xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 930c429a)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35 
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47 
48 #include <linux/hash.h>
49 
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54 
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59 
60 #include "sane_ctype.h"
61 #include "symbol/kallsyms.h"
62 
63 static bool auxtrace__dont_decode(struct perf_session *session)
64 {
65 	return !session->itrace_synth_opts ||
66 	       session->itrace_synth_opts->dont_decode;
67 }
68 
69 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
70 			struct auxtrace_mmap_params *mp,
71 			void *userpg, int fd)
72 {
73 	struct perf_event_mmap_page *pc = userpg;
74 
75 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
76 
77 	mm->userpg = userpg;
78 	mm->mask = mp->mask;
79 	mm->len = mp->len;
80 	mm->prev = 0;
81 	mm->idx = mp->idx;
82 	mm->tid = mp->tid;
83 	mm->cpu = mp->cpu;
84 
85 	if (!mp->len) {
86 		mm->base = NULL;
87 		return 0;
88 	}
89 
90 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
91 	pr_err("Cannot use AUX area tracing mmaps\n");
92 	return -1;
93 #endif
94 
95 	pc->aux_offset = mp->offset;
96 	pc->aux_size = mp->len;
97 
98 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
99 	if (mm->base == MAP_FAILED) {
100 		pr_debug2("failed to mmap AUX area\n");
101 		mm->base = NULL;
102 		return -1;
103 	}
104 
105 	return 0;
106 }
107 
108 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
109 {
110 	if (mm->base) {
111 		munmap(mm->base, mm->len);
112 		mm->base = NULL;
113 	}
114 }
115 
116 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
117 				off_t auxtrace_offset,
118 				unsigned int auxtrace_pages,
119 				bool auxtrace_overwrite)
120 {
121 	if (auxtrace_pages) {
122 		mp->offset = auxtrace_offset;
123 		mp->len = auxtrace_pages * (size_t)page_size;
124 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
125 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
126 		pr_debug2("AUX area mmap length %zu\n", mp->len);
127 	} else {
128 		mp->len = 0;
129 	}
130 }
131 
132 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
133 				   struct perf_evlist *evlist, int idx,
134 				   bool per_cpu)
135 {
136 	mp->idx = idx;
137 
138 	if (per_cpu) {
139 		mp->cpu = evlist->cpus->map[idx];
140 		if (evlist->threads)
141 			mp->tid = thread_map__pid(evlist->threads, 0);
142 		else
143 			mp->tid = -1;
144 	} else {
145 		mp->cpu = -1;
146 		mp->tid = thread_map__pid(evlist->threads, idx);
147 	}
148 }
149 
150 #define AUXTRACE_INIT_NR_QUEUES	32
151 
152 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
153 {
154 	struct auxtrace_queue *queue_array;
155 	unsigned int max_nr_queues, i;
156 
157 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
158 	if (nr_queues > max_nr_queues)
159 		return NULL;
160 
161 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
162 	if (!queue_array)
163 		return NULL;
164 
165 	for (i = 0; i < nr_queues; i++) {
166 		INIT_LIST_HEAD(&queue_array[i].head);
167 		queue_array[i].priv = NULL;
168 	}
169 
170 	return queue_array;
171 }
172 
173 int auxtrace_queues__init(struct auxtrace_queues *queues)
174 {
175 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
176 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
177 	if (!queues->queue_array)
178 		return -ENOMEM;
179 	return 0;
180 }
181 
182 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
183 				 unsigned int new_nr_queues)
184 {
185 	unsigned int nr_queues = queues->nr_queues;
186 	struct auxtrace_queue *queue_array;
187 	unsigned int i;
188 
189 	if (!nr_queues)
190 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
191 
192 	while (nr_queues && nr_queues < new_nr_queues)
193 		nr_queues <<= 1;
194 
195 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
196 		return -EINVAL;
197 
198 	queue_array = auxtrace_alloc_queue_array(nr_queues);
199 	if (!queue_array)
200 		return -ENOMEM;
201 
202 	for (i = 0; i < queues->nr_queues; i++) {
203 		list_splice_tail(&queues->queue_array[i].head,
204 				 &queue_array[i].head);
205 		queue_array[i].priv = queues->queue_array[i].priv;
206 	}
207 
208 	queues->nr_queues = nr_queues;
209 	queues->queue_array = queue_array;
210 
211 	return 0;
212 }
213 
214 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
215 {
216 	int fd = perf_data__fd(session->data);
217 	void *p;
218 	ssize_t ret;
219 
220 	if (size > SSIZE_MAX)
221 		return NULL;
222 
223 	p = malloc(size);
224 	if (!p)
225 		return NULL;
226 
227 	ret = readn(fd, p, size);
228 	if (ret != (ssize_t)size) {
229 		free(p);
230 		return NULL;
231 	}
232 
233 	return p;
234 }
235 
236 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
237 				       unsigned int idx,
238 				       struct auxtrace_buffer *buffer)
239 {
240 	struct auxtrace_queue *queue;
241 	int err;
242 
243 	if (idx >= queues->nr_queues) {
244 		err = auxtrace_queues__grow(queues, idx + 1);
245 		if (err)
246 			return err;
247 	}
248 
249 	queue = &queues->queue_array[idx];
250 
251 	if (!queue->set) {
252 		queue->set = true;
253 		queue->tid = buffer->tid;
254 		queue->cpu = buffer->cpu;
255 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
256 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
257 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
258 		return -EINVAL;
259 	}
260 
261 	buffer->buffer_nr = queues->next_buffer_nr++;
262 
263 	list_add_tail(&buffer->list, &queue->head);
264 
265 	queues->new_data = true;
266 	queues->populated = true;
267 
268 	return 0;
269 }
270 
271 /* Limit buffers to 32MiB on 32-bit */
272 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
273 
274 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
275 					 unsigned int idx,
276 					 struct auxtrace_buffer *buffer)
277 {
278 	u64 sz = buffer->size;
279 	bool consecutive = false;
280 	struct auxtrace_buffer *b;
281 	int err;
282 
283 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
284 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
285 		if (!b)
286 			return -ENOMEM;
287 		b->size = BUFFER_LIMIT_FOR_32_BIT;
288 		b->consecutive = consecutive;
289 		err = auxtrace_queues__add_buffer(queues, idx, b);
290 		if (err) {
291 			auxtrace_buffer__free(b);
292 			return err;
293 		}
294 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
295 		sz -= BUFFER_LIMIT_FOR_32_BIT;
296 		consecutive = true;
297 	}
298 
299 	buffer->size = sz;
300 	buffer->consecutive = consecutive;
301 
302 	return 0;
303 }
304 
305 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
306 					     struct perf_session *session,
307 					     unsigned int idx,
308 					     struct auxtrace_buffer *buffer)
309 {
310 	if (session->one_mmap) {
311 		buffer->data = buffer->data_offset - session->one_mmap_offset +
312 			       session->one_mmap_addr;
313 	} else if (perf_data__is_pipe(session->data)) {
314 		buffer->data = auxtrace_copy_data(buffer->size, session);
315 		if (!buffer->data)
316 			return -ENOMEM;
317 		buffer->data_needs_freeing = true;
318 	} else if (BITS_PER_LONG == 32 &&
319 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
320 		int err;
321 
322 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
323 		if (err)
324 			return err;
325 	}
326 
327 	return auxtrace_queues__add_buffer(queues, idx, buffer);
328 }
329 
330 static bool filter_cpu(struct perf_session *session, int cpu)
331 {
332 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
333 
334 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
335 }
336 
337 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
338 			       struct perf_session *session,
339 			       union perf_event *event, off_t data_offset,
340 			       struct auxtrace_buffer **buffer_ptr)
341 {
342 	struct auxtrace_buffer *buffer;
343 	unsigned int idx;
344 	int err;
345 
346 	if (filter_cpu(session, event->auxtrace.cpu))
347 		return 0;
348 
349 	buffer = zalloc(sizeof(struct auxtrace_buffer));
350 	if (!buffer)
351 		return -ENOMEM;
352 
353 	buffer->pid = -1;
354 	buffer->tid = event->auxtrace.tid;
355 	buffer->cpu = event->auxtrace.cpu;
356 	buffer->data_offset = data_offset;
357 	buffer->offset = event->auxtrace.offset;
358 	buffer->reference = event->auxtrace.reference;
359 	buffer->size = event->auxtrace.size;
360 	idx = event->auxtrace.idx;
361 
362 	err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
363 	if (err)
364 		goto out_err;
365 
366 	if (buffer_ptr)
367 		*buffer_ptr = buffer;
368 
369 	return 0;
370 
371 out_err:
372 	auxtrace_buffer__free(buffer);
373 	return err;
374 }
375 
376 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
377 					      struct perf_session *session,
378 					      off_t file_offset, size_t sz)
379 {
380 	union perf_event *event;
381 	int err;
382 	char buf[PERF_SAMPLE_MAX_SIZE];
383 
384 	err = perf_session__peek_event(session, file_offset, buf,
385 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
386 	if (err)
387 		return err;
388 
389 	if (event->header.type == PERF_RECORD_AUXTRACE) {
390 		if (event->header.size < sizeof(struct auxtrace_event) ||
391 		    event->header.size != sz) {
392 			err = -EINVAL;
393 			goto out;
394 		}
395 		file_offset += event->header.size;
396 		err = auxtrace_queues__add_event(queues, session, event,
397 						 file_offset, NULL);
398 	}
399 out:
400 	return err;
401 }
402 
403 void auxtrace_queues__free(struct auxtrace_queues *queues)
404 {
405 	unsigned int i;
406 
407 	for (i = 0; i < queues->nr_queues; i++) {
408 		while (!list_empty(&queues->queue_array[i].head)) {
409 			struct auxtrace_buffer *buffer;
410 
411 			buffer = list_entry(queues->queue_array[i].head.next,
412 					    struct auxtrace_buffer, list);
413 			list_del(&buffer->list);
414 			auxtrace_buffer__free(buffer);
415 		}
416 	}
417 
418 	zfree(&queues->queue_array);
419 	queues->nr_queues = 0;
420 }
421 
422 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
423 			     unsigned int pos, unsigned int queue_nr,
424 			     u64 ordinal)
425 {
426 	unsigned int parent;
427 
428 	while (pos) {
429 		parent = (pos - 1) >> 1;
430 		if (heap_array[parent].ordinal <= ordinal)
431 			break;
432 		heap_array[pos] = heap_array[parent];
433 		pos = parent;
434 	}
435 	heap_array[pos].queue_nr = queue_nr;
436 	heap_array[pos].ordinal = ordinal;
437 }
438 
439 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
440 		       u64 ordinal)
441 {
442 	struct auxtrace_heap_item *heap_array;
443 
444 	if (queue_nr >= heap->heap_sz) {
445 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
446 
447 		while (heap_sz <= queue_nr)
448 			heap_sz <<= 1;
449 		heap_array = realloc(heap->heap_array,
450 				     heap_sz * sizeof(struct auxtrace_heap_item));
451 		if (!heap_array)
452 			return -ENOMEM;
453 		heap->heap_array = heap_array;
454 		heap->heap_sz = heap_sz;
455 	}
456 
457 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
458 
459 	return 0;
460 }
461 
462 void auxtrace_heap__free(struct auxtrace_heap *heap)
463 {
464 	zfree(&heap->heap_array);
465 	heap->heap_cnt = 0;
466 	heap->heap_sz = 0;
467 }
468 
469 void auxtrace_heap__pop(struct auxtrace_heap *heap)
470 {
471 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
472 	struct auxtrace_heap_item *heap_array;
473 
474 	if (!heap_cnt)
475 		return;
476 
477 	heap->heap_cnt -= 1;
478 
479 	heap_array = heap->heap_array;
480 
481 	pos = 0;
482 	while (1) {
483 		unsigned int left, right;
484 
485 		left = (pos << 1) + 1;
486 		if (left >= heap_cnt)
487 			break;
488 		right = left + 1;
489 		if (right >= heap_cnt) {
490 			heap_array[pos] = heap_array[left];
491 			return;
492 		}
493 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
494 			heap_array[pos] = heap_array[left];
495 			pos = left;
496 		} else {
497 			heap_array[pos] = heap_array[right];
498 			pos = right;
499 		}
500 	}
501 
502 	last = heap_cnt - 1;
503 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
504 			 heap_array[last].ordinal);
505 }
506 
507 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
508 				       struct perf_evlist *evlist)
509 {
510 	if (itr)
511 		return itr->info_priv_size(itr, evlist);
512 	return 0;
513 }
514 
515 static int auxtrace_not_supported(void)
516 {
517 	pr_err("AUX area tracing is not supported on this architecture\n");
518 	return -EINVAL;
519 }
520 
521 int auxtrace_record__info_fill(struct auxtrace_record *itr,
522 			       struct perf_session *session,
523 			       struct auxtrace_info_event *auxtrace_info,
524 			       size_t priv_size)
525 {
526 	if (itr)
527 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
528 	return auxtrace_not_supported();
529 }
530 
531 void auxtrace_record__free(struct auxtrace_record *itr)
532 {
533 	if (itr)
534 		itr->free(itr);
535 }
536 
537 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
538 {
539 	if (itr && itr->snapshot_start)
540 		return itr->snapshot_start(itr);
541 	return 0;
542 }
543 
544 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
545 {
546 	if (itr && itr->snapshot_finish)
547 		return itr->snapshot_finish(itr);
548 	return 0;
549 }
550 
551 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
552 				   struct auxtrace_mmap *mm,
553 				   unsigned char *data, u64 *head, u64 *old)
554 {
555 	if (itr && itr->find_snapshot)
556 		return itr->find_snapshot(itr, idx, mm, data, head, old);
557 	return 0;
558 }
559 
560 int auxtrace_record__options(struct auxtrace_record *itr,
561 			     struct perf_evlist *evlist,
562 			     struct record_opts *opts)
563 {
564 	if (itr)
565 		return itr->recording_options(itr, evlist, opts);
566 	return 0;
567 }
568 
569 u64 auxtrace_record__reference(struct auxtrace_record *itr)
570 {
571 	if (itr)
572 		return itr->reference(itr);
573 	return 0;
574 }
575 
576 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
577 				    struct record_opts *opts, const char *str)
578 {
579 	if (!str)
580 		return 0;
581 
582 	if (itr)
583 		return itr->parse_snapshot_options(itr, opts, str);
584 
585 	pr_err("No AUX area tracing to snapshot\n");
586 	return -EINVAL;
587 }
588 
589 struct auxtrace_record *__weak
590 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
591 {
592 	*err = 0;
593 	return NULL;
594 }
595 
596 static int auxtrace_index__alloc(struct list_head *head)
597 {
598 	struct auxtrace_index *auxtrace_index;
599 
600 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
601 	if (!auxtrace_index)
602 		return -ENOMEM;
603 
604 	auxtrace_index->nr = 0;
605 	INIT_LIST_HEAD(&auxtrace_index->list);
606 
607 	list_add_tail(&auxtrace_index->list, head);
608 
609 	return 0;
610 }
611 
612 void auxtrace_index__free(struct list_head *head)
613 {
614 	struct auxtrace_index *auxtrace_index, *n;
615 
616 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
617 		list_del(&auxtrace_index->list);
618 		free(auxtrace_index);
619 	}
620 }
621 
622 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
623 {
624 	struct auxtrace_index *auxtrace_index;
625 	int err;
626 
627 	if (list_empty(head)) {
628 		err = auxtrace_index__alloc(head);
629 		if (err)
630 			return NULL;
631 	}
632 
633 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
634 
635 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
636 		err = auxtrace_index__alloc(head);
637 		if (err)
638 			return NULL;
639 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
640 					    list);
641 	}
642 
643 	return auxtrace_index;
644 }
645 
646 int auxtrace_index__auxtrace_event(struct list_head *head,
647 				   union perf_event *event, off_t file_offset)
648 {
649 	struct auxtrace_index *auxtrace_index;
650 	size_t nr;
651 
652 	auxtrace_index = auxtrace_index__last(head);
653 	if (!auxtrace_index)
654 		return -ENOMEM;
655 
656 	nr = auxtrace_index->nr;
657 	auxtrace_index->entries[nr].file_offset = file_offset;
658 	auxtrace_index->entries[nr].sz = event->header.size;
659 	auxtrace_index->nr += 1;
660 
661 	return 0;
662 }
663 
664 static int auxtrace_index__do_write(int fd,
665 				    struct auxtrace_index *auxtrace_index)
666 {
667 	struct auxtrace_index_entry ent;
668 	size_t i;
669 
670 	for (i = 0; i < auxtrace_index->nr; i++) {
671 		ent.file_offset = auxtrace_index->entries[i].file_offset;
672 		ent.sz = auxtrace_index->entries[i].sz;
673 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
674 			return -errno;
675 	}
676 	return 0;
677 }
678 
679 int auxtrace_index__write(int fd, struct list_head *head)
680 {
681 	struct auxtrace_index *auxtrace_index;
682 	u64 total = 0;
683 	int err;
684 
685 	list_for_each_entry(auxtrace_index, head, list)
686 		total += auxtrace_index->nr;
687 
688 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
689 		return -errno;
690 
691 	list_for_each_entry(auxtrace_index, head, list) {
692 		err = auxtrace_index__do_write(fd, auxtrace_index);
693 		if (err)
694 			return err;
695 	}
696 
697 	return 0;
698 }
699 
700 static int auxtrace_index__process_entry(int fd, struct list_head *head,
701 					 bool needs_swap)
702 {
703 	struct auxtrace_index *auxtrace_index;
704 	struct auxtrace_index_entry ent;
705 	size_t nr;
706 
707 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
708 		return -1;
709 
710 	auxtrace_index = auxtrace_index__last(head);
711 	if (!auxtrace_index)
712 		return -1;
713 
714 	nr = auxtrace_index->nr;
715 	if (needs_swap) {
716 		auxtrace_index->entries[nr].file_offset =
717 						bswap_64(ent.file_offset);
718 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
719 	} else {
720 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
721 		auxtrace_index->entries[nr].sz = ent.sz;
722 	}
723 
724 	auxtrace_index->nr = nr + 1;
725 
726 	return 0;
727 }
728 
729 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
730 			    bool needs_swap)
731 {
732 	struct list_head *head = &session->auxtrace_index;
733 	u64 nr;
734 
735 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
736 		return -1;
737 
738 	if (needs_swap)
739 		nr = bswap_64(nr);
740 
741 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
742 		return -1;
743 
744 	while (nr--) {
745 		int err;
746 
747 		err = auxtrace_index__process_entry(fd, head, needs_swap);
748 		if (err)
749 			return -1;
750 	}
751 
752 	return 0;
753 }
754 
755 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
756 						struct perf_session *session,
757 						struct auxtrace_index_entry *ent)
758 {
759 	return auxtrace_queues__add_indexed_event(queues, session,
760 						  ent->file_offset, ent->sz);
761 }
762 
763 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
764 				   struct perf_session *session)
765 {
766 	struct auxtrace_index *auxtrace_index;
767 	struct auxtrace_index_entry *ent;
768 	size_t i;
769 	int err;
770 
771 	if (auxtrace__dont_decode(session))
772 		return 0;
773 
774 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
775 		for (i = 0; i < auxtrace_index->nr; i++) {
776 			ent = &auxtrace_index->entries[i];
777 			err = auxtrace_queues__process_index_entry(queues,
778 								   session,
779 								   ent);
780 			if (err)
781 				return err;
782 		}
783 	}
784 	return 0;
785 }
786 
787 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
788 					      struct auxtrace_buffer *buffer)
789 {
790 	if (buffer) {
791 		if (list_is_last(&buffer->list, &queue->head))
792 			return NULL;
793 		return list_entry(buffer->list.next, struct auxtrace_buffer,
794 				  list);
795 	} else {
796 		if (list_empty(&queue->head))
797 			return NULL;
798 		return list_entry(queue->head.next, struct auxtrace_buffer,
799 				  list);
800 	}
801 }
802 
803 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
804 {
805 	size_t adj = buffer->data_offset & (page_size - 1);
806 	size_t size = buffer->size + adj;
807 	off_t file_offset = buffer->data_offset - adj;
808 	void *addr;
809 
810 	if (buffer->data)
811 		return buffer->data;
812 
813 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
814 	if (addr == MAP_FAILED)
815 		return NULL;
816 
817 	buffer->mmap_addr = addr;
818 	buffer->mmap_size = size;
819 
820 	buffer->data = addr + adj;
821 
822 	return buffer->data;
823 }
824 
825 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
826 {
827 	if (!buffer->data || !buffer->mmap_addr)
828 		return;
829 	munmap(buffer->mmap_addr, buffer->mmap_size);
830 	buffer->mmap_addr = NULL;
831 	buffer->mmap_size = 0;
832 	buffer->data = NULL;
833 	buffer->use_data = NULL;
834 }
835 
836 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
837 {
838 	auxtrace_buffer__put_data(buffer);
839 	if (buffer->data_needs_freeing) {
840 		buffer->data_needs_freeing = false;
841 		zfree(&buffer->data);
842 		buffer->use_data = NULL;
843 		buffer->size = 0;
844 	}
845 }
846 
847 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
848 {
849 	auxtrace_buffer__drop_data(buffer);
850 	free(buffer);
851 }
852 
853 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
854 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
855 			  const char *msg)
856 {
857 	size_t size;
858 
859 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
860 
861 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
862 	auxtrace_error->type = type;
863 	auxtrace_error->code = code;
864 	auxtrace_error->cpu = cpu;
865 	auxtrace_error->pid = pid;
866 	auxtrace_error->tid = tid;
867 	auxtrace_error->ip = ip;
868 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
869 
870 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
871 	       strlen(auxtrace_error->msg) + 1;
872 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
873 }
874 
875 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
876 					 struct perf_tool *tool,
877 					 struct perf_session *session,
878 					 perf_event__handler_t process)
879 {
880 	union perf_event *ev;
881 	size_t priv_size;
882 	int err;
883 
884 	pr_debug2("Synthesizing auxtrace information\n");
885 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
886 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
887 	if (!ev)
888 		return -ENOMEM;
889 
890 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
891 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
892 					priv_size;
893 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
894 					 priv_size);
895 	if (err)
896 		goto out_free;
897 
898 	err = process(tool, ev, NULL, NULL);
899 out_free:
900 	free(ev);
901 	return err;
902 }
903 
904 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
905 				      union perf_event *event,
906 				      struct perf_session *session)
907 {
908 	enum auxtrace_type type = event->auxtrace_info.type;
909 
910 	if (dump_trace)
911 		fprintf(stdout, " type: %u\n", type);
912 
913 	switch (type) {
914 	case PERF_AUXTRACE_INTEL_PT:
915 		return intel_pt_process_auxtrace_info(event, session);
916 	case PERF_AUXTRACE_INTEL_BTS:
917 		return intel_bts_process_auxtrace_info(event, session);
918 	case PERF_AUXTRACE_ARM_SPE:
919 		return arm_spe_process_auxtrace_info(event, session);
920 	case PERF_AUXTRACE_CS_ETM:
921 		return cs_etm__process_auxtrace_info(event, session);
922 	case PERF_AUXTRACE_UNKNOWN:
923 	default:
924 		return -EINVAL;
925 	}
926 }
927 
928 s64 perf_event__process_auxtrace(struct perf_tool *tool,
929 				 union perf_event *event,
930 				 struct perf_session *session)
931 {
932 	s64 err;
933 
934 	if (dump_trace)
935 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
936 			event->auxtrace.size, event->auxtrace.offset,
937 			event->auxtrace.reference, event->auxtrace.idx,
938 			event->auxtrace.tid, event->auxtrace.cpu);
939 
940 	if (auxtrace__dont_decode(session))
941 		return event->auxtrace.size;
942 
943 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
944 		return -EINVAL;
945 
946 	err = session->auxtrace->process_auxtrace_event(session, event, tool);
947 	if (err < 0)
948 		return err;
949 
950 	return event->auxtrace.size;
951 }
952 
953 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
954 #define PERF_ITRACE_DEFAULT_PERIOD		100000
955 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
956 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
957 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
958 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
959 
960 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
961 {
962 	synth_opts->instructions = true;
963 	synth_opts->branches = true;
964 	synth_opts->transactions = true;
965 	synth_opts->ptwrites = true;
966 	synth_opts->pwr_events = true;
967 	synth_opts->errors = true;
968 	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
969 	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
970 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
971 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
972 	synth_opts->initial_skip = 0;
973 }
974 
975 /*
976  * Please check tools/perf/Documentation/perf-script.txt for information
977  * about the options parsed here, which is introduced after this cset,
978  * when support in 'perf script' for these options is introduced.
979  */
980 int itrace_parse_synth_opts(const struct option *opt, const char *str,
981 			    int unset)
982 {
983 	struct itrace_synth_opts *synth_opts = opt->value;
984 	const char *p;
985 	char *endptr;
986 	bool period_type_set = false;
987 	bool period_set = false;
988 
989 	synth_opts->set = true;
990 
991 	if (unset) {
992 		synth_opts->dont_decode = true;
993 		return 0;
994 	}
995 
996 	if (!str) {
997 		itrace_synth_opts__set_default(synth_opts);
998 		return 0;
999 	}
1000 
1001 	for (p = str; *p;) {
1002 		switch (*p++) {
1003 		case 'i':
1004 			synth_opts->instructions = true;
1005 			while (*p == ' ' || *p == ',')
1006 				p += 1;
1007 			if (isdigit(*p)) {
1008 				synth_opts->period = strtoull(p, &endptr, 10);
1009 				period_set = true;
1010 				p = endptr;
1011 				while (*p == ' ' || *p == ',')
1012 					p += 1;
1013 				switch (*p++) {
1014 				case 'i':
1015 					synth_opts->period_type =
1016 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1017 					period_type_set = true;
1018 					break;
1019 				case 't':
1020 					synth_opts->period_type =
1021 						PERF_ITRACE_PERIOD_TICKS;
1022 					period_type_set = true;
1023 					break;
1024 				case 'm':
1025 					synth_opts->period *= 1000;
1026 					/* Fall through */
1027 				case 'u':
1028 					synth_opts->period *= 1000;
1029 					/* Fall through */
1030 				case 'n':
1031 					if (*p++ != 's')
1032 						goto out_err;
1033 					synth_opts->period_type =
1034 						PERF_ITRACE_PERIOD_NANOSECS;
1035 					period_type_set = true;
1036 					break;
1037 				case '\0':
1038 					goto out;
1039 				default:
1040 					goto out_err;
1041 				}
1042 			}
1043 			break;
1044 		case 'b':
1045 			synth_opts->branches = true;
1046 			break;
1047 		case 'x':
1048 			synth_opts->transactions = true;
1049 			break;
1050 		case 'w':
1051 			synth_opts->ptwrites = true;
1052 			break;
1053 		case 'p':
1054 			synth_opts->pwr_events = true;
1055 			break;
1056 		case 'e':
1057 			synth_opts->errors = true;
1058 			break;
1059 		case 'd':
1060 			synth_opts->log = true;
1061 			break;
1062 		case 'c':
1063 			synth_opts->branches = true;
1064 			synth_opts->calls = true;
1065 			break;
1066 		case 'r':
1067 			synth_opts->branches = true;
1068 			synth_opts->returns = true;
1069 			break;
1070 		case 'g':
1071 			synth_opts->callchain = true;
1072 			synth_opts->callchain_sz =
1073 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1074 			while (*p == ' ' || *p == ',')
1075 				p += 1;
1076 			if (isdigit(*p)) {
1077 				unsigned int val;
1078 
1079 				val = strtoul(p, &endptr, 10);
1080 				p = endptr;
1081 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1082 					goto out_err;
1083 				synth_opts->callchain_sz = val;
1084 			}
1085 			break;
1086 		case 'l':
1087 			synth_opts->last_branch = true;
1088 			synth_opts->last_branch_sz =
1089 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1090 			while (*p == ' ' || *p == ',')
1091 				p += 1;
1092 			if (isdigit(*p)) {
1093 				unsigned int val;
1094 
1095 				val = strtoul(p, &endptr, 10);
1096 				p = endptr;
1097 				if (!val ||
1098 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1099 					goto out_err;
1100 				synth_opts->last_branch_sz = val;
1101 			}
1102 			break;
1103 		case 's':
1104 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1105 			if (p == endptr)
1106 				goto out_err;
1107 			p = endptr;
1108 			break;
1109 		case ' ':
1110 		case ',':
1111 			break;
1112 		default:
1113 			goto out_err;
1114 		}
1115 	}
1116 out:
1117 	if (synth_opts->instructions) {
1118 		if (!period_type_set)
1119 			synth_opts->period_type =
1120 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1121 		if (!period_set)
1122 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1123 	}
1124 
1125 	return 0;
1126 
1127 out_err:
1128 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1129 	return -EINVAL;
1130 }
1131 
1132 static const char * const auxtrace_error_type_name[] = {
1133 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1134 };
1135 
1136 static const char *auxtrace_error_name(int type)
1137 {
1138 	const char *error_type_name = NULL;
1139 
1140 	if (type < PERF_AUXTRACE_ERROR_MAX)
1141 		error_type_name = auxtrace_error_type_name[type];
1142 	if (!error_type_name)
1143 		error_type_name = "unknown AUX";
1144 	return error_type_name;
1145 }
1146 
1147 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1148 {
1149 	struct auxtrace_error_event *e = &event->auxtrace_error;
1150 	int ret;
1151 
1152 	ret = fprintf(fp, " %s error type %u",
1153 		      auxtrace_error_name(e->type), e->type);
1154 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1155 		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1156 	return ret;
1157 }
1158 
1159 void perf_session__auxtrace_error_inc(struct perf_session *session,
1160 				      union perf_event *event)
1161 {
1162 	struct auxtrace_error_event *e = &event->auxtrace_error;
1163 
1164 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1165 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1166 }
1167 
1168 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1169 {
1170 	int i;
1171 
1172 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1173 		if (!stats->nr_auxtrace_errors[i])
1174 			continue;
1175 		ui__warning("%u %s errors\n",
1176 			    stats->nr_auxtrace_errors[i],
1177 			    auxtrace_error_name(i));
1178 	}
1179 }
1180 
1181 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1182 				       union perf_event *event,
1183 				       struct perf_session *session)
1184 {
1185 	if (auxtrace__dont_decode(session))
1186 		return 0;
1187 
1188 	perf_event__fprintf_auxtrace_error(event, stdout);
1189 	return 0;
1190 }
1191 
1192 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1193 				 struct auxtrace_record *itr,
1194 				 struct perf_tool *tool, process_auxtrace_t fn,
1195 				 bool snapshot, size_t snapshot_size)
1196 {
1197 	u64 head, old = mm->prev, offset, ref;
1198 	unsigned char *data = mm->base;
1199 	size_t size, head_off, old_off, len1, len2, padding;
1200 	union perf_event ev;
1201 	void *data1, *data2;
1202 
1203 	if (snapshot) {
1204 		head = auxtrace_mmap__read_snapshot_head(mm);
1205 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1206 						   &head, &old))
1207 			return -1;
1208 	} else {
1209 		head = auxtrace_mmap__read_head(mm);
1210 	}
1211 
1212 	if (old == head)
1213 		return 0;
1214 
1215 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1216 		  mm->idx, old, head, head - old);
1217 
1218 	if (mm->mask) {
1219 		head_off = head & mm->mask;
1220 		old_off = old & mm->mask;
1221 	} else {
1222 		head_off = head % mm->len;
1223 		old_off = old % mm->len;
1224 	}
1225 
1226 	if (head_off > old_off)
1227 		size = head_off - old_off;
1228 	else
1229 		size = mm->len - (old_off - head_off);
1230 
1231 	if (snapshot && size > snapshot_size)
1232 		size = snapshot_size;
1233 
1234 	ref = auxtrace_record__reference(itr);
1235 
1236 	if (head > old || size <= head || mm->mask) {
1237 		offset = head - size;
1238 	} else {
1239 		/*
1240 		 * When the buffer size is not a power of 2, 'head' wraps at the
1241 		 * highest multiple of the buffer size, so we have to subtract
1242 		 * the remainder here.
1243 		 */
1244 		u64 rem = (0ULL - mm->len) % mm->len;
1245 
1246 		offset = head - size - rem;
1247 	}
1248 
1249 	if (size > head_off) {
1250 		len1 = size - head_off;
1251 		data1 = &data[mm->len - len1];
1252 		len2 = head_off;
1253 		data2 = &data[0];
1254 	} else {
1255 		len1 = size;
1256 		data1 = &data[head_off - len1];
1257 		len2 = 0;
1258 		data2 = NULL;
1259 	}
1260 
1261 	if (itr->alignment) {
1262 		unsigned int unwanted = len1 % itr->alignment;
1263 
1264 		len1 -= unwanted;
1265 		size -= unwanted;
1266 	}
1267 
1268 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1269 	padding = size & 7;
1270 	if (padding)
1271 		padding = 8 - padding;
1272 
1273 	memset(&ev, 0, sizeof(ev));
1274 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1275 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1276 	ev.auxtrace.size = size + padding;
1277 	ev.auxtrace.offset = offset;
1278 	ev.auxtrace.reference = ref;
1279 	ev.auxtrace.idx = mm->idx;
1280 	ev.auxtrace.tid = mm->tid;
1281 	ev.auxtrace.cpu = mm->cpu;
1282 
1283 	if (fn(tool, &ev, data1, len1, data2, len2))
1284 		return -1;
1285 
1286 	mm->prev = head;
1287 
1288 	if (!snapshot) {
1289 		auxtrace_mmap__write_tail(mm, head);
1290 		if (itr->read_finish) {
1291 			int err;
1292 
1293 			err = itr->read_finish(itr, mm->idx);
1294 			if (err < 0)
1295 				return err;
1296 		}
1297 	}
1298 
1299 	return 1;
1300 }
1301 
1302 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1303 			struct perf_tool *tool, process_auxtrace_t fn)
1304 {
1305 	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1306 }
1307 
1308 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1309 				 struct auxtrace_record *itr,
1310 				 struct perf_tool *tool, process_auxtrace_t fn,
1311 				 size_t snapshot_size)
1312 {
1313 	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1314 }
1315 
1316 /**
1317  * struct auxtrace_cache - hash table to implement a cache
1318  * @hashtable: the hashtable
1319  * @sz: hashtable size (number of hlists)
1320  * @entry_size: size of an entry
1321  * @limit: limit the number of entries to this maximum, when reached the cache
1322  *         is dropped and caching begins again with an empty cache
1323  * @cnt: current number of entries
1324  * @bits: hashtable size (@sz = 2^@bits)
1325  */
1326 struct auxtrace_cache {
1327 	struct hlist_head *hashtable;
1328 	size_t sz;
1329 	size_t entry_size;
1330 	size_t limit;
1331 	size_t cnt;
1332 	unsigned int bits;
1333 };
1334 
1335 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1336 					   unsigned int limit_percent)
1337 {
1338 	struct auxtrace_cache *c;
1339 	struct hlist_head *ht;
1340 	size_t sz, i;
1341 
1342 	c = zalloc(sizeof(struct auxtrace_cache));
1343 	if (!c)
1344 		return NULL;
1345 
1346 	sz = 1UL << bits;
1347 
1348 	ht = calloc(sz, sizeof(struct hlist_head));
1349 	if (!ht)
1350 		goto out_free;
1351 
1352 	for (i = 0; i < sz; i++)
1353 		INIT_HLIST_HEAD(&ht[i]);
1354 
1355 	c->hashtable = ht;
1356 	c->sz = sz;
1357 	c->entry_size = entry_size;
1358 	c->limit = (c->sz * limit_percent) / 100;
1359 	c->bits = bits;
1360 
1361 	return c;
1362 
1363 out_free:
1364 	free(c);
1365 	return NULL;
1366 }
1367 
1368 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1369 {
1370 	struct auxtrace_cache_entry *entry;
1371 	struct hlist_node *tmp;
1372 	size_t i;
1373 
1374 	if (!c)
1375 		return;
1376 
1377 	for (i = 0; i < c->sz; i++) {
1378 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1379 			hlist_del(&entry->hash);
1380 			auxtrace_cache__free_entry(c, entry);
1381 		}
1382 	}
1383 
1384 	c->cnt = 0;
1385 }
1386 
1387 void auxtrace_cache__free(struct auxtrace_cache *c)
1388 {
1389 	if (!c)
1390 		return;
1391 
1392 	auxtrace_cache__drop(c);
1393 	free(c->hashtable);
1394 	free(c);
1395 }
1396 
1397 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1398 {
1399 	return malloc(c->entry_size);
1400 }
1401 
1402 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1403 				void *entry)
1404 {
1405 	free(entry);
1406 }
1407 
1408 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1409 			struct auxtrace_cache_entry *entry)
1410 {
1411 	if (c->limit && ++c->cnt > c->limit)
1412 		auxtrace_cache__drop(c);
1413 
1414 	entry->key = key;
1415 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1416 
1417 	return 0;
1418 }
1419 
1420 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1421 {
1422 	struct auxtrace_cache_entry *entry;
1423 	struct hlist_head *hlist;
1424 
1425 	if (!c)
1426 		return NULL;
1427 
1428 	hlist = &c->hashtable[hash_32(key, c->bits)];
1429 	hlist_for_each_entry(entry, hlist, hash) {
1430 		if (entry->key == key)
1431 			return entry;
1432 	}
1433 
1434 	return NULL;
1435 }
1436 
1437 static void addr_filter__free_str(struct addr_filter *filt)
1438 {
1439 	free(filt->str);
1440 	filt->action   = NULL;
1441 	filt->sym_from = NULL;
1442 	filt->sym_to   = NULL;
1443 	filt->filename = NULL;
1444 	filt->str      = NULL;
1445 }
1446 
1447 static struct addr_filter *addr_filter__new(void)
1448 {
1449 	struct addr_filter *filt = zalloc(sizeof(*filt));
1450 
1451 	if (filt)
1452 		INIT_LIST_HEAD(&filt->list);
1453 
1454 	return filt;
1455 }
1456 
1457 static void addr_filter__free(struct addr_filter *filt)
1458 {
1459 	if (filt)
1460 		addr_filter__free_str(filt);
1461 	free(filt);
1462 }
1463 
1464 static void addr_filters__add(struct addr_filters *filts,
1465 			      struct addr_filter *filt)
1466 {
1467 	list_add_tail(&filt->list, &filts->head);
1468 	filts->cnt += 1;
1469 }
1470 
1471 static void addr_filters__del(struct addr_filters *filts,
1472 			      struct addr_filter *filt)
1473 {
1474 	list_del_init(&filt->list);
1475 	filts->cnt -= 1;
1476 }
1477 
1478 void addr_filters__init(struct addr_filters *filts)
1479 {
1480 	INIT_LIST_HEAD(&filts->head);
1481 	filts->cnt = 0;
1482 }
1483 
1484 void addr_filters__exit(struct addr_filters *filts)
1485 {
1486 	struct addr_filter *filt, *n;
1487 
1488 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1489 		addr_filters__del(filts, filt);
1490 		addr_filter__free(filt);
1491 	}
1492 }
1493 
1494 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1495 			    const char *str_delim)
1496 {
1497 	*inp += strspn(*inp, " ");
1498 
1499 	if (isdigit(**inp)) {
1500 		char *endptr;
1501 
1502 		if (!num)
1503 			return -EINVAL;
1504 		errno = 0;
1505 		*num = strtoull(*inp, &endptr, 0);
1506 		if (errno)
1507 			return -errno;
1508 		if (endptr == *inp)
1509 			return -EINVAL;
1510 		*inp = endptr;
1511 	} else {
1512 		size_t n;
1513 
1514 		if (!str)
1515 			return -EINVAL;
1516 		*inp += strspn(*inp, " ");
1517 		*str = *inp;
1518 		n = strcspn(*inp, str_delim);
1519 		if (!n)
1520 			return -EINVAL;
1521 		*inp += n;
1522 		if (**inp) {
1523 			**inp = '\0';
1524 			*inp += 1;
1525 		}
1526 	}
1527 	return 0;
1528 }
1529 
1530 static int parse_action(struct addr_filter *filt)
1531 {
1532 	if (!strcmp(filt->action, "filter")) {
1533 		filt->start = true;
1534 		filt->range = true;
1535 	} else if (!strcmp(filt->action, "start")) {
1536 		filt->start = true;
1537 	} else if (!strcmp(filt->action, "stop")) {
1538 		filt->start = false;
1539 	} else if (!strcmp(filt->action, "tracestop")) {
1540 		filt->start = false;
1541 		filt->range = true;
1542 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1543 	} else {
1544 		return -EINVAL;
1545 	}
1546 	return 0;
1547 }
1548 
1549 static int parse_sym_idx(char **inp, int *idx)
1550 {
1551 	*idx = -1;
1552 
1553 	*inp += strspn(*inp, " ");
1554 
1555 	if (**inp != '#')
1556 		return 0;
1557 
1558 	*inp += 1;
1559 
1560 	if (**inp == 'g' || **inp == 'G') {
1561 		*inp += 1;
1562 		*idx = 0;
1563 	} else {
1564 		unsigned long num;
1565 		char *endptr;
1566 
1567 		errno = 0;
1568 		num = strtoul(*inp, &endptr, 0);
1569 		if (errno)
1570 			return -errno;
1571 		if (endptr == *inp || num > INT_MAX)
1572 			return -EINVAL;
1573 		*inp = endptr;
1574 		*idx = num;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1581 {
1582 	int err = parse_num_or_str(inp, num, str, " ");
1583 
1584 	if (!err && *str)
1585 		err = parse_sym_idx(inp, idx);
1586 
1587 	return err;
1588 }
1589 
1590 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1591 {
1592 	char *fstr;
1593 	int err;
1594 
1595 	filt->str = fstr = strdup(*filter_inp);
1596 	if (!fstr)
1597 		return -ENOMEM;
1598 
1599 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1600 	if (err)
1601 		goto out_err;
1602 
1603 	err = parse_action(filt);
1604 	if (err)
1605 		goto out_err;
1606 
1607 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1608 			      &filt->sym_from_idx);
1609 	if (err)
1610 		goto out_err;
1611 
1612 	fstr += strspn(fstr, " ");
1613 
1614 	if (*fstr == '/') {
1615 		fstr += 1;
1616 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1617 				      &filt->sym_to_idx);
1618 		if (err)
1619 			goto out_err;
1620 		filt->range = true;
1621 	}
1622 
1623 	fstr += strspn(fstr, " ");
1624 
1625 	if (*fstr == '@') {
1626 		fstr += 1;
1627 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1628 		if (err)
1629 			goto out_err;
1630 	}
1631 
1632 	fstr += strspn(fstr, " ,");
1633 
1634 	*filter_inp += fstr - filt->str;
1635 
1636 	return 0;
1637 
1638 out_err:
1639 	addr_filter__free_str(filt);
1640 
1641 	return err;
1642 }
1643 
1644 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1645 				    const char *filter)
1646 {
1647 	struct addr_filter *filt;
1648 	const char *fstr = filter;
1649 	int err;
1650 
1651 	while (*fstr) {
1652 		filt = addr_filter__new();
1653 		err = parse_one_filter(filt, &fstr);
1654 		if (err) {
1655 			addr_filter__free(filt);
1656 			addr_filters__exit(filts);
1657 			return err;
1658 		}
1659 		addr_filters__add(filts, filt);
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 struct sym_args {
1666 	const char	*name;
1667 	u64		start;
1668 	u64		size;
1669 	int		idx;
1670 	int		cnt;
1671 	bool		started;
1672 	bool		global;
1673 	bool		selected;
1674 	bool		duplicate;
1675 	bool		near;
1676 };
1677 
1678 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1679 {
1680 	/* A function with the same name, and global or the n'th found or any */
1681 	return symbol_type__is_a(type, MAP__FUNCTION) &&
1682 	       !strcmp(name, args->name) &&
1683 	       ((args->global && isupper(type)) ||
1684 		(args->selected && ++(args->cnt) == args->idx) ||
1685 		(!args->global && !args->selected));
1686 }
1687 
1688 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1689 {
1690 	struct sym_args *args = arg;
1691 
1692 	if (args->started) {
1693 		if (!args->size)
1694 			args->size = start - args->start;
1695 		if (args->selected) {
1696 			if (args->size)
1697 				return 1;
1698 		} else if (kern_sym_match(args, name, type)) {
1699 			args->duplicate = true;
1700 			return 1;
1701 		}
1702 	} else if (kern_sym_match(args, name, type)) {
1703 		args->started = true;
1704 		args->start = start;
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1711 {
1712 	struct sym_args *args = arg;
1713 
1714 	if (kern_sym_match(args, name, type)) {
1715 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1716 		       ++args->cnt, start, type, name);
1717 		args->near = true;
1718 	} else if (args->near) {
1719 		args->near = false;
1720 		pr_err("\t\twhich is near\t\t%s\n", name);
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static int sym_not_found_error(const char *sym_name, int idx)
1727 {
1728 	if (idx > 0) {
1729 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1730 		       idx, sym_name);
1731 	} else if (!idx) {
1732 		pr_err("Global symbol '%s' not found.\n", sym_name);
1733 	} else {
1734 		pr_err("Symbol '%s' not found.\n", sym_name);
1735 	}
1736 	pr_err("Note that symbols must be functions.\n");
1737 
1738 	return -EINVAL;
1739 }
1740 
1741 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1742 {
1743 	struct sym_args args = {
1744 		.name = sym_name,
1745 		.idx = idx,
1746 		.global = !idx,
1747 		.selected = idx > 0,
1748 	};
1749 	int err;
1750 
1751 	*start = 0;
1752 	*size = 0;
1753 
1754 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1755 	if (err < 0) {
1756 		pr_err("Failed to parse /proc/kallsyms\n");
1757 		return err;
1758 	}
1759 
1760 	if (args.duplicate) {
1761 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1762 		args.cnt = 0;
1763 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1764 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1765 		       sym_name);
1766 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1767 		return -EINVAL;
1768 	}
1769 
1770 	if (!args.started) {
1771 		pr_err("Kernel symbol lookup: ");
1772 		return sym_not_found_error(sym_name, idx);
1773 	}
1774 
1775 	*start = args.start;
1776 	*size = args.size;
1777 
1778 	return 0;
1779 }
1780 
1781 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1782 			       char type, u64 start)
1783 {
1784 	struct sym_args *args = arg;
1785 
1786 	if (!symbol_type__is_a(type, MAP__FUNCTION))
1787 		return 0;
1788 
1789 	if (!args->started) {
1790 		args->started = true;
1791 		args->start = start;
1792 	}
1793 	/* Don't know exactly where the kernel ends, so we add a page */
1794 	args->size = round_up(start, page_size) + page_size - args->start;
1795 
1796 	return 0;
1797 }
1798 
1799 static int addr_filter__entire_kernel(struct addr_filter *filt)
1800 {
1801 	struct sym_args args = { .started = false };
1802 	int err;
1803 
1804 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1805 	if (err < 0 || !args.started) {
1806 		pr_err("Failed to parse /proc/kallsyms\n");
1807 		return err;
1808 	}
1809 
1810 	filt->addr = args.start;
1811 	filt->size = args.size;
1812 
1813 	return 0;
1814 }
1815 
1816 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1817 {
1818 	if (start + size >= filt->addr)
1819 		return 0;
1820 
1821 	if (filt->sym_from) {
1822 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1823 		       filt->sym_to, start, filt->sym_from, filt->addr);
1824 	} else {
1825 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1826 		       filt->sym_to, start, filt->addr);
1827 	}
1828 
1829 	return -EINVAL;
1830 }
1831 
1832 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1833 {
1834 	bool no_size = false;
1835 	u64 start, size;
1836 	int err;
1837 
1838 	if (symbol_conf.kptr_restrict) {
1839 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1840 		return -EINVAL;
1841 	}
1842 
1843 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1844 		return addr_filter__entire_kernel(filt);
1845 
1846 	if (filt->sym_from) {
1847 		err = find_kern_sym(filt->sym_from, &start, &size,
1848 				    filt->sym_from_idx);
1849 		if (err)
1850 			return err;
1851 		filt->addr = start;
1852 		if (filt->range && !filt->size && !filt->sym_to) {
1853 			filt->size = size;
1854 			no_size = !size;
1855 		}
1856 	}
1857 
1858 	if (filt->sym_to) {
1859 		err = find_kern_sym(filt->sym_to, &start, &size,
1860 				    filt->sym_to_idx);
1861 		if (err)
1862 			return err;
1863 
1864 		err = check_end_after_start(filt, start, size);
1865 		if (err)
1866 			return err;
1867 		filt->size = start + size - filt->addr;
1868 		no_size = !size;
1869 	}
1870 
1871 	/* The very last symbol in kallsyms does not imply a particular size */
1872 	if (no_size) {
1873 		pr_err("Cannot determine size of symbol '%s'\n",
1874 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1875 		return -EINVAL;
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 static struct dso *load_dso(const char *name)
1882 {
1883 	struct map *map;
1884 	struct dso *dso;
1885 
1886 	map = dso__new_map(name);
1887 	if (!map)
1888 		return NULL;
1889 
1890 	map__load(map);
1891 
1892 	dso = dso__get(map->dso);
1893 
1894 	map__put(map);
1895 
1896 	return dso;
1897 }
1898 
1899 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1900 			  int idx)
1901 {
1902 	/* Same name, and global or the n'th found or any */
1903 	return !arch__compare_symbol_names(name, sym->name) &&
1904 	       ((!idx && sym->binding == STB_GLOBAL) ||
1905 		(idx > 0 && ++*cnt == idx) ||
1906 		idx < 0);
1907 }
1908 
1909 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1910 {
1911 	struct symbol *sym;
1912 	bool near = false;
1913 	int cnt = 0;
1914 
1915 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1916 
1917 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1918 	while (sym) {
1919 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1920 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1921 			       ++cnt, sym->start,
1922 			       sym->binding == STB_GLOBAL ? 'g' :
1923 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1924 			       sym->name);
1925 			near = true;
1926 		} else if (near) {
1927 			near = false;
1928 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1929 		}
1930 		sym = dso__next_symbol(sym);
1931 	}
1932 
1933 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1934 	       sym_name);
1935 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1936 }
1937 
1938 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1939 			u64 *size, int idx)
1940 {
1941 	struct symbol *sym;
1942 	int cnt = 0;
1943 
1944 	*start = 0;
1945 	*size = 0;
1946 
1947 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1948 	while (sym) {
1949 		if (*start) {
1950 			if (!*size)
1951 				*size = sym->start - *start;
1952 			if (idx > 0) {
1953 				if (*size)
1954 					return 1;
1955 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1956 				print_duplicate_syms(dso, sym_name);
1957 				return -EINVAL;
1958 			}
1959 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1960 			*start = sym->start;
1961 			*size = sym->end - sym->start;
1962 		}
1963 		sym = dso__next_symbol(sym);
1964 	}
1965 
1966 	if (!*start)
1967 		return sym_not_found_error(sym_name, idx);
1968 
1969 	return 0;
1970 }
1971 
1972 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1973 {
1974 	struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1975 	struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1976 
1977 	if (!first_sym || !last_sym) {
1978 		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1979 		       filt->filename);
1980 		return -EINVAL;
1981 	}
1982 
1983 	filt->addr = first_sym->start;
1984 	filt->size = last_sym->end - first_sym->start;
1985 
1986 	return 0;
1987 }
1988 
1989 static int addr_filter__resolve_syms(struct addr_filter *filt)
1990 {
1991 	u64 start, size;
1992 	struct dso *dso;
1993 	int err = 0;
1994 
1995 	if (!filt->sym_from && !filt->sym_to)
1996 		return 0;
1997 
1998 	if (!filt->filename)
1999 		return addr_filter__resolve_kernel_syms(filt);
2000 
2001 	dso = load_dso(filt->filename);
2002 	if (!dso) {
2003 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2004 		return -EINVAL;
2005 	}
2006 
2007 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2008 		err = addr_filter__entire_dso(filt, dso);
2009 		goto put_dso;
2010 	}
2011 
2012 	if (filt->sym_from) {
2013 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2014 				   filt->sym_from_idx);
2015 		if (err)
2016 			goto put_dso;
2017 		filt->addr = start;
2018 		if (filt->range && !filt->size && !filt->sym_to)
2019 			filt->size = size;
2020 	}
2021 
2022 	if (filt->sym_to) {
2023 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2024 				   filt->sym_to_idx);
2025 		if (err)
2026 			goto put_dso;
2027 
2028 		err = check_end_after_start(filt, start, size);
2029 		if (err)
2030 			return err;
2031 
2032 		filt->size = start + size - filt->addr;
2033 	}
2034 
2035 put_dso:
2036 	dso__put(dso);
2037 
2038 	return err;
2039 }
2040 
2041 static char *addr_filter__to_str(struct addr_filter *filt)
2042 {
2043 	char filename_buf[PATH_MAX];
2044 	const char *at = "";
2045 	const char *fn = "";
2046 	char *filter;
2047 	int err;
2048 
2049 	if (filt->filename) {
2050 		at = "@";
2051 		fn = realpath(filt->filename, filename_buf);
2052 		if (!fn)
2053 			return NULL;
2054 	}
2055 
2056 	if (filt->range) {
2057 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2058 			       filt->action, filt->addr, filt->size, at, fn);
2059 	} else {
2060 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2061 			       filt->action, filt->addr, at, fn);
2062 	}
2063 
2064 	return err < 0 ? NULL : filter;
2065 }
2066 
2067 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2068 			     int max_nr)
2069 {
2070 	struct addr_filters filts;
2071 	struct addr_filter *filt;
2072 	int err;
2073 
2074 	addr_filters__init(&filts);
2075 
2076 	err = addr_filters__parse_bare_filter(&filts, filter);
2077 	if (err)
2078 		goto out_exit;
2079 
2080 	if (filts.cnt > max_nr) {
2081 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2082 		       filts.cnt, max_nr);
2083 		err = -EINVAL;
2084 		goto out_exit;
2085 	}
2086 
2087 	list_for_each_entry(filt, &filts.head, list) {
2088 		char *new_filter;
2089 
2090 		err = addr_filter__resolve_syms(filt);
2091 		if (err)
2092 			goto out_exit;
2093 
2094 		new_filter = addr_filter__to_str(filt);
2095 		if (!new_filter) {
2096 			err = -ENOMEM;
2097 			goto out_exit;
2098 		}
2099 
2100 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2101 			err = -ENOMEM;
2102 			goto out_exit;
2103 		}
2104 	}
2105 
2106 out_exit:
2107 	addr_filters__exit(&filts);
2108 
2109 	if (err) {
2110 		pr_err("Failed to parse address filter: '%s'\n", filter);
2111 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2112 		pr_err("Where multiple filters are separated by space or comma.\n");
2113 	}
2114 
2115 	return err;
2116 }
2117 
2118 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2119 {
2120 	struct perf_pmu *pmu = NULL;
2121 
2122 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2123 		if (pmu->type == evsel->attr.type)
2124 			break;
2125 	}
2126 
2127 	return pmu;
2128 }
2129 
2130 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2131 {
2132 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2133 	int nr_addr_filters = 0;
2134 
2135 	if (!pmu)
2136 		return 0;
2137 
2138 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2139 
2140 	return nr_addr_filters;
2141 }
2142 
2143 int auxtrace_parse_filters(struct perf_evlist *evlist)
2144 {
2145 	struct perf_evsel *evsel;
2146 	char *filter;
2147 	int err, max_nr;
2148 
2149 	evlist__for_each_entry(evlist, evsel) {
2150 		filter = evsel->filter;
2151 		max_nr = perf_evsel__nr_addr_filter(evsel);
2152 		if (!filter || !max_nr)
2153 			continue;
2154 		evsel->filter = NULL;
2155 		err = parse_addr_filter(evsel, filter, max_nr);
2156 		free(filter);
2157 		if (err)
2158 			return err;
2159 		pr_debug("Address filter: %s\n", evsel->filter);
2160 	}
2161 
2162 	return 0;
2163 }
2164