xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 79a5a18a)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35 
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47 
48 #include <linux/hash.h>
49 
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54 
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59 #include "s390-cpumsf.h"
60 
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63 
64 static bool auxtrace__dont_decode(struct perf_session *session)
65 {
66 	return !session->itrace_synth_opts ||
67 	       session->itrace_synth_opts->dont_decode;
68 }
69 
70 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
71 			struct auxtrace_mmap_params *mp,
72 			void *userpg, int fd)
73 {
74 	struct perf_event_mmap_page *pc = userpg;
75 
76 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
77 
78 	mm->userpg = userpg;
79 	mm->mask = mp->mask;
80 	mm->len = mp->len;
81 	mm->prev = 0;
82 	mm->idx = mp->idx;
83 	mm->tid = mp->tid;
84 	mm->cpu = mp->cpu;
85 
86 	if (!mp->len) {
87 		mm->base = NULL;
88 		return 0;
89 	}
90 
91 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
92 	pr_err("Cannot use AUX area tracing mmaps\n");
93 	return -1;
94 #endif
95 
96 	pc->aux_offset = mp->offset;
97 	pc->aux_size = mp->len;
98 
99 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
100 	if (mm->base == MAP_FAILED) {
101 		pr_debug2("failed to mmap AUX area\n");
102 		mm->base = NULL;
103 		return -1;
104 	}
105 
106 	return 0;
107 }
108 
109 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
110 {
111 	if (mm->base) {
112 		munmap(mm->base, mm->len);
113 		mm->base = NULL;
114 	}
115 }
116 
117 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
118 				off_t auxtrace_offset,
119 				unsigned int auxtrace_pages,
120 				bool auxtrace_overwrite)
121 {
122 	if (auxtrace_pages) {
123 		mp->offset = auxtrace_offset;
124 		mp->len = auxtrace_pages * (size_t)page_size;
125 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
126 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
127 		pr_debug2("AUX area mmap length %zu\n", mp->len);
128 	} else {
129 		mp->len = 0;
130 	}
131 }
132 
133 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
134 				   struct perf_evlist *evlist, int idx,
135 				   bool per_cpu)
136 {
137 	mp->idx = idx;
138 
139 	if (per_cpu) {
140 		mp->cpu = evlist->cpus->map[idx];
141 		if (evlist->threads)
142 			mp->tid = thread_map__pid(evlist->threads, 0);
143 		else
144 			mp->tid = -1;
145 	} else {
146 		mp->cpu = -1;
147 		mp->tid = thread_map__pid(evlist->threads, idx);
148 	}
149 }
150 
151 #define AUXTRACE_INIT_NR_QUEUES	32
152 
153 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
154 {
155 	struct auxtrace_queue *queue_array;
156 	unsigned int max_nr_queues, i;
157 
158 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
159 	if (nr_queues > max_nr_queues)
160 		return NULL;
161 
162 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
163 	if (!queue_array)
164 		return NULL;
165 
166 	for (i = 0; i < nr_queues; i++) {
167 		INIT_LIST_HEAD(&queue_array[i].head);
168 		queue_array[i].priv = NULL;
169 	}
170 
171 	return queue_array;
172 }
173 
174 int auxtrace_queues__init(struct auxtrace_queues *queues)
175 {
176 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
177 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
178 	if (!queues->queue_array)
179 		return -ENOMEM;
180 	return 0;
181 }
182 
183 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
184 				 unsigned int new_nr_queues)
185 {
186 	unsigned int nr_queues = queues->nr_queues;
187 	struct auxtrace_queue *queue_array;
188 	unsigned int i;
189 
190 	if (!nr_queues)
191 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
192 
193 	while (nr_queues && nr_queues < new_nr_queues)
194 		nr_queues <<= 1;
195 
196 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
197 		return -EINVAL;
198 
199 	queue_array = auxtrace_alloc_queue_array(nr_queues);
200 	if (!queue_array)
201 		return -ENOMEM;
202 
203 	for (i = 0; i < queues->nr_queues; i++) {
204 		list_splice_tail(&queues->queue_array[i].head,
205 				 &queue_array[i].head);
206 		queue_array[i].tid = queues->queue_array[i].tid;
207 		queue_array[i].cpu = queues->queue_array[i].cpu;
208 		queue_array[i].set = queues->queue_array[i].set;
209 		queue_array[i].priv = queues->queue_array[i].priv;
210 	}
211 
212 	queues->nr_queues = nr_queues;
213 	queues->queue_array = queue_array;
214 
215 	return 0;
216 }
217 
218 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
219 {
220 	int fd = perf_data__fd(session->data);
221 	void *p;
222 	ssize_t ret;
223 
224 	if (size > SSIZE_MAX)
225 		return NULL;
226 
227 	p = malloc(size);
228 	if (!p)
229 		return NULL;
230 
231 	ret = readn(fd, p, size);
232 	if (ret != (ssize_t)size) {
233 		free(p);
234 		return NULL;
235 	}
236 
237 	return p;
238 }
239 
240 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
241 					 unsigned int idx,
242 					 struct auxtrace_buffer *buffer)
243 {
244 	struct auxtrace_queue *queue;
245 	int err;
246 
247 	if (idx >= queues->nr_queues) {
248 		err = auxtrace_queues__grow(queues, idx + 1);
249 		if (err)
250 			return err;
251 	}
252 
253 	queue = &queues->queue_array[idx];
254 
255 	if (!queue->set) {
256 		queue->set = true;
257 		queue->tid = buffer->tid;
258 		queue->cpu = buffer->cpu;
259 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
260 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
261 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
262 		return -EINVAL;
263 	}
264 
265 	buffer->buffer_nr = queues->next_buffer_nr++;
266 
267 	list_add_tail(&buffer->list, &queue->head);
268 
269 	queues->new_data = true;
270 	queues->populated = true;
271 
272 	return 0;
273 }
274 
275 /* Limit buffers to 32MiB on 32-bit */
276 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
277 
278 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
279 					 unsigned int idx,
280 					 struct auxtrace_buffer *buffer)
281 {
282 	u64 sz = buffer->size;
283 	bool consecutive = false;
284 	struct auxtrace_buffer *b;
285 	int err;
286 
287 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
288 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
289 		if (!b)
290 			return -ENOMEM;
291 		b->size = BUFFER_LIMIT_FOR_32_BIT;
292 		b->consecutive = consecutive;
293 		err = auxtrace_queues__queue_buffer(queues, idx, b);
294 		if (err) {
295 			auxtrace_buffer__free(b);
296 			return err;
297 		}
298 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
299 		sz -= BUFFER_LIMIT_FOR_32_BIT;
300 		consecutive = true;
301 	}
302 
303 	buffer->size = sz;
304 	buffer->consecutive = consecutive;
305 
306 	return 0;
307 }
308 
309 static bool filter_cpu(struct perf_session *session, int cpu)
310 {
311 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
312 
313 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
314 }
315 
316 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
317 				       struct perf_session *session,
318 				       unsigned int idx,
319 				       struct auxtrace_buffer *buffer,
320 				       struct auxtrace_buffer **buffer_ptr)
321 {
322 	int err = -ENOMEM;
323 
324 	if (filter_cpu(session, buffer->cpu))
325 		return 0;
326 
327 	buffer = memdup(buffer, sizeof(*buffer));
328 	if (!buffer)
329 		return -ENOMEM;
330 
331 	if (session->one_mmap) {
332 		buffer->data = buffer->data_offset - session->one_mmap_offset +
333 			       session->one_mmap_addr;
334 	} else if (perf_data__is_pipe(session->data)) {
335 		buffer->data = auxtrace_copy_data(buffer->size, session);
336 		if (!buffer->data)
337 			goto out_free;
338 		buffer->data_needs_freeing = true;
339 	} else if (BITS_PER_LONG == 32 &&
340 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
341 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
342 		if (err)
343 			goto out_free;
344 	}
345 
346 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
347 	if (err)
348 		goto out_free;
349 
350 	/* FIXME: Doesn't work for split buffer */
351 	if (buffer_ptr)
352 		*buffer_ptr = buffer;
353 
354 	return 0;
355 
356 out_free:
357 	auxtrace_buffer__free(buffer);
358 	return err;
359 }
360 
361 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
362 			       struct perf_session *session,
363 			       union perf_event *event, off_t data_offset,
364 			       struct auxtrace_buffer **buffer_ptr)
365 {
366 	struct auxtrace_buffer buffer = {
367 		.pid = -1,
368 		.tid = event->auxtrace.tid,
369 		.cpu = event->auxtrace.cpu,
370 		.data_offset = data_offset,
371 		.offset = event->auxtrace.offset,
372 		.reference = event->auxtrace.reference,
373 		.size = event->auxtrace.size,
374 	};
375 	unsigned int idx = event->auxtrace.idx;
376 
377 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
378 					   buffer_ptr);
379 }
380 
381 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
382 					      struct perf_session *session,
383 					      off_t file_offset, size_t sz)
384 {
385 	union perf_event *event;
386 	int err;
387 	char buf[PERF_SAMPLE_MAX_SIZE];
388 
389 	err = perf_session__peek_event(session, file_offset, buf,
390 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
391 	if (err)
392 		return err;
393 
394 	if (event->header.type == PERF_RECORD_AUXTRACE) {
395 		if (event->header.size < sizeof(struct auxtrace_event) ||
396 		    event->header.size != sz) {
397 			err = -EINVAL;
398 			goto out;
399 		}
400 		file_offset += event->header.size;
401 		err = auxtrace_queues__add_event(queues, session, event,
402 						 file_offset, NULL);
403 	}
404 out:
405 	return err;
406 }
407 
408 void auxtrace_queues__free(struct auxtrace_queues *queues)
409 {
410 	unsigned int i;
411 
412 	for (i = 0; i < queues->nr_queues; i++) {
413 		while (!list_empty(&queues->queue_array[i].head)) {
414 			struct auxtrace_buffer *buffer;
415 
416 			buffer = list_entry(queues->queue_array[i].head.next,
417 					    struct auxtrace_buffer, list);
418 			list_del(&buffer->list);
419 			auxtrace_buffer__free(buffer);
420 		}
421 	}
422 
423 	zfree(&queues->queue_array);
424 	queues->nr_queues = 0;
425 }
426 
427 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
428 			     unsigned int pos, unsigned int queue_nr,
429 			     u64 ordinal)
430 {
431 	unsigned int parent;
432 
433 	while (pos) {
434 		parent = (pos - 1) >> 1;
435 		if (heap_array[parent].ordinal <= ordinal)
436 			break;
437 		heap_array[pos] = heap_array[parent];
438 		pos = parent;
439 	}
440 	heap_array[pos].queue_nr = queue_nr;
441 	heap_array[pos].ordinal = ordinal;
442 }
443 
444 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
445 		       u64 ordinal)
446 {
447 	struct auxtrace_heap_item *heap_array;
448 
449 	if (queue_nr >= heap->heap_sz) {
450 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
451 
452 		while (heap_sz <= queue_nr)
453 			heap_sz <<= 1;
454 		heap_array = realloc(heap->heap_array,
455 				     heap_sz * sizeof(struct auxtrace_heap_item));
456 		if (!heap_array)
457 			return -ENOMEM;
458 		heap->heap_array = heap_array;
459 		heap->heap_sz = heap_sz;
460 	}
461 
462 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
463 
464 	return 0;
465 }
466 
467 void auxtrace_heap__free(struct auxtrace_heap *heap)
468 {
469 	zfree(&heap->heap_array);
470 	heap->heap_cnt = 0;
471 	heap->heap_sz = 0;
472 }
473 
474 void auxtrace_heap__pop(struct auxtrace_heap *heap)
475 {
476 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
477 	struct auxtrace_heap_item *heap_array;
478 
479 	if (!heap_cnt)
480 		return;
481 
482 	heap->heap_cnt -= 1;
483 
484 	heap_array = heap->heap_array;
485 
486 	pos = 0;
487 	while (1) {
488 		unsigned int left, right;
489 
490 		left = (pos << 1) + 1;
491 		if (left >= heap_cnt)
492 			break;
493 		right = left + 1;
494 		if (right >= heap_cnt) {
495 			heap_array[pos] = heap_array[left];
496 			return;
497 		}
498 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
499 			heap_array[pos] = heap_array[left];
500 			pos = left;
501 		} else {
502 			heap_array[pos] = heap_array[right];
503 			pos = right;
504 		}
505 	}
506 
507 	last = heap_cnt - 1;
508 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
509 			 heap_array[last].ordinal);
510 }
511 
512 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
513 				       struct perf_evlist *evlist)
514 {
515 	if (itr)
516 		return itr->info_priv_size(itr, evlist);
517 	return 0;
518 }
519 
520 static int auxtrace_not_supported(void)
521 {
522 	pr_err("AUX area tracing is not supported on this architecture\n");
523 	return -EINVAL;
524 }
525 
526 int auxtrace_record__info_fill(struct auxtrace_record *itr,
527 			       struct perf_session *session,
528 			       struct auxtrace_info_event *auxtrace_info,
529 			       size_t priv_size)
530 {
531 	if (itr)
532 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
533 	return auxtrace_not_supported();
534 }
535 
536 void auxtrace_record__free(struct auxtrace_record *itr)
537 {
538 	if (itr)
539 		itr->free(itr);
540 }
541 
542 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
543 {
544 	if (itr && itr->snapshot_start)
545 		return itr->snapshot_start(itr);
546 	return 0;
547 }
548 
549 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
550 {
551 	if (itr && itr->snapshot_finish)
552 		return itr->snapshot_finish(itr);
553 	return 0;
554 }
555 
556 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
557 				   struct auxtrace_mmap *mm,
558 				   unsigned char *data, u64 *head, u64 *old)
559 {
560 	if (itr && itr->find_snapshot)
561 		return itr->find_snapshot(itr, idx, mm, data, head, old);
562 	return 0;
563 }
564 
565 int auxtrace_record__options(struct auxtrace_record *itr,
566 			     struct perf_evlist *evlist,
567 			     struct record_opts *opts)
568 {
569 	if (itr)
570 		return itr->recording_options(itr, evlist, opts);
571 	return 0;
572 }
573 
574 u64 auxtrace_record__reference(struct auxtrace_record *itr)
575 {
576 	if (itr)
577 		return itr->reference(itr);
578 	return 0;
579 }
580 
581 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
582 				    struct record_opts *opts, const char *str)
583 {
584 	if (!str)
585 		return 0;
586 
587 	if (itr)
588 		return itr->parse_snapshot_options(itr, opts, str);
589 
590 	pr_err("No AUX area tracing to snapshot\n");
591 	return -EINVAL;
592 }
593 
594 struct auxtrace_record *__weak
595 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
596 {
597 	*err = 0;
598 	return NULL;
599 }
600 
601 static int auxtrace_index__alloc(struct list_head *head)
602 {
603 	struct auxtrace_index *auxtrace_index;
604 
605 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
606 	if (!auxtrace_index)
607 		return -ENOMEM;
608 
609 	auxtrace_index->nr = 0;
610 	INIT_LIST_HEAD(&auxtrace_index->list);
611 
612 	list_add_tail(&auxtrace_index->list, head);
613 
614 	return 0;
615 }
616 
617 void auxtrace_index__free(struct list_head *head)
618 {
619 	struct auxtrace_index *auxtrace_index, *n;
620 
621 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
622 		list_del(&auxtrace_index->list);
623 		free(auxtrace_index);
624 	}
625 }
626 
627 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
628 {
629 	struct auxtrace_index *auxtrace_index;
630 	int err;
631 
632 	if (list_empty(head)) {
633 		err = auxtrace_index__alloc(head);
634 		if (err)
635 			return NULL;
636 	}
637 
638 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
639 
640 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
641 		err = auxtrace_index__alloc(head);
642 		if (err)
643 			return NULL;
644 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
645 					    list);
646 	}
647 
648 	return auxtrace_index;
649 }
650 
651 int auxtrace_index__auxtrace_event(struct list_head *head,
652 				   union perf_event *event, off_t file_offset)
653 {
654 	struct auxtrace_index *auxtrace_index;
655 	size_t nr;
656 
657 	auxtrace_index = auxtrace_index__last(head);
658 	if (!auxtrace_index)
659 		return -ENOMEM;
660 
661 	nr = auxtrace_index->nr;
662 	auxtrace_index->entries[nr].file_offset = file_offset;
663 	auxtrace_index->entries[nr].sz = event->header.size;
664 	auxtrace_index->nr += 1;
665 
666 	return 0;
667 }
668 
669 static int auxtrace_index__do_write(int fd,
670 				    struct auxtrace_index *auxtrace_index)
671 {
672 	struct auxtrace_index_entry ent;
673 	size_t i;
674 
675 	for (i = 0; i < auxtrace_index->nr; i++) {
676 		ent.file_offset = auxtrace_index->entries[i].file_offset;
677 		ent.sz = auxtrace_index->entries[i].sz;
678 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
679 			return -errno;
680 	}
681 	return 0;
682 }
683 
684 int auxtrace_index__write(int fd, struct list_head *head)
685 {
686 	struct auxtrace_index *auxtrace_index;
687 	u64 total = 0;
688 	int err;
689 
690 	list_for_each_entry(auxtrace_index, head, list)
691 		total += auxtrace_index->nr;
692 
693 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
694 		return -errno;
695 
696 	list_for_each_entry(auxtrace_index, head, list) {
697 		err = auxtrace_index__do_write(fd, auxtrace_index);
698 		if (err)
699 			return err;
700 	}
701 
702 	return 0;
703 }
704 
705 static int auxtrace_index__process_entry(int fd, struct list_head *head,
706 					 bool needs_swap)
707 {
708 	struct auxtrace_index *auxtrace_index;
709 	struct auxtrace_index_entry ent;
710 	size_t nr;
711 
712 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
713 		return -1;
714 
715 	auxtrace_index = auxtrace_index__last(head);
716 	if (!auxtrace_index)
717 		return -1;
718 
719 	nr = auxtrace_index->nr;
720 	if (needs_swap) {
721 		auxtrace_index->entries[nr].file_offset =
722 						bswap_64(ent.file_offset);
723 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
724 	} else {
725 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
726 		auxtrace_index->entries[nr].sz = ent.sz;
727 	}
728 
729 	auxtrace_index->nr = nr + 1;
730 
731 	return 0;
732 }
733 
734 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
735 			    bool needs_swap)
736 {
737 	struct list_head *head = &session->auxtrace_index;
738 	u64 nr;
739 
740 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
741 		return -1;
742 
743 	if (needs_swap)
744 		nr = bswap_64(nr);
745 
746 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
747 		return -1;
748 
749 	while (nr--) {
750 		int err;
751 
752 		err = auxtrace_index__process_entry(fd, head, needs_swap);
753 		if (err)
754 			return -1;
755 	}
756 
757 	return 0;
758 }
759 
760 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
761 						struct perf_session *session,
762 						struct auxtrace_index_entry *ent)
763 {
764 	return auxtrace_queues__add_indexed_event(queues, session,
765 						  ent->file_offset, ent->sz);
766 }
767 
768 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
769 				   struct perf_session *session)
770 {
771 	struct auxtrace_index *auxtrace_index;
772 	struct auxtrace_index_entry *ent;
773 	size_t i;
774 	int err;
775 
776 	if (auxtrace__dont_decode(session))
777 		return 0;
778 
779 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
780 		for (i = 0; i < auxtrace_index->nr; i++) {
781 			ent = &auxtrace_index->entries[i];
782 			err = auxtrace_queues__process_index_entry(queues,
783 								   session,
784 								   ent);
785 			if (err)
786 				return err;
787 		}
788 	}
789 	return 0;
790 }
791 
792 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
793 					      struct auxtrace_buffer *buffer)
794 {
795 	if (buffer) {
796 		if (list_is_last(&buffer->list, &queue->head))
797 			return NULL;
798 		return list_entry(buffer->list.next, struct auxtrace_buffer,
799 				  list);
800 	} else {
801 		if (list_empty(&queue->head))
802 			return NULL;
803 		return list_entry(queue->head.next, struct auxtrace_buffer,
804 				  list);
805 	}
806 }
807 
808 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
809 {
810 	size_t adj = buffer->data_offset & (page_size - 1);
811 	size_t size = buffer->size + adj;
812 	off_t file_offset = buffer->data_offset - adj;
813 	void *addr;
814 
815 	if (buffer->data)
816 		return buffer->data;
817 
818 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
819 	if (addr == MAP_FAILED)
820 		return NULL;
821 
822 	buffer->mmap_addr = addr;
823 	buffer->mmap_size = size;
824 
825 	buffer->data = addr + adj;
826 
827 	return buffer->data;
828 }
829 
830 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
831 {
832 	if (!buffer->data || !buffer->mmap_addr)
833 		return;
834 	munmap(buffer->mmap_addr, buffer->mmap_size);
835 	buffer->mmap_addr = NULL;
836 	buffer->mmap_size = 0;
837 	buffer->data = NULL;
838 	buffer->use_data = NULL;
839 }
840 
841 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
842 {
843 	auxtrace_buffer__put_data(buffer);
844 	if (buffer->data_needs_freeing) {
845 		buffer->data_needs_freeing = false;
846 		zfree(&buffer->data);
847 		buffer->use_data = NULL;
848 		buffer->size = 0;
849 	}
850 }
851 
852 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
853 {
854 	auxtrace_buffer__drop_data(buffer);
855 	free(buffer);
856 }
857 
858 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
859 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
860 			  const char *msg)
861 {
862 	size_t size;
863 
864 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
865 
866 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
867 	auxtrace_error->type = type;
868 	auxtrace_error->code = code;
869 	auxtrace_error->cpu = cpu;
870 	auxtrace_error->pid = pid;
871 	auxtrace_error->tid = tid;
872 	auxtrace_error->ip = ip;
873 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
874 
875 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
876 	       strlen(auxtrace_error->msg) + 1;
877 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
878 }
879 
880 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
881 					 struct perf_tool *tool,
882 					 struct perf_session *session,
883 					 perf_event__handler_t process)
884 {
885 	union perf_event *ev;
886 	size_t priv_size;
887 	int err;
888 
889 	pr_debug2("Synthesizing auxtrace information\n");
890 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
891 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
892 	if (!ev)
893 		return -ENOMEM;
894 
895 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
896 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
897 					priv_size;
898 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
899 					 priv_size);
900 	if (err)
901 		goto out_free;
902 
903 	err = process(tool, ev, NULL, NULL);
904 out_free:
905 	free(ev);
906 	return err;
907 }
908 
909 int perf_event__process_auxtrace_info(struct perf_session *session,
910 				      union perf_event *event)
911 {
912 	enum auxtrace_type type = event->auxtrace_info.type;
913 
914 	if (dump_trace)
915 		fprintf(stdout, " type: %u\n", type);
916 
917 	switch (type) {
918 	case PERF_AUXTRACE_INTEL_PT:
919 		return intel_pt_process_auxtrace_info(event, session);
920 	case PERF_AUXTRACE_INTEL_BTS:
921 		return intel_bts_process_auxtrace_info(event, session);
922 	case PERF_AUXTRACE_ARM_SPE:
923 		return arm_spe_process_auxtrace_info(event, session);
924 	case PERF_AUXTRACE_CS_ETM:
925 		return cs_etm__process_auxtrace_info(event, session);
926 	case PERF_AUXTRACE_S390_CPUMSF:
927 		return s390_cpumsf_process_auxtrace_info(event, session);
928 	case PERF_AUXTRACE_UNKNOWN:
929 	default:
930 		return -EINVAL;
931 	}
932 }
933 
934 s64 perf_event__process_auxtrace(struct perf_session *session,
935 				 union perf_event *event)
936 {
937 	s64 err;
938 
939 	if (dump_trace)
940 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
941 			event->auxtrace.size, event->auxtrace.offset,
942 			event->auxtrace.reference, event->auxtrace.idx,
943 			event->auxtrace.tid, event->auxtrace.cpu);
944 
945 	if (auxtrace__dont_decode(session))
946 		return event->auxtrace.size;
947 
948 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
949 		return -EINVAL;
950 
951 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
952 	if (err < 0)
953 		return err;
954 
955 	return event->auxtrace.size;
956 }
957 
958 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
959 #define PERF_ITRACE_DEFAULT_PERIOD		100000
960 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
961 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
962 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
963 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
964 
965 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
966 				    bool no_sample)
967 {
968 	synth_opts->branches = true;
969 	synth_opts->transactions = true;
970 	synth_opts->ptwrites = true;
971 	synth_opts->pwr_events = true;
972 	synth_opts->errors = true;
973 	if (no_sample) {
974 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
975 		synth_opts->period = 1;
976 		synth_opts->calls = true;
977 	} else {
978 		synth_opts->instructions = true;
979 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
980 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
981 	}
982 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
983 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
984 	synth_opts->initial_skip = 0;
985 }
986 
987 /*
988  * Please check tools/perf/Documentation/perf-script.txt for information
989  * about the options parsed here, which is introduced after this cset,
990  * when support in 'perf script' for these options is introduced.
991  */
992 int itrace_parse_synth_opts(const struct option *opt, const char *str,
993 			    int unset)
994 {
995 	struct itrace_synth_opts *synth_opts = opt->value;
996 	const char *p;
997 	char *endptr;
998 	bool period_type_set = false;
999 	bool period_set = false;
1000 
1001 	synth_opts->set = true;
1002 
1003 	if (unset) {
1004 		synth_opts->dont_decode = true;
1005 		return 0;
1006 	}
1007 
1008 	if (!str) {
1009 		itrace_synth_opts__set_default(synth_opts, false);
1010 		return 0;
1011 	}
1012 
1013 	for (p = str; *p;) {
1014 		switch (*p++) {
1015 		case 'i':
1016 			synth_opts->instructions = true;
1017 			while (*p == ' ' || *p == ',')
1018 				p += 1;
1019 			if (isdigit(*p)) {
1020 				synth_opts->period = strtoull(p, &endptr, 10);
1021 				period_set = true;
1022 				p = endptr;
1023 				while (*p == ' ' || *p == ',')
1024 					p += 1;
1025 				switch (*p++) {
1026 				case 'i':
1027 					synth_opts->period_type =
1028 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1029 					period_type_set = true;
1030 					break;
1031 				case 't':
1032 					synth_opts->period_type =
1033 						PERF_ITRACE_PERIOD_TICKS;
1034 					period_type_set = true;
1035 					break;
1036 				case 'm':
1037 					synth_opts->period *= 1000;
1038 					/* Fall through */
1039 				case 'u':
1040 					synth_opts->period *= 1000;
1041 					/* Fall through */
1042 				case 'n':
1043 					if (*p++ != 's')
1044 						goto out_err;
1045 					synth_opts->period_type =
1046 						PERF_ITRACE_PERIOD_NANOSECS;
1047 					period_type_set = true;
1048 					break;
1049 				case '\0':
1050 					goto out;
1051 				default:
1052 					goto out_err;
1053 				}
1054 			}
1055 			break;
1056 		case 'b':
1057 			synth_opts->branches = true;
1058 			break;
1059 		case 'x':
1060 			synth_opts->transactions = true;
1061 			break;
1062 		case 'w':
1063 			synth_opts->ptwrites = true;
1064 			break;
1065 		case 'p':
1066 			synth_opts->pwr_events = true;
1067 			break;
1068 		case 'e':
1069 			synth_opts->errors = true;
1070 			break;
1071 		case 'd':
1072 			synth_opts->log = true;
1073 			break;
1074 		case 'c':
1075 			synth_opts->branches = true;
1076 			synth_opts->calls = true;
1077 			break;
1078 		case 'r':
1079 			synth_opts->branches = true;
1080 			synth_opts->returns = true;
1081 			break;
1082 		case 'g':
1083 			synth_opts->callchain = true;
1084 			synth_opts->callchain_sz =
1085 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1086 			while (*p == ' ' || *p == ',')
1087 				p += 1;
1088 			if (isdigit(*p)) {
1089 				unsigned int val;
1090 
1091 				val = strtoul(p, &endptr, 10);
1092 				p = endptr;
1093 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1094 					goto out_err;
1095 				synth_opts->callchain_sz = val;
1096 			}
1097 			break;
1098 		case 'l':
1099 			synth_opts->last_branch = true;
1100 			synth_opts->last_branch_sz =
1101 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1102 			while (*p == ' ' || *p == ',')
1103 				p += 1;
1104 			if (isdigit(*p)) {
1105 				unsigned int val;
1106 
1107 				val = strtoul(p, &endptr, 10);
1108 				p = endptr;
1109 				if (!val ||
1110 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1111 					goto out_err;
1112 				synth_opts->last_branch_sz = val;
1113 			}
1114 			break;
1115 		case 's':
1116 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1117 			if (p == endptr)
1118 				goto out_err;
1119 			p = endptr;
1120 			break;
1121 		case ' ':
1122 		case ',':
1123 			break;
1124 		default:
1125 			goto out_err;
1126 		}
1127 	}
1128 out:
1129 	if (synth_opts->instructions) {
1130 		if (!period_type_set)
1131 			synth_opts->period_type =
1132 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1133 		if (!period_set)
1134 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1135 	}
1136 
1137 	return 0;
1138 
1139 out_err:
1140 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1141 	return -EINVAL;
1142 }
1143 
1144 static const char * const auxtrace_error_type_name[] = {
1145 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1146 };
1147 
1148 static const char *auxtrace_error_name(int type)
1149 {
1150 	const char *error_type_name = NULL;
1151 
1152 	if (type < PERF_AUXTRACE_ERROR_MAX)
1153 		error_type_name = auxtrace_error_type_name[type];
1154 	if (!error_type_name)
1155 		error_type_name = "unknown AUX";
1156 	return error_type_name;
1157 }
1158 
1159 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1160 {
1161 	struct auxtrace_error_event *e = &event->auxtrace_error;
1162 	int ret;
1163 
1164 	ret = fprintf(fp, " %s error type %u",
1165 		      auxtrace_error_name(e->type), e->type);
1166 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1167 		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1168 	return ret;
1169 }
1170 
1171 void perf_session__auxtrace_error_inc(struct perf_session *session,
1172 				      union perf_event *event)
1173 {
1174 	struct auxtrace_error_event *e = &event->auxtrace_error;
1175 
1176 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1177 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1178 }
1179 
1180 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1181 {
1182 	int i;
1183 
1184 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1185 		if (!stats->nr_auxtrace_errors[i])
1186 			continue;
1187 		ui__warning("%u %s errors\n",
1188 			    stats->nr_auxtrace_errors[i],
1189 			    auxtrace_error_name(i));
1190 	}
1191 }
1192 
1193 int perf_event__process_auxtrace_error(struct perf_session *session,
1194 				       union perf_event *event)
1195 {
1196 	if (auxtrace__dont_decode(session))
1197 		return 0;
1198 
1199 	perf_event__fprintf_auxtrace_error(event, stdout);
1200 	return 0;
1201 }
1202 
1203 static int __auxtrace_mmap__read(struct perf_mmap *map,
1204 				 struct auxtrace_record *itr,
1205 				 struct perf_tool *tool, process_auxtrace_t fn,
1206 				 bool snapshot, size_t snapshot_size)
1207 {
1208 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1209 	u64 head, old = mm->prev, offset, ref;
1210 	unsigned char *data = mm->base;
1211 	size_t size, head_off, old_off, len1, len2, padding;
1212 	union perf_event ev;
1213 	void *data1, *data2;
1214 
1215 	if (snapshot) {
1216 		head = auxtrace_mmap__read_snapshot_head(mm);
1217 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1218 						   &head, &old))
1219 			return -1;
1220 	} else {
1221 		head = auxtrace_mmap__read_head(mm);
1222 	}
1223 
1224 	if (old == head)
1225 		return 0;
1226 
1227 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1228 		  mm->idx, old, head, head - old);
1229 
1230 	if (mm->mask) {
1231 		head_off = head & mm->mask;
1232 		old_off = old & mm->mask;
1233 	} else {
1234 		head_off = head % mm->len;
1235 		old_off = old % mm->len;
1236 	}
1237 
1238 	if (head_off > old_off)
1239 		size = head_off - old_off;
1240 	else
1241 		size = mm->len - (old_off - head_off);
1242 
1243 	if (snapshot && size > snapshot_size)
1244 		size = snapshot_size;
1245 
1246 	ref = auxtrace_record__reference(itr);
1247 
1248 	if (head > old || size <= head || mm->mask) {
1249 		offset = head - size;
1250 	} else {
1251 		/*
1252 		 * When the buffer size is not a power of 2, 'head' wraps at the
1253 		 * highest multiple of the buffer size, so we have to subtract
1254 		 * the remainder here.
1255 		 */
1256 		u64 rem = (0ULL - mm->len) % mm->len;
1257 
1258 		offset = head - size - rem;
1259 	}
1260 
1261 	if (size > head_off) {
1262 		len1 = size - head_off;
1263 		data1 = &data[mm->len - len1];
1264 		len2 = head_off;
1265 		data2 = &data[0];
1266 	} else {
1267 		len1 = size;
1268 		data1 = &data[head_off - len1];
1269 		len2 = 0;
1270 		data2 = NULL;
1271 	}
1272 
1273 	if (itr->alignment) {
1274 		unsigned int unwanted = len1 % itr->alignment;
1275 
1276 		len1 -= unwanted;
1277 		size -= unwanted;
1278 	}
1279 
1280 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1281 	padding = size & 7;
1282 	if (padding)
1283 		padding = 8 - padding;
1284 
1285 	memset(&ev, 0, sizeof(ev));
1286 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1287 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1288 	ev.auxtrace.size = size + padding;
1289 	ev.auxtrace.offset = offset;
1290 	ev.auxtrace.reference = ref;
1291 	ev.auxtrace.idx = mm->idx;
1292 	ev.auxtrace.tid = mm->tid;
1293 	ev.auxtrace.cpu = mm->cpu;
1294 
1295 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1296 		return -1;
1297 
1298 	mm->prev = head;
1299 
1300 	if (!snapshot) {
1301 		auxtrace_mmap__write_tail(mm, head);
1302 		if (itr->read_finish) {
1303 			int err;
1304 
1305 			err = itr->read_finish(itr, mm->idx);
1306 			if (err < 0)
1307 				return err;
1308 		}
1309 	}
1310 
1311 	return 1;
1312 }
1313 
1314 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr,
1315 			struct perf_tool *tool, process_auxtrace_t fn)
1316 {
1317 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1318 }
1319 
1320 int auxtrace_mmap__read_snapshot(struct perf_mmap *map,
1321 				 struct auxtrace_record *itr,
1322 				 struct perf_tool *tool, process_auxtrace_t fn,
1323 				 size_t snapshot_size)
1324 {
1325 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1326 }
1327 
1328 /**
1329  * struct auxtrace_cache - hash table to implement a cache
1330  * @hashtable: the hashtable
1331  * @sz: hashtable size (number of hlists)
1332  * @entry_size: size of an entry
1333  * @limit: limit the number of entries to this maximum, when reached the cache
1334  *         is dropped and caching begins again with an empty cache
1335  * @cnt: current number of entries
1336  * @bits: hashtable size (@sz = 2^@bits)
1337  */
1338 struct auxtrace_cache {
1339 	struct hlist_head *hashtable;
1340 	size_t sz;
1341 	size_t entry_size;
1342 	size_t limit;
1343 	size_t cnt;
1344 	unsigned int bits;
1345 };
1346 
1347 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1348 					   unsigned int limit_percent)
1349 {
1350 	struct auxtrace_cache *c;
1351 	struct hlist_head *ht;
1352 	size_t sz, i;
1353 
1354 	c = zalloc(sizeof(struct auxtrace_cache));
1355 	if (!c)
1356 		return NULL;
1357 
1358 	sz = 1UL << bits;
1359 
1360 	ht = calloc(sz, sizeof(struct hlist_head));
1361 	if (!ht)
1362 		goto out_free;
1363 
1364 	for (i = 0; i < sz; i++)
1365 		INIT_HLIST_HEAD(&ht[i]);
1366 
1367 	c->hashtable = ht;
1368 	c->sz = sz;
1369 	c->entry_size = entry_size;
1370 	c->limit = (c->sz * limit_percent) / 100;
1371 	c->bits = bits;
1372 
1373 	return c;
1374 
1375 out_free:
1376 	free(c);
1377 	return NULL;
1378 }
1379 
1380 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1381 {
1382 	struct auxtrace_cache_entry *entry;
1383 	struct hlist_node *tmp;
1384 	size_t i;
1385 
1386 	if (!c)
1387 		return;
1388 
1389 	for (i = 0; i < c->sz; i++) {
1390 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1391 			hlist_del(&entry->hash);
1392 			auxtrace_cache__free_entry(c, entry);
1393 		}
1394 	}
1395 
1396 	c->cnt = 0;
1397 }
1398 
1399 void auxtrace_cache__free(struct auxtrace_cache *c)
1400 {
1401 	if (!c)
1402 		return;
1403 
1404 	auxtrace_cache__drop(c);
1405 	free(c->hashtable);
1406 	free(c);
1407 }
1408 
1409 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1410 {
1411 	return malloc(c->entry_size);
1412 }
1413 
1414 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1415 				void *entry)
1416 {
1417 	free(entry);
1418 }
1419 
1420 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1421 			struct auxtrace_cache_entry *entry)
1422 {
1423 	if (c->limit && ++c->cnt > c->limit)
1424 		auxtrace_cache__drop(c);
1425 
1426 	entry->key = key;
1427 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1428 
1429 	return 0;
1430 }
1431 
1432 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1433 {
1434 	struct auxtrace_cache_entry *entry;
1435 	struct hlist_head *hlist;
1436 
1437 	if (!c)
1438 		return NULL;
1439 
1440 	hlist = &c->hashtable[hash_32(key, c->bits)];
1441 	hlist_for_each_entry(entry, hlist, hash) {
1442 		if (entry->key == key)
1443 			return entry;
1444 	}
1445 
1446 	return NULL;
1447 }
1448 
1449 static void addr_filter__free_str(struct addr_filter *filt)
1450 {
1451 	free(filt->str);
1452 	filt->action   = NULL;
1453 	filt->sym_from = NULL;
1454 	filt->sym_to   = NULL;
1455 	filt->filename = NULL;
1456 	filt->str      = NULL;
1457 }
1458 
1459 static struct addr_filter *addr_filter__new(void)
1460 {
1461 	struct addr_filter *filt = zalloc(sizeof(*filt));
1462 
1463 	if (filt)
1464 		INIT_LIST_HEAD(&filt->list);
1465 
1466 	return filt;
1467 }
1468 
1469 static void addr_filter__free(struct addr_filter *filt)
1470 {
1471 	if (filt)
1472 		addr_filter__free_str(filt);
1473 	free(filt);
1474 }
1475 
1476 static void addr_filters__add(struct addr_filters *filts,
1477 			      struct addr_filter *filt)
1478 {
1479 	list_add_tail(&filt->list, &filts->head);
1480 	filts->cnt += 1;
1481 }
1482 
1483 static void addr_filters__del(struct addr_filters *filts,
1484 			      struct addr_filter *filt)
1485 {
1486 	list_del_init(&filt->list);
1487 	filts->cnt -= 1;
1488 }
1489 
1490 void addr_filters__init(struct addr_filters *filts)
1491 {
1492 	INIT_LIST_HEAD(&filts->head);
1493 	filts->cnt = 0;
1494 }
1495 
1496 void addr_filters__exit(struct addr_filters *filts)
1497 {
1498 	struct addr_filter *filt, *n;
1499 
1500 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1501 		addr_filters__del(filts, filt);
1502 		addr_filter__free(filt);
1503 	}
1504 }
1505 
1506 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1507 			    const char *str_delim)
1508 {
1509 	*inp += strspn(*inp, " ");
1510 
1511 	if (isdigit(**inp)) {
1512 		char *endptr;
1513 
1514 		if (!num)
1515 			return -EINVAL;
1516 		errno = 0;
1517 		*num = strtoull(*inp, &endptr, 0);
1518 		if (errno)
1519 			return -errno;
1520 		if (endptr == *inp)
1521 			return -EINVAL;
1522 		*inp = endptr;
1523 	} else {
1524 		size_t n;
1525 
1526 		if (!str)
1527 			return -EINVAL;
1528 		*inp += strspn(*inp, " ");
1529 		*str = *inp;
1530 		n = strcspn(*inp, str_delim);
1531 		if (!n)
1532 			return -EINVAL;
1533 		*inp += n;
1534 		if (**inp) {
1535 			**inp = '\0';
1536 			*inp += 1;
1537 		}
1538 	}
1539 	return 0;
1540 }
1541 
1542 static int parse_action(struct addr_filter *filt)
1543 {
1544 	if (!strcmp(filt->action, "filter")) {
1545 		filt->start = true;
1546 		filt->range = true;
1547 	} else if (!strcmp(filt->action, "start")) {
1548 		filt->start = true;
1549 	} else if (!strcmp(filt->action, "stop")) {
1550 		filt->start = false;
1551 	} else if (!strcmp(filt->action, "tracestop")) {
1552 		filt->start = false;
1553 		filt->range = true;
1554 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1555 	} else {
1556 		return -EINVAL;
1557 	}
1558 	return 0;
1559 }
1560 
1561 static int parse_sym_idx(char **inp, int *idx)
1562 {
1563 	*idx = -1;
1564 
1565 	*inp += strspn(*inp, " ");
1566 
1567 	if (**inp != '#')
1568 		return 0;
1569 
1570 	*inp += 1;
1571 
1572 	if (**inp == 'g' || **inp == 'G') {
1573 		*inp += 1;
1574 		*idx = 0;
1575 	} else {
1576 		unsigned long num;
1577 		char *endptr;
1578 
1579 		errno = 0;
1580 		num = strtoul(*inp, &endptr, 0);
1581 		if (errno)
1582 			return -errno;
1583 		if (endptr == *inp || num > INT_MAX)
1584 			return -EINVAL;
1585 		*inp = endptr;
1586 		*idx = num;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1593 {
1594 	int err = parse_num_or_str(inp, num, str, " ");
1595 
1596 	if (!err && *str)
1597 		err = parse_sym_idx(inp, idx);
1598 
1599 	return err;
1600 }
1601 
1602 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1603 {
1604 	char *fstr;
1605 	int err;
1606 
1607 	filt->str = fstr = strdup(*filter_inp);
1608 	if (!fstr)
1609 		return -ENOMEM;
1610 
1611 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1612 	if (err)
1613 		goto out_err;
1614 
1615 	err = parse_action(filt);
1616 	if (err)
1617 		goto out_err;
1618 
1619 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1620 			      &filt->sym_from_idx);
1621 	if (err)
1622 		goto out_err;
1623 
1624 	fstr += strspn(fstr, " ");
1625 
1626 	if (*fstr == '/') {
1627 		fstr += 1;
1628 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1629 				      &filt->sym_to_idx);
1630 		if (err)
1631 			goto out_err;
1632 		filt->range = true;
1633 	}
1634 
1635 	fstr += strspn(fstr, " ");
1636 
1637 	if (*fstr == '@') {
1638 		fstr += 1;
1639 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1640 		if (err)
1641 			goto out_err;
1642 	}
1643 
1644 	fstr += strspn(fstr, " ,");
1645 
1646 	*filter_inp += fstr - filt->str;
1647 
1648 	return 0;
1649 
1650 out_err:
1651 	addr_filter__free_str(filt);
1652 
1653 	return err;
1654 }
1655 
1656 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1657 				    const char *filter)
1658 {
1659 	struct addr_filter *filt;
1660 	const char *fstr = filter;
1661 	int err;
1662 
1663 	while (*fstr) {
1664 		filt = addr_filter__new();
1665 		err = parse_one_filter(filt, &fstr);
1666 		if (err) {
1667 			addr_filter__free(filt);
1668 			addr_filters__exit(filts);
1669 			return err;
1670 		}
1671 		addr_filters__add(filts, filt);
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 struct sym_args {
1678 	const char	*name;
1679 	u64		start;
1680 	u64		size;
1681 	int		idx;
1682 	int		cnt;
1683 	bool		started;
1684 	bool		global;
1685 	bool		selected;
1686 	bool		duplicate;
1687 	bool		near;
1688 };
1689 
1690 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1691 {
1692 	/* A function with the same name, and global or the n'th found or any */
1693 	return kallsyms__is_function(type) &&
1694 	       !strcmp(name, args->name) &&
1695 	       ((args->global && isupper(type)) ||
1696 		(args->selected && ++(args->cnt) == args->idx) ||
1697 		(!args->global && !args->selected));
1698 }
1699 
1700 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1701 {
1702 	struct sym_args *args = arg;
1703 
1704 	if (args->started) {
1705 		if (!args->size)
1706 			args->size = start - args->start;
1707 		if (args->selected) {
1708 			if (args->size)
1709 				return 1;
1710 		} else if (kern_sym_match(args, name, type)) {
1711 			args->duplicate = true;
1712 			return 1;
1713 		}
1714 	} else if (kern_sym_match(args, name, type)) {
1715 		args->started = true;
1716 		args->start = start;
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1723 {
1724 	struct sym_args *args = arg;
1725 
1726 	if (kern_sym_match(args, name, type)) {
1727 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1728 		       ++args->cnt, start, type, name);
1729 		args->near = true;
1730 	} else if (args->near) {
1731 		args->near = false;
1732 		pr_err("\t\twhich is near\t\t%s\n", name);
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 static int sym_not_found_error(const char *sym_name, int idx)
1739 {
1740 	if (idx > 0) {
1741 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1742 		       idx, sym_name);
1743 	} else if (!idx) {
1744 		pr_err("Global symbol '%s' not found.\n", sym_name);
1745 	} else {
1746 		pr_err("Symbol '%s' not found.\n", sym_name);
1747 	}
1748 	pr_err("Note that symbols must be functions.\n");
1749 
1750 	return -EINVAL;
1751 }
1752 
1753 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1754 {
1755 	struct sym_args args = {
1756 		.name = sym_name,
1757 		.idx = idx,
1758 		.global = !idx,
1759 		.selected = idx > 0,
1760 	};
1761 	int err;
1762 
1763 	*start = 0;
1764 	*size = 0;
1765 
1766 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1767 	if (err < 0) {
1768 		pr_err("Failed to parse /proc/kallsyms\n");
1769 		return err;
1770 	}
1771 
1772 	if (args.duplicate) {
1773 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1774 		args.cnt = 0;
1775 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1776 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1777 		       sym_name);
1778 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1779 		return -EINVAL;
1780 	}
1781 
1782 	if (!args.started) {
1783 		pr_err("Kernel symbol lookup: ");
1784 		return sym_not_found_error(sym_name, idx);
1785 	}
1786 
1787 	*start = args.start;
1788 	*size = args.size;
1789 
1790 	return 0;
1791 }
1792 
1793 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1794 			       char type, u64 start)
1795 {
1796 	struct sym_args *args = arg;
1797 
1798 	if (!kallsyms__is_function(type))
1799 		return 0;
1800 
1801 	if (!args->started) {
1802 		args->started = true;
1803 		args->start = start;
1804 	}
1805 	/* Don't know exactly where the kernel ends, so we add a page */
1806 	args->size = round_up(start, page_size) + page_size - args->start;
1807 
1808 	return 0;
1809 }
1810 
1811 static int addr_filter__entire_kernel(struct addr_filter *filt)
1812 {
1813 	struct sym_args args = { .started = false };
1814 	int err;
1815 
1816 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1817 	if (err < 0 || !args.started) {
1818 		pr_err("Failed to parse /proc/kallsyms\n");
1819 		return err;
1820 	}
1821 
1822 	filt->addr = args.start;
1823 	filt->size = args.size;
1824 
1825 	return 0;
1826 }
1827 
1828 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1829 {
1830 	if (start + size >= filt->addr)
1831 		return 0;
1832 
1833 	if (filt->sym_from) {
1834 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1835 		       filt->sym_to, start, filt->sym_from, filt->addr);
1836 	} else {
1837 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1838 		       filt->sym_to, start, filt->addr);
1839 	}
1840 
1841 	return -EINVAL;
1842 }
1843 
1844 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1845 {
1846 	bool no_size = false;
1847 	u64 start, size;
1848 	int err;
1849 
1850 	if (symbol_conf.kptr_restrict) {
1851 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1852 		return -EINVAL;
1853 	}
1854 
1855 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1856 		return addr_filter__entire_kernel(filt);
1857 
1858 	if (filt->sym_from) {
1859 		err = find_kern_sym(filt->sym_from, &start, &size,
1860 				    filt->sym_from_idx);
1861 		if (err)
1862 			return err;
1863 		filt->addr = start;
1864 		if (filt->range && !filt->size && !filt->sym_to) {
1865 			filt->size = size;
1866 			no_size = !size;
1867 		}
1868 	}
1869 
1870 	if (filt->sym_to) {
1871 		err = find_kern_sym(filt->sym_to, &start, &size,
1872 				    filt->sym_to_idx);
1873 		if (err)
1874 			return err;
1875 
1876 		err = check_end_after_start(filt, start, size);
1877 		if (err)
1878 			return err;
1879 		filt->size = start + size - filt->addr;
1880 		no_size = !size;
1881 	}
1882 
1883 	/* The very last symbol in kallsyms does not imply a particular size */
1884 	if (no_size) {
1885 		pr_err("Cannot determine size of symbol '%s'\n",
1886 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1887 		return -EINVAL;
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static struct dso *load_dso(const char *name)
1894 {
1895 	struct map *map;
1896 	struct dso *dso;
1897 
1898 	map = dso__new_map(name);
1899 	if (!map)
1900 		return NULL;
1901 
1902 	map__load(map);
1903 
1904 	dso = dso__get(map->dso);
1905 
1906 	map__put(map);
1907 
1908 	return dso;
1909 }
1910 
1911 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1912 			  int idx)
1913 {
1914 	/* Same name, and global or the n'th found or any */
1915 	return !arch__compare_symbol_names(name, sym->name) &&
1916 	       ((!idx && sym->binding == STB_GLOBAL) ||
1917 		(idx > 0 && ++*cnt == idx) ||
1918 		idx < 0);
1919 }
1920 
1921 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1922 {
1923 	struct symbol *sym;
1924 	bool near = false;
1925 	int cnt = 0;
1926 
1927 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1928 
1929 	sym = dso__first_symbol(dso);
1930 	while (sym) {
1931 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1932 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1933 			       ++cnt, sym->start,
1934 			       sym->binding == STB_GLOBAL ? 'g' :
1935 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1936 			       sym->name);
1937 			near = true;
1938 		} else if (near) {
1939 			near = false;
1940 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1941 		}
1942 		sym = dso__next_symbol(sym);
1943 	}
1944 
1945 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1946 	       sym_name);
1947 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1948 }
1949 
1950 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1951 			u64 *size, int idx)
1952 {
1953 	struct symbol *sym;
1954 	int cnt = 0;
1955 
1956 	*start = 0;
1957 	*size = 0;
1958 
1959 	sym = dso__first_symbol(dso);
1960 	while (sym) {
1961 		if (*start) {
1962 			if (!*size)
1963 				*size = sym->start - *start;
1964 			if (idx > 0) {
1965 				if (*size)
1966 					return 1;
1967 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1968 				print_duplicate_syms(dso, sym_name);
1969 				return -EINVAL;
1970 			}
1971 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1972 			*start = sym->start;
1973 			*size = sym->end - sym->start;
1974 		}
1975 		sym = dso__next_symbol(sym);
1976 	}
1977 
1978 	if (!*start)
1979 		return sym_not_found_error(sym_name, idx);
1980 
1981 	return 0;
1982 }
1983 
1984 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1985 {
1986 	struct symbol *first_sym = dso__first_symbol(dso);
1987 	struct symbol *last_sym = dso__last_symbol(dso);
1988 
1989 	if (!first_sym || !last_sym) {
1990 		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1991 		       filt->filename);
1992 		return -EINVAL;
1993 	}
1994 
1995 	filt->addr = first_sym->start;
1996 	filt->size = last_sym->end - first_sym->start;
1997 
1998 	return 0;
1999 }
2000 
2001 static int addr_filter__resolve_syms(struct addr_filter *filt)
2002 {
2003 	u64 start, size;
2004 	struct dso *dso;
2005 	int err = 0;
2006 
2007 	if (!filt->sym_from && !filt->sym_to)
2008 		return 0;
2009 
2010 	if (!filt->filename)
2011 		return addr_filter__resolve_kernel_syms(filt);
2012 
2013 	dso = load_dso(filt->filename);
2014 	if (!dso) {
2015 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2016 		return -EINVAL;
2017 	}
2018 
2019 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2020 		err = addr_filter__entire_dso(filt, dso);
2021 		goto put_dso;
2022 	}
2023 
2024 	if (filt->sym_from) {
2025 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2026 				   filt->sym_from_idx);
2027 		if (err)
2028 			goto put_dso;
2029 		filt->addr = start;
2030 		if (filt->range && !filt->size && !filt->sym_to)
2031 			filt->size = size;
2032 	}
2033 
2034 	if (filt->sym_to) {
2035 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2036 				   filt->sym_to_idx);
2037 		if (err)
2038 			goto put_dso;
2039 
2040 		err = check_end_after_start(filt, start, size);
2041 		if (err)
2042 			return err;
2043 
2044 		filt->size = start + size - filt->addr;
2045 	}
2046 
2047 put_dso:
2048 	dso__put(dso);
2049 
2050 	return err;
2051 }
2052 
2053 static char *addr_filter__to_str(struct addr_filter *filt)
2054 {
2055 	char filename_buf[PATH_MAX];
2056 	const char *at = "";
2057 	const char *fn = "";
2058 	char *filter;
2059 	int err;
2060 
2061 	if (filt->filename) {
2062 		at = "@";
2063 		fn = realpath(filt->filename, filename_buf);
2064 		if (!fn)
2065 			return NULL;
2066 	}
2067 
2068 	if (filt->range) {
2069 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2070 			       filt->action, filt->addr, filt->size, at, fn);
2071 	} else {
2072 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2073 			       filt->action, filt->addr, at, fn);
2074 	}
2075 
2076 	return err < 0 ? NULL : filter;
2077 }
2078 
2079 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2080 			     int max_nr)
2081 {
2082 	struct addr_filters filts;
2083 	struct addr_filter *filt;
2084 	int err;
2085 
2086 	addr_filters__init(&filts);
2087 
2088 	err = addr_filters__parse_bare_filter(&filts, filter);
2089 	if (err)
2090 		goto out_exit;
2091 
2092 	if (filts.cnt > max_nr) {
2093 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2094 		       filts.cnt, max_nr);
2095 		err = -EINVAL;
2096 		goto out_exit;
2097 	}
2098 
2099 	list_for_each_entry(filt, &filts.head, list) {
2100 		char *new_filter;
2101 
2102 		err = addr_filter__resolve_syms(filt);
2103 		if (err)
2104 			goto out_exit;
2105 
2106 		new_filter = addr_filter__to_str(filt);
2107 		if (!new_filter) {
2108 			err = -ENOMEM;
2109 			goto out_exit;
2110 		}
2111 
2112 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2113 			err = -ENOMEM;
2114 			goto out_exit;
2115 		}
2116 	}
2117 
2118 out_exit:
2119 	addr_filters__exit(&filts);
2120 
2121 	if (err) {
2122 		pr_err("Failed to parse address filter: '%s'\n", filter);
2123 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2124 		pr_err("Where multiple filters are separated by space or comma.\n");
2125 	}
2126 
2127 	return err;
2128 }
2129 
2130 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2131 {
2132 	struct perf_pmu *pmu = NULL;
2133 
2134 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2135 		if (pmu->type == evsel->attr.type)
2136 			break;
2137 	}
2138 
2139 	return pmu;
2140 }
2141 
2142 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2143 {
2144 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2145 	int nr_addr_filters = 0;
2146 
2147 	if (!pmu)
2148 		return 0;
2149 
2150 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2151 
2152 	return nr_addr_filters;
2153 }
2154 
2155 int auxtrace_parse_filters(struct perf_evlist *evlist)
2156 {
2157 	struct perf_evsel *evsel;
2158 	char *filter;
2159 	int err, max_nr;
2160 
2161 	evlist__for_each_entry(evlist, evsel) {
2162 		filter = evsel->filter;
2163 		max_nr = perf_evsel__nr_addr_filter(evsel);
2164 		if (!filter || !max_nr)
2165 			continue;
2166 		evsel->filter = NULL;
2167 		err = parse_addr_filter(evsel, filter, max_nr);
2168 		free(filter);
2169 		if (err)
2170 			return err;
2171 		pr_debug("Address filter: %s\n", evsel->filter);
2172 	}
2173 
2174 	return 0;
2175 }
2176