xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35 
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47 
48 #include <linux/hash.h>
49 
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54 
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59 
60 #include "sane_ctype.h"
61 #include "symbol/kallsyms.h"
62 
63 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
64 			struct auxtrace_mmap_params *mp,
65 			void *userpg, int fd)
66 {
67 	struct perf_event_mmap_page *pc = userpg;
68 
69 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
70 
71 	mm->userpg = userpg;
72 	mm->mask = mp->mask;
73 	mm->len = mp->len;
74 	mm->prev = 0;
75 	mm->idx = mp->idx;
76 	mm->tid = mp->tid;
77 	mm->cpu = mp->cpu;
78 
79 	if (!mp->len) {
80 		mm->base = NULL;
81 		return 0;
82 	}
83 
84 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
85 	pr_err("Cannot use AUX area tracing mmaps\n");
86 	return -1;
87 #endif
88 
89 	pc->aux_offset = mp->offset;
90 	pc->aux_size = mp->len;
91 
92 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
93 	if (mm->base == MAP_FAILED) {
94 		pr_debug2("failed to mmap AUX area\n");
95 		mm->base = NULL;
96 		return -1;
97 	}
98 
99 	return 0;
100 }
101 
102 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
103 {
104 	if (mm->base) {
105 		munmap(mm->base, mm->len);
106 		mm->base = NULL;
107 	}
108 }
109 
110 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
111 				off_t auxtrace_offset,
112 				unsigned int auxtrace_pages,
113 				bool auxtrace_overwrite)
114 {
115 	if (auxtrace_pages) {
116 		mp->offset = auxtrace_offset;
117 		mp->len = auxtrace_pages * (size_t)page_size;
118 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
119 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
120 		pr_debug2("AUX area mmap length %zu\n", mp->len);
121 	} else {
122 		mp->len = 0;
123 	}
124 }
125 
126 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
127 				   struct perf_evlist *evlist, int idx,
128 				   bool per_cpu)
129 {
130 	mp->idx = idx;
131 
132 	if (per_cpu) {
133 		mp->cpu = evlist->cpus->map[idx];
134 		if (evlist->threads)
135 			mp->tid = thread_map__pid(evlist->threads, 0);
136 		else
137 			mp->tid = -1;
138 	} else {
139 		mp->cpu = -1;
140 		mp->tid = thread_map__pid(evlist->threads, idx);
141 	}
142 }
143 
144 #define AUXTRACE_INIT_NR_QUEUES	32
145 
146 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
147 {
148 	struct auxtrace_queue *queue_array;
149 	unsigned int max_nr_queues, i;
150 
151 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
152 	if (nr_queues > max_nr_queues)
153 		return NULL;
154 
155 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
156 	if (!queue_array)
157 		return NULL;
158 
159 	for (i = 0; i < nr_queues; i++) {
160 		INIT_LIST_HEAD(&queue_array[i].head);
161 		queue_array[i].priv = NULL;
162 	}
163 
164 	return queue_array;
165 }
166 
167 int auxtrace_queues__init(struct auxtrace_queues *queues)
168 {
169 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
170 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
171 	if (!queues->queue_array)
172 		return -ENOMEM;
173 	return 0;
174 }
175 
176 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
177 				 unsigned int new_nr_queues)
178 {
179 	unsigned int nr_queues = queues->nr_queues;
180 	struct auxtrace_queue *queue_array;
181 	unsigned int i;
182 
183 	if (!nr_queues)
184 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
185 
186 	while (nr_queues && nr_queues < new_nr_queues)
187 		nr_queues <<= 1;
188 
189 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
190 		return -EINVAL;
191 
192 	queue_array = auxtrace_alloc_queue_array(nr_queues);
193 	if (!queue_array)
194 		return -ENOMEM;
195 
196 	for (i = 0; i < queues->nr_queues; i++) {
197 		list_splice_tail(&queues->queue_array[i].head,
198 				 &queue_array[i].head);
199 		queue_array[i].priv = queues->queue_array[i].priv;
200 	}
201 
202 	queues->nr_queues = nr_queues;
203 	queues->queue_array = queue_array;
204 
205 	return 0;
206 }
207 
208 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
209 {
210 	int fd = perf_data__fd(session->data);
211 	void *p;
212 	ssize_t ret;
213 
214 	if (size > SSIZE_MAX)
215 		return NULL;
216 
217 	p = malloc(size);
218 	if (!p)
219 		return NULL;
220 
221 	ret = readn(fd, p, size);
222 	if (ret != (ssize_t)size) {
223 		free(p);
224 		return NULL;
225 	}
226 
227 	return p;
228 }
229 
230 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
231 				       unsigned int idx,
232 				       struct auxtrace_buffer *buffer)
233 {
234 	struct auxtrace_queue *queue;
235 	int err;
236 
237 	if (idx >= queues->nr_queues) {
238 		err = auxtrace_queues__grow(queues, idx + 1);
239 		if (err)
240 			return err;
241 	}
242 
243 	queue = &queues->queue_array[idx];
244 
245 	if (!queue->set) {
246 		queue->set = true;
247 		queue->tid = buffer->tid;
248 		queue->cpu = buffer->cpu;
249 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
250 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
251 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
252 		return -EINVAL;
253 	}
254 
255 	buffer->buffer_nr = queues->next_buffer_nr++;
256 
257 	list_add_tail(&buffer->list, &queue->head);
258 
259 	queues->new_data = true;
260 	queues->populated = true;
261 
262 	return 0;
263 }
264 
265 /* Limit buffers to 32MiB on 32-bit */
266 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
267 
268 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
269 					 unsigned int idx,
270 					 struct auxtrace_buffer *buffer)
271 {
272 	u64 sz = buffer->size;
273 	bool consecutive = false;
274 	struct auxtrace_buffer *b;
275 	int err;
276 
277 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
278 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
279 		if (!b)
280 			return -ENOMEM;
281 		b->size = BUFFER_LIMIT_FOR_32_BIT;
282 		b->consecutive = consecutive;
283 		err = auxtrace_queues__add_buffer(queues, idx, b);
284 		if (err) {
285 			auxtrace_buffer__free(b);
286 			return err;
287 		}
288 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
289 		sz -= BUFFER_LIMIT_FOR_32_BIT;
290 		consecutive = true;
291 	}
292 
293 	buffer->size = sz;
294 	buffer->consecutive = consecutive;
295 
296 	return 0;
297 }
298 
299 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
300 					     struct perf_session *session,
301 					     unsigned int idx,
302 					     struct auxtrace_buffer *buffer)
303 {
304 	if (session->one_mmap) {
305 		buffer->data = buffer->data_offset - session->one_mmap_offset +
306 			       session->one_mmap_addr;
307 	} else if (perf_data__is_pipe(session->data)) {
308 		buffer->data = auxtrace_copy_data(buffer->size, session);
309 		if (!buffer->data)
310 			return -ENOMEM;
311 		buffer->data_needs_freeing = true;
312 	} else if (BITS_PER_LONG == 32 &&
313 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
314 		int err;
315 
316 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
317 		if (err)
318 			return err;
319 	}
320 
321 	return auxtrace_queues__add_buffer(queues, idx, buffer);
322 }
323 
324 static bool filter_cpu(struct perf_session *session, int cpu)
325 {
326 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
327 
328 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
329 }
330 
331 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
332 			       struct perf_session *session,
333 			       union perf_event *event, off_t data_offset,
334 			       struct auxtrace_buffer **buffer_ptr)
335 {
336 	struct auxtrace_buffer *buffer;
337 	unsigned int idx;
338 	int err;
339 
340 	if (filter_cpu(session, event->auxtrace.cpu))
341 		return 0;
342 
343 	buffer = zalloc(sizeof(struct auxtrace_buffer));
344 	if (!buffer)
345 		return -ENOMEM;
346 
347 	buffer->pid = -1;
348 	buffer->tid = event->auxtrace.tid;
349 	buffer->cpu = event->auxtrace.cpu;
350 	buffer->data_offset = data_offset;
351 	buffer->offset = event->auxtrace.offset;
352 	buffer->reference = event->auxtrace.reference;
353 	buffer->size = event->auxtrace.size;
354 	idx = event->auxtrace.idx;
355 
356 	err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
357 	if (err)
358 		goto out_err;
359 
360 	if (buffer_ptr)
361 		*buffer_ptr = buffer;
362 
363 	return 0;
364 
365 out_err:
366 	auxtrace_buffer__free(buffer);
367 	return err;
368 }
369 
370 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
371 					      struct perf_session *session,
372 					      off_t file_offset, size_t sz)
373 {
374 	union perf_event *event;
375 	int err;
376 	char buf[PERF_SAMPLE_MAX_SIZE];
377 
378 	err = perf_session__peek_event(session, file_offset, buf,
379 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
380 	if (err)
381 		return err;
382 
383 	if (event->header.type == PERF_RECORD_AUXTRACE) {
384 		if (event->header.size < sizeof(struct auxtrace_event) ||
385 		    event->header.size != sz) {
386 			err = -EINVAL;
387 			goto out;
388 		}
389 		file_offset += event->header.size;
390 		err = auxtrace_queues__add_event(queues, session, event,
391 						 file_offset, NULL);
392 	}
393 out:
394 	return err;
395 }
396 
397 void auxtrace_queues__free(struct auxtrace_queues *queues)
398 {
399 	unsigned int i;
400 
401 	for (i = 0; i < queues->nr_queues; i++) {
402 		while (!list_empty(&queues->queue_array[i].head)) {
403 			struct auxtrace_buffer *buffer;
404 
405 			buffer = list_entry(queues->queue_array[i].head.next,
406 					    struct auxtrace_buffer, list);
407 			list_del(&buffer->list);
408 			auxtrace_buffer__free(buffer);
409 		}
410 	}
411 
412 	zfree(&queues->queue_array);
413 	queues->nr_queues = 0;
414 }
415 
416 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
417 			     unsigned int pos, unsigned int queue_nr,
418 			     u64 ordinal)
419 {
420 	unsigned int parent;
421 
422 	while (pos) {
423 		parent = (pos - 1) >> 1;
424 		if (heap_array[parent].ordinal <= ordinal)
425 			break;
426 		heap_array[pos] = heap_array[parent];
427 		pos = parent;
428 	}
429 	heap_array[pos].queue_nr = queue_nr;
430 	heap_array[pos].ordinal = ordinal;
431 }
432 
433 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
434 		       u64 ordinal)
435 {
436 	struct auxtrace_heap_item *heap_array;
437 
438 	if (queue_nr >= heap->heap_sz) {
439 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
440 
441 		while (heap_sz <= queue_nr)
442 			heap_sz <<= 1;
443 		heap_array = realloc(heap->heap_array,
444 				     heap_sz * sizeof(struct auxtrace_heap_item));
445 		if (!heap_array)
446 			return -ENOMEM;
447 		heap->heap_array = heap_array;
448 		heap->heap_sz = heap_sz;
449 	}
450 
451 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
452 
453 	return 0;
454 }
455 
456 void auxtrace_heap__free(struct auxtrace_heap *heap)
457 {
458 	zfree(&heap->heap_array);
459 	heap->heap_cnt = 0;
460 	heap->heap_sz = 0;
461 }
462 
463 void auxtrace_heap__pop(struct auxtrace_heap *heap)
464 {
465 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
466 	struct auxtrace_heap_item *heap_array;
467 
468 	if (!heap_cnt)
469 		return;
470 
471 	heap->heap_cnt -= 1;
472 
473 	heap_array = heap->heap_array;
474 
475 	pos = 0;
476 	while (1) {
477 		unsigned int left, right;
478 
479 		left = (pos << 1) + 1;
480 		if (left >= heap_cnt)
481 			break;
482 		right = left + 1;
483 		if (right >= heap_cnt) {
484 			heap_array[pos] = heap_array[left];
485 			return;
486 		}
487 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
488 			heap_array[pos] = heap_array[left];
489 			pos = left;
490 		} else {
491 			heap_array[pos] = heap_array[right];
492 			pos = right;
493 		}
494 	}
495 
496 	last = heap_cnt - 1;
497 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
498 			 heap_array[last].ordinal);
499 }
500 
501 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
502 				       struct perf_evlist *evlist)
503 {
504 	if (itr)
505 		return itr->info_priv_size(itr, evlist);
506 	return 0;
507 }
508 
509 static int auxtrace_not_supported(void)
510 {
511 	pr_err("AUX area tracing is not supported on this architecture\n");
512 	return -EINVAL;
513 }
514 
515 int auxtrace_record__info_fill(struct auxtrace_record *itr,
516 			       struct perf_session *session,
517 			       struct auxtrace_info_event *auxtrace_info,
518 			       size_t priv_size)
519 {
520 	if (itr)
521 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
522 	return auxtrace_not_supported();
523 }
524 
525 void auxtrace_record__free(struct auxtrace_record *itr)
526 {
527 	if (itr)
528 		itr->free(itr);
529 }
530 
531 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
532 {
533 	if (itr && itr->snapshot_start)
534 		return itr->snapshot_start(itr);
535 	return 0;
536 }
537 
538 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
539 {
540 	if (itr && itr->snapshot_finish)
541 		return itr->snapshot_finish(itr);
542 	return 0;
543 }
544 
545 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
546 				   struct auxtrace_mmap *mm,
547 				   unsigned char *data, u64 *head, u64 *old)
548 {
549 	if (itr && itr->find_snapshot)
550 		return itr->find_snapshot(itr, idx, mm, data, head, old);
551 	return 0;
552 }
553 
554 int auxtrace_record__options(struct auxtrace_record *itr,
555 			     struct perf_evlist *evlist,
556 			     struct record_opts *opts)
557 {
558 	if (itr)
559 		return itr->recording_options(itr, evlist, opts);
560 	return 0;
561 }
562 
563 u64 auxtrace_record__reference(struct auxtrace_record *itr)
564 {
565 	if (itr)
566 		return itr->reference(itr);
567 	return 0;
568 }
569 
570 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
571 				    struct record_opts *opts, const char *str)
572 {
573 	if (!str)
574 		return 0;
575 
576 	if (itr)
577 		return itr->parse_snapshot_options(itr, opts, str);
578 
579 	pr_err("No AUX area tracing to snapshot\n");
580 	return -EINVAL;
581 }
582 
583 struct auxtrace_record *__weak
584 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
585 {
586 	*err = 0;
587 	return NULL;
588 }
589 
590 static int auxtrace_index__alloc(struct list_head *head)
591 {
592 	struct auxtrace_index *auxtrace_index;
593 
594 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
595 	if (!auxtrace_index)
596 		return -ENOMEM;
597 
598 	auxtrace_index->nr = 0;
599 	INIT_LIST_HEAD(&auxtrace_index->list);
600 
601 	list_add_tail(&auxtrace_index->list, head);
602 
603 	return 0;
604 }
605 
606 void auxtrace_index__free(struct list_head *head)
607 {
608 	struct auxtrace_index *auxtrace_index, *n;
609 
610 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
611 		list_del(&auxtrace_index->list);
612 		free(auxtrace_index);
613 	}
614 }
615 
616 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
617 {
618 	struct auxtrace_index *auxtrace_index;
619 	int err;
620 
621 	if (list_empty(head)) {
622 		err = auxtrace_index__alloc(head);
623 		if (err)
624 			return NULL;
625 	}
626 
627 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
628 
629 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
630 		err = auxtrace_index__alloc(head);
631 		if (err)
632 			return NULL;
633 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
634 					    list);
635 	}
636 
637 	return auxtrace_index;
638 }
639 
640 int auxtrace_index__auxtrace_event(struct list_head *head,
641 				   union perf_event *event, off_t file_offset)
642 {
643 	struct auxtrace_index *auxtrace_index;
644 	size_t nr;
645 
646 	auxtrace_index = auxtrace_index__last(head);
647 	if (!auxtrace_index)
648 		return -ENOMEM;
649 
650 	nr = auxtrace_index->nr;
651 	auxtrace_index->entries[nr].file_offset = file_offset;
652 	auxtrace_index->entries[nr].sz = event->header.size;
653 	auxtrace_index->nr += 1;
654 
655 	return 0;
656 }
657 
658 static int auxtrace_index__do_write(int fd,
659 				    struct auxtrace_index *auxtrace_index)
660 {
661 	struct auxtrace_index_entry ent;
662 	size_t i;
663 
664 	for (i = 0; i < auxtrace_index->nr; i++) {
665 		ent.file_offset = auxtrace_index->entries[i].file_offset;
666 		ent.sz = auxtrace_index->entries[i].sz;
667 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
668 			return -errno;
669 	}
670 	return 0;
671 }
672 
673 int auxtrace_index__write(int fd, struct list_head *head)
674 {
675 	struct auxtrace_index *auxtrace_index;
676 	u64 total = 0;
677 	int err;
678 
679 	list_for_each_entry(auxtrace_index, head, list)
680 		total += auxtrace_index->nr;
681 
682 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
683 		return -errno;
684 
685 	list_for_each_entry(auxtrace_index, head, list) {
686 		err = auxtrace_index__do_write(fd, auxtrace_index);
687 		if (err)
688 			return err;
689 	}
690 
691 	return 0;
692 }
693 
694 static int auxtrace_index__process_entry(int fd, struct list_head *head,
695 					 bool needs_swap)
696 {
697 	struct auxtrace_index *auxtrace_index;
698 	struct auxtrace_index_entry ent;
699 	size_t nr;
700 
701 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
702 		return -1;
703 
704 	auxtrace_index = auxtrace_index__last(head);
705 	if (!auxtrace_index)
706 		return -1;
707 
708 	nr = auxtrace_index->nr;
709 	if (needs_swap) {
710 		auxtrace_index->entries[nr].file_offset =
711 						bswap_64(ent.file_offset);
712 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
713 	} else {
714 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
715 		auxtrace_index->entries[nr].sz = ent.sz;
716 	}
717 
718 	auxtrace_index->nr = nr + 1;
719 
720 	return 0;
721 }
722 
723 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
724 			    bool needs_swap)
725 {
726 	struct list_head *head = &session->auxtrace_index;
727 	u64 nr;
728 
729 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
730 		return -1;
731 
732 	if (needs_swap)
733 		nr = bswap_64(nr);
734 
735 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
736 		return -1;
737 
738 	while (nr--) {
739 		int err;
740 
741 		err = auxtrace_index__process_entry(fd, head, needs_swap);
742 		if (err)
743 			return -1;
744 	}
745 
746 	return 0;
747 }
748 
749 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
750 						struct perf_session *session,
751 						struct auxtrace_index_entry *ent)
752 {
753 	return auxtrace_queues__add_indexed_event(queues, session,
754 						  ent->file_offset, ent->sz);
755 }
756 
757 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
758 				   struct perf_session *session)
759 {
760 	struct auxtrace_index *auxtrace_index;
761 	struct auxtrace_index_entry *ent;
762 	size_t i;
763 	int err;
764 
765 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
766 		for (i = 0; i < auxtrace_index->nr; i++) {
767 			ent = &auxtrace_index->entries[i];
768 			err = auxtrace_queues__process_index_entry(queues,
769 								   session,
770 								   ent);
771 			if (err)
772 				return err;
773 		}
774 	}
775 	return 0;
776 }
777 
778 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
779 					      struct auxtrace_buffer *buffer)
780 {
781 	if (buffer) {
782 		if (list_is_last(&buffer->list, &queue->head))
783 			return NULL;
784 		return list_entry(buffer->list.next, struct auxtrace_buffer,
785 				  list);
786 	} else {
787 		if (list_empty(&queue->head))
788 			return NULL;
789 		return list_entry(queue->head.next, struct auxtrace_buffer,
790 				  list);
791 	}
792 }
793 
794 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
795 {
796 	size_t adj = buffer->data_offset & (page_size - 1);
797 	size_t size = buffer->size + adj;
798 	off_t file_offset = buffer->data_offset - adj;
799 	void *addr;
800 
801 	if (buffer->data)
802 		return buffer->data;
803 
804 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
805 	if (addr == MAP_FAILED)
806 		return NULL;
807 
808 	buffer->mmap_addr = addr;
809 	buffer->mmap_size = size;
810 
811 	buffer->data = addr + adj;
812 
813 	return buffer->data;
814 }
815 
816 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
817 {
818 	if (!buffer->data || !buffer->mmap_addr)
819 		return;
820 	munmap(buffer->mmap_addr, buffer->mmap_size);
821 	buffer->mmap_addr = NULL;
822 	buffer->mmap_size = 0;
823 	buffer->data = NULL;
824 	buffer->use_data = NULL;
825 }
826 
827 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
828 {
829 	auxtrace_buffer__put_data(buffer);
830 	if (buffer->data_needs_freeing) {
831 		buffer->data_needs_freeing = false;
832 		zfree(&buffer->data);
833 		buffer->use_data = NULL;
834 		buffer->size = 0;
835 	}
836 }
837 
838 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
839 {
840 	auxtrace_buffer__drop_data(buffer);
841 	free(buffer);
842 }
843 
844 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
845 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
846 			  const char *msg)
847 {
848 	size_t size;
849 
850 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
851 
852 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
853 	auxtrace_error->type = type;
854 	auxtrace_error->code = code;
855 	auxtrace_error->cpu = cpu;
856 	auxtrace_error->pid = pid;
857 	auxtrace_error->tid = tid;
858 	auxtrace_error->ip = ip;
859 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
860 
861 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
862 	       strlen(auxtrace_error->msg) + 1;
863 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
864 }
865 
866 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
867 					 struct perf_tool *tool,
868 					 struct perf_session *session,
869 					 perf_event__handler_t process)
870 {
871 	union perf_event *ev;
872 	size_t priv_size;
873 	int err;
874 
875 	pr_debug2("Synthesizing auxtrace information\n");
876 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
877 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
878 	if (!ev)
879 		return -ENOMEM;
880 
881 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
882 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
883 					priv_size;
884 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
885 					 priv_size);
886 	if (err)
887 		goto out_free;
888 
889 	err = process(tool, ev, NULL, NULL);
890 out_free:
891 	free(ev);
892 	return err;
893 }
894 
895 static bool auxtrace__dont_decode(struct perf_session *session)
896 {
897 	return !session->itrace_synth_opts ||
898 	       session->itrace_synth_opts->dont_decode;
899 }
900 
901 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
902 				      union perf_event *event,
903 				      struct perf_session *session)
904 {
905 	enum auxtrace_type type = event->auxtrace_info.type;
906 
907 	if (dump_trace)
908 		fprintf(stdout, " type: %u\n", type);
909 
910 	switch (type) {
911 	case PERF_AUXTRACE_INTEL_PT:
912 		return intel_pt_process_auxtrace_info(event, session);
913 	case PERF_AUXTRACE_INTEL_BTS:
914 		return intel_bts_process_auxtrace_info(event, session);
915 	case PERF_AUXTRACE_ARM_SPE:
916 		return arm_spe_process_auxtrace_info(event, session);
917 	case PERF_AUXTRACE_CS_ETM:
918 		return cs_etm__process_auxtrace_info(event, session);
919 	case PERF_AUXTRACE_UNKNOWN:
920 	default:
921 		return -EINVAL;
922 	}
923 }
924 
925 s64 perf_event__process_auxtrace(struct perf_tool *tool,
926 				 union perf_event *event,
927 				 struct perf_session *session)
928 {
929 	s64 err;
930 
931 	if (dump_trace)
932 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
933 			event->auxtrace.size, event->auxtrace.offset,
934 			event->auxtrace.reference, event->auxtrace.idx,
935 			event->auxtrace.tid, event->auxtrace.cpu);
936 
937 	if (auxtrace__dont_decode(session))
938 		return event->auxtrace.size;
939 
940 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
941 		return -EINVAL;
942 
943 	err = session->auxtrace->process_auxtrace_event(session, event, tool);
944 	if (err < 0)
945 		return err;
946 
947 	return event->auxtrace.size;
948 }
949 
950 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
951 #define PERF_ITRACE_DEFAULT_PERIOD		100000
952 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
953 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
954 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
955 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
956 
957 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
958 {
959 	synth_opts->instructions = true;
960 	synth_opts->branches = true;
961 	synth_opts->transactions = true;
962 	synth_opts->ptwrites = true;
963 	synth_opts->pwr_events = true;
964 	synth_opts->errors = true;
965 	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
966 	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
967 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
968 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
969 	synth_opts->initial_skip = 0;
970 }
971 
972 /*
973  * Please check tools/perf/Documentation/perf-script.txt for information
974  * about the options parsed here, which is introduced after this cset,
975  * when support in 'perf script' for these options is introduced.
976  */
977 int itrace_parse_synth_opts(const struct option *opt, const char *str,
978 			    int unset)
979 {
980 	struct itrace_synth_opts *synth_opts = opt->value;
981 	const char *p;
982 	char *endptr;
983 	bool period_type_set = false;
984 	bool period_set = false;
985 
986 	synth_opts->set = true;
987 
988 	if (unset) {
989 		synth_opts->dont_decode = true;
990 		return 0;
991 	}
992 
993 	if (!str) {
994 		itrace_synth_opts__set_default(synth_opts);
995 		return 0;
996 	}
997 
998 	for (p = str; *p;) {
999 		switch (*p++) {
1000 		case 'i':
1001 			synth_opts->instructions = true;
1002 			while (*p == ' ' || *p == ',')
1003 				p += 1;
1004 			if (isdigit(*p)) {
1005 				synth_opts->period = strtoull(p, &endptr, 10);
1006 				period_set = true;
1007 				p = endptr;
1008 				while (*p == ' ' || *p == ',')
1009 					p += 1;
1010 				switch (*p++) {
1011 				case 'i':
1012 					synth_opts->period_type =
1013 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1014 					period_type_set = true;
1015 					break;
1016 				case 't':
1017 					synth_opts->period_type =
1018 						PERF_ITRACE_PERIOD_TICKS;
1019 					period_type_set = true;
1020 					break;
1021 				case 'm':
1022 					synth_opts->period *= 1000;
1023 					/* Fall through */
1024 				case 'u':
1025 					synth_opts->period *= 1000;
1026 					/* Fall through */
1027 				case 'n':
1028 					if (*p++ != 's')
1029 						goto out_err;
1030 					synth_opts->period_type =
1031 						PERF_ITRACE_PERIOD_NANOSECS;
1032 					period_type_set = true;
1033 					break;
1034 				case '\0':
1035 					goto out;
1036 				default:
1037 					goto out_err;
1038 				}
1039 			}
1040 			break;
1041 		case 'b':
1042 			synth_opts->branches = true;
1043 			break;
1044 		case 'x':
1045 			synth_opts->transactions = true;
1046 			break;
1047 		case 'w':
1048 			synth_opts->ptwrites = true;
1049 			break;
1050 		case 'p':
1051 			synth_opts->pwr_events = true;
1052 			break;
1053 		case 'e':
1054 			synth_opts->errors = true;
1055 			break;
1056 		case 'd':
1057 			synth_opts->log = true;
1058 			break;
1059 		case 'c':
1060 			synth_opts->branches = true;
1061 			synth_opts->calls = true;
1062 			break;
1063 		case 'r':
1064 			synth_opts->branches = true;
1065 			synth_opts->returns = true;
1066 			break;
1067 		case 'g':
1068 			synth_opts->callchain = true;
1069 			synth_opts->callchain_sz =
1070 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1071 			while (*p == ' ' || *p == ',')
1072 				p += 1;
1073 			if (isdigit(*p)) {
1074 				unsigned int val;
1075 
1076 				val = strtoul(p, &endptr, 10);
1077 				p = endptr;
1078 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1079 					goto out_err;
1080 				synth_opts->callchain_sz = val;
1081 			}
1082 			break;
1083 		case 'l':
1084 			synth_opts->last_branch = true;
1085 			synth_opts->last_branch_sz =
1086 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1087 			while (*p == ' ' || *p == ',')
1088 				p += 1;
1089 			if (isdigit(*p)) {
1090 				unsigned int val;
1091 
1092 				val = strtoul(p, &endptr, 10);
1093 				p = endptr;
1094 				if (!val ||
1095 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1096 					goto out_err;
1097 				synth_opts->last_branch_sz = val;
1098 			}
1099 			break;
1100 		case 's':
1101 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1102 			if (p == endptr)
1103 				goto out_err;
1104 			p = endptr;
1105 			break;
1106 		case ' ':
1107 		case ',':
1108 			break;
1109 		default:
1110 			goto out_err;
1111 		}
1112 	}
1113 out:
1114 	if (synth_opts->instructions) {
1115 		if (!period_type_set)
1116 			synth_opts->period_type =
1117 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1118 		if (!period_set)
1119 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1120 	}
1121 
1122 	return 0;
1123 
1124 out_err:
1125 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1126 	return -EINVAL;
1127 }
1128 
1129 static const char * const auxtrace_error_type_name[] = {
1130 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1131 };
1132 
1133 static const char *auxtrace_error_name(int type)
1134 {
1135 	const char *error_type_name = NULL;
1136 
1137 	if (type < PERF_AUXTRACE_ERROR_MAX)
1138 		error_type_name = auxtrace_error_type_name[type];
1139 	if (!error_type_name)
1140 		error_type_name = "unknown AUX";
1141 	return error_type_name;
1142 }
1143 
1144 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1145 {
1146 	struct auxtrace_error_event *e = &event->auxtrace_error;
1147 	int ret;
1148 
1149 	ret = fprintf(fp, " %s error type %u",
1150 		      auxtrace_error_name(e->type), e->type);
1151 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1152 		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1153 	return ret;
1154 }
1155 
1156 void perf_session__auxtrace_error_inc(struct perf_session *session,
1157 				      union perf_event *event)
1158 {
1159 	struct auxtrace_error_event *e = &event->auxtrace_error;
1160 
1161 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1162 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1163 }
1164 
1165 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1170 		if (!stats->nr_auxtrace_errors[i])
1171 			continue;
1172 		ui__warning("%u %s errors\n",
1173 			    stats->nr_auxtrace_errors[i],
1174 			    auxtrace_error_name(i));
1175 	}
1176 }
1177 
1178 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1179 				       union perf_event *event,
1180 				       struct perf_session *session)
1181 {
1182 	if (auxtrace__dont_decode(session))
1183 		return 0;
1184 
1185 	perf_event__fprintf_auxtrace_error(event, stdout);
1186 	return 0;
1187 }
1188 
1189 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1190 				 struct auxtrace_record *itr,
1191 				 struct perf_tool *tool, process_auxtrace_t fn,
1192 				 bool snapshot, size_t snapshot_size)
1193 {
1194 	u64 head, old = mm->prev, offset, ref;
1195 	unsigned char *data = mm->base;
1196 	size_t size, head_off, old_off, len1, len2, padding;
1197 	union perf_event ev;
1198 	void *data1, *data2;
1199 
1200 	if (snapshot) {
1201 		head = auxtrace_mmap__read_snapshot_head(mm);
1202 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1203 						   &head, &old))
1204 			return -1;
1205 	} else {
1206 		head = auxtrace_mmap__read_head(mm);
1207 	}
1208 
1209 	if (old == head)
1210 		return 0;
1211 
1212 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1213 		  mm->idx, old, head, head - old);
1214 
1215 	if (mm->mask) {
1216 		head_off = head & mm->mask;
1217 		old_off = old & mm->mask;
1218 	} else {
1219 		head_off = head % mm->len;
1220 		old_off = old % mm->len;
1221 	}
1222 
1223 	if (head_off > old_off)
1224 		size = head_off - old_off;
1225 	else
1226 		size = mm->len - (old_off - head_off);
1227 
1228 	if (snapshot && size > snapshot_size)
1229 		size = snapshot_size;
1230 
1231 	ref = auxtrace_record__reference(itr);
1232 
1233 	if (head > old || size <= head || mm->mask) {
1234 		offset = head - size;
1235 	} else {
1236 		/*
1237 		 * When the buffer size is not a power of 2, 'head' wraps at the
1238 		 * highest multiple of the buffer size, so we have to subtract
1239 		 * the remainder here.
1240 		 */
1241 		u64 rem = (0ULL - mm->len) % mm->len;
1242 
1243 		offset = head - size - rem;
1244 	}
1245 
1246 	if (size > head_off) {
1247 		len1 = size - head_off;
1248 		data1 = &data[mm->len - len1];
1249 		len2 = head_off;
1250 		data2 = &data[0];
1251 	} else {
1252 		len1 = size;
1253 		data1 = &data[head_off - len1];
1254 		len2 = 0;
1255 		data2 = NULL;
1256 	}
1257 
1258 	if (itr->alignment) {
1259 		unsigned int unwanted = len1 % itr->alignment;
1260 
1261 		len1 -= unwanted;
1262 		size -= unwanted;
1263 	}
1264 
1265 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1266 	padding = size & 7;
1267 	if (padding)
1268 		padding = 8 - padding;
1269 
1270 	memset(&ev, 0, sizeof(ev));
1271 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1272 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1273 	ev.auxtrace.size = size + padding;
1274 	ev.auxtrace.offset = offset;
1275 	ev.auxtrace.reference = ref;
1276 	ev.auxtrace.idx = mm->idx;
1277 	ev.auxtrace.tid = mm->tid;
1278 	ev.auxtrace.cpu = mm->cpu;
1279 
1280 	if (fn(tool, &ev, data1, len1, data2, len2))
1281 		return -1;
1282 
1283 	mm->prev = head;
1284 
1285 	if (!snapshot) {
1286 		auxtrace_mmap__write_tail(mm, head);
1287 		if (itr->read_finish) {
1288 			int err;
1289 
1290 			err = itr->read_finish(itr, mm->idx);
1291 			if (err < 0)
1292 				return err;
1293 		}
1294 	}
1295 
1296 	return 1;
1297 }
1298 
1299 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1300 			struct perf_tool *tool, process_auxtrace_t fn)
1301 {
1302 	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1303 }
1304 
1305 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1306 				 struct auxtrace_record *itr,
1307 				 struct perf_tool *tool, process_auxtrace_t fn,
1308 				 size_t snapshot_size)
1309 {
1310 	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1311 }
1312 
1313 /**
1314  * struct auxtrace_cache - hash table to implement a cache
1315  * @hashtable: the hashtable
1316  * @sz: hashtable size (number of hlists)
1317  * @entry_size: size of an entry
1318  * @limit: limit the number of entries to this maximum, when reached the cache
1319  *         is dropped and caching begins again with an empty cache
1320  * @cnt: current number of entries
1321  * @bits: hashtable size (@sz = 2^@bits)
1322  */
1323 struct auxtrace_cache {
1324 	struct hlist_head *hashtable;
1325 	size_t sz;
1326 	size_t entry_size;
1327 	size_t limit;
1328 	size_t cnt;
1329 	unsigned int bits;
1330 };
1331 
1332 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1333 					   unsigned int limit_percent)
1334 {
1335 	struct auxtrace_cache *c;
1336 	struct hlist_head *ht;
1337 	size_t sz, i;
1338 
1339 	c = zalloc(sizeof(struct auxtrace_cache));
1340 	if (!c)
1341 		return NULL;
1342 
1343 	sz = 1UL << bits;
1344 
1345 	ht = calloc(sz, sizeof(struct hlist_head));
1346 	if (!ht)
1347 		goto out_free;
1348 
1349 	for (i = 0; i < sz; i++)
1350 		INIT_HLIST_HEAD(&ht[i]);
1351 
1352 	c->hashtable = ht;
1353 	c->sz = sz;
1354 	c->entry_size = entry_size;
1355 	c->limit = (c->sz * limit_percent) / 100;
1356 	c->bits = bits;
1357 
1358 	return c;
1359 
1360 out_free:
1361 	free(c);
1362 	return NULL;
1363 }
1364 
1365 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1366 {
1367 	struct auxtrace_cache_entry *entry;
1368 	struct hlist_node *tmp;
1369 	size_t i;
1370 
1371 	if (!c)
1372 		return;
1373 
1374 	for (i = 0; i < c->sz; i++) {
1375 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1376 			hlist_del(&entry->hash);
1377 			auxtrace_cache__free_entry(c, entry);
1378 		}
1379 	}
1380 
1381 	c->cnt = 0;
1382 }
1383 
1384 void auxtrace_cache__free(struct auxtrace_cache *c)
1385 {
1386 	if (!c)
1387 		return;
1388 
1389 	auxtrace_cache__drop(c);
1390 	free(c->hashtable);
1391 	free(c);
1392 }
1393 
1394 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1395 {
1396 	return malloc(c->entry_size);
1397 }
1398 
1399 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1400 				void *entry)
1401 {
1402 	free(entry);
1403 }
1404 
1405 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1406 			struct auxtrace_cache_entry *entry)
1407 {
1408 	if (c->limit && ++c->cnt > c->limit)
1409 		auxtrace_cache__drop(c);
1410 
1411 	entry->key = key;
1412 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1413 
1414 	return 0;
1415 }
1416 
1417 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1418 {
1419 	struct auxtrace_cache_entry *entry;
1420 	struct hlist_head *hlist;
1421 
1422 	if (!c)
1423 		return NULL;
1424 
1425 	hlist = &c->hashtable[hash_32(key, c->bits)];
1426 	hlist_for_each_entry(entry, hlist, hash) {
1427 		if (entry->key == key)
1428 			return entry;
1429 	}
1430 
1431 	return NULL;
1432 }
1433 
1434 static void addr_filter__free_str(struct addr_filter *filt)
1435 {
1436 	free(filt->str);
1437 	filt->action   = NULL;
1438 	filt->sym_from = NULL;
1439 	filt->sym_to   = NULL;
1440 	filt->filename = NULL;
1441 	filt->str      = NULL;
1442 }
1443 
1444 static struct addr_filter *addr_filter__new(void)
1445 {
1446 	struct addr_filter *filt = zalloc(sizeof(*filt));
1447 
1448 	if (filt)
1449 		INIT_LIST_HEAD(&filt->list);
1450 
1451 	return filt;
1452 }
1453 
1454 static void addr_filter__free(struct addr_filter *filt)
1455 {
1456 	if (filt)
1457 		addr_filter__free_str(filt);
1458 	free(filt);
1459 }
1460 
1461 static void addr_filters__add(struct addr_filters *filts,
1462 			      struct addr_filter *filt)
1463 {
1464 	list_add_tail(&filt->list, &filts->head);
1465 	filts->cnt += 1;
1466 }
1467 
1468 static void addr_filters__del(struct addr_filters *filts,
1469 			      struct addr_filter *filt)
1470 {
1471 	list_del_init(&filt->list);
1472 	filts->cnt -= 1;
1473 }
1474 
1475 void addr_filters__init(struct addr_filters *filts)
1476 {
1477 	INIT_LIST_HEAD(&filts->head);
1478 	filts->cnt = 0;
1479 }
1480 
1481 void addr_filters__exit(struct addr_filters *filts)
1482 {
1483 	struct addr_filter *filt, *n;
1484 
1485 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1486 		addr_filters__del(filts, filt);
1487 		addr_filter__free(filt);
1488 	}
1489 }
1490 
1491 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1492 			    const char *str_delim)
1493 {
1494 	*inp += strspn(*inp, " ");
1495 
1496 	if (isdigit(**inp)) {
1497 		char *endptr;
1498 
1499 		if (!num)
1500 			return -EINVAL;
1501 		errno = 0;
1502 		*num = strtoull(*inp, &endptr, 0);
1503 		if (errno)
1504 			return -errno;
1505 		if (endptr == *inp)
1506 			return -EINVAL;
1507 		*inp = endptr;
1508 	} else {
1509 		size_t n;
1510 
1511 		if (!str)
1512 			return -EINVAL;
1513 		*inp += strspn(*inp, " ");
1514 		*str = *inp;
1515 		n = strcspn(*inp, str_delim);
1516 		if (!n)
1517 			return -EINVAL;
1518 		*inp += n;
1519 		if (**inp) {
1520 			**inp = '\0';
1521 			*inp += 1;
1522 		}
1523 	}
1524 	return 0;
1525 }
1526 
1527 static int parse_action(struct addr_filter *filt)
1528 {
1529 	if (!strcmp(filt->action, "filter")) {
1530 		filt->start = true;
1531 		filt->range = true;
1532 	} else if (!strcmp(filt->action, "start")) {
1533 		filt->start = true;
1534 	} else if (!strcmp(filt->action, "stop")) {
1535 		filt->start = false;
1536 	} else if (!strcmp(filt->action, "tracestop")) {
1537 		filt->start = false;
1538 		filt->range = true;
1539 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1540 	} else {
1541 		return -EINVAL;
1542 	}
1543 	return 0;
1544 }
1545 
1546 static int parse_sym_idx(char **inp, int *idx)
1547 {
1548 	*idx = -1;
1549 
1550 	*inp += strspn(*inp, " ");
1551 
1552 	if (**inp != '#')
1553 		return 0;
1554 
1555 	*inp += 1;
1556 
1557 	if (**inp == 'g' || **inp == 'G') {
1558 		*inp += 1;
1559 		*idx = 0;
1560 	} else {
1561 		unsigned long num;
1562 		char *endptr;
1563 
1564 		errno = 0;
1565 		num = strtoul(*inp, &endptr, 0);
1566 		if (errno)
1567 			return -errno;
1568 		if (endptr == *inp || num > INT_MAX)
1569 			return -EINVAL;
1570 		*inp = endptr;
1571 		*idx = num;
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1578 {
1579 	int err = parse_num_or_str(inp, num, str, " ");
1580 
1581 	if (!err && *str)
1582 		err = parse_sym_idx(inp, idx);
1583 
1584 	return err;
1585 }
1586 
1587 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1588 {
1589 	char *fstr;
1590 	int err;
1591 
1592 	filt->str = fstr = strdup(*filter_inp);
1593 	if (!fstr)
1594 		return -ENOMEM;
1595 
1596 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1597 	if (err)
1598 		goto out_err;
1599 
1600 	err = parse_action(filt);
1601 	if (err)
1602 		goto out_err;
1603 
1604 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1605 			      &filt->sym_from_idx);
1606 	if (err)
1607 		goto out_err;
1608 
1609 	fstr += strspn(fstr, " ");
1610 
1611 	if (*fstr == '/') {
1612 		fstr += 1;
1613 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1614 				      &filt->sym_to_idx);
1615 		if (err)
1616 			goto out_err;
1617 		filt->range = true;
1618 	}
1619 
1620 	fstr += strspn(fstr, " ");
1621 
1622 	if (*fstr == '@') {
1623 		fstr += 1;
1624 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1625 		if (err)
1626 			goto out_err;
1627 	}
1628 
1629 	fstr += strspn(fstr, " ,");
1630 
1631 	*filter_inp += fstr - filt->str;
1632 
1633 	return 0;
1634 
1635 out_err:
1636 	addr_filter__free_str(filt);
1637 
1638 	return err;
1639 }
1640 
1641 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1642 				    const char *filter)
1643 {
1644 	struct addr_filter *filt;
1645 	const char *fstr = filter;
1646 	int err;
1647 
1648 	while (*fstr) {
1649 		filt = addr_filter__new();
1650 		err = parse_one_filter(filt, &fstr);
1651 		if (err) {
1652 			addr_filter__free(filt);
1653 			addr_filters__exit(filts);
1654 			return err;
1655 		}
1656 		addr_filters__add(filts, filt);
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 struct sym_args {
1663 	const char	*name;
1664 	u64		start;
1665 	u64		size;
1666 	int		idx;
1667 	int		cnt;
1668 	bool		started;
1669 	bool		global;
1670 	bool		selected;
1671 	bool		duplicate;
1672 	bool		near;
1673 };
1674 
1675 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1676 {
1677 	/* A function with the same name, and global or the n'th found or any */
1678 	return symbol_type__is_a(type, MAP__FUNCTION) &&
1679 	       !strcmp(name, args->name) &&
1680 	       ((args->global && isupper(type)) ||
1681 		(args->selected && ++(args->cnt) == args->idx) ||
1682 		(!args->global && !args->selected));
1683 }
1684 
1685 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1686 {
1687 	struct sym_args *args = arg;
1688 
1689 	if (args->started) {
1690 		if (!args->size)
1691 			args->size = start - args->start;
1692 		if (args->selected) {
1693 			if (args->size)
1694 				return 1;
1695 		} else if (kern_sym_match(args, name, type)) {
1696 			args->duplicate = true;
1697 			return 1;
1698 		}
1699 	} else if (kern_sym_match(args, name, type)) {
1700 		args->started = true;
1701 		args->start = start;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1708 {
1709 	struct sym_args *args = arg;
1710 
1711 	if (kern_sym_match(args, name, type)) {
1712 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1713 		       ++args->cnt, start, type, name);
1714 		args->near = true;
1715 	} else if (args->near) {
1716 		args->near = false;
1717 		pr_err("\t\twhich is near\t\t%s\n", name);
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int sym_not_found_error(const char *sym_name, int idx)
1724 {
1725 	if (idx > 0) {
1726 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1727 		       idx, sym_name);
1728 	} else if (!idx) {
1729 		pr_err("Global symbol '%s' not found.\n", sym_name);
1730 	} else {
1731 		pr_err("Symbol '%s' not found.\n", sym_name);
1732 	}
1733 	pr_err("Note that symbols must be functions.\n");
1734 
1735 	return -EINVAL;
1736 }
1737 
1738 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1739 {
1740 	struct sym_args args = {
1741 		.name = sym_name,
1742 		.idx = idx,
1743 		.global = !idx,
1744 		.selected = idx > 0,
1745 	};
1746 	int err;
1747 
1748 	*start = 0;
1749 	*size = 0;
1750 
1751 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1752 	if (err < 0) {
1753 		pr_err("Failed to parse /proc/kallsyms\n");
1754 		return err;
1755 	}
1756 
1757 	if (args.duplicate) {
1758 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1759 		args.cnt = 0;
1760 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1761 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1762 		       sym_name);
1763 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1764 		return -EINVAL;
1765 	}
1766 
1767 	if (!args.started) {
1768 		pr_err("Kernel symbol lookup: ");
1769 		return sym_not_found_error(sym_name, idx);
1770 	}
1771 
1772 	*start = args.start;
1773 	*size = args.size;
1774 
1775 	return 0;
1776 }
1777 
1778 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1779 			       char type, u64 start)
1780 {
1781 	struct sym_args *args = arg;
1782 
1783 	if (!symbol_type__is_a(type, MAP__FUNCTION))
1784 		return 0;
1785 
1786 	if (!args->started) {
1787 		args->started = true;
1788 		args->start = start;
1789 	}
1790 	/* Don't know exactly where the kernel ends, so we add a page */
1791 	args->size = round_up(start, page_size) + page_size - args->start;
1792 
1793 	return 0;
1794 }
1795 
1796 static int addr_filter__entire_kernel(struct addr_filter *filt)
1797 {
1798 	struct sym_args args = { .started = false };
1799 	int err;
1800 
1801 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1802 	if (err < 0 || !args.started) {
1803 		pr_err("Failed to parse /proc/kallsyms\n");
1804 		return err;
1805 	}
1806 
1807 	filt->addr = args.start;
1808 	filt->size = args.size;
1809 
1810 	return 0;
1811 }
1812 
1813 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1814 {
1815 	if (start + size >= filt->addr)
1816 		return 0;
1817 
1818 	if (filt->sym_from) {
1819 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1820 		       filt->sym_to, start, filt->sym_from, filt->addr);
1821 	} else {
1822 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1823 		       filt->sym_to, start, filt->addr);
1824 	}
1825 
1826 	return -EINVAL;
1827 }
1828 
1829 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1830 {
1831 	bool no_size = false;
1832 	u64 start, size;
1833 	int err;
1834 
1835 	if (symbol_conf.kptr_restrict) {
1836 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1837 		return -EINVAL;
1838 	}
1839 
1840 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1841 		return addr_filter__entire_kernel(filt);
1842 
1843 	if (filt->sym_from) {
1844 		err = find_kern_sym(filt->sym_from, &start, &size,
1845 				    filt->sym_from_idx);
1846 		if (err)
1847 			return err;
1848 		filt->addr = start;
1849 		if (filt->range && !filt->size && !filt->sym_to) {
1850 			filt->size = size;
1851 			no_size = !size;
1852 		}
1853 	}
1854 
1855 	if (filt->sym_to) {
1856 		err = find_kern_sym(filt->sym_to, &start, &size,
1857 				    filt->sym_to_idx);
1858 		if (err)
1859 			return err;
1860 
1861 		err = check_end_after_start(filt, start, size);
1862 		if (err)
1863 			return err;
1864 		filt->size = start + size - filt->addr;
1865 		no_size = !size;
1866 	}
1867 
1868 	/* The very last symbol in kallsyms does not imply a particular size */
1869 	if (no_size) {
1870 		pr_err("Cannot determine size of symbol '%s'\n",
1871 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1872 		return -EINVAL;
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 static struct dso *load_dso(const char *name)
1879 {
1880 	struct map *map;
1881 	struct dso *dso;
1882 
1883 	map = dso__new_map(name);
1884 	if (!map)
1885 		return NULL;
1886 
1887 	map__load(map);
1888 
1889 	dso = dso__get(map->dso);
1890 
1891 	map__put(map);
1892 
1893 	return dso;
1894 }
1895 
1896 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1897 			  int idx)
1898 {
1899 	/* Same name, and global or the n'th found or any */
1900 	return !arch__compare_symbol_names(name, sym->name) &&
1901 	       ((!idx && sym->binding == STB_GLOBAL) ||
1902 		(idx > 0 && ++*cnt == idx) ||
1903 		idx < 0);
1904 }
1905 
1906 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1907 {
1908 	struct symbol *sym;
1909 	bool near = false;
1910 	int cnt = 0;
1911 
1912 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1913 
1914 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1915 	while (sym) {
1916 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1917 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1918 			       ++cnt, sym->start,
1919 			       sym->binding == STB_GLOBAL ? 'g' :
1920 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1921 			       sym->name);
1922 			near = true;
1923 		} else if (near) {
1924 			near = false;
1925 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1926 		}
1927 		sym = dso__next_symbol(sym);
1928 	}
1929 
1930 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1931 	       sym_name);
1932 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1933 }
1934 
1935 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1936 			u64 *size, int idx)
1937 {
1938 	struct symbol *sym;
1939 	int cnt = 0;
1940 
1941 	*start = 0;
1942 	*size = 0;
1943 
1944 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1945 	while (sym) {
1946 		if (*start) {
1947 			if (!*size)
1948 				*size = sym->start - *start;
1949 			if (idx > 0) {
1950 				if (*size)
1951 					return 1;
1952 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1953 				print_duplicate_syms(dso, sym_name);
1954 				return -EINVAL;
1955 			}
1956 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1957 			*start = sym->start;
1958 			*size = sym->end - sym->start;
1959 		}
1960 		sym = dso__next_symbol(sym);
1961 	}
1962 
1963 	if (!*start)
1964 		return sym_not_found_error(sym_name, idx);
1965 
1966 	return 0;
1967 }
1968 
1969 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1970 {
1971 	struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1972 	struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1973 
1974 	if (!first_sym || !last_sym) {
1975 		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1976 		       filt->filename);
1977 		return -EINVAL;
1978 	}
1979 
1980 	filt->addr = first_sym->start;
1981 	filt->size = last_sym->end - first_sym->start;
1982 
1983 	return 0;
1984 }
1985 
1986 static int addr_filter__resolve_syms(struct addr_filter *filt)
1987 {
1988 	u64 start, size;
1989 	struct dso *dso;
1990 	int err = 0;
1991 
1992 	if (!filt->sym_from && !filt->sym_to)
1993 		return 0;
1994 
1995 	if (!filt->filename)
1996 		return addr_filter__resolve_kernel_syms(filt);
1997 
1998 	dso = load_dso(filt->filename);
1999 	if (!dso) {
2000 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2001 		return -EINVAL;
2002 	}
2003 
2004 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2005 		err = addr_filter__entire_dso(filt, dso);
2006 		goto put_dso;
2007 	}
2008 
2009 	if (filt->sym_from) {
2010 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2011 				   filt->sym_from_idx);
2012 		if (err)
2013 			goto put_dso;
2014 		filt->addr = start;
2015 		if (filt->range && !filt->size && !filt->sym_to)
2016 			filt->size = size;
2017 	}
2018 
2019 	if (filt->sym_to) {
2020 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2021 				   filt->sym_to_idx);
2022 		if (err)
2023 			goto put_dso;
2024 
2025 		err = check_end_after_start(filt, start, size);
2026 		if (err)
2027 			return err;
2028 
2029 		filt->size = start + size - filt->addr;
2030 	}
2031 
2032 put_dso:
2033 	dso__put(dso);
2034 
2035 	return err;
2036 }
2037 
2038 static char *addr_filter__to_str(struct addr_filter *filt)
2039 {
2040 	char filename_buf[PATH_MAX];
2041 	const char *at = "";
2042 	const char *fn = "";
2043 	char *filter;
2044 	int err;
2045 
2046 	if (filt->filename) {
2047 		at = "@";
2048 		fn = realpath(filt->filename, filename_buf);
2049 		if (!fn)
2050 			return NULL;
2051 	}
2052 
2053 	if (filt->range) {
2054 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2055 			       filt->action, filt->addr, filt->size, at, fn);
2056 	} else {
2057 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2058 			       filt->action, filt->addr, at, fn);
2059 	}
2060 
2061 	return err < 0 ? NULL : filter;
2062 }
2063 
2064 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2065 			     int max_nr)
2066 {
2067 	struct addr_filters filts;
2068 	struct addr_filter *filt;
2069 	int err;
2070 
2071 	addr_filters__init(&filts);
2072 
2073 	err = addr_filters__parse_bare_filter(&filts, filter);
2074 	if (err)
2075 		goto out_exit;
2076 
2077 	if (filts.cnt > max_nr) {
2078 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2079 		       filts.cnt, max_nr);
2080 		err = -EINVAL;
2081 		goto out_exit;
2082 	}
2083 
2084 	list_for_each_entry(filt, &filts.head, list) {
2085 		char *new_filter;
2086 
2087 		err = addr_filter__resolve_syms(filt);
2088 		if (err)
2089 			goto out_exit;
2090 
2091 		new_filter = addr_filter__to_str(filt);
2092 		if (!new_filter) {
2093 			err = -ENOMEM;
2094 			goto out_exit;
2095 		}
2096 
2097 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2098 			err = -ENOMEM;
2099 			goto out_exit;
2100 		}
2101 	}
2102 
2103 out_exit:
2104 	addr_filters__exit(&filts);
2105 
2106 	if (err) {
2107 		pr_err("Failed to parse address filter: '%s'\n", filter);
2108 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2109 		pr_err("Where multiple filters are separated by space or comma.\n");
2110 	}
2111 
2112 	return err;
2113 }
2114 
2115 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2116 {
2117 	struct perf_pmu *pmu = NULL;
2118 
2119 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2120 		if (pmu->type == evsel->attr.type)
2121 			break;
2122 	}
2123 
2124 	return pmu;
2125 }
2126 
2127 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2128 {
2129 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2130 	int nr_addr_filters = 0;
2131 
2132 	if (!pmu)
2133 		return 0;
2134 
2135 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2136 
2137 	return nr_addr_filters;
2138 }
2139 
2140 int auxtrace_parse_filters(struct perf_evlist *evlist)
2141 {
2142 	struct perf_evsel *evsel;
2143 	char *filter;
2144 	int err, max_nr;
2145 
2146 	evlist__for_each_entry(evlist, evsel) {
2147 		filter = evsel->filter;
2148 		max_nr = perf_evsel__nr_addr_filter(evsel);
2149 		if (!filter || !max_nr)
2150 			continue;
2151 		evsel->filter = NULL;
2152 		err = parse_addr_filter(evsel, filter, max_nr);
2153 		free(filter);
2154 		if (err)
2155 			return err;
2156 		pr_debug("Address filter: %s\n", evsel->filter);
2157 	}
2158 
2159 	return 0;
2160 }
2161