xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 965f22bc)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35 
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47 
48 #include <linux/hash.h>
49 
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54 
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59 #include "s390-cpumsf.h"
60 
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63 
64 static bool auxtrace__dont_decode(struct perf_session *session)
65 {
66 	return !session->itrace_synth_opts ||
67 	       session->itrace_synth_opts->dont_decode;
68 }
69 
70 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
71 			struct auxtrace_mmap_params *mp,
72 			void *userpg, int fd)
73 {
74 	struct perf_event_mmap_page *pc = userpg;
75 
76 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
77 
78 	mm->userpg = userpg;
79 	mm->mask = mp->mask;
80 	mm->len = mp->len;
81 	mm->prev = 0;
82 	mm->idx = mp->idx;
83 	mm->tid = mp->tid;
84 	mm->cpu = mp->cpu;
85 
86 	if (!mp->len) {
87 		mm->base = NULL;
88 		return 0;
89 	}
90 
91 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
92 	pr_err("Cannot use AUX area tracing mmaps\n");
93 	return -1;
94 #endif
95 
96 	pc->aux_offset = mp->offset;
97 	pc->aux_size = mp->len;
98 
99 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
100 	if (mm->base == MAP_FAILED) {
101 		pr_debug2("failed to mmap AUX area\n");
102 		mm->base = NULL;
103 		return -1;
104 	}
105 
106 	return 0;
107 }
108 
109 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
110 {
111 	if (mm->base) {
112 		munmap(mm->base, mm->len);
113 		mm->base = NULL;
114 	}
115 }
116 
117 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
118 				off_t auxtrace_offset,
119 				unsigned int auxtrace_pages,
120 				bool auxtrace_overwrite)
121 {
122 	if (auxtrace_pages) {
123 		mp->offset = auxtrace_offset;
124 		mp->len = auxtrace_pages * (size_t)page_size;
125 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
126 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
127 		pr_debug2("AUX area mmap length %zu\n", mp->len);
128 	} else {
129 		mp->len = 0;
130 	}
131 }
132 
133 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
134 				   struct perf_evlist *evlist, int idx,
135 				   bool per_cpu)
136 {
137 	mp->idx = idx;
138 
139 	if (per_cpu) {
140 		mp->cpu = evlist->cpus->map[idx];
141 		if (evlist->threads)
142 			mp->tid = thread_map__pid(evlist->threads, 0);
143 		else
144 			mp->tid = -1;
145 	} else {
146 		mp->cpu = -1;
147 		mp->tid = thread_map__pid(evlist->threads, idx);
148 	}
149 }
150 
151 #define AUXTRACE_INIT_NR_QUEUES	32
152 
153 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
154 {
155 	struct auxtrace_queue *queue_array;
156 	unsigned int max_nr_queues, i;
157 
158 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
159 	if (nr_queues > max_nr_queues)
160 		return NULL;
161 
162 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
163 	if (!queue_array)
164 		return NULL;
165 
166 	for (i = 0; i < nr_queues; i++) {
167 		INIT_LIST_HEAD(&queue_array[i].head);
168 		queue_array[i].priv = NULL;
169 	}
170 
171 	return queue_array;
172 }
173 
174 int auxtrace_queues__init(struct auxtrace_queues *queues)
175 {
176 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
177 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
178 	if (!queues->queue_array)
179 		return -ENOMEM;
180 	return 0;
181 }
182 
183 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
184 				 unsigned int new_nr_queues)
185 {
186 	unsigned int nr_queues = queues->nr_queues;
187 	struct auxtrace_queue *queue_array;
188 	unsigned int i;
189 
190 	if (!nr_queues)
191 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
192 
193 	while (nr_queues && nr_queues < new_nr_queues)
194 		nr_queues <<= 1;
195 
196 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
197 		return -EINVAL;
198 
199 	queue_array = auxtrace_alloc_queue_array(nr_queues);
200 	if (!queue_array)
201 		return -ENOMEM;
202 
203 	for (i = 0; i < queues->nr_queues; i++) {
204 		list_splice_tail(&queues->queue_array[i].head,
205 				 &queue_array[i].head);
206 		queue_array[i].tid = queues->queue_array[i].tid;
207 		queue_array[i].cpu = queues->queue_array[i].cpu;
208 		queue_array[i].set = queues->queue_array[i].set;
209 		queue_array[i].priv = queues->queue_array[i].priv;
210 	}
211 
212 	queues->nr_queues = nr_queues;
213 	queues->queue_array = queue_array;
214 
215 	return 0;
216 }
217 
218 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
219 {
220 	int fd = perf_data__fd(session->data);
221 	void *p;
222 	ssize_t ret;
223 
224 	if (size > SSIZE_MAX)
225 		return NULL;
226 
227 	p = malloc(size);
228 	if (!p)
229 		return NULL;
230 
231 	ret = readn(fd, p, size);
232 	if (ret != (ssize_t)size) {
233 		free(p);
234 		return NULL;
235 	}
236 
237 	return p;
238 }
239 
240 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
241 					 unsigned int idx,
242 					 struct auxtrace_buffer *buffer)
243 {
244 	struct auxtrace_queue *queue;
245 	int err;
246 
247 	if (idx >= queues->nr_queues) {
248 		err = auxtrace_queues__grow(queues, idx + 1);
249 		if (err)
250 			return err;
251 	}
252 
253 	queue = &queues->queue_array[idx];
254 
255 	if (!queue->set) {
256 		queue->set = true;
257 		queue->tid = buffer->tid;
258 		queue->cpu = buffer->cpu;
259 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
260 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
261 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
262 		return -EINVAL;
263 	}
264 
265 	buffer->buffer_nr = queues->next_buffer_nr++;
266 
267 	list_add_tail(&buffer->list, &queue->head);
268 
269 	queues->new_data = true;
270 	queues->populated = true;
271 
272 	return 0;
273 }
274 
275 /* Limit buffers to 32MiB on 32-bit */
276 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
277 
278 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
279 					 unsigned int idx,
280 					 struct auxtrace_buffer *buffer)
281 {
282 	u64 sz = buffer->size;
283 	bool consecutive = false;
284 	struct auxtrace_buffer *b;
285 	int err;
286 
287 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
288 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
289 		if (!b)
290 			return -ENOMEM;
291 		b->size = BUFFER_LIMIT_FOR_32_BIT;
292 		b->consecutive = consecutive;
293 		err = auxtrace_queues__queue_buffer(queues, idx, b);
294 		if (err) {
295 			auxtrace_buffer__free(b);
296 			return err;
297 		}
298 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
299 		sz -= BUFFER_LIMIT_FOR_32_BIT;
300 		consecutive = true;
301 	}
302 
303 	buffer->size = sz;
304 	buffer->consecutive = consecutive;
305 
306 	return 0;
307 }
308 
309 static bool filter_cpu(struct perf_session *session, int cpu)
310 {
311 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
312 
313 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
314 }
315 
316 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
317 				       struct perf_session *session,
318 				       unsigned int idx,
319 				       struct auxtrace_buffer *buffer,
320 				       struct auxtrace_buffer **buffer_ptr)
321 {
322 	int err = -ENOMEM;
323 
324 	if (filter_cpu(session, buffer->cpu))
325 		return 0;
326 
327 	buffer = memdup(buffer, sizeof(*buffer));
328 	if (!buffer)
329 		return -ENOMEM;
330 
331 	if (session->one_mmap) {
332 		buffer->data = buffer->data_offset - session->one_mmap_offset +
333 			       session->one_mmap_addr;
334 	} else if (perf_data__is_pipe(session->data)) {
335 		buffer->data = auxtrace_copy_data(buffer->size, session);
336 		if (!buffer->data)
337 			goto out_free;
338 		buffer->data_needs_freeing = true;
339 	} else if (BITS_PER_LONG == 32 &&
340 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
341 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
342 		if (err)
343 			goto out_free;
344 	}
345 
346 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
347 	if (err)
348 		goto out_free;
349 
350 	/* FIXME: Doesn't work for split buffer */
351 	if (buffer_ptr)
352 		*buffer_ptr = buffer;
353 
354 	return 0;
355 
356 out_free:
357 	auxtrace_buffer__free(buffer);
358 	return err;
359 }
360 
361 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
362 			       struct perf_session *session,
363 			       union perf_event *event, off_t data_offset,
364 			       struct auxtrace_buffer **buffer_ptr)
365 {
366 	struct auxtrace_buffer buffer = {
367 		.pid = -1,
368 		.tid = event->auxtrace.tid,
369 		.cpu = event->auxtrace.cpu,
370 		.data_offset = data_offset,
371 		.offset = event->auxtrace.offset,
372 		.reference = event->auxtrace.reference,
373 		.size = event->auxtrace.size,
374 	};
375 	unsigned int idx = event->auxtrace.idx;
376 
377 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
378 					   buffer_ptr);
379 }
380 
381 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
382 					      struct perf_session *session,
383 					      off_t file_offset, size_t sz)
384 {
385 	union perf_event *event;
386 	int err;
387 	char buf[PERF_SAMPLE_MAX_SIZE];
388 
389 	err = perf_session__peek_event(session, file_offset, buf,
390 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
391 	if (err)
392 		return err;
393 
394 	if (event->header.type == PERF_RECORD_AUXTRACE) {
395 		if (event->header.size < sizeof(struct auxtrace_event) ||
396 		    event->header.size != sz) {
397 			err = -EINVAL;
398 			goto out;
399 		}
400 		file_offset += event->header.size;
401 		err = auxtrace_queues__add_event(queues, session, event,
402 						 file_offset, NULL);
403 	}
404 out:
405 	return err;
406 }
407 
408 void auxtrace_queues__free(struct auxtrace_queues *queues)
409 {
410 	unsigned int i;
411 
412 	for (i = 0; i < queues->nr_queues; i++) {
413 		while (!list_empty(&queues->queue_array[i].head)) {
414 			struct auxtrace_buffer *buffer;
415 
416 			buffer = list_entry(queues->queue_array[i].head.next,
417 					    struct auxtrace_buffer, list);
418 			list_del(&buffer->list);
419 			auxtrace_buffer__free(buffer);
420 		}
421 	}
422 
423 	zfree(&queues->queue_array);
424 	queues->nr_queues = 0;
425 }
426 
427 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
428 			     unsigned int pos, unsigned int queue_nr,
429 			     u64 ordinal)
430 {
431 	unsigned int parent;
432 
433 	while (pos) {
434 		parent = (pos - 1) >> 1;
435 		if (heap_array[parent].ordinal <= ordinal)
436 			break;
437 		heap_array[pos] = heap_array[parent];
438 		pos = parent;
439 	}
440 	heap_array[pos].queue_nr = queue_nr;
441 	heap_array[pos].ordinal = ordinal;
442 }
443 
444 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
445 		       u64 ordinal)
446 {
447 	struct auxtrace_heap_item *heap_array;
448 
449 	if (queue_nr >= heap->heap_sz) {
450 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
451 
452 		while (heap_sz <= queue_nr)
453 			heap_sz <<= 1;
454 		heap_array = realloc(heap->heap_array,
455 				     heap_sz * sizeof(struct auxtrace_heap_item));
456 		if (!heap_array)
457 			return -ENOMEM;
458 		heap->heap_array = heap_array;
459 		heap->heap_sz = heap_sz;
460 	}
461 
462 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
463 
464 	return 0;
465 }
466 
467 void auxtrace_heap__free(struct auxtrace_heap *heap)
468 {
469 	zfree(&heap->heap_array);
470 	heap->heap_cnt = 0;
471 	heap->heap_sz = 0;
472 }
473 
474 void auxtrace_heap__pop(struct auxtrace_heap *heap)
475 {
476 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
477 	struct auxtrace_heap_item *heap_array;
478 
479 	if (!heap_cnt)
480 		return;
481 
482 	heap->heap_cnt -= 1;
483 
484 	heap_array = heap->heap_array;
485 
486 	pos = 0;
487 	while (1) {
488 		unsigned int left, right;
489 
490 		left = (pos << 1) + 1;
491 		if (left >= heap_cnt)
492 			break;
493 		right = left + 1;
494 		if (right >= heap_cnt) {
495 			heap_array[pos] = heap_array[left];
496 			return;
497 		}
498 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
499 			heap_array[pos] = heap_array[left];
500 			pos = left;
501 		} else {
502 			heap_array[pos] = heap_array[right];
503 			pos = right;
504 		}
505 	}
506 
507 	last = heap_cnt - 1;
508 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
509 			 heap_array[last].ordinal);
510 }
511 
512 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
513 				       struct perf_evlist *evlist)
514 {
515 	if (itr)
516 		return itr->info_priv_size(itr, evlist);
517 	return 0;
518 }
519 
520 static int auxtrace_not_supported(void)
521 {
522 	pr_err("AUX area tracing is not supported on this architecture\n");
523 	return -EINVAL;
524 }
525 
526 int auxtrace_record__info_fill(struct auxtrace_record *itr,
527 			       struct perf_session *session,
528 			       struct auxtrace_info_event *auxtrace_info,
529 			       size_t priv_size)
530 {
531 	if (itr)
532 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
533 	return auxtrace_not_supported();
534 }
535 
536 void auxtrace_record__free(struct auxtrace_record *itr)
537 {
538 	if (itr)
539 		itr->free(itr);
540 }
541 
542 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
543 {
544 	if (itr && itr->snapshot_start)
545 		return itr->snapshot_start(itr);
546 	return 0;
547 }
548 
549 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
550 {
551 	if (itr && itr->snapshot_finish)
552 		return itr->snapshot_finish(itr);
553 	return 0;
554 }
555 
556 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
557 				   struct auxtrace_mmap *mm,
558 				   unsigned char *data, u64 *head, u64 *old)
559 {
560 	if (itr && itr->find_snapshot)
561 		return itr->find_snapshot(itr, idx, mm, data, head, old);
562 	return 0;
563 }
564 
565 int auxtrace_record__options(struct auxtrace_record *itr,
566 			     struct perf_evlist *evlist,
567 			     struct record_opts *opts)
568 {
569 	if (itr)
570 		return itr->recording_options(itr, evlist, opts);
571 	return 0;
572 }
573 
574 u64 auxtrace_record__reference(struct auxtrace_record *itr)
575 {
576 	if (itr)
577 		return itr->reference(itr);
578 	return 0;
579 }
580 
581 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
582 				    struct record_opts *opts, const char *str)
583 {
584 	if (!str)
585 		return 0;
586 
587 	if (itr)
588 		return itr->parse_snapshot_options(itr, opts, str);
589 
590 	pr_err("No AUX area tracing to snapshot\n");
591 	return -EINVAL;
592 }
593 
594 struct auxtrace_record *__weak
595 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
596 {
597 	*err = 0;
598 	return NULL;
599 }
600 
601 static int auxtrace_index__alloc(struct list_head *head)
602 {
603 	struct auxtrace_index *auxtrace_index;
604 
605 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
606 	if (!auxtrace_index)
607 		return -ENOMEM;
608 
609 	auxtrace_index->nr = 0;
610 	INIT_LIST_HEAD(&auxtrace_index->list);
611 
612 	list_add_tail(&auxtrace_index->list, head);
613 
614 	return 0;
615 }
616 
617 void auxtrace_index__free(struct list_head *head)
618 {
619 	struct auxtrace_index *auxtrace_index, *n;
620 
621 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
622 		list_del(&auxtrace_index->list);
623 		free(auxtrace_index);
624 	}
625 }
626 
627 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
628 {
629 	struct auxtrace_index *auxtrace_index;
630 	int err;
631 
632 	if (list_empty(head)) {
633 		err = auxtrace_index__alloc(head);
634 		if (err)
635 			return NULL;
636 	}
637 
638 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
639 
640 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
641 		err = auxtrace_index__alloc(head);
642 		if (err)
643 			return NULL;
644 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
645 					    list);
646 	}
647 
648 	return auxtrace_index;
649 }
650 
651 int auxtrace_index__auxtrace_event(struct list_head *head,
652 				   union perf_event *event, off_t file_offset)
653 {
654 	struct auxtrace_index *auxtrace_index;
655 	size_t nr;
656 
657 	auxtrace_index = auxtrace_index__last(head);
658 	if (!auxtrace_index)
659 		return -ENOMEM;
660 
661 	nr = auxtrace_index->nr;
662 	auxtrace_index->entries[nr].file_offset = file_offset;
663 	auxtrace_index->entries[nr].sz = event->header.size;
664 	auxtrace_index->nr += 1;
665 
666 	return 0;
667 }
668 
669 static int auxtrace_index__do_write(int fd,
670 				    struct auxtrace_index *auxtrace_index)
671 {
672 	struct auxtrace_index_entry ent;
673 	size_t i;
674 
675 	for (i = 0; i < auxtrace_index->nr; i++) {
676 		ent.file_offset = auxtrace_index->entries[i].file_offset;
677 		ent.sz = auxtrace_index->entries[i].sz;
678 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
679 			return -errno;
680 	}
681 	return 0;
682 }
683 
684 int auxtrace_index__write(int fd, struct list_head *head)
685 {
686 	struct auxtrace_index *auxtrace_index;
687 	u64 total = 0;
688 	int err;
689 
690 	list_for_each_entry(auxtrace_index, head, list)
691 		total += auxtrace_index->nr;
692 
693 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
694 		return -errno;
695 
696 	list_for_each_entry(auxtrace_index, head, list) {
697 		err = auxtrace_index__do_write(fd, auxtrace_index);
698 		if (err)
699 			return err;
700 	}
701 
702 	return 0;
703 }
704 
705 static int auxtrace_index__process_entry(int fd, struct list_head *head,
706 					 bool needs_swap)
707 {
708 	struct auxtrace_index *auxtrace_index;
709 	struct auxtrace_index_entry ent;
710 	size_t nr;
711 
712 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
713 		return -1;
714 
715 	auxtrace_index = auxtrace_index__last(head);
716 	if (!auxtrace_index)
717 		return -1;
718 
719 	nr = auxtrace_index->nr;
720 	if (needs_swap) {
721 		auxtrace_index->entries[nr].file_offset =
722 						bswap_64(ent.file_offset);
723 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
724 	} else {
725 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
726 		auxtrace_index->entries[nr].sz = ent.sz;
727 	}
728 
729 	auxtrace_index->nr = nr + 1;
730 
731 	return 0;
732 }
733 
734 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
735 			    bool needs_swap)
736 {
737 	struct list_head *head = &session->auxtrace_index;
738 	u64 nr;
739 
740 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
741 		return -1;
742 
743 	if (needs_swap)
744 		nr = bswap_64(nr);
745 
746 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
747 		return -1;
748 
749 	while (nr--) {
750 		int err;
751 
752 		err = auxtrace_index__process_entry(fd, head, needs_swap);
753 		if (err)
754 			return -1;
755 	}
756 
757 	return 0;
758 }
759 
760 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
761 						struct perf_session *session,
762 						struct auxtrace_index_entry *ent)
763 {
764 	return auxtrace_queues__add_indexed_event(queues, session,
765 						  ent->file_offset, ent->sz);
766 }
767 
768 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
769 				   struct perf_session *session)
770 {
771 	struct auxtrace_index *auxtrace_index;
772 	struct auxtrace_index_entry *ent;
773 	size_t i;
774 	int err;
775 
776 	if (auxtrace__dont_decode(session))
777 		return 0;
778 
779 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
780 		for (i = 0; i < auxtrace_index->nr; i++) {
781 			ent = &auxtrace_index->entries[i];
782 			err = auxtrace_queues__process_index_entry(queues,
783 								   session,
784 								   ent);
785 			if (err)
786 				return err;
787 		}
788 	}
789 	return 0;
790 }
791 
792 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
793 					      struct auxtrace_buffer *buffer)
794 {
795 	if (buffer) {
796 		if (list_is_last(&buffer->list, &queue->head))
797 			return NULL;
798 		return list_entry(buffer->list.next, struct auxtrace_buffer,
799 				  list);
800 	} else {
801 		if (list_empty(&queue->head))
802 			return NULL;
803 		return list_entry(queue->head.next, struct auxtrace_buffer,
804 				  list);
805 	}
806 }
807 
808 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
809 {
810 	size_t adj = buffer->data_offset & (page_size - 1);
811 	size_t size = buffer->size + adj;
812 	off_t file_offset = buffer->data_offset - adj;
813 	void *addr;
814 
815 	if (buffer->data)
816 		return buffer->data;
817 
818 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
819 	if (addr == MAP_FAILED)
820 		return NULL;
821 
822 	buffer->mmap_addr = addr;
823 	buffer->mmap_size = size;
824 
825 	buffer->data = addr + adj;
826 
827 	return buffer->data;
828 }
829 
830 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
831 {
832 	if (!buffer->data || !buffer->mmap_addr)
833 		return;
834 	munmap(buffer->mmap_addr, buffer->mmap_size);
835 	buffer->mmap_addr = NULL;
836 	buffer->mmap_size = 0;
837 	buffer->data = NULL;
838 	buffer->use_data = NULL;
839 }
840 
841 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
842 {
843 	auxtrace_buffer__put_data(buffer);
844 	if (buffer->data_needs_freeing) {
845 		buffer->data_needs_freeing = false;
846 		zfree(&buffer->data);
847 		buffer->use_data = NULL;
848 		buffer->size = 0;
849 	}
850 }
851 
852 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
853 {
854 	auxtrace_buffer__drop_data(buffer);
855 	free(buffer);
856 }
857 
858 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
859 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
860 			  const char *msg)
861 {
862 	size_t size;
863 
864 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
865 
866 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
867 	auxtrace_error->type = type;
868 	auxtrace_error->code = code;
869 	auxtrace_error->cpu = cpu;
870 	auxtrace_error->pid = pid;
871 	auxtrace_error->tid = tid;
872 	auxtrace_error->ip = ip;
873 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
874 
875 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
876 	       strlen(auxtrace_error->msg) + 1;
877 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
878 }
879 
880 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
881 					 struct perf_tool *tool,
882 					 struct perf_session *session,
883 					 perf_event__handler_t process)
884 {
885 	union perf_event *ev;
886 	size_t priv_size;
887 	int err;
888 
889 	pr_debug2("Synthesizing auxtrace information\n");
890 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
891 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
892 	if (!ev)
893 		return -ENOMEM;
894 
895 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
896 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
897 					priv_size;
898 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
899 					 priv_size);
900 	if (err)
901 		goto out_free;
902 
903 	err = process(tool, ev, NULL, NULL);
904 out_free:
905 	free(ev);
906 	return err;
907 }
908 
909 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
910 				      union perf_event *event,
911 				      struct perf_session *session)
912 {
913 	enum auxtrace_type type = event->auxtrace_info.type;
914 
915 	if (dump_trace)
916 		fprintf(stdout, " type: %u\n", type);
917 
918 	switch (type) {
919 	case PERF_AUXTRACE_INTEL_PT:
920 		return intel_pt_process_auxtrace_info(event, session);
921 	case PERF_AUXTRACE_INTEL_BTS:
922 		return intel_bts_process_auxtrace_info(event, session);
923 	case PERF_AUXTRACE_ARM_SPE:
924 		return arm_spe_process_auxtrace_info(event, session);
925 	case PERF_AUXTRACE_CS_ETM:
926 		return cs_etm__process_auxtrace_info(event, session);
927 	case PERF_AUXTRACE_S390_CPUMSF:
928 		return s390_cpumsf_process_auxtrace_info(event, session);
929 	case PERF_AUXTRACE_UNKNOWN:
930 	default:
931 		return -EINVAL;
932 	}
933 }
934 
935 s64 perf_event__process_auxtrace(struct perf_tool *tool,
936 				 union perf_event *event,
937 				 struct perf_session *session)
938 {
939 	s64 err;
940 
941 	if (dump_trace)
942 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
943 			event->auxtrace.size, event->auxtrace.offset,
944 			event->auxtrace.reference, event->auxtrace.idx,
945 			event->auxtrace.tid, event->auxtrace.cpu);
946 
947 	if (auxtrace__dont_decode(session))
948 		return event->auxtrace.size;
949 
950 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
951 		return -EINVAL;
952 
953 	err = session->auxtrace->process_auxtrace_event(session, event, tool);
954 	if (err < 0)
955 		return err;
956 
957 	return event->auxtrace.size;
958 }
959 
960 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
961 #define PERF_ITRACE_DEFAULT_PERIOD		100000
962 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
963 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
964 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
965 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
966 
967 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
968 {
969 	synth_opts->instructions = true;
970 	synth_opts->branches = true;
971 	synth_opts->transactions = true;
972 	synth_opts->ptwrites = true;
973 	synth_opts->pwr_events = true;
974 	synth_opts->errors = true;
975 	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
976 	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
977 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
978 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
979 	synth_opts->initial_skip = 0;
980 }
981 
982 /*
983  * Please check tools/perf/Documentation/perf-script.txt for information
984  * about the options parsed here, which is introduced after this cset,
985  * when support in 'perf script' for these options is introduced.
986  */
987 int itrace_parse_synth_opts(const struct option *opt, const char *str,
988 			    int unset)
989 {
990 	struct itrace_synth_opts *synth_opts = opt->value;
991 	const char *p;
992 	char *endptr;
993 	bool period_type_set = false;
994 	bool period_set = false;
995 
996 	synth_opts->set = true;
997 
998 	if (unset) {
999 		synth_opts->dont_decode = true;
1000 		return 0;
1001 	}
1002 
1003 	if (!str) {
1004 		itrace_synth_opts__set_default(synth_opts);
1005 		return 0;
1006 	}
1007 
1008 	for (p = str; *p;) {
1009 		switch (*p++) {
1010 		case 'i':
1011 			synth_opts->instructions = true;
1012 			while (*p == ' ' || *p == ',')
1013 				p += 1;
1014 			if (isdigit(*p)) {
1015 				synth_opts->period = strtoull(p, &endptr, 10);
1016 				period_set = true;
1017 				p = endptr;
1018 				while (*p == ' ' || *p == ',')
1019 					p += 1;
1020 				switch (*p++) {
1021 				case 'i':
1022 					synth_opts->period_type =
1023 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1024 					period_type_set = true;
1025 					break;
1026 				case 't':
1027 					synth_opts->period_type =
1028 						PERF_ITRACE_PERIOD_TICKS;
1029 					period_type_set = true;
1030 					break;
1031 				case 'm':
1032 					synth_opts->period *= 1000;
1033 					/* Fall through */
1034 				case 'u':
1035 					synth_opts->period *= 1000;
1036 					/* Fall through */
1037 				case 'n':
1038 					if (*p++ != 's')
1039 						goto out_err;
1040 					synth_opts->period_type =
1041 						PERF_ITRACE_PERIOD_NANOSECS;
1042 					period_type_set = true;
1043 					break;
1044 				case '\0':
1045 					goto out;
1046 				default:
1047 					goto out_err;
1048 				}
1049 			}
1050 			break;
1051 		case 'b':
1052 			synth_opts->branches = true;
1053 			break;
1054 		case 'x':
1055 			synth_opts->transactions = true;
1056 			break;
1057 		case 'w':
1058 			synth_opts->ptwrites = true;
1059 			break;
1060 		case 'p':
1061 			synth_opts->pwr_events = true;
1062 			break;
1063 		case 'e':
1064 			synth_opts->errors = true;
1065 			break;
1066 		case 'd':
1067 			synth_opts->log = true;
1068 			break;
1069 		case 'c':
1070 			synth_opts->branches = true;
1071 			synth_opts->calls = true;
1072 			break;
1073 		case 'r':
1074 			synth_opts->branches = true;
1075 			synth_opts->returns = true;
1076 			break;
1077 		case 'g':
1078 			synth_opts->callchain = true;
1079 			synth_opts->callchain_sz =
1080 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1081 			while (*p == ' ' || *p == ',')
1082 				p += 1;
1083 			if (isdigit(*p)) {
1084 				unsigned int val;
1085 
1086 				val = strtoul(p, &endptr, 10);
1087 				p = endptr;
1088 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1089 					goto out_err;
1090 				synth_opts->callchain_sz = val;
1091 			}
1092 			break;
1093 		case 'l':
1094 			synth_opts->last_branch = true;
1095 			synth_opts->last_branch_sz =
1096 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1097 			while (*p == ' ' || *p == ',')
1098 				p += 1;
1099 			if (isdigit(*p)) {
1100 				unsigned int val;
1101 
1102 				val = strtoul(p, &endptr, 10);
1103 				p = endptr;
1104 				if (!val ||
1105 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1106 					goto out_err;
1107 				synth_opts->last_branch_sz = val;
1108 			}
1109 			break;
1110 		case 's':
1111 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1112 			if (p == endptr)
1113 				goto out_err;
1114 			p = endptr;
1115 			break;
1116 		case ' ':
1117 		case ',':
1118 			break;
1119 		default:
1120 			goto out_err;
1121 		}
1122 	}
1123 out:
1124 	if (synth_opts->instructions) {
1125 		if (!period_type_set)
1126 			synth_opts->period_type =
1127 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1128 		if (!period_set)
1129 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1130 	}
1131 
1132 	return 0;
1133 
1134 out_err:
1135 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1136 	return -EINVAL;
1137 }
1138 
1139 static const char * const auxtrace_error_type_name[] = {
1140 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1141 };
1142 
1143 static const char *auxtrace_error_name(int type)
1144 {
1145 	const char *error_type_name = NULL;
1146 
1147 	if (type < PERF_AUXTRACE_ERROR_MAX)
1148 		error_type_name = auxtrace_error_type_name[type];
1149 	if (!error_type_name)
1150 		error_type_name = "unknown AUX";
1151 	return error_type_name;
1152 }
1153 
1154 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1155 {
1156 	struct auxtrace_error_event *e = &event->auxtrace_error;
1157 	int ret;
1158 
1159 	ret = fprintf(fp, " %s error type %u",
1160 		      auxtrace_error_name(e->type), e->type);
1161 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1162 		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1163 	return ret;
1164 }
1165 
1166 void perf_session__auxtrace_error_inc(struct perf_session *session,
1167 				      union perf_event *event)
1168 {
1169 	struct auxtrace_error_event *e = &event->auxtrace_error;
1170 
1171 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1172 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1173 }
1174 
1175 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1176 {
1177 	int i;
1178 
1179 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1180 		if (!stats->nr_auxtrace_errors[i])
1181 			continue;
1182 		ui__warning("%u %s errors\n",
1183 			    stats->nr_auxtrace_errors[i],
1184 			    auxtrace_error_name(i));
1185 	}
1186 }
1187 
1188 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1189 				       union perf_event *event,
1190 				       struct perf_session *session)
1191 {
1192 	if (auxtrace__dont_decode(session))
1193 		return 0;
1194 
1195 	perf_event__fprintf_auxtrace_error(event, stdout);
1196 	return 0;
1197 }
1198 
1199 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1200 				 struct auxtrace_record *itr,
1201 				 struct perf_tool *tool, process_auxtrace_t fn,
1202 				 bool snapshot, size_t snapshot_size)
1203 {
1204 	u64 head, old = mm->prev, offset, ref;
1205 	unsigned char *data = mm->base;
1206 	size_t size, head_off, old_off, len1, len2, padding;
1207 	union perf_event ev;
1208 	void *data1, *data2;
1209 
1210 	if (snapshot) {
1211 		head = auxtrace_mmap__read_snapshot_head(mm);
1212 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1213 						   &head, &old))
1214 			return -1;
1215 	} else {
1216 		head = auxtrace_mmap__read_head(mm);
1217 	}
1218 
1219 	if (old == head)
1220 		return 0;
1221 
1222 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1223 		  mm->idx, old, head, head - old);
1224 
1225 	if (mm->mask) {
1226 		head_off = head & mm->mask;
1227 		old_off = old & mm->mask;
1228 	} else {
1229 		head_off = head % mm->len;
1230 		old_off = old % mm->len;
1231 	}
1232 
1233 	if (head_off > old_off)
1234 		size = head_off - old_off;
1235 	else
1236 		size = mm->len - (old_off - head_off);
1237 
1238 	if (snapshot && size > snapshot_size)
1239 		size = snapshot_size;
1240 
1241 	ref = auxtrace_record__reference(itr);
1242 
1243 	if (head > old || size <= head || mm->mask) {
1244 		offset = head - size;
1245 	} else {
1246 		/*
1247 		 * When the buffer size is not a power of 2, 'head' wraps at the
1248 		 * highest multiple of the buffer size, so we have to subtract
1249 		 * the remainder here.
1250 		 */
1251 		u64 rem = (0ULL - mm->len) % mm->len;
1252 
1253 		offset = head - size - rem;
1254 	}
1255 
1256 	if (size > head_off) {
1257 		len1 = size - head_off;
1258 		data1 = &data[mm->len - len1];
1259 		len2 = head_off;
1260 		data2 = &data[0];
1261 	} else {
1262 		len1 = size;
1263 		data1 = &data[head_off - len1];
1264 		len2 = 0;
1265 		data2 = NULL;
1266 	}
1267 
1268 	if (itr->alignment) {
1269 		unsigned int unwanted = len1 % itr->alignment;
1270 
1271 		len1 -= unwanted;
1272 		size -= unwanted;
1273 	}
1274 
1275 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1276 	padding = size & 7;
1277 	if (padding)
1278 		padding = 8 - padding;
1279 
1280 	memset(&ev, 0, sizeof(ev));
1281 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1282 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1283 	ev.auxtrace.size = size + padding;
1284 	ev.auxtrace.offset = offset;
1285 	ev.auxtrace.reference = ref;
1286 	ev.auxtrace.idx = mm->idx;
1287 	ev.auxtrace.tid = mm->tid;
1288 	ev.auxtrace.cpu = mm->cpu;
1289 
1290 	if (fn(tool, &ev, data1, len1, data2, len2))
1291 		return -1;
1292 
1293 	mm->prev = head;
1294 
1295 	if (!snapshot) {
1296 		auxtrace_mmap__write_tail(mm, head);
1297 		if (itr->read_finish) {
1298 			int err;
1299 
1300 			err = itr->read_finish(itr, mm->idx);
1301 			if (err < 0)
1302 				return err;
1303 		}
1304 	}
1305 
1306 	return 1;
1307 }
1308 
1309 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1310 			struct perf_tool *tool, process_auxtrace_t fn)
1311 {
1312 	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1313 }
1314 
1315 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1316 				 struct auxtrace_record *itr,
1317 				 struct perf_tool *tool, process_auxtrace_t fn,
1318 				 size_t snapshot_size)
1319 {
1320 	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1321 }
1322 
1323 /**
1324  * struct auxtrace_cache - hash table to implement a cache
1325  * @hashtable: the hashtable
1326  * @sz: hashtable size (number of hlists)
1327  * @entry_size: size of an entry
1328  * @limit: limit the number of entries to this maximum, when reached the cache
1329  *         is dropped and caching begins again with an empty cache
1330  * @cnt: current number of entries
1331  * @bits: hashtable size (@sz = 2^@bits)
1332  */
1333 struct auxtrace_cache {
1334 	struct hlist_head *hashtable;
1335 	size_t sz;
1336 	size_t entry_size;
1337 	size_t limit;
1338 	size_t cnt;
1339 	unsigned int bits;
1340 };
1341 
1342 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1343 					   unsigned int limit_percent)
1344 {
1345 	struct auxtrace_cache *c;
1346 	struct hlist_head *ht;
1347 	size_t sz, i;
1348 
1349 	c = zalloc(sizeof(struct auxtrace_cache));
1350 	if (!c)
1351 		return NULL;
1352 
1353 	sz = 1UL << bits;
1354 
1355 	ht = calloc(sz, sizeof(struct hlist_head));
1356 	if (!ht)
1357 		goto out_free;
1358 
1359 	for (i = 0; i < sz; i++)
1360 		INIT_HLIST_HEAD(&ht[i]);
1361 
1362 	c->hashtable = ht;
1363 	c->sz = sz;
1364 	c->entry_size = entry_size;
1365 	c->limit = (c->sz * limit_percent) / 100;
1366 	c->bits = bits;
1367 
1368 	return c;
1369 
1370 out_free:
1371 	free(c);
1372 	return NULL;
1373 }
1374 
1375 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1376 {
1377 	struct auxtrace_cache_entry *entry;
1378 	struct hlist_node *tmp;
1379 	size_t i;
1380 
1381 	if (!c)
1382 		return;
1383 
1384 	for (i = 0; i < c->sz; i++) {
1385 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1386 			hlist_del(&entry->hash);
1387 			auxtrace_cache__free_entry(c, entry);
1388 		}
1389 	}
1390 
1391 	c->cnt = 0;
1392 }
1393 
1394 void auxtrace_cache__free(struct auxtrace_cache *c)
1395 {
1396 	if (!c)
1397 		return;
1398 
1399 	auxtrace_cache__drop(c);
1400 	free(c->hashtable);
1401 	free(c);
1402 }
1403 
1404 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1405 {
1406 	return malloc(c->entry_size);
1407 }
1408 
1409 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1410 				void *entry)
1411 {
1412 	free(entry);
1413 }
1414 
1415 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1416 			struct auxtrace_cache_entry *entry)
1417 {
1418 	if (c->limit && ++c->cnt > c->limit)
1419 		auxtrace_cache__drop(c);
1420 
1421 	entry->key = key;
1422 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1423 
1424 	return 0;
1425 }
1426 
1427 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1428 {
1429 	struct auxtrace_cache_entry *entry;
1430 	struct hlist_head *hlist;
1431 
1432 	if (!c)
1433 		return NULL;
1434 
1435 	hlist = &c->hashtable[hash_32(key, c->bits)];
1436 	hlist_for_each_entry(entry, hlist, hash) {
1437 		if (entry->key == key)
1438 			return entry;
1439 	}
1440 
1441 	return NULL;
1442 }
1443 
1444 static void addr_filter__free_str(struct addr_filter *filt)
1445 {
1446 	free(filt->str);
1447 	filt->action   = NULL;
1448 	filt->sym_from = NULL;
1449 	filt->sym_to   = NULL;
1450 	filt->filename = NULL;
1451 	filt->str      = NULL;
1452 }
1453 
1454 static struct addr_filter *addr_filter__new(void)
1455 {
1456 	struct addr_filter *filt = zalloc(sizeof(*filt));
1457 
1458 	if (filt)
1459 		INIT_LIST_HEAD(&filt->list);
1460 
1461 	return filt;
1462 }
1463 
1464 static void addr_filter__free(struct addr_filter *filt)
1465 {
1466 	if (filt)
1467 		addr_filter__free_str(filt);
1468 	free(filt);
1469 }
1470 
1471 static void addr_filters__add(struct addr_filters *filts,
1472 			      struct addr_filter *filt)
1473 {
1474 	list_add_tail(&filt->list, &filts->head);
1475 	filts->cnt += 1;
1476 }
1477 
1478 static void addr_filters__del(struct addr_filters *filts,
1479 			      struct addr_filter *filt)
1480 {
1481 	list_del_init(&filt->list);
1482 	filts->cnt -= 1;
1483 }
1484 
1485 void addr_filters__init(struct addr_filters *filts)
1486 {
1487 	INIT_LIST_HEAD(&filts->head);
1488 	filts->cnt = 0;
1489 }
1490 
1491 void addr_filters__exit(struct addr_filters *filts)
1492 {
1493 	struct addr_filter *filt, *n;
1494 
1495 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1496 		addr_filters__del(filts, filt);
1497 		addr_filter__free(filt);
1498 	}
1499 }
1500 
1501 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1502 			    const char *str_delim)
1503 {
1504 	*inp += strspn(*inp, " ");
1505 
1506 	if (isdigit(**inp)) {
1507 		char *endptr;
1508 
1509 		if (!num)
1510 			return -EINVAL;
1511 		errno = 0;
1512 		*num = strtoull(*inp, &endptr, 0);
1513 		if (errno)
1514 			return -errno;
1515 		if (endptr == *inp)
1516 			return -EINVAL;
1517 		*inp = endptr;
1518 	} else {
1519 		size_t n;
1520 
1521 		if (!str)
1522 			return -EINVAL;
1523 		*inp += strspn(*inp, " ");
1524 		*str = *inp;
1525 		n = strcspn(*inp, str_delim);
1526 		if (!n)
1527 			return -EINVAL;
1528 		*inp += n;
1529 		if (**inp) {
1530 			**inp = '\0';
1531 			*inp += 1;
1532 		}
1533 	}
1534 	return 0;
1535 }
1536 
1537 static int parse_action(struct addr_filter *filt)
1538 {
1539 	if (!strcmp(filt->action, "filter")) {
1540 		filt->start = true;
1541 		filt->range = true;
1542 	} else if (!strcmp(filt->action, "start")) {
1543 		filt->start = true;
1544 	} else if (!strcmp(filt->action, "stop")) {
1545 		filt->start = false;
1546 	} else if (!strcmp(filt->action, "tracestop")) {
1547 		filt->start = false;
1548 		filt->range = true;
1549 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1550 	} else {
1551 		return -EINVAL;
1552 	}
1553 	return 0;
1554 }
1555 
1556 static int parse_sym_idx(char **inp, int *idx)
1557 {
1558 	*idx = -1;
1559 
1560 	*inp += strspn(*inp, " ");
1561 
1562 	if (**inp != '#')
1563 		return 0;
1564 
1565 	*inp += 1;
1566 
1567 	if (**inp == 'g' || **inp == 'G') {
1568 		*inp += 1;
1569 		*idx = 0;
1570 	} else {
1571 		unsigned long num;
1572 		char *endptr;
1573 
1574 		errno = 0;
1575 		num = strtoul(*inp, &endptr, 0);
1576 		if (errno)
1577 			return -errno;
1578 		if (endptr == *inp || num > INT_MAX)
1579 			return -EINVAL;
1580 		*inp = endptr;
1581 		*idx = num;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1588 {
1589 	int err = parse_num_or_str(inp, num, str, " ");
1590 
1591 	if (!err && *str)
1592 		err = parse_sym_idx(inp, idx);
1593 
1594 	return err;
1595 }
1596 
1597 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1598 {
1599 	char *fstr;
1600 	int err;
1601 
1602 	filt->str = fstr = strdup(*filter_inp);
1603 	if (!fstr)
1604 		return -ENOMEM;
1605 
1606 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1607 	if (err)
1608 		goto out_err;
1609 
1610 	err = parse_action(filt);
1611 	if (err)
1612 		goto out_err;
1613 
1614 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1615 			      &filt->sym_from_idx);
1616 	if (err)
1617 		goto out_err;
1618 
1619 	fstr += strspn(fstr, " ");
1620 
1621 	if (*fstr == '/') {
1622 		fstr += 1;
1623 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1624 				      &filt->sym_to_idx);
1625 		if (err)
1626 			goto out_err;
1627 		filt->range = true;
1628 	}
1629 
1630 	fstr += strspn(fstr, " ");
1631 
1632 	if (*fstr == '@') {
1633 		fstr += 1;
1634 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1635 		if (err)
1636 			goto out_err;
1637 	}
1638 
1639 	fstr += strspn(fstr, " ,");
1640 
1641 	*filter_inp += fstr - filt->str;
1642 
1643 	return 0;
1644 
1645 out_err:
1646 	addr_filter__free_str(filt);
1647 
1648 	return err;
1649 }
1650 
1651 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1652 				    const char *filter)
1653 {
1654 	struct addr_filter *filt;
1655 	const char *fstr = filter;
1656 	int err;
1657 
1658 	while (*fstr) {
1659 		filt = addr_filter__new();
1660 		err = parse_one_filter(filt, &fstr);
1661 		if (err) {
1662 			addr_filter__free(filt);
1663 			addr_filters__exit(filts);
1664 			return err;
1665 		}
1666 		addr_filters__add(filts, filt);
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 struct sym_args {
1673 	const char	*name;
1674 	u64		start;
1675 	u64		size;
1676 	int		idx;
1677 	int		cnt;
1678 	bool		started;
1679 	bool		global;
1680 	bool		selected;
1681 	bool		duplicate;
1682 	bool		near;
1683 };
1684 
1685 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1686 {
1687 	/* A function with the same name, and global or the n'th found or any */
1688 	return kallsyms__is_function(type) &&
1689 	       !strcmp(name, args->name) &&
1690 	       ((args->global && isupper(type)) ||
1691 		(args->selected && ++(args->cnt) == args->idx) ||
1692 		(!args->global && !args->selected));
1693 }
1694 
1695 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1696 {
1697 	struct sym_args *args = arg;
1698 
1699 	if (args->started) {
1700 		if (!args->size)
1701 			args->size = start - args->start;
1702 		if (args->selected) {
1703 			if (args->size)
1704 				return 1;
1705 		} else if (kern_sym_match(args, name, type)) {
1706 			args->duplicate = true;
1707 			return 1;
1708 		}
1709 	} else if (kern_sym_match(args, name, type)) {
1710 		args->started = true;
1711 		args->start = start;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1718 {
1719 	struct sym_args *args = arg;
1720 
1721 	if (kern_sym_match(args, name, type)) {
1722 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1723 		       ++args->cnt, start, type, name);
1724 		args->near = true;
1725 	} else if (args->near) {
1726 		args->near = false;
1727 		pr_err("\t\twhich is near\t\t%s\n", name);
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 static int sym_not_found_error(const char *sym_name, int idx)
1734 {
1735 	if (idx > 0) {
1736 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1737 		       idx, sym_name);
1738 	} else if (!idx) {
1739 		pr_err("Global symbol '%s' not found.\n", sym_name);
1740 	} else {
1741 		pr_err("Symbol '%s' not found.\n", sym_name);
1742 	}
1743 	pr_err("Note that symbols must be functions.\n");
1744 
1745 	return -EINVAL;
1746 }
1747 
1748 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1749 {
1750 	struct sym_args args = {
1751 		.name = sym_name,
1752 		.idx = idx,
1753 		.global = !idx,
1754 		.selected = idx > 0,
1755 	};
1756 	int err;
1757 
1758 	*start = 0;
1759 	*size = 0;
1760 
1761 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1762 	if (err < 0) {
1763 		pr_err("Failed to parse /proc/kallsyms\n");
1764 		return err;
1765 	}
1766 
1767 	if (args.duplicate) {
1768 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1769 		args.cnt = 0;
1770 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1771 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1772 		       sym_name);
1773 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1774 		return -EINVAL;
1775 	}
1776 
1777 	if (!args.started) {
1778 		pr_err("Kernel symbol lookup: ");
1779 		return sym_not_found_error(sym_name, idx);
1780 	}
1781 
1782 	*start = args.start;
1783 	*size = args.size;
1784 
1785 	return 0;
1786 }
1787 
1788 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1789 			       char type, u64 start)
1790 {
1791 	struct sym_args *args = arg;
1792 
1793 	if (!kallsyms__is_function(type))
1794 		return 0;
1795 
1796 	if (!args->started) {
1797 		args->started = true;
1798 		args->start = start;
1799 	}
1800 	/* Don't know exactly where the kernel ends, so we add a page */
1801 	args->size = round_up(start, page_size) + page_size - args->start;
1802 
1803 	return 0;
1804 }
1805 
1806 static int addr_filter__entire_kernel(struct addr_filter *filt)
1807 {
1808 	struct sym_args args = { .started = false };
1809 	int err;
1810 
1811 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1812 	if (err < 0 || !args.started) {
1813 		pr_err("Failed to parse /proc/kallsyms\n");
1814 		return err;
1815 	}
1816 
1817 	filt->addr = args.start;
1818 	filt->size = args.size;
1819 
1820 	return 0;
1821 }
1822 
1823 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1824 {
1825 	if (start + size >= filt->addr)
1826 		return 0;
1827 
1828 	if (filt->sym_from) {
1829 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1830 		       filt->sym_to, start, filt->sym_from, filt->addr);
1831 	} else {
1832 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1833 		       filt->sym_to, start, filt->addr);
1834 	}
1835 
1836 	return -EINVAL;
1837 }
1838 
1839 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1840 {
1841 	bool no_size = false;
1842 	u64 start, size;
1843 	int err;
1844 
1845 	if (symbol_conf.kptr_restrict) {
1846 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1847 		return -EINVAL;
1848 	}
1849 
1850 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1851 		return addr_filter__entire_kernel(filt);
1852 
1853 	if (filt->sym_from) {
1854 		err = find_kern_sym(filt->sym_from, &start, &size,
1855 				    filt->sym_from_idx);
1856 		if (err)
1857 			return err;
1858 		filt->addr = start;
1859 		if (filt->range && !filt->size && !filt->sym_to) {
1860 			filt->size = size;
1861 			no_size = !size;
1862 		}
1863 	}
1864 
1865 	if (filt->sym_to) {
1866 		err = find_kern_sym(filt->sym_to, &start, &size,
1867 				    filt->sym_to_idx);
1868 		if (err)
1869 			return err;
1870 
1871 		err = check_end_after_start(filt, start, size);
1872 		if (err)
1873 			return err;
1874 		filt->size = start + size - filt->addr;
1875 		no_size = !size;
1876 	}
1877 
1878 	/* The very last symbol in kallsyms does not imply a particular size */
1879 	if (no_size) {
1880 		pr_err("Cannot determine size of symbol '%s'\n",
1881 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1882 		return -EINVAL;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static struct dso *load_dso(const char *name)
1889 {
1890 	struct map *map;
1891 	struct dso *dso;
1892 
1893 	map = dso__new_map(name);
1894 	if (!map)
1895 		return NULL;
1896 
1897 	map__load(map);
1898 
1899 	dso = dso__get(map->dso);
1900 
1901 	map__put(map);
1902 
1903 	return dso;
1904 }
1905 
1906 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1907 			  int idx)
1908 {
1909 	/* Same name, and global or the n'th found or any */
1910 	return !arch__compare_symbol_names(name, sym->name) &&
1911 	       ((!idx && sym->binding == STB_GLOBAL) ||
1912 		(idx > 0 && ++*cnt == idx) ||
1913 		idx < 0);
1914 }
1915 
1916 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1917 {
1918 	struct symbol *sym;
1919 	bool near = false;
1920 	int cnt = 0;
1921 
1922 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1923 
1924 	sym = dso__first_symbol(dso);
1925 	while (sym) {
1926 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1927 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1928 			       ++cnt, sym->start,
1929 			       sym->binding == STB_GLOBAL ? 'g' :
1930 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1931 			       sym->name);
1932 			near = true;
1933 		} else if (near) {
1934 			near = false;
1935 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1936 		}
1937 		sym = dso__next_symbol(sym);
1938 	}
1939 
1940 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1941 	       sym_name);
1942 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1943 }
1944 
1945 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1946 			u64 *size, int idx)
1947 {
1948 	struct symbol *sym;
1949 	int cnt = 0;
1950 
1951 	*start = 0;
1952 	*size = 0;
1953 
1954 	sym = dso__first_symbol(dso);
1955 	while (sym) {
1956 		if (*start) {
1957 			if (!*size)
1958 				*size = sym->start - *start;
1959 			if (idx > 0) {
1960 				if (*size)
1961 					return 1;
1962 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1963 				print_duplicate_syms(dso, sym_name);
1964 				return -EINVAL;
1965 			}
1966 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1967 			*start = sym->start;
1968 			*size = sym->end - sym->start;
1969 		}
1970 		sym = dso__next_symbol(sym);
1971 	}
1972 
1973 	if (!*start)
1974 		return sym_not_found_error(sym_name, idx);
1975 
1976 	return 0;
1977 }
1978 
1979 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1980 {
1981 	struct symbol *first_sym = dso__first_symbol(dso);
1982 	struct symbol *last_sym = dso__last_symbol(dso);
1983 
1984 	if (!first_sym || !last_sym) {
1985 		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1986 		       filt->filename);
1987 		return -EINVAL;
1988 	}
1989 
1990 	filt->addr = first_sym->start;
1991 	filt->size = last_sym->end - first_sym->start;
1992 
1993 	return 0;
1994 }
1995 
1996 static int addr_filter__resolve_syms(struct addr_filter *filt)
1997 {
1998 	u64 start, size;
1999 	struct dso *dso;
2000 	int err = 0;
2001 
2002 	if (!filt->sym_from && !filt->sym_to)
2003 		return 0;
2004 
2005 	if (!filt->filename)
2006 		return addr_filter__resolve_kernel_syms(filt);
2007 
2008 	dso = load_dso(filt->filename);
2009 	if (!dso) {
2010 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2011 		return -EINVAL;
2012 	}
2013 
2014 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2015 		err = addr_filter__entire_dso(filt, dso);
2016 		goto put_dso;
2017 	}
2018 
2019 	if (filt->sym_from) {
2020 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2021 				   filt->sym_from_idx);
2022 		if (err)
2023 			goto put_dso;
2024 		filt->addr = start;
2025 		if (filt->range && !filt->size && !filt->sym_to)
2026 			filt->size = size;
2027 	}
2028 
2029 	if (filt->sym_to) {
2030 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2031 				   filt->sym_to_idx);
2032 		if (err)
2033 			goto put_dso;
2034 
2035 		err = check_end_after_start(filt, start, size);
2036 		if (err)
2037 			return err;
2038 
2039 		filt->size = start + size - filt->addr;
2040 	}
2041 
2042 put_dso:
2043 	dso__put(dso);
2044 
2045 	return err;
2046 }
2047 
2048 static char *addr_filter__to_str(struct addr_filter *filt)
2049 {
2050 	char filename_buf[PATH_MAX];
2051 	const char *at = "";
2052 	const char *fn = "";
2053 	char *filter;
2054 	int err;
2055 
2056 	if (filt->filename) {
2057 		at = "@";
2058 		fn = realpath(filt->filename, filename_buf);
2059 		if (!fn)
2060 			return NULL;
2061 	}
2062 
2063 	if (filt->range) {
2064 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2065 			       filt->action, filt->addr, filt->size, at, fn);
2066 	} else {
2067 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2068 			       filt->action, filt->addr, at, fn);
2069 	}
2070 
2071 	return err < 0 ? NULL : filter;
2072 }
2073 
2074 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2075 			     int max_nr)
2076 {
2077 	struct addr_filters filts;
2078 	struct addr_filter *filt;
2079 	int err;
2080 
2081 	addr_filters__init(&filts);
2082 
2083 	err = addr_filters__parse_bare_filter(&filts, filter);
2084 	if (err)
2085 		goto out_exit;
2086 
2087 	if (filts.cnt > max_nr) {
2088 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2089 		       filts.cnt, max_nr);
2090 		err = -EINVAL;
2091 		goto out_exit;
2092 	}
2093 
2094 	list_for_each_entry(filt, &filts.head, list) {
2095 		char *new_filter;
2096 
2097 		err = addr_filter__resolve_syms(filt);
2098 		if (err)
2099 			goto out_exit;
2100 
2101 		new_filter = addr_filter__to_str(filt);
2102 		if (!new_filter) {
2103 			err = -ENOMEM;
2104 			goto out_exit;
2105 		}
2106 
2107 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2108 			err = -ENOMEM;
2109 			goto out_exit;
2110 		}
2111 	}
2112 
2113 out_exit:
2114 	addr_filters__exit(&filts);
2115 
2116 	if (err) {
2117 		pr_err("Failed to parse address filter: '%s'\n", filter);
2118 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2119 		pr_err("Where multiple filters are separated by space or comma.\n");
2120 	}
2121 
2122 	return err;
2123 }
2124 
2125 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2126 {
2127 	struct perf_pmu *pmu = NULL;
2128 
2129 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2130 		if (pmu->type == evsel->attr.type)
2131 			break;
2132 	}
2133 
2134 	return pmu;
2135 }
2136 
2137 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2138 {
2139 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2140 	int nr_addr_filters = 0;
2141 
2142 	if (!pmu)
2143 		return 0;
2144 
2145 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2146 
2147 	return nr_addr_filters;
2148 }
2149 
2150 int auxtrace_parse_filters(struct perf_evlist *evlist)
2151 {
2152 	struct perf_evsel *evsel;
2153 	char *filter;
2154 	int err, max_nr;
2155 
2156 	evlist__for_each_entry(evlist, evsel) {
2157 		filter = evsel->filter;
2158 		max_nr = perf_evsel__nr_addr_filter(evsel);
2159 		if (!filter || !max_nr)
2160 			continue;
2161 		evsel->filter = NULL;
2162 		err = parse_addr_filter(evsel, filter, max_nr);
2163 		free(filter);
2164 		if (err)
2165 			return err;
2166 		pr_debug("Address filter: %s\n", evsel->filter);
2167 	}
2168 
2169 	return 0;
2170 }
2171