } 1148 1149 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1150 { 1151 auxtrace_buffer__put_data(buffer); 1152 if (buffer->data_needs_freeing) { 1153 buffer->data_needs_freeing = false; 1154 zfree(&buffer->data); 1155 buffer->use_data = NULL; 1156 buffer->size = 0; 1157 } 1158 } 1159 1160 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1161 { 1162 auxtrace_buffer__drop_data(buffer); 1163 free(buffer); 1164 } 1165 1166 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1167 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1168 const char *msg, u64 timestamp) 1169 { 1170 size_t size; 1171 1172 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1173 1174 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1175 auxtrace_error->type = type; 1176 auxtrace_error->code = code; 1177 auxtrace_error->cpu = cpu; 1178 auxtrace_error->pid = pid; 1179 auxtrace_error->tid = tid; 1180 auxtrace_error->fmt = 1; 1181 auxtrace_error->ip = ip; 1182 auxtrace_error->time = timestamp; 1183 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1184 1185 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1186 strlen(auxtrace_error->msg) + 1; 1187 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1188 } 1189 1190 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1191 struct perf_tool *tool, 1192 struct perf_session *session, 1193 perf_event__handler_t process) 1194 { 1195 union perf_event *ev; 1196 size_t priv_size; 1197 int err; 1198 1199 pr_debug2("Synthesizing auxtrace information\n"); 1200 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1201 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1202 if (!ev) 1203 return -ENOMEM; 1204 1205 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1206 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1207 priv_size; 1208 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1209 priv_size); 1210 if (err) 1211 goto out_free; 1212 1213 err = process(tool, ev, NULL, NULL); 1214 out_free: 1215 free(ev); 1216 return err; 1217 } 1218 1219 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1220 { 1221 struct evsel *new_leader = NULL; 1222 struct evsel *evsel; 1223 1224 /* Find new leader for the group */ 1225 evlist__for_each_entry(evlist, evsel) { 1226 if (evsel->leader != leader || evsel == leader) 1227 continue; 1228 if (!new_leader) 1229 new_leader = evsel; 1230 evsel->leader = new_leader; 1231 } 1232 1233 /* Update group information */ 1234 if (new_leader) { 1235 zfree(&new_leader->group_name); 1236 new_leader->group_name = leader->group_name; 1237 leader->group_name = NULL; 1238 1239 new_leader->core.nr_members = leader->core.nr_members - 1; 1240 leader->core.nr_members = 1; 1241 } 1242 } 1243 1244 static void unleader_auxtrace(struct perf_session *session) 1245 { 1246 struct evsel *evsel; 1247 1248 evlist__for_each_entry(session->evlist, evsel) { 1249 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1250 evsel__is_group_leader(evsel)) { 1251 unleader_evsel(session->evlist, evsel); 1252 } 1253 } 1254 } 1255 1256 int perf_event__process_auxtrace_info(struct perf_session *session, 1257 union perf_event *event) 1258 { 1259 enum auxtrace_type type = event->auxtrace_info.type; 1260 int err; 1261 1262 if (dump_trace) 1263 fprintf(stdout, " type: %u\n", type); 1264 1265 switch (type) { 1266 case PERF_AUXTRACE_INTEL_PT: 1267 err = intel_pt_process_auxtrace_info(event, session); 1268 break; 1269 case PERF_AUXTRACE_INTEL_BTS: 1270 err = intel_bts_process_auxtrace_info(event, session); 1271 break; 1272 case PERF_AUXTRACE_ARM_SPE: 1273 err = arm_spe_process_auxtrace_info(event, session); 1274 break; 1275 case PERF_AUXTRACE_CS_ETM: 1276 err = cs_etm__process_auxtrace_info(event, session); 1277 break; 1278 case PERF_AUXTRACE_S390_CPUMSF: 1279 err = s390_cpumsf_process_auxtrace_info(event, session); 1280 break; 1281 case PERF_AUXTRACE_UNKNOWN: 1282 default: 1283 return -EINVAL; 1284 } 1285 1286 if (err) 1287 return err; 1288 1289 unleader_auxtrace(session); 1290 1291 return 0; 1292 } 1293 1294 s64 perf_event__process_auxtrace(struct perf_session *session, 1295 union perf_event *event) 1296 { 1297 s64 err; 1298 1299 if (dump_trace) 1300 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1301 event->auxtrace.size, event->auxtrace.offset, 1302 event->auxtrace.reference, event->auxtrace.idx, 1303 event->auxtrace.tid, event->auxtrace.cpu); 1304 1305 if (auxtrace__dont_decode(session)) 1306 return event->auxtrace.size; 1307 1308 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1309 return -EINVAL; 1310 1311 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1312 if (err < 0) 1313 return err; 1314 1315 return event->auxtrace.size; 1316 } 1317 1318 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1319 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1320 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1321 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1322 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1323 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1324 1325 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1326 bool no_sample) 1327 { 1328 synth_opts->branches = true; 1329 synth_opts->transactions = true; 1330 synth_opts->ptwrites = true; 1331 synth_opts->pwr_events = true; 1332 synth_opts->other_events = true; 1333 synth_opts->errors = true; 1334 if (no_sample) { 1335 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1336 synth_opts->period = 1; 1337 synth_opts->calls = true; 1338 } else { 1339 synth_opts->instructions = true; 1340 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1341 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1342 } 1343 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1344 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1345 synth_opts->initial_skip = 0; 1346 } 1347 1348 /* 1349 * Please check tools/perf/Documentation/perf-script.txt for information 1350 * about the options parsed here, which is introduced after this cset, 1351 * when support in 'perf script' for these options is introduced. 1352 */ 1353 int itrace_parse_synth_opts(const struct option *opt, const char *str, 1354 int unset) 1355 { 1356 struct itrace_synth_opts *synth_opts = opt->value; 1357 const char *p; 1358 char *endptr; 1359 bool period_type_set = false; 1360 bool period_set = false; 1361 1362 synth_opts->set = true; 1363 1364 if (unset) { 1365 synth_opts->dont_decode = true; 1366 return 0; 1367 } 1368 1369 if (!str) { 1370 itrace_synth_opts__set_default(synth_opts, 1371 synth_opts->default_no_sample); 1372 return 0; 1373 } 1374 1375 for (p = str; *p;) { 1376 switch (*p++) { 1377 case 'i': 1378 synth_opts->instructions = true; 1379 while (*p == ' ' || *p == ',') 1380 p += 1; 1381 if (isdigit(*p)) { 1382 synth_opts->period = strtoull(p, &endptr, 10); 1383 period_set = true; 1384 p = endptr; 1385 while (*p == ' ' || *p == ',') 1386 p += 1; 1387 switch (*p++) { 1388 case 'i': 1389 synth_opts->period_type = 1390 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1391 period_type_set = true; 1392 break; 1393 case 't': 1394 synth_opts->period_type = 1395 PERF_ITRACE_PERIOD_TICKS; 1396 period_type_set = true; 1397 break; 1398 case 'm': 1399 synth_opts->period *= 1000; 1400 /* Fall through */ 1401 case 'u': 1402 synth_opts->period *= 1000; 1403 /* Fall through */ 1404 case 'n': 1405 if (*p++ != 's') 1406 goto out_err; 1407 synth_opts->period_type = 1408 PERF_ITRACE_PERIOD_NANOSECS; 1409 period_type_set = true; 1410 break; 1411 case '\0': 1412 goto out; 1413 default: 1414 goto out_err; 1415 } 1416 } 1417 break; 1418 case 'b': 1419 synth_opts->branches = true; 1420 break; 1421 case 'x': 1422 synth_opts->transactions = true; 1423 break; 1424 case 'w': 1425 synth_opts->ptwrites = true; 1426 break; 1427 case 'p': 1428 synth_opts->pwr_events = true; 1429 break; 1430 case 'o': 1431 synth_opts->other_events = true; 1432 break; 1433 case 'e': 1434 synth_opts->errors = true; 1435 break; 1436 case 'd': 1437 synth_opts->log = true; 1438 break; 1439 case 'c': 1440 synth_opts->branches = true; 1441 synth_opts->calls = true; 1442 break; 1443 case 'r': 1444 synth_opts->branches = true; 1445 synth_opts->returns = true; 1446 break; 1447 case 'G': 1448 case 'g': 1449 if (p[-1] == 'G') 1450 synth_opts->add_callchain = true; 1451 else 1452 synth_opts->callchain = true; 1453 synth_opts->callchain_sz = 1454 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1455 while (*p == ' ' || *p == ',') 1456 p += 1; 1457 if (isdigit(*p)) { 1458 unsigned int val; 1459 1460 val = strtoul(p, &endptr, 10); 1461 p = endptr; 1462 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1463 goto out_err; 1464 synth_opts->callchain_sz = val; 1465 } 1466 break; 1467 case 'L': 1468 case 'l': 1469 if (p[-1] == 'L') 1470 synth_opts->add_last_branch = true; 1471 else 1472 synth_opts->last_branch = true; 1473 synth_opts->last_branch_sz = 1474 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1475 while (*p == ' ' || *p == ',') 1476 p += 1; 1477 if (isdigit(*p)) { 1478 unsigned int val; 1479 1480 val = strtoul(p, &endptr, 10); 1481 p = endptr; 1482 if (!val || 1483 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1484 goto out_err; 1485 synth_opts->last_branch_sz = val; 1486 } 1487 break; 1488 case 's': 1489 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1490 if (p == endptr) 1491 goto out_err; 1492 p = endptr; 1493 break; 1494 case ' ': 1495 case ',': 1496 break; 1497 default: 1498 goto out_err; 1499 } 1500 } 1501 out: 1502 if (synth_opts->instructions) { 1503 if (!period_type_set) 1504 synth_opts->period_type = 1505 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1506 if (!period_set) 1507 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1508 } 1509 1510 return 0; 1511 1512 out_err: 1513 pr_err("Bad Instruction Tracing options '%s'\n", str); 1514 return -EINVAL; 1515 } 1516 1517 static const char * const auxtrace_error_type_name[] = { 1518 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1519 }; 1520 1521 static const char *auxtrace_error_name(int type) 1522 { 1523 const char *error_type_name = NULL; 1524 1525 if (type < PERF_AUXTRACE_ERROR_MAX) 1526 error_type_name = auxtrace_error_type_name[type]; 1527 if (!error_type_name) 1528 error_type_name = "unknown AUX"; 1529 return error_type_name; 1530 } 1531 1532 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1533 { 1534 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1535 unsigned long long nsecs = e->time; 1536 const char *msg = e->msg; 1537 int ret; 1538 1539 ret = fprintf(fp, " %s error type %u", 1540 auxtrace_error_name(e->type), e->type); 1541 1542 if (e->fmt && nsecs) { 1543 unsigned long secs = nsecs / NSEC_PER_SEC; 1544 1545 nsecs -= secs * NSEC_PER_SEC; 1546 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1547 } else { 1548 ret += fprintf(fp, " time 0"); 1549 } 1550 1551 if (!e->fmt) 1552 msg = (const char *)&e->time; 1553 1554 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1555 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1556 return ret; 1557 } 1558 1559 void perf_session__auxtrace_error_inc(struct perf_session *session, 1560 union perf_event *event) 1561 { 1562 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1563 1564 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1565 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1566 } 1567 1568 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1569 { 1570 int i; 1571 1572 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1573 if (!stats->nr_auxtrace_errors[i]) 1574 continue; 1575 ui__warning("%u %s errors\n", 1576 stats->nr_auxtrace_errors[i], 1577 auxtrace_error_name(i)); 1578 } 1579 } 1580 1581 int perf_event__process_auxtrace_error(struct perf_session *session, 1582 union perf_event *event) 1583 { 1584 if (auxtrace__dont_decode(session)) 1585 return 0; 1586 1587 perf_event__fprintf_auxtrace_error(event, stdout); 1588 return 0; 1589 } 1590 1591 static int __auxtrace_mmap__read(struct mmap *map, 1592 struct auxtrace_record *itr, 1593 struct perf_tool *tool, process_auxtrace_t fn, 1594 bool snapshot, size_t snapshot_size) 1595 { 1596 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1597 u64 head, old = mm->prev, offset, ref; 1598 unsigned char *data = mm->base; 1599 size_t size, head_off, old_off, len1, len2, padding; 1600 union perf_event ev; 1601 void *data1, *data2; 1602 1603 if (snapshot) { 1604 head = auxtrace_mmap__read_snapshot_head(mm); 1605 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1606 &head, &old)) 1607 return -1; 1608 } else { 1609 head = auxtrace_mmap__read_head(mm); 1610 } 1611 1612 if (old == head) 1613 return 0; 1614 1615 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1616 mm->idx, old, head, head - old); 1617 1618 if (mm->mask) { 1619 head_off = head & mm->mask; 1620 old_off = old & mm->mask; 1621 } else { 1622 head_off = head % mm->len; 1623 old_off = old % mm->len; 1624 } 1625 1626 if (head_off > old_off) 1627 size = head_off - old_off; 1628 else 1629 size = mm->len - (old_off - head_off); 1630 1631 if (snapshot && size > snapshot_size) 1632 size = snapshot_size; 1633 1634 ref = auxtrace_record__reference(itr); 1635 1636 if (head > old || size <= head || mm->mask) { 1637 offset = head - size; 1638 } else { 1639 /* 1640 * When the buffer size is not a power of 2, 'head' wraps at the 1641 * highest multiple of the buffer size, so we have to subtract 1642 * the remainder here. 1643 */ 1644 u64 rem = (0ULL - mm->len) % mm->len; 1645 1646 offset = head - size - rem; 1647 } 1648 1649 if (size > head_off) { 1650 len1 = size - head_off; 1651 data1 = &data[mm->len - len1]; 1652 len2 = head_off; 1653 data2 = &data[0]; 1654 } else { 1655 len1 = size; 1656 data1 = &data[head_off - len1]; 1657 len2 = 0; 1658 data2 = NULL; 1659 } 1660 1661 if (itr->alignment) { 1662 unsigned int unwanted = len1 % itr->alignment; 1663 1664 len1 -= unwanted; 1665 size -= unwanted; 1666 } 1667 1668 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1669 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1670 if (padding) 1671 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1672 1673 memset(&ev, 0, sizeof(ev)); 1674 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1675 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1676 ev.auxtrace.size = size + padding; 1677 ev.auxtrace.offset = offset; 1678 ev.auxtrace.reference = ref; 1679 ev.auxtrace.idx = mm->idx; 1680 ev.auxtrace.tid = mm->tid; 1681 ev.auxtrace.cpu = mm->cpu; 1682 1683 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1684 return -1; 1685 1686 mm->prev = head; 1687 1688 if (!snapshot) { 1689 auxtrace_mmap__write_tail(mm, head); 1690 if (itr->read_finish) { 1691 int err; 1692 1693 err = itr->read_finish(itr, mm->idx); 1694 if (err < 0) 1695 return err; 1696 } 1697 } 1698 1699 return 1; 1700 } 1701 1702 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1703 struct perf_tool *tool, process_auxtrace_t fn) 1704 { 1705 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1706 } 1707 1708 int auxtrace_mmap__read_snapshot(struct mmap *map, 1709 struct auxtrace_record *itr, 1710 struct perf_tool *tool, process_auxtrace_t fn, 1711 size_t snapshot_size) 1712 { 1713 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1714 } 1715 1716 /** 1717 * struct auxtrace_cache - hash table to implement a cache 1718 * @hashtable: the hashtable 1719 * @sz: hashtable size (number of hlists) 1720 * @entry_size: size of an entry 1721 * @limit: limit the number of entries to this maximum, when reached the cache 1722 * is dropped and caching begins again with an empty cache 1723 * @cnt: current number of entries 1724 * @bits: hashtable size (@sz = 2^@bits) 1725 */ 1726 struct auxtrace_cache { 1727 struct hlist_head *hashtable; 1728 size_t sz; 1729 size_t entry_size; 1730 size_t limit; 1731 size_t cnt; 1732 unsigned int bits; 1733 }; 1734 1735 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1736 unsigned int limit_percent) 1737 { 1738 struct auxtrace_cache *c; 1739 struct hlist_head *ht; 1740 size_t sz, i; 1741 1742 c = zalloc(sizeof(struct auxtrace_cache)); 1743 if (!c) 1744 return NULL; 1745 1746 sz = 1UL << bits; 1747 1748 ht = calloc(sz, sizeof(struct hlist_head)); 1749 if (!ht) 1750 goto out_free; 1751 1752 for (i = 0; i < sz; i++) 1753 INIT_HLIST_HEAD(&ht[i]); 1754 1755 c->hashtable = ht; 1756 c->sz = sz; 1757 c->entry_size = entry_size; 1758 c->limit = (c->sz * limit_percent) / 100; 1759 c->bits = bits; 1760 1761 return c; 1762 1763 out_free: 1764 free(c); 1765 return NULL; 1766 } 1767 1768 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1769 { 1770 struct auxtrace_cache_entry *entry; 1771 struct hlist_node *tmp; 1772 size_t i; 1773 1774 if (!c) 1775 return; 1776 1777 for (i = 0; i < c->sz; i++) { 1778 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1779 hlist_del(&entry->hash); 1780 auxtrace_cache__free_entry(c, entry); 1781 } 1782 } 1783 1784 c->cnt = 0; 1785 } 1786 1787 void auxtrace_cache__free(struct auxtrace_cache *c) 1788 { 1789 if (!c) 1790 return; 1791 1792 auxtrace_cache__drop(c); 1793 zfree(&c->hashtable); 1794 free(c); 1795 } 1796 1797 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1798 { 1799 return malloc(c->entry_size); 1800 } 1801 1802 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1803 void *entry) 1804 { 1805 free(entry); 1806 } 1807 1808 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1809 struct auxtrace_cache_entry *entry) 1810 { 1811 if (c->limit && ++c->cnt > c->limit) 1812 auxtrace_cache__drop(c); 1813 1814 entry->key = key; 1815 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1816 1817 return 0; 1818 } 1819 1820 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 1821 u32 key) 1822 { 1823 struct auxtrace_cache_entry *entry; 1824 struct hlist_head *hlist; 1825 struct hlist_node *n; 1826 1827 if (!c) 1828 return NULL; 1829 1830 hlist = &c->hashtable[hash_32(key, c->bits)]; 1831 hlist_for_each_entry_safe(entry, n, hlist, hash) { 1832 if (entry->key == key) { 1833 hlist_del(&entry->hash); 1834 return entry; 1835 } 1836 } 1837 1838 return NULL; 1839 } 1840 1841 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 1842 { 1843 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 1844 1845 auxtrace_cache__free_entry(c, entry); 1846 } 1847 1848 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1849 { 1850 struct auxtrace_cache_entry *entry; 1851 struct hlist_head *hlist; 1852 1853 if (!c) 1854 return NULL; 1855 1856 hlist = &c->hashtable[hash_32(key, c->bits)]; 1857 hlist_for_each_entry(entry, hlist, hash) { 1858 if (entry->key == key) 1859 return entry; 1860 } 1861 1862 return NULL; 1863 } 1864 1865 static void addr_filter__free_str(struct addr_filter *filt) 1866 { 1867 zfree(&filt->str); 1868 filt->action = NULL; 1869 filt->sym_from = NULL; 1870 filt->sym_to = NULL; 1871 filt->filename = NULL; 1872 } 1873 1874 static struct addr_filter *addr_filter__new(void) 1875 { 1876 struct addr_filter *filt = zalloc(sizeof(*filt)); 1877 1878 if (filt) 1879 INIT_LIST_HEAD(&filt->list); 1880 1881 return filt; 1882 } 1883 1884 static void addr_filter__free(struct addr_filter *filt) 1885 { 1886 if (filt) 1887 addr_filter__free_str(filt); 1888 free(filt); 1889 } 1890 1891 static void addr_filters__add(struct addr_filters *filts, 1892 struct addr_filter *filt) 1893 { 1894 list_add_tail(&filt->list, &filts->head); 1895 filts->cnt += 1; 1896 } 1897 1898 static void addr_filters__del(struct addr_filters *filts, 1899 struct addr_filter *filt) 1900 { 1901 list_del_init(&filt->list); 1902 filts->cnt -= 1; 1903 } 1904 1905 void addr_filters__init(struct addr_filters *filts) 1906 { 1907 INIT_LIST_HEAD(&filts->head); 1908 filts->cnt = 0; 1909 } 1910 1911 void addr_filters__exit(struct addr_filters *filts) 1912 { 1913 struct addr_filter *filt, *n; 1914 1915 list_for_each_entry_safe(filt, n, &filts->head, list) { 1916 addr_filters__del(filts, filt); 1917 addr_filter__free(filt); 1918 } 1919 } 1920 1921 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1922 const char *str_delim) 1923 { 1924 *inp += strspn(*inp, " "); 1925 1926 if (isdigit(**inp)) { 1927 char *endptr; 1928 1929 if (!num) 1930 return -EINVAL; 1931 errno = 0; 1932 *num = strtoull(*inp, &endptr, 0); 1933 if (errno) 1934 return -errno; 1935 if (endptr == *inp) 1936 return -EINVAL; 1937 *inp = endptr; 1938 } else { 1939 size_t n; 1940 1941 if (!str) 1942 return -EINVAL; 1943 *inp += strspn(*inp, " "); 1944 *str = *inp; 1945 n = strcspn(*inp, str_delim); 1946 if (!n) 1947 return -EINVAL; 1948 *inp += n; 1949 if (**inp) { 1950 **inp = '\0'; 1951 *inp += 1; 1952 } 1953 } 1954 return 0; 1955 } 1956 1957 static int parse_action(struct addr_filter *filt) 1958 { 1959 if (!strcmp(filt->action, "filter")) { 1960 filt->start = true; 1961 filt->range = true; 1962 } else if (!strcmp(filt->action, "start")) { 1963 filt->start = true; 1964 } else if (!strcmp(filt->action, "stop")) { 1965 filt->start = false; 1966 } else if (!strcmp(filt->action, "tracestop")) { 1967 filt->start = false; 1968 filt->range = true; 1969 filt->action += 5; /* Change 'tracestop' to 'stop' */ 1970 } else { 1971 return -EINVAL; 1972 } 1973 return 0; 1974 } 1975 1976 static int parse_sym_idx(char **inp, int *idx) 1977 { 1978 *idx = -1; 1979 1980 *inp += strspn(*inp, " "); 1981 1982 if (**inp != '#') 1983 return 0; 1984 1985 *inp += 1; 1986 1987 if (**inp == 'g' || **inp == 'G') { 1988 *inp += 1; 1989 *idx = 0; 1990 } else { 1991 unsigned long num; 1992 char *endptr; 1993 1994 errno = 0; 1995 num = strtoul(*inp, &endptr, 0); 1996 if (errno) 1997 return -errno; 1998 if (endptr == *inp || num > INT_MAX) 1999 return -EINVAL; 2000 *inp = endptr; 2001 *idx = num; 2002 } 2003 2004 return 0; 2005 } 2006 2007 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2008 { 2009 int err = parse_num_or_str(inp, num, str, " "); 2010 2011 if (!err && *str) 2012 err = parse_sym_idx(inp, idx); 2013 2014 return err; 2015 } 2016 2017 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2018 { 2019 char *fstr; 2020 int err; 2021 2022 filt->str = fstr = strdup(*filter_inp); 2023 if (!fstr) 2024 return -ENOMEM; 2025 2026 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2027 if (err) 2028 goto out_err; 2029 2030 err = parse_action(filt); 2031 if (err) 2032 goto out_err; 2033 2034 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2035 &filt->sym_from_idx); 2036 if (err) 2037 goto out_err; 2038 2039 fstr += strspn(fstr, " "); 2040 2041 if (*fstr == '/') { 2042 fstr += 1; 2043 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2044 &filt->sym_to_idx); 2045 if (err) 2046 goto out_err; 2047 filt->range = true; 2048 } 2049 2050 fstr += strspn(fstr, " "); 2051 2052 if (*fstr == '@') { 2053 fstr += 1; 2054 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2055 if (err) 2056 goto out_err; 2057 } 2058 2059 fstr += strspn(fstr, " ,"); 2060 2061 *filter_inp += fstr - filt->str; 2062 2063 return 0; 2064 2065 out_err: 2066 addr_filter__free_str(filt); 2067 2068 return err; 2069 } 2070 2071 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2072 const char *filter) 2073 { 2074 struct addr_filter *filt; 2075 const char *fstr = filter; 2076 int err; 2077 2078 while (*fstr) { 2079 filt = addr_filter__new(); 2080 err = parse_one_filter(filt, &fstr); 2081 if (err) { 2082 addr_filter__free(filt); 2083 addr_filters__exit(filts); 2084 return err; 2085 } 2086 addr_filters__add(filts, filt); 2087 } 2088 2089 return 0; 2090 } 2091 2092 struct sym_args { 2093 const char *name; 2094 u64 start; 2095 u64 size; 2096 int idx; 2097 int cnt; 2098 bool started; 2099 bool global; 2100 bool selected; 2101 bool duplicate; 2102 bool near; 2103 }; 2104 2105 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2106 { 2107 /* A function with the same name, and global or the n'th found or any */ 2108 return kallsyms__is_function(type) && 2109 !strcmp(name, args->name) && 2110 ((args->global && isupper(type)) || 2111 (args->selected && ++(args->cnt) == args->idx) || 2112 (!args->global && !args->selected)); 2113 } 2114 2115 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2116 { 2117 struct sym_args *args = arg; 2118 2119 if (args->started) { 2120 if (!args->size) 2121 args->size = start - args->start; 2122 if (args->selected) { 2123 if (args->size) 2124 return 1; 2125 } else if (kern_sym_match(args, name, type)) { 2126 args->duplicate = true; 2127 return 1; 2128 } 2129 } else if (kern_sym_match(args, name, type)) { 2130 args->started = true; 2131 args->start = start; 2132 } 2133 2134 return 0; 2135 } 2136 2137 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2138 { 2139 struct sym_args *args = arg; 2140 2141 if (kern_sym_match(args, name, type)) { 2142 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2143 ++args->cnt, start, type, name); 2144 args->near = true; 2145 } else if (args->near) { 2146 args->near = false; 2147 pr_err("\t\twhich is near\t\t%s\n", name); 2148 } 2149 2150 return 0; 2151 } 2152 2153 static int sym_not_found_error(const char *sym_name, int idx) 2154 { 2155 if (idx > 0) { 2156 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2157 idx, sym_name); 2158 } else if (!idx) { 2159 pr_err("Global symbol '%s' not found.\n", sym_name); 2160 } else { 2161 pr_err("Symbol '%s' not found.\n", sym_name); 2162 } 2163 pr_err("Note that symbols must be functions.\n"); 2164 2165 return -EINVAL; 2166 } 2167 2168 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2169 { 2170 struct sym_args args = { 2171 .name = sym_name, 2172 .idx = idx, 2173 .global = !idx, 2174 .selected = idx > 0, 2175 }; 2176 int err; 2177 2178 *start = 0; 2179 *size = 0; 2180 2181 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2182 if (err < 0) { 2183 pr_err("Failed to parse /proc/kallsyms\n"); 2184 return err; 2185 } 2186 2187 if (args.duplicate) { 2188 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2189 args.cnt = 0; 2190 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2191 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2192 sym_name); 2193 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2194 return -EINVAL; 2195 } 2196 2197 if (!args.started) { 2198 pr_err("Kernel symbol lookup: "); 2199 return sym_not_found_error(sym_name, idx); 2200 } 2201 2202 *start = args.start; 2203 *size = args.size; 2204 2205 return 0; 2206 } 2207 2208 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2209 char type, u64 start) 2210 { 2211 struct sym_args *args = arg; 2212 2213 if (!kallsyms__is_function(type)) 2214 return 0; 2215 2216 if (!args->started) { 2217 args->started = true; 2218 args->start = start; 2219 } 2220 /* Don't know exactly where the kernel ends, so we add a page */ 2221 args->size = round_up(start, page_size) + page_size - args->start; 2222 2223 return 0; 2224 } 2225 2226 static int addr_filter__entire_kernel(struct addr_filter *filt) 2227 { 2228 struct sym_args args = { .started = false }; 2229 int err; 2230 2231 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2232 if (err < 0 || !args.started) { 2233 pr_err("Failed to parse /proc/kallsyms\n"); 2234 return err; 2235 } 2236 2237 filt->addr = args.start; 2238 filt->size = args.size; 2239 2240 return 0; 2241 } 2242 2243 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2244 { 2245 if (start + size >= filt->addr) 2246 return 0; 2247 2248 if (filt->sym_from) { 2249 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2250 filt->sym_to, start, filt->sym_from, filt->addr); 2251 } else { 2252 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2253 filt->sym_to, start, filt->addr); 2254 } 2255 2256 return -EINVAL; 2257 } 2258 2259 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2260 { 2261 bool no_size = false; 2262 u64 start, size; 2263 int err; 2264 2265 if (symbol_conf.kptr_restrict) { 2266 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2267 return -EINVAL; 2268 } 2269 2270 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2271 return addr_filter__entire_kernel(filt); 2272 2273 if (filt->sym_from) { 2274 err = find_kern_sym(filt->sym_from, &start, &size, 2275 filt->sym_from_idx); 2276 if (err) 2277 return err; 2278 filt->addr = start; 2279 if (filt->range && !filt->size && !filt->sym_to) { 2280 filt->size = size; 2281 no_size = !size; 2282 } 2283 } 2284 2285 if (filt->sym_to) { 2286 err = find_kern_sym(filt->sym_to, &start, &size, 2287 filt->sym_to_idx); 2288 if (err) 2289 return err; 2290 2291 err = check_end_after_start(filt, start, size); 2292 if (err) 2293 return err; 2294 filt->size = start + size - filt->addr; 2295 no_size = !size; 2296 } 2297 2298 /* The very last symbol in kallsyms does not imply a particular size */ 2299 if (no_size) { 2300 pr_err("Cannot determine size of symbol '%s'\n", 2301 filt->sym_to ? filt->sym_to : filt->sym_from); 2302 return -EINVAL; 2303 } 2304 2305 return 0; 2306 } 2307 2308 static struct dso *load_dso(const char *name) 2309 { 2310 struct map *map; 2311 struct dso *dso; 2312 2313 map = dso__new_map(name); 2314 if (!map) 2315 return NULL; 2316 2317 if (map__load(map) < 0) 2318 pr_err("File '%s' not found or has no symbols.\n", name); 2319 2320 dso = dso__get(map->dso); 2321 2322 map__put(map); 2323 2324 return dso; 2325 } 2326 2327 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2328 int idx) 2329 { 2330 /* Same name, and global or the n'th found or any */ 2331 return !arch__compare_symbol_names(name, sym->name) && 2332 ((!idx && sym->binding == STB_GLOBAL) || 2333 (idx > 0 && ++*cnt == idx) || 2334 idx < 0); 2335 } 2336 2337 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2338 { 2339 struct symbol *sym; 2340 bool near = false; 2341 int cnt = 0; 2342 2343 pr_err("Multiple symbols with name '%s'\n", sym_name); 2344 2345 sym = dso__first_symbol(dso); 2346 while (sym) { 2347 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2348 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2349 ++cnt, sym->start, 2350 sym->binding == STB_GLOBAL ? 'g' : 2351 sym->binding == STB_LOCAL ? 'l' : 'w', 2352 sym->name); 2353 near = true; 2354 } else if (near) { 2355 near = false; 2356 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2357 } 2358 sym = dso__next_symbol(sym); 2359 } 2360 2361 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2362 sym_name); 2363 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2364 } 2365 2366 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2367 u64 *size, int idx) 2368 { 2369 struct symbol *sym; 2370 int cnt = 0; 2371 2372 *start = 0; 2373 *size = 0; 2374 2375 sym = dso__first_symbol(dso); 2376 while (sym) { 2377 if (*start) { 2378 if (!*size) 2379 *size = sym->start - *start; 2380 if (idx > 0) { 2381 if (*size) 2382 return 1; 2383 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2384 print_duplicate_syms(dso, sym_name); 2385 return -EINVAL; 2386 } 2387 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2388 *start = sym->start; 2389 *size = sym->end - sym->start; 2390 } 2391 sym = dso__next_symbol(sym); 2392 } 2393 2394 if (!*start) 2395 return sym_not_found_error(sym_name, idx); 2396 2397 return 0; 2398 } 2399 2400 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2401 { 2402 if (dso__data_file_size(dso, NULL)) { 2403 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2404 filt->filename); 2405 return -EINVAL; 2406 } 2407 2408 filt->addr = 0; 2409 filt->size = dso->data.file_size; 2410 2411 return 0; 2412 } 2413 2414 static int addr_filter__resolve_syms(struct addr_filter *filt) 2415 { 2416 u64 start, size; 2417 struct dso *dso; 2418 int err = 0; 2419 2420 if (!filt->sym_from && !filt->sym_to) 2421 return 0; 2422 2423 if (!filt->filename) 2424 return addr_filter__resolve_kernel_syms(filt); 2425 2426 dso = load_dso(filt->filename); 2427 if (!dso) { 2428 pr_err("Failed to load symbols from: %s\n", filt->filename); 2429 return -EINVAL; 2430 } 2431 2432 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2433 err = addr_filter__entire_dso(filt, dso); 2434 goto put_dso; 2435 } 2436 2437 if (filt->sym_from) { 2438 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2439 filt->sym_from_idx); 2440 if (err) 2441 goto put_dso; 2442 filt->addr = start; 2443 if (filt->range && !filt->size && !filt->sym_to) 2444 filt->size = size; 2445 } 2446 2447 if (filt->sym_to) { 2448 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2449 filt->sym_to_idx); 2450 if (err) 2451 goto put_dso; 2452 2453 err = check_end_after_start(filt, start, size); 2454 if (err) 2455 return err; 2456 2457 filt->size = start + size - filt->addr; 2458 } 2459 2460 put_dso: 2461 dso__put(dso); 2462 2463 return err; 2464 } 2465 2466 static char *addr_filter__to_str(struct addr_filter *filt) 2467 { 2468 char filename_buf[PATH_MAX]; 2469 const char *at = ""; 2470 const char *fn = ""; 2471 char *filter; 2472 int err; 2473 2474 if (filt->filename) { 2475 at = "@"; 2476 fn = realpath(filt->filename, filename_buf); 2477 if (!fn) 2478 return NULL; 2479 } 2480 2481 if (filt->range) { 2482 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2483 filt->action, filt->addr, filt->size, at, fn); 2484 } else { 2485 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2486 filt->action, filt->addr, at, fn); 2487 } 2488 2489 return err < 0 ? NULL : filter; 2490 } 2491 2492 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2493 int max_nr) 2494 { 2495 struct addr_filters filts; 2496 struct addr_filter *filt; 2497 int err; 2498 2499 addr_filters__init(&filts); 2500 2501 err = addr_filters__parse_bare_filter(&filts, filter); 2502 if (err) 2503 goto out_exit; 2504 2505 if (filts.cnt > max_nr) { 2506 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2507 filts.cnt, max_nr); 2508 err = -EINVAL; 2509 goto out_exit; 2510 } 2511 2512 list_for_each_entry(filt, &filts.head, list) { 2513 char *new_filter; 2514 2515 err = addr_filter__resolve_syms(filt); 2516 if (err) 2517 goto out_exit; 2518 2519 new_filter = addr_filter__to_str(filt); 2520 if (!new_filter) { 2521 err = -ENOMEM; 2522 goto out_exit; 2523 } 2524 2525 if (evsel__append_addr_filter(evsel, new_filter)) { 2526 err = -ENOMEM; 2527 goto out_exit; 2528 } 2529 } 2530 2531 out_exit: 2532 addr_filters__exit(&filts); 2533 2534 if (err) { 2535 pr_err("Failed to parse address filter: '%s'\n", filter); 2536 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2537 pr_err("Where multiple filters are separated by space or comma.\n"); 2538 } 2539 2540 return err; 2541 } 2542 2543 static int evsel__nr_addr_filter(struct evsel *evsel) 2544 { 2545 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2546 int nr_addr_filters = 0; 2547 2548 if (!pmu) 2549 return 0; 2550 2551 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2552 2553 return nr_addr_filters; 2554 } 2555 2556 int auxtrace_parse_filters(struct evlist *evlist) 2557 { 2558 struct evsel *evsel; 2559 char *filter; 2560 int err, max_nr; 2561 2562 evlist__for_each_entry(evlist, evsel) { 2563 filter = evsel->filter; 2564 max_nr = evsel__nr_addr_filter(evsel); 2565 if (!filter || !max_nr) 2566 continue; 2567 evsel->filter = NULL; 2568 err = parse_addr_filter(evsel, filter, max_nr); 2569 free(filter); 2570 if (err) 2571 return err; 2572 pr_debug("Address filter: %s\n", evsel->filter); 2573 } 2574 2575 return 0; 2576 } 2577 2578 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2579 struct perf_sample *sample, struct perf_tool *tool) 2580 { 2581 if (!session->auxtrace) 2582 return 0; 2583 2584 return session->auxtrace->process_event(session, event, sample, tool); 2585 } 2586 2587 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2588 struct perf_sample *sample) 2589 { 2590 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2591 auxtrace__dont_decode(session)) 2592 return; 2593 2594 session->auxtrace->dump_auxtrace_sample(session, sample); 2595 } 2596 2597 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2598 { 2599 if (!session->auxtrace) 2600 return 0; 2601 2602 return session->auxtrace->flush_events(session, tool); 2603 } 2604 2605 void auxtrace__free_events(struct perf_session *session) 2606 { 2607 if (!session->auxtrace) 2608 return; 2609 2610 return session->auxtrace->free_events(session); 2611 } 2612 2613 void auxtrace__free(struct perf_session *session) 2614 { 2615 if (!session->auxtrace) 2616 return; 2617 2618 return session->auxtrace->free(session); 2619 } 2620 2621 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2622 struct evsel *evsel) 2623 { 2624 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2625 return false; 2626 2627 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2628 } 2629