xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35 
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47 
48 #include <linux/hash.h>
49 
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54 
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59 
60 #include "sane_ctype.h"
61 #include "symbol/kallsyms.h"
62 
63 static bool auxtrace__dont_decode(struct perf_session *session)
64 {
65 	return !session->itrace_synth_opts ||
66 	       session->itrace_synth_opts->dont_decode;
67 }
68 
69 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
70 			struct auxtrace_mmap_params *mp,
71 			void *userpg, int fd)
72 {
73 	struct perf_event_mmap_page *pc = userpg;
74 
75 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
76 
77 	mm->userpg = userpg;
78 	mm->mask = mp->mask;
79 	mm->len = mp->len;
80 	mm->prev = 0;
81 	mm->idx = mp->idx;
82 	mm->tid = mp->tid;
83 	mm->cpu = mp->cpu;
84 
85 	if (!mp->len) {
86 		mm->base = NULL;
87 		return 0;
88 	}
89 
90 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
91 	pr_err("Cannot use AUX area tracing mmaps\n");
92 	return -1;
93 #endif
94 
95 	pc->aux_offset = mp->offset;
96 	pc->aux_size = mp->len;
97 
98 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
99 	if (mm->base == MAP_FAILED) {
100 		pr_debug2("failed to mmap AUX area\n");
101 		mm->base = NULL;
102 		return -1;
103 	}
104 
105 	return 0;
106 }
107 
108 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
109 {
110 	if (mm->base) {
111 		munmap(mm->base, mm->len);
112 		mm->base = NULL;
113 	}
114 }
115 
116 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
117 				off_t auxtrace_offset,
118 				unsigned int auxtrace_pages,
119 				bool auxtrace_overwrite)
120 {
121 	if (auxtrace_pages) {
122 		mp->offset = auxtrace_offset;
123 		mp->len = auxtrace_pages * (size_t)page_size;
124 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
125 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
126 		pr_debug2("AUX area mmap length %zu\n", mp->len);
127 	} else {
128 		mp->len = 0;
129 	}
130 }
131 
132 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
133 				   struct perf_evlist *evlist, int idx,
134 				   bool per_cpu)
135 {
136 	mp->idx = idx;
137 
138 	if (per_cpu) {
139 		mp->cpu = evlist->cpus->map[idx];
140 		if (evlist->threads)
141 			mp->tid = thread_map__pid(evlist->threads, 0);
142 		else
143 			mp->tid = -1;
144 	} else {
145 		mp->cpu = -1;
146 		mp->tid = thread_map__pid(evlist->threads, idx);
147 	}
148 }
149 
150 #define AUXTRACE_INIT_NR_QUEUES	32
151 
152 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
153 {
154 	struct auxtrace_queue *queue_array;
155 	unsigned int max_nr_queues, i;
156 
157 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
158 	if (nr_queues > max_nr_queues)
159 		return NULL;
160 
161 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
162 	if (!queue_array)
163 		return NULL;
164 
165 	for (i = 0; i < nr_queues; i++) {
166 		INIT_LIST_HEAD(&queue_array[i].head);
167 		queue_array[i].priv = NULL;
168 	}
169 
170 	return queue_array;
171 }
172 
173 int auxtrace_queues__init(struct auxtrace_queues *queues)
174 {
175 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
176 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
177 	if (!queues->queue_array)
178 		return -ENOMEM;
179 	return 0;
180 }
181 
182 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
183 				 unsigned int new_nr_queues)
184 {
185 	unsigned int nr_queues = queues->nr_queues;
186 	struct auxtrace_queue *queue_array;
187 	unsigned int i;
188 
189 	if (!nr_queues)
190 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
191 
192 	while (nr_queues && nr_queues < new_nr_queues)
193 		nr_queues <<= 1;
194 
195 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
196 		return -EINVAL;
197 
198 	queue_array = auxtrace_alloc_queue_array(nr_queues);
199 	if (!queue_array)
200 		return -ENOMEM;
201 
202 	for (i = 0; i < queues->nr_queues; i++) {
203 		list_splice_tail(&queues->queue_array[i].head,
204 				 &queue_array[i].head);
205 		queue_array[i].priv = queues->queue_array[i].priv;
206 	}
207 
208 	queues->nr_queues = nr_queues;
209 	queues->queue_array = queue_array;
210 
211 	return 0;
212 }
213 
214 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
215 {
216 	int fd = perf_data__fd(session->data);
217 	void *p;
218 	ssize_t ret;
219 
220 	if (size > SSIZE_MAX)
221 		return NULL;
222 
223 	p = malloc(size);
224 	if (!p)
225 		return NULL;
226 
227 	ret = readn(fd, p, size);
228 	if (ret != (ssize_t)size) {
229 		free(p);
230 		return NULL;
231 	}
232 
233 	return p;
234 }
235 
236 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
237 					 unsigned int idx,
238 					 struct auxtrace_buffer *buffer)
239 {
240 	struct auxtrace_queue *queue;
241 	int err;
242 
243 	if (idx >= queues->nr_queues) {
244 		err = auxtrace_queues__grow(queues, idx + 1);
245 		if (err)
246 			return err;
247 	}
248 
249 	queue = &queues->queue_array[idx];
250 
251 	if (!queue->set) {
252 		queue->set = true;
253 		queue->tid = buffer->tid;
254 		queue->cpu = buffer->cpu;
255 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
256 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
257 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
258 		return -EINVAL;
259 	}
260 
261 	buffer->buffer_nr = queues->next_buffer_nr++;
262 
263 	list_add_tail(&buffer->list, &queue->head);
264 
265 	queues->new_data = true;
266 	queues->populated = true;
267 
268 	return 0;
269 }
270 
271 /* Limit buffers to 32MiB on 32-bit */
272 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
273 
274 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
275 					 unsigned int idx,
276 					 struct auxtrace_buffer *buffer)
277 {
278 	u64 sz = buffer->size;
279 	bool consecutive = false;
280 	struct auxtrace_buffer *b;
281 	int err;
282 
283 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
284 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
285 		if (!b)
286 			return -ENOMEM;
287 		b->size = BUFFER_LIMIT_FOR_32_BIT;
288 		b->consecutive = consecutive;
289 		err = auxtrace_queues__queue_buffer(queues, idx, b);
290 		if (err) {
291 			auxtrace_buffer__free(b);
292 			return err;
293 		}
294 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
295 		sz -= BUFFER_LIMIT_FOR_32_BIT;
296 		consecutive = true;
297 	}
298 
299 	buffer->size = sz;
300 	buffer->consecutive = consecutive;
301 
302 	return 0;
303 }
304 
305 static bool filter_cpu(struct perf_session *session, int cpu)
306 {
307 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
308 
309 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
310 }
311 
312 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
313 				       struct perf_session *session,
314 				       unsigned int idx,
315 				       struct auxtrace_buffer *buffer,
316 				       struct auxtrace_buffer **buffer_ptr)
317 {
318 	int err = -ENOMEM;
319 
320 	if (filter_cpu(session, buffer->cpu))
321 		return 0;
322 
323 	buffer = memdup(buffer, sizeof(*buffer));
324 	if (!buffer)
325 		return -ENOMEM;
326 
327 	if (session->one_mmap) {
328 		buffer->data = buffer->data_offset - session->one_mmap_offset +
329 			       session->one_mmap_addr;
330 	} else if (perf_data__is_pipe(session->data)) {
331 		buffer->data = auxtrace_copy_data(buffer->size, session);
332 		if (!buffer->data)
333 			goto out_free;
334 		buffer->data_needs_freeing = true;
335 	} else if (BITS_PER_LONG == 32 &&
336 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
337 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
338 		if (err)
339 			goto out_free;
340 	}
341 
342 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
343 	if (err)
344 		goto out_free;
345 
346 	/* FIXME: Doesn't work for split buffer */
347 	if (buffer_ptr)
348 		*buffer_ptr = buffer;
349 
350 	return 0;
351 
352 out_free:
353 	auxtrace_buffer__free(buffer);
354 	return err;
355 }
356 
357 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
358 			       struct perf_session *session,
359 			       union perf_event *event, off_t data_offset,
360 			       struct auxtrace_buffer **buffer_ptr)
361 {
362 	struct auxtrace_buffer buffer = {
363 		.pid = -1,
364 		.tid = event->auxtrace.tid,
365 		.cpu = event->auxtrace.cpu,
366 		.data_offset = data_offset,
367 		.offset = event->auxtrace.offset,
368 		.reference = event->auxtrace.reference,
369 		.size = event->auxtrace.size,
370 	};
371 	unsigned int idx = event->auxtrace.idx;
372 
373 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
374 					   buffer_ptr);
375 }
376 
377 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
378 					      struct perf_session *session,
379 					      off_t file_offset, size_t sz)
380 {
381 	union perf_event *event;
382 	int err;
383 	char buf[PERF_SAMPLE_MAX_SIZE];
384 
385 	err = perf_session__peek_event(session, file_offset, buf,
386 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
387 	if (err)
388 		return err;
389 
390 	if (event->header.type == PERF_RECORD_AUXTRACE) {
391 		if (event->header.size < sizeof(struct auxtrace_event) ||
392 		    event->header.size != sz) {
393 			err = -EINVAL;
394 			goto out;
395 		}
396 		file_offset += event->header.size;
397 		err = auxtrace_queues__add_event(queues, session, event,
398 						 file_offset, NULL);
399 	}
400 out:
401 	return err;
402 }
403 
404 void auxtrace_queues__free(struct auxtrace_queues *queues)
405 {
406 	unsigned int i;
407 
408 	for (i = 0; i < queues->nr_queues; i++) {
409 		while (!list_empty(&queues->queue_array[i].head)) {
410 			struct auxtrace_buffer *buffer;
411 
412 			buffer = list_entry(queues->queue_array[i].head.next,
413 					    struct auxtrace_buffer, list);
414 			list_del(&buffer->list);
415 			auxtrace_buffer__free(buffer);
416 		}
417 	}
418 
419 	zfree(&queues->queue_array);
420 	queues->nr_queues = 0;
421 }
422 
423 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
424 			     unsigned int pos, unsigned int queue_nr,
425 			     u64 ordinal)
426 {
427 	unsigned int parent;
428 
429 	while (pos) {
430 		parent = (pos - 1) >> 1;
431 		if (heap_array[parent].ordinal <= ordinal)
432 			break;
433 		heap_array[pos] = heap_array[parent];
434 		pos = parent;
435 	}
436 	heap_array[pos].queue_nr = queue_nr;
437 	heap_array[pos].ordinal = ordinal;
438 }
439 
440 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
441 		       u64 ordinal)
442 {
443 	struct auxtrace_heap_item *heap_array;
444 
445 	if (queue_nr >= heap->heap_sz) {
446 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
447 
448 		while (heap_sz <= queue_nr)
449 			heap_sz <<= 1;
450 		heap_array = realloc(heap->heap_array,
451 				     heap_sz * sizeof(struct auxtrace_heap_item));
452 		if (!heap_array)
453 			return -ENOMEM;
454 		heap->heap_array = heap_array;
455 		heap->heap_sz = heap_sz;
456 	}
457 
458 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
459 
460 	return 0;
461 }
462 
463 void auxtrace_heap__free(struct auxtrace_heap *heap)
464 {
465 	zfree(&heap->heap_array);
466 	heap->heap_cnt = 0;
467 	heap->heap_sz = 0;
468 }
469 
470 void auxtrace_heap__pop(struct auxtrace_heap *heap)
471 {
472 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
473 	struct auxtrace_heap_item *heap_array;
474 
475 	if (!heap_cnt)
476 		return;
477 
478 	heap->heap_cnt -= 1;
479 
480 	heap_array = heap->heap_array;
481 
482 	pos = 0;
483 	while (1) {
484 		unsigned int left, right;
485 
486 		left = (pos << 1) + 1;
487 		if (left >= heap_cnt)
488 			break;
489 		right = left + 1;
490 		if (right >= heap_cnt) {
491 			heap_array[pos] = heap_array[left];
492 			return;
493 		}
494 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
495 			heap_array[pos] = heap_array[left];
496 			pos = left;
497 		} else {
498 			heap_array[pos] = heap_array[right];
499 			pos = right;
500 		}
501 	}
502 
503 	last = heap_cnt - 1;
504 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
505 			 heap_array[last].ordinal);
506 }
507 
508 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
509 				       struct perf_evlist *evlist)
510 {
511 	if (itr)
512 		return itr->info_priv_size(itr, evlist);
513 	return 0;
514 }
515 
516 static int auxtrace_not_supported(void)
517 {
518 	pr_err("AUX area tracing is not supported on this architecture\n");
519 	return -EINVAL;
520 }
521 
522 int auxtrace_record__info_fill(struct auxtrace_record *itr,
523 			       struct perf_session *session,
524 			       struct auxtrace_info_event *auxtrace_info,
525 			       size_t priv_size)
526 {
527 	if (itr)
528 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
529 	return auxtrace_not_supported();
530 }
531 
532 void auxtrace_record__free(struct auxtrace_record *itr)
533 {
534 	if (itr)
535 		itr->free(itr);
536 }
537 
538 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
539 {
540 	if (itr && itr->snapshot_start)
541 		return itr->snapshot_start(itr);
542 	return 0;
543 }
544 
545 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
546 {
547 	if (itr && itr->snapshot_finish)
548 		return itr->snapshot_finish(itr);
549 	return 0;
550 }
551 
552 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
553 				   struct auxtrace_mmap *mm,
554 				   unsigned char *data, u64 *head, u64 *old)
555 {
556 	if (itr && itr->find_snapshot)
557 		return itr->find_snapshot(itr, idx, mm, data, head, old);
558 	return 0;
559 }
560 
561 int auxtrace_record__options(struct auxtrace_record *itr,
562 			     struct perf_evlist *evlist,
563 			     struct record_opts *opts)
564 {
565 	if (itr)
566 		return itr->recording_options(itr, evlist, opts);
567 	return 0;
568 }
569 
570 u64 auxtrace_record__reference(struct auxtrace_record *itr)
571 {
572 	if (itr)
573 		return itr->reference(itr);
574 	return 0;
575 }
576 
577 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
578 				    struct record_opts *opts, const char *str)
579 {
580 	if (!str)
581 		return 0;
582 
583 	if (itr)
584 		return itr->parse_snapshot_options(itr, opts, str);
585 
586 	pr_err("No AUX area tracing to snapshot\n");
587 	return -EINVAL;
588 }
589 
590 struct auxtrace_record *__weak
591 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
592 {
593 	*err = 0;
594 	return NULL;
595 }
596 
597 static int auxtrace_index__alloc(struct list_head *head)
598 {
599 	struct auxtrace_index *auxtrace_index;
600 
601 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
602 	if (!auxtrace_index)
603 		return -ENOMEM;
604 
605 	auxtrace_index->nr = 0;
606 	INIT_LIST_HEAD(&auxtrace_index->list);
607 
608 	list_add_tail(&auxtrace_index->list, head);
609 
610 	return 0;
611 }
612 
613 void auxtrace_index__free(struct list_head *head)
614 {
615 	struct auxtrace_index *auxtrace_index, *n;
616 
617 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
618 		list_del(&auxtrace_index->list);
619 		free(auxtrace_index);
620 	}
621 }
622 
623 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
624 {
625 	struct auxtrace_index *auxtrace_index;
626 	int err;
627 
628 	if (list_empty(head)) {
629 		err = auxtrace_index__alloc(head);
630 		if (err)
631 			return NULL;
632 	}
633 
634 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
635 
636 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
637 		err = auxtrace_index__alloc(head);
638 		if (err)
639 			return NULL;
640 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
641 					    list);
642 	}
643 
644 	return auxtrace_index;
645 }
646 
647 int auxtrace_index__auxtrace_event(struct list_head *head,
648 				   union perf_event *event, off_t file_offset)
649 {
650 	struct auxtrace_index *auxtrace_index;
651 	size_t nr;
652 
653 	auxtrace_index = auxtrace_index__last(head);
654 	if (!auxtrace_index)
655 		return -ENOMEM;
656 
657 	nr = auxtrace_index->nr;
658 	auxtrace_index->entries[nr].file_offset = file_offset;
659 	auxtrace_index->entries[nr].sz = event->header.size;
660 	auxtrace_index->nr += 1;
661 
662 	return 0;
663 }
664 
665 static int auxtrace_index__do_write(int fd,
666 				    struct auxtrace_index *auxtrace_index)
667 {
668 	struct auxtrace_index_entry ent;
669 	size_t i;
670 
671 	for (i = 0; i < auxtrace_index->nr; i++) {
672 		ent.file_offset = auxtrace_index->entries[i].file_offset;
673 		ent.sz = auxtrace_index->entries[i].sz;
674 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
675 			return -errno;
676 	}
677 	return 0;
678 }
679 
680 int auxtrace_index__write(int fd, struct list_head *head)
681 {
682 	struct auxtrace_index *auxtrace_index;
683 	u64 total = 0;
684 	int err;
685 
686 	list_for_each_entry(auxtrace_index, head, list)
687 		total += auxtrace_index->nr;
688 
689 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
690 		return -errno;
691 
692 	list_for_each_entry(auxtrace_index, head, list) {
693 		err = auxtrace_index__do_write(fd, auxtrace_index);
694 		if (err)
695 			return err;
696 	}
697 
698 	return 0;
699 }
700 
701 static int auxtrace_index__process_entry(int fd, struct list_head *head,
702 					 bool needs_swap)
703 {
704 	struct auxtrace_index *auxtrace_index;
705 	struct auxtrace_index_entry ent;
706 	size_t nr;
707 
708 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
709 		return -1;
710 
711 	auxtrace_index = auxtrace_index__last(head);
712 	if (!auxtrace_index)
713 		return -1;
714 
715 	nr = auxtrace_index->nr;
716 	if (needs_swap) {
717 		auxtrace_index->entries[nr].file_offset =
718 						bswap_64(ent.file_offset);
719 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
720 	} else {
721 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
722 		auxtrace_index->entries[nr].sz = ent.sz;
723 	}
724 
725 	auxtrace_index->nr = nr + 1;
726 
727 	return 0;
728 }
729 
730 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
731 			    bool needs_swap)
732 {
733 	struct list_head *head = &session->auxtrace_index;
734 	u64 nr;
735 
736 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
737 		return -1;
738 
739 	if (needs_swap)
740 		nr = bswap_64(nr);
741 
742 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
743 		return -1;
744 
745 	while (nr--) {
746 		int err;
747 
748 		err = auxtrace_index__process_entry(fd, head, needs_swap);
749 		if (err)
750 			return -1;
751 	}
752 
753 	return 0;
754 }
755 
756 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
757 						struct perf_session *session,
758 						struct auxtrace_index_entry *ent)
759 {
760 	return auxtrace_queues__add_indexed_event(queues, session,
761 						  ent->file_offset, ent->sz);
762 }
763 
764 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
765 				   struct perf_session *session)
766 {
767 	struct auxtrace_index *auxtrace_index;
768 	struct auxtrace_index_entry *ent;
769 	size_t i;
770 	int err;
771 
772 	if (auxtrace__dont_decode(session))
773 		return 0;
774 
775 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
776 		for (i = 0; i < auxtrace_index->nr; i++) {
777 			ent = &auxtrace_index->entries[i];
778 			err = auxtrace_queues__process_index_entry(queues,
779 								   session,
780 								   ent);
781 			if (err)
782 				return err;
783 		}
784 	}
785 	return 0;
786 }
787 
788 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
789 					      struct auxtrace_buffer *buffer)
790 {
791 	if (buffer) {
792 		if (list_is_last(&buffer->list, &queue->head))
793 			return NULL;
794 		return list_entry(buffer->list.next, struct auxtrace_buffer,
795 				  list);
796 	} else {
797 		if (list_empty(&queue->head))
798 			return NULL;
799 		return list_entry(queue->head.next, struct auxtrace_buffer,
800 				  list);
801 	}
802 }
803 
804 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
805 {
806 	size_t adj = buffer->data_offset & (page_size - 1);
807 	size_t size = buffer->size + adj;
808 	off_t file_offset = buffer->data_offset - adj;
809 	void *addr;
810 
811 	if (buffer->data)
812 		return buffer->data;
813 
814 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
815 	if (addr == MAP_FAILED)
816 		return NULL;
817 
818 	buffer->mmap_addr = addr;
819 	buffer->mmap_size = size;
820 
821 	buffer->data = addr + adj;
822 
823 	return buffer->data;
824 }
825 
826 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
827 {
828 	if (!buffer->data || !buffer->mmap_addr)
829 		return;
830 	munmap(buffer->mmap_addr, buffer->mmap_size);
831 	buffer->mmap_addr = NULL;
832 	buffer->mmap_size = 0;
833 	buffer->data = NULL;
834 	buffer->use_data = NULL;
835 }
836 
837 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
838 {
839 	auxtrace_buffer__put_data(buffer);
840 	if (buffer->data_needs_freeing) {
841 		buffer->data_needs_freeing = false;
842 		zfree(&buffer->data);
843 		buffer->use_data = NULL;
844 		buffer->size = 0;
845 	}
846 }
847 
848 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
849 {
850 	auxtrace_buffer__drop_data(buffer);
851 	free(buffer);
852 }
853 
854 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
855 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
856 			  const char *msg)
857 {
858 	size_t size;
859 
860 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
861 
862 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
863 	auxtrace_error->type = type;
864 	auxtrace_error->code = code;
865 	auxtrace_error->cpu = cpu;
866 	auxtrace_error->pid = pid;
867 	auxtrace_error->tid = tid;
868 	auxtrace_error->ip = ip;
869 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
870 
871 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
872 	       strlen(auxtrace_error->msg) + 1;
873 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
874 }
875 
876 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
877 					 struct perf_tool *tool,
878 					 struct perf_session *session,
879 					 perf_event__handler_t process)
880 {
881 	union perf_event *ev;
882 	size_t priv_size;
883 	int err;
884 
885 	pr_debug2("Synthesizing auxtrace information\n");
886 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
887 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
888 	if (!ev)
889 		return -ENOMEM;
890 
891 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
892 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
893 					priv_size;
894 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
895 					 priv_size);
896 	if (err)
897 		goto out_free;
898 
899 	err = process(tool, ev, NULL, NULL);
900 out_free:
901 	free(ev);
902 	return err;
903 }
904 
905 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
906 				      union perf_event *event,
907 				      struct perf_session *session)
908 {
909 	enum auxtrace_type type = event->auxtrace_info.type;
910 
911 	if (dump_trace)
912 		fprintf(stdout, " type: %u\n", type);
913 
914 	switch (type) {
915 	case PERF_AUXTRACE_INTEL_PT:
916 		return intel_pt_process_auxtrace_info(event, session);
917 	case PERF_AUXTRACE_INTEL_BTS:
918 		return intel_bts_process_auxtrace_info(event, session);
919 	case PERF_AUXTRACE_ARM_SPE:
920 		return arm_spe_process_auxtrace_info(event, session);
921 	case PERF_AUXTRACE_CS_ETM:
922 		return cs_etm__process_auxtrace_info(event, session);
923 	case PERF_AUXTRACE_UNKNOWN:
924 	default:
925 		return -EINVAL;
926 	}
927 }
928 
929 s64 perf_event__process_auxtrace(struct perf_tool *tool,
930 				 union perf_event *event,
931 				 struct perf_session *session)
932 {
933 	s64 err;
934 
935 	if (dump_trace)
936 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
937 			event->auxtrace.size, event->auxtrace.offset,
938 			event->auxtrace.reference, event->auxtrace.idx,
939 			event->auxtrace.tid, event->auxtrace.cpu);
940 
941 	if (auxtrace__dont_decode(session))
942 		return event->auxtrace.size;
943 
944 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
945 		return -EINVAL;
946 
947 	err = session->auxtrace->process_auxtrace_event(session, event, tool);
948 	if (err < 0)
949 		return err;
950 
951 	return event->auxtrace.size;
952 }
953 
954 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
955 #define PERF_ITRACE_DEFAULT_PERIOD		100000
956 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
957 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
958 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
959 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
960 
961 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
962 {
963 	synth_opts->instructions = true;
964 	synth_opts->branches = true;
965 	synth_opts->transactions = true;
966 	synth_opts->ptwrites = true;
967 	synth_opts->pwr_events = true;
968 	synth_opts->errors = true;
969 	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
970 	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
971 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
972 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
973 	synth_opts->initial_skip = 0;
974 }
975 
976 /*
977  * Please check tools/perf/Documentation/perf-script.txt for information
978  * about the options parsed here, which is introduced after this cset,
979  * when support in 'perf script' for these options is introduced.
980  */
981 int itrace_parse_synth_opts(const struct option *opt, const char *str,
982 			    int unset)
983 {
984 	struct itrace_synth_opts *synth_opts = opt->value;
985 	const char *p;
986 	char *endptr;
987 	bool period_type_set = false;
988 	bool period_set = false;
989 
990 	synth_opts->set = true;
991 
992 	if (unset) {
993 		synth_opts->dont_decode = true;
994 		return 0;
995 	}
996 
997 	if (!str) {
998 		itrace_synth_opts__set_default(synth_opts);
999 		return 0;
1000 	}
1001 
1002 	for (p = str; *p;) {
1003 		switch (*p++) {
1004 		case 'i':
1005 			synth_opts->instructions = true;
1006 			while (*p == ' ' || *p == ',')
1007 				p += 1;
1008 			if (isdigit(*p)) {
1009 				synth_opts->period = strtoull(p, &endptr, 10);
1010 				period_set = true;
1011 				p = endptr;
1012 				while (*p == ' ' || *p == ',')
1013 					p += 1;
1014 				switch (*p++) {
1015 				case 'i':
1016 					synth_opts->period_type =
1017 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1018 					period_type_set = true;
1019 					break;
1020 				case 't':
1021 					synth_opts->period_type =
1022 						PERF_ITRACE_PERIOD_TICKS;
1023 					period_type_set = true;
1024 					break;
1025 				case 'm':
1026 					synth_opts->period *= 1000;
1027 					/* Fall through */
1028 				case 'u':
1029 					synth_opts->period *= 1000;
1030 					/* Fall through */
1031 				case 'n':
1032 					if (*p++ != 's')
1033 						goto out_err;
1034 					synth_opts->period_type =
1035 						PERF_ITRACE_PERIOD_NANOSECS;
1036 					period_type_set = true;
1037 					break;
1038 				case '\0':
1039 					goto out;
1040 				default:
1041 					goto out_err;
1042 				}
1043 			}
1044 			break;
1045 		case 'b':
1046 			synth_opts->branches = true;
1047 			break;
1048 		case 'x':
1049 			synth_opts->transactions = true;
1050 			break;
1051 		case 'w':
1052 			synth_opts->ptwrites = true;
1053 			break;
1054 		case 'p':
1055 			synth_opts->pwr_events = true;
1056 			break;
1057 		case 'e':
1058 			synth_opts->errors = true;
1059 			break;
1060 		case 'd':
1061 			synth_opts->log = true;
1062 			break;
1063 		case 'c':
1064 			synth_opts->branches = true;
1065 			synth_opts->calls = true;
1066 			break;
1067 		case 'r':
1068 			synth_opts->branches = true;
1069 			synth_opts->returns = true;
1070 			break;
1071 		case 'g':
1072 			synth_opts->callchain = true;
1073 			synth_opts->callchain_sz =
1074 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1075 			while (*p == ' ' || *p == ',')
1076 				p += 1;
1077 			if (isdigit(*p)) {
1078 				unsigned int val;
1079 
1080 				val = strtoul(p, &endptr, 10);
1081 				p = endptr;
1082 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1083 					goto out_err;
1084 				synth_opts->callchain_sz = val;
1085 			}
1086 			break;
1087 		case 'l':
1088 			synth_opts->last_branch = true;
1089 			synth_opts->last_branch_sz =
1090 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1091 			while (*p == ' ' || *p == ',')
1092 				p += 1;
1093 			if (isdigit(*p)) {
1094 				unsigned int val;
1095 
1096 				val = strtoul(p, &endptr, 10);
1097 				p = endptr;
1098 				if (!val ||
1099 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1100 					goto out_err;
1101 				synth_opts->last_branch_sz = val;
1102 			}
1103 			break;
1104 		case 's':
1105 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1106 			if (p == endptr)
1107 				goto out_err;
1108 			p = endptr;
1109 			break;
1110 		case ' ':
1111 		case ',':
1112 			break;
1113 		default:
1114 			goto out_err;
1115 		}
1116 	}
1117 out:
1118 	if (synth_opts->instructions) {
1119 		if (!period_type_set)
1120 			synth_opts->period_type =
1121 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1122 		if (!period_set)
1123 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1124 	}
1125 
1126 	return 0;
1127 
1128 out_err:
1129 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1130 	return -EINVAL;
1131 }
1132 
1133 static const char * const auxtrace_error_type_name[] = {
1134 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1135 };
1136 
1137 static const char *auxtrace_error_name(int type)
1138 {
1139 	const char *error_type_name = NULL;
1140 
1141 	if (type < PERF_AUXTRACE_ERROR_MAX)
1142 		error_type_name = auxtrace_error_type_name[type];
1143 	if (!error_type_name)
1144 		error_type_name = "unknown AUX";
1145 	return error_type_name;
1146 }
1147 
1148 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1149 {
1150 	struct auxtrace_error_event *e = &event->auxtrace_error;
1151 	int ret;
1152 
1153 	ret = fprintf(fp, " %s error type %u",
1154 		      auxtrace_error_name(e->type), e->type);
1155 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1156 		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1157 	return ret;
1158 }
1159 
1160 void perf_session__auxtrace_error_inc(struct perf_session *session,
1161 				      union perf_event *event)
1162 {
1163 	struct auxtrace_error_event *e = &event->auxtrace_error;
1164 
1165 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1166 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1167 }
1168 
1169 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1170 {
1171 	int i;
1172 
1173 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1174 		if (!stats->nr_auxtrace_errors[i])
1175 			continue;
1176 		ui__warning("%u %s errors\n",
1177 			    stats->nr_auxtrace_errors[i],
1178 			    auxtrace_error_name(i));
1179 	}
1180 }
1181 
1182 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1183 				       union perf_event *event,
1184 				       struct perf_session *session)
1185 {
1186 	if (auxtrace__dont_decode(session))
1187 		return 0;
1188 
1189 	perf_event__fprintf_auxtrace_error(event, stdout);
1190 	return 0;
1191 }
1192 
1193 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1194 				 struct auxtrace_record *itr,
1195 				 struct perf_tool *tool, process_auxtrace_t fn,
1196 				 bool snapshot, size_t snapshot_size)
1197 {
1198 	u64 head, old = mm->prev, offset, ref;
1199 	unsigned char *data = mm->base;
1200 	size_t size, head_off, old_off, len1, len2, padding;
1201 	union perf_event ev;
1202 	void *data1, *data2;
1203 
1204 	if (snapshot) {
1205 		head = auxtrace_mmap__read_snapshot_head(mm);
1206 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1207 						   &head, &old))
1208 			return -1;
1209 	} else {
1210 		head = auxtrace_mmap__read_head(mm);
1211 	}
1212 
1213 	if (old == head)
1214 		return 0;
1215 
1216 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1217 		  mm->idx, old, head, head - old);
1218 
1219 	if (mm->mask) {
1220 		head_off = head & mm->mask;
1221 		old_off = old & mm->mask;
1222 	} else {
1223 		head_off = head % mm->len;
1224 		old_off = old % mm->len;
1225 	}
1226 
1227 	if (head_off > old_off)
1228 		size = head_off - old_off;
1229 	else
1230 		size = mm->len - (old_off - head_off);
1231 
1232 	if (snapshot && size > snapshot_size)
1233 		size = snapshot_size;
1234 
1235 	ref = auxtrace_record__reference(itr);
1236 
1237 	if (head > old || size <= head || mm->mask) {
1238 		offset = head - size;
1239 	} else {
1240 		/*
1241 		 * When the buffer size is not a power of 2, 'head' wraps at the
1242 		 * highest multiple of the buffer size, so we have to subtract
1243 		 * the remainder here.
1244 		 */
1245 		u64 rem = (0ULL - mm->len) % mm->len;
1246 
1247 		offset = head - size - rem;
1248 	}
1249 
1250 	if (size > head_off) {
1251 		len1 = size - head_off;
1252 		data1 = &data[mm->len - len1];
1253 		len2 = head_off;
1254 		data2 = &data[0];
1255 	} else {
1256 		len1 = size;
1257 		data1 = &data[head_off - len1];
1258 		len2 = 0;
1259 		data2 = NULL;
1260 	}
1261 
1262 	if (itr->alignment) {
1263 		unsigned int unwanted = len1 % itr->alignment;
1264 
1265 		len1 -= unwanted;
1266 		size -= unwanted;
1267 	}
1268 
1269 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1270 	padding = size & 7;
1271 	if (padding)
1272 		padding = 8 - padding;
1273 
1274 	memset(&ev, 0, sizeof(ev));
1275 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1276 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1277 	ev.auxtrace.size = size + padding;
1278 	ev.auxtrace.offset = offset;
1279 	ev.auxtrace.reference = ref;
1280 	ev.auxtrace.idx = mm->idx;
1281 	ev.auxtrace.tid = mm->tid;
1282 	ev.auxtrace.cpu = mm->cpu;
1283 
1284 	if (fn(tool, &ev, data1, len1, data2, len2))
1285 		return -1;
1286 
1287 	mm->prev = head;
1288 
1289 	if (!snapshot) {
1290 		auxtrace_mmap__write_tail(mm, head);
1291 		if (itr->read_finish) {
1292 			int err;
1293 
1294 			err = itr->read_finish(itr, mm->idx);
1295 			if (err < 0)
1296 				return err;
1297 		}
1298 	}
1299 
1300 	return 1;
1301 }
1302 
1303 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1304 			struct perf_tool *tool, process_auxtrace_t fn)
1305 {
1306 	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1307 }
1308 
1309 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1310 				 struct auxtrace_record *itr,
1311 				 struct perf_tool *tool, process_auxtrace_t fn,
1312 				 size_t snapshot_size)
1313 {
1314 	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1315 }
1316 
1317 /**
1318  * struct auxtrace_cache - hash table to implement a cache
1319  * @hashtable: the hashtable
1320  * @sz: hashtable size (number of hlists)
1321  * @entry_size: size of an entry
1322  * @limit: limit the number of entries to this maximum, when reached the cache
1323  *         is dropped and caching begins again with an empty cache
1324  * @cnt: current number of entries
1325  * @bits: hashtable size (@sz = 2^@bits)
1326  */
1327 struct auxtrace_cache {
1328 	struct hlist_head *hashtable;
1329 	size_t sz;
1330 	size_t entry_size;
1331 	size_t limit;
1332 	size_t cnt;
1333 	unsigned int bits;
1334 };
1335 
1336 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1337 					   unsigned int limit_percent)
1338 {
1339 	struct auxtrace_cache *c;
1340 	struct hlist_head *ht;
1341 	size_t sz, i;
1342 
1343 	c = zalloc(sizeof(struct auxtrace_cache));
1344 	if (!c)
1345 		return NULL;
1346 
1347 	sz = 1UL << bits;
1348 
1349 	ht = calloc(sz, sizeof(struct hlist_head));
1350 	if (!ht)
1351 		goto out_free;
1352 
1353 	for (i = 0; i < sz; i++)
1354 		INIT_HLIST_HEAD(&ht[i]);
1355 
1356 	c->hashtable = ht;
1357 	c->sz = sz;
1358 	c->entry_size = entry_size;
1359 	c->limit = (c->sz * limit_percent) / 100;
1360 	c->bits = bits;
1361 
1362 	return c;
1363 
1364 out_free:
1365 	free(c);
1366 	return NULL;
1367 }
1368 
1369 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1370 {
1371 	struct auxtrace_cache_entry *entry;
1372 	struct hlist_node *tmp;
1373 	size_t i;
1374 
1375 	if (!c)
1376 		return;
1377 
1378 	for (i = 0; i < c->sz; i++) {
1379 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1380 			hlist_del(&entry->hash);
1381 			auxtrace_cache__free_entry(c, entry);
1382 		}
1383 	}
1384 
1385 	c->cnt = 0;
1386 }
1387 
1388 void auxtrace_cache__free(struct auxtrace_cache *c)
1389 {
1390 	if (!c)
1391 		return;
1392 
1393 	auxtrace_cache__drop(c);
1394 	free(c->hashtable);
1395 	free(c);
1396 }
1397 
1398 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1399 {
1400 	return malloc(c->entry_size);
1401 }
1402 
1403 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1404 				void *entry)
1405 {
1406 	free(entry);
1407 }
1408 
1409 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1410 			struct auxtrace_cache_entry *entry)
1411 {
1412 	if (c->limit && ++c->cnt > c->limit)
1413 		auxtrace_cache__drop(c);
1414 
1415 	entry->key = key;
1416 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1417 
1418 	return 0;
1419 }
1420 
1421 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1422 {
1423 	struct auxtrace_cache_entry *entry;
1424 	struct hlist_head *hlist;
1425 
1426 	if (!c)
1427 		return NULL;
1428 
1429 	hlist = &c->hashtable[hash_32(key, c->bits)];
1430 	hlist_for_each_entry(entry, hlist, hash) {
1431 		if (entry->key == key)
1432 			return entry;
1433 	}
1434 
1435 	return NULL;
1436 }
1437 
1438 static void addr_filter__free_str(struct addr_filter *filt)
1439 {
1440 	free(filt->str);
1441 	filt->action   = NULL;
1442 	filt->sym_from = NULL;
1443 	filt->sym_to   = NULL;
1444 	filt->filename = NULL;
1445 	filt->str      = NULL;
1446 }
1447 
1448 static struct addr_filter *addr_filter__new(void)
1449 {
1450 	struct addr_filter *filt = zalloc(sizeof(*filt));
1451 
1452 	if (filt)
1453 		INIT_LIST_HEAD(&filt->list);
1454 
1455 	return filt;
1456 }
1457 
1458 static void addr_filter__free(struct addr_filter *filt)
1459 {
1460 	if (filt)
1461 		addr_filter__free_str(filt);
1462 	free(filt);
1463 }
1464 
1465 static void addr_filters__add(struct addr_filters *filts,
1466 			      struct addr_filter *filt)
1467 {
1468 	list_add_tail(&filt->list, &filts->head);
1469 	filts->cnt += 1;
1470 }
1471 
1472 static void addr_filters__del(struct addr_filters *filts,
1473 			      struct addr_filter *filt)
1474 {
1475 	list_del_init(&filt->list);
1476 	filts->cnt -= 1;
1477 }
1478 
1479 void addr_filters__init(struct addr_filters *filts)
1480 {
1481 	INIT_LIST_HEAD(&filts->head);
1482 	filts->cnt = 0;
1483 }
1484 
1485 void addr_filters__exit(struct addr_filters *filts)
1486 {
1487 	struct addr_filter *filt, *n;
1488 
1489 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1490 		addr_filters__del(filts, filt);
1491 		addr_filter__free(filt);
1492 	}
1493 }
1494 
1495 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1496 			    const char *str_delim)
1497 {
1498 	*inp += strspn(*inp, " ");
1499 
1500 	if (isdigit(**inp)) {
1501 		char *endptr;
1502 
1503 		if (!num)
1504 			return -EINVAL;
1505 		errno = 0;
1506 		*num = strtoull(*inp, &endptr, 0);
1507 		if (errno)
1508 			return -errno;
1509 		if (endptr == *inp)
1510 			return -EINVAL;
1511 		*inp = endptr;
1512 	} else {
1513 		size_t n;
1514 
1515 		if (!str)
1516 			return -EINVAL;
1517 		*inp += strspn(*inp, " ");
1518 		*str = *inp;
1519 		n = strcspn(*inp, str_delim);
1520 		if (!n)
1521 			return -EINVAL;
1522 		*inp += n;
1523 		if (**inp) {
1524 			**inp = '\0';
1525 			*inp += 1;
1526 		}
1527 	}
1528 	return 0;
1529 }
1530 
1531 static int parse_action(struct addr_filter *filt)
1532 {
1533 	if (!strcmp(filt->action, "filter")) {
1534 		filt->start = true;
1535 		filt->range = true;
1536 	} else if (!strcmp(filt->action, "start")) {
1537 		filt->start = true;
1538 	} else if (!strcmp(filt->action, "stop")) {
1539 		filt->start = false;
1540 	} else if (!strcmp(filt->action, "tracestop")) {
1541 		filt->start = false;
1542 		filt->range = true;
1543 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1544 	} else {
1545 		return -EINVAL;
1546 	}
1547 	return 0;
1548 }
1549 
1550 static int parse_sym_idx(char **inp, int *idx)
1551 {
1552 	*idx = -1;
1553 
1554 	*inp += strspn(*inp, " ");
1555 
1556 	if (**inp != '#')
1557 		return 0;
1558 
1559 	*inp += 1;
1560 
1561 	if (**inp == 'g' || **inp == 'G') {
1562 		*inp += 1;
1563 		*idx = 0;
1564 	} else {
1565 		unsigned long num;
1566 		char *endptr;
1567 
1568 		errno = 0;
1569 		num = strtoul(*inp, &endptr, 0);
1570 		if (errno)
1571 			return -errno;
1572 		if (endptr == *inp || num > INT_MAX)
1573 			return -EINVAL;
1574 		*inp = endptr;
1575 		*idx = num;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1582 {
1583 	int err = parse_num_or_str(inp, num, str, " ");
1584 
1585 	if (!err && *str)
1586 		err = parse_sym_idx(inp, idx);
1587 
1588 	return err;
1589 }
1590 
1591 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1592 {
1593 	char *fstr;
1594 	int err;
1595 
1596 	filt->str = fstr = strdup(*filter_inp);
1597 	if (!fstr)
1598 		return -ENOMEM;
1599 
1600 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1601 	if (err)
1602 		goto out_err;
1603 
1604 	err = parse_action(filt);
1605 	if (err)
1606 		goto out_err;
1607 
1608 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1609 			      &filt->sym_from_idx);
1610 	if (err)
1611 		goto out_err;
1612 
1613 	fstr += strspn(fstr, " ");
1614 
1615 	if (*fstr == '/') {
1616 		fstr += 1;
1617 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1618 				      &filt->sym_to_idx);
1619 		if (err)
1620 			goto out_err;
1621 		filt->range = true;
1622 	}
1623 
1624 	fstr += strspn(fstr, " ");
1625 
1626 	if (*fstr == '@') {
1627 		fstr += 1;
1628 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1629 		if (err)
1630 			goto out_err;
1631 	}
1632 
1633 	fstr += strspn(fstr, " ,");
1634 
1635 	*filter_inp += fstr - filt->str;
1636 
1637 	return 0;
1638 
1639 out_err:
1640 	addr_filter__free_str(filt);
1641 
1642 	return err;
1643 }
1644 
1645 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1646 				    const char *filter)
1647 {
1648 	struct addr_filter *filt;
1649 	const char *fstr = filter;
1650 	int err;
1651 
1652 	while (*fstr) {
1653 		filt = addr_filter__new();
1654 		err = parse_one_filter(filt, &fstr);
1655 		if (err) {
1656 			addr_filter__free(filt);
1657 			addr_filters__exit(filts);
1658 			return err;
1659 		}
1660 		addr_filters__add(filts, filt);
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 struct sym_args {
1667 	const char	*name;
1668 	u64		start;
1669 	u64		size;
1670 	int		idx;
1671 	int		cnt;
1672 	bool		started;
1673 	bool		global;
1674 	bool		selected;
1675 	bool		duplicate;
1676 	bool		near;
1677 };
1678 
1679 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1680 {
1681 	/* A function with the same name, and global or the n'th found or any */
1682 	return symbol_type__is_a(type, MAP__FUNCTION) &&
1683 	       !strcmp(name, args->name) &&
1684 	       ((args->global && isupper(type)) ||
1685 		(args->selected && ++(args->cnt) == args->idx) ||
1686 		(!args->global && !args->selected));
1687 }
1688 
1689 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1690 {
1691 	struct sym_args *args = arg;
1692 
1693 	if (args->started) {
1694 		if (!args->size)
1695 			args->size = start - args->start;
1696 		if (args->selected) {
1697 			if (args->size)
1698 				return 1;
1699 		} else if (kern_sym_match(args, name, type)) {
1700 			args->duplicate = true;
1701 			return 1;
1702 		}
1703 	} else if (kern_sym_match(args, name, type)) {
1704 		args->started = true;
1705 		args->start = start;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1712 {
1713 	struct sym_args *args = arg;
1714 
1715 	if (kern_sym_match(args, name, type)) {
1716 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1717 		       ++args->cnt, start, type, name);
1718 		args->near = true;
1719 	} else if (args->near) {
1720 		args->near = false;
1721 		pr_err("\t\twhich is near\t\t%s\n", name);
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 static int sym_not_found_error(const char *sym_name, int idx)
1728 {
1729 	if (idx > 0) {
1730 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1731 		       idx, sym_name);
1732 	} else if (!idx) {
1733 		pr_err("Global symbol '%s' not found.\n", sym_name);
1734 	} else {
1735 		pr_err("Symbol '%s' not found.\n", sym_name);
1736 	}
1737 	pr_err("Note that symbols must be functions.\n");
1738 
1739 	return -EINVAL;
1740 }
1741 
1742 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1743 {
1744 	struct sym_args args = {
1745 		.name = sym_name,
1746 		.idx = idx,
1747 		.global = !idx,
1748 		.selected = idx > 0,
1749 	};
1750 	int err;
1751 
1752 	*start = 0;
1753 	*size = 0;
1754 
1755 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1756 	if (err < 0) {
1757 		pr_err("Failed to parse /proc/kallsyms\n");
1758 		return err;
1759 	}
1760 
1761 	if (args.duplicate) {
1762 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1763 		args.cnt = 0;
1764 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1765 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1766 		       sym_name);
1767 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1768 		return -EINVAL;
1769 	}
1770 
1771 	if (!args.started) {
1772 		pr_err("Kernel symbol lookup: ");
1773 		return sym_not_found_error(sym_name, idx);
1774 	}
1775 
1776 	*start = args.start;
1777 	*size = args.size;
1778 
1779 	return 0;
1780 }
1781 
1782 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1783 			       char type, u64 start)
1784 {
1785 	struct sym_args *args = arg;
1786 
1787 	if (!symbol_type__is_a(type, MAP__FUNCTION))
1788 		return 0;
1789 
1790 	if (!args->started) {
1791 		args->started = true;
1792 		args->start = start;
1793 	}
1794 	/* Don't know exactly where the kernel ends, so we add a page */
1795 	args->size = round_up(start, page_size) + page_size - args->start;
1796 
1797 	return 0;
1798 }
1799 
1800 static int addr_filter__entire_kernel(struct addr_filter *filt)
1801 {
1802 	struct sym_args args = { .started = false };
1803 	int err;
1804 
1805 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1806 	if (err < 0 || !args.started) {
1807 		pr_err("Failed to parse /proc/kallsyms\n");
1808 		return err;
1809 	}
1810 
1811 	filt->addr = args.start;
1812 	filt->size = args.size;
1813 
1814 	return 0;
1815 }
1816 
1817 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1818 {
1819 	if (start + size >= filt->addr)
1820 		return 0;
1821 
1822 	if (filt->sym_from) {
1823 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1824 		       filt->sym_to, start, filt->sym_from, filt->addr);
1825 	} else {
1826 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1827 		       filt->sym_to, start, filt->addr);
1828 	}
1829 
1830 	return -EINVAL;
1831 }
1832 
1833 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1834 {
1835 	bool no_size = false;
1836 	u64 start, size;
1837 	int err;
1838 
1839 	if (symbol_conf.kptr_restrict) {
1840 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1841 		return -EINVAL;
1842 	}
1843 
1844 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1845 		return addr_filter__entire_kernel(filt);
1846 
1847 	if (filt->sym_from) {
1848 		err = find_kern_sym(filt->sym_from, &start, &size,
1849 				    filt->sym_from_idx);
1850 		if (err)
1851 			return err;
1852 		filt->addr = start;
1853 		if (filt->range && !filt->size && !filt->sym_to) {
1854 			filt->size = size;
1855 			no_size = !size;
1856 		}
1857 	}
1858 
1859 	if (filt->sym_to) {
1860 		err = find_kern_sym(filt->sym_to, &start, &size,
1861 				    filt->sym_to_idx);
1862 		if (err)
1863 			return err;
1864 
1865 		err = check_end_after_start(filt, start, size);
1866 		if (err)
1867 			return err;
1868 		filt->size = start + size - filt->addr;
1869 		no_size = !size;
1870 	}
1871 
1872 	/* The very last symbol in kallsyms does not imply a particular size */
1873 	if (no_size) {
1874 		pr_err("Cannot determine size of symbol '%s'\n",
1875 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1876 		return -EINVAL;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static struct dso *load_dso(const char *name)
1883 {
1884 	struct map *map;
1885 	struct dso *dso;
1886 
1887 	map = dso__new_map(name);
1888 	if (!map)
1889 		return NULL;
1890 
1891 	map__load(map);
1892 
1893 	dso = dso__get(map->dso);
1894 
1895 	map__put(map);
1896 
1897 	return dso;
1898 }
1899 
1900 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1901 			  int idx)
1902 {
1903 	/* Same name, and global or the n'th found or any */
1904 	return !arch__compare_symbol_names(name, sym->name) &&
1905 	       ((!idx && sym->binding == STB_GLOBAL) ||
1906 		(idx > 0 && ++*cnt == idx) ||
1907 		idx < 0);
1908 }
1909 
1910 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1911 {
1912 	struct symbol *sym;
1913 	bool near = false;
1914 	int cnt = 0;
1915 
1916 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1917 
1918 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1919 	while (sym) {
1920 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1921 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1922 			       ++cnt, sym->start,
1923 			       sym->binding == STB_GLOBAL ? 'g' :
1924 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1925 			       sym->name);
1926 			near = true;
1927 		} else if (near) {
1928 			near = false;
1929 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1930 		}
1931 		sym = dso__next_symbol(sym);
1932 	}
1933 
1934 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1935 	       sym_name);
1936 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1937 }
1938 
1939 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1940 			u64 *size, int idx)
1941 {
1942 	struct symbol *sym;
1943 	int cnt = 0;
1944 
1945 	*start = 0;
1946 	*size = 0;
1947 
1948 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1949 	while (sym) {
1950 		if (*start) {
1951 			if (!*size)
1952 				*size = sym->start - *start;
1953 			if (idx > 0) {
1954 				if (*size)
1955 					return 1;
1956 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1957 				print_duplicate_syms(dso, sym_name);
1958 				return -EINVAL;
1959 			}
1960 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1961 			*start = sym->start;
1962 			*size = sym->end - sym->start;
1963 		}
1964 		sym = dso__next_symbol(sym);
1965 	}
1966 
1967 	if (!*start)
1968 		return sym_not_found_error(sym_name, idx);
1969 
1970 	return 0;
1971 }
1972 
1973 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1974 {
1975 	struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1976 	struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1977 
1978 	if (!first_sym || !last_sym) {
1979 		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1980 		       filt->filename);
1981 		return -EINVAL;
1982 	}
1983 
1984 	filt->addr = first_sym->start;
1985 	filt->size = last_sym->end - first_sym->start;
1986 
1987 	return 0;
1988 }
1989 
1990 static int addr_filter__resolve_syms(struct addr_filter *filt)
1991 {
1992 	u64 start, size;
1993 	struct dso *dso;
1994 	int err = 0;
1995 
1996 	if (!filt->sym_from && !filt->sym_to)
1997 		return 0;
1998 
1999 	if (!filt->filename)
2000 		return addr_filter__resolve_kernel_syms(filt);
2001 
2002 	dso = load_dso(filt->filename);
2003 	if (!dso) {
2004 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2005 		return -EINVAL;
2006 	}
2007 
2008 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2009 		err = addr_filter__entire_dso(filt, dso);
2010 		goto put_dso;
2011 	}
2012 
2013 	if (filt->sym_from) {
2014 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2015 				   filt->sym_from_idx);
2016 		if (err)
2017 			goto put_dso;
2018 		filt->addr = start;
2019 		if (filt->range && !filt->size && !filt->sym_to)
2020 			filt->size = size;
2021 	}
2022 
2023 	if (filt->sym_to) {
2024 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2025 				   filt->sym_to_idx);
2026 		if (err)
2027 			goto put_dso;
2028 
2029 		err = check_end_after_start(filt, start, size);
2030 		if (err)
2031 			return err;
2032 
2033 		filt->size = start + size - filt->addr;
2034 	}
2035 
2036 put_dso:
2037 	dso__put(dso);
2038 
2039 	return err;
2040 }
2041 
2042 static char *addr_filter__to_str(struct addr_filter *filt)
2043 {
2044 	char filename_buf[PATH_MAX];
2045 	const char *at = "";
2046 	const char *fn = "";
2047 	char *filter;
2048 	int err;
2049 
2050 	if (filt->filename) {
2051 		at = "@";
2052 		fn = realpath(filt->filename, filename_buf);
2053 		if (!fn)
2054 			return NULL;
2055 	}
2056 
2057 	if (filt->range) {
2058 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2059 			       filt->action, filt->addr, filt->size, at, fn);
2060 	} else {
2061 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2062 			       filt->action, filt->addr, at, fn);
2063 	}
2064 
2065 	return err < 0 ? NULL : filter;
2066 }
2067 
2068 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2069 			     int max_nr)
2070 {
2071 	struct addr_filters filts;
2072 	struct addr_filter *filt;
2073 	int err;
2074 
2075 	addr_filters__init(&filts);
2076 
2077 	err = addr_filters__parse_bare_filter(&filts, filter);
2078 	if (err)
2079 		goto out_exit;
2080 
2081 	if (filts.cnt > max_nr) {
2082 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2083 		       filts.cnt, max_nr);
2084 		err = -EINVAL;
2085 		goto out_exit;
2086 	}
2087 
2088 	list_for_each_entry(filt, &filts.head, list) {
2089 		char *new_filter;
2090 
2091 		err = addr_filter__resolve_syms(filt);
2092 		if (err)
2093 			goto out_exit;
2094 
2095 		new_filter = addr_filter__to_str(filt);
2096 		if (!new_filter) {
2097 			err = -ENOMEM;
2098 			goto out_exit;
2099 		}
2100 
2101 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2102 			err = -ENOMEM;
2103 			goto out_exit;
2104 		}
2105 	}
2106 
2107 out_exit:
2108 	addr_filters__exit(&filts);
2109 
2110 	if (err) {
2111 		pr_err("Failed to parse address filter: '%s'\n", filter);
2112 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2113 		pr_err("Where multiple filters are separated by space or comma.\n");
2114 	}
2115 
2116 	return err;
2117 }
2118 
2119 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2120 {
2121 	struct perf_pmu *pmu = NULL;
2122 
2123 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2124 		if (pmu->type == evsel->attr.type)
2125 			break;
2126 	}
2127 
2128 	return pmu;
2129 }
2130 
2131 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2132 {
2133 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2134 	int nr_addr_filters = 0;
2135 
2136 	if (!pmu)
2137 		return 0;
2138 
2139 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2140 
2141 	return nr_addr_filters;
2142 }
2143 
2144 int auxtrace_parse_filters(struct perf_evlist *evlist)
2145 {
2146 	struct perf_evsel *evsel;
2147 	char *filter;
2148 	int err, max_nr;
2149 
2150 	evlist__for_each_entry(evlist, evsel) {
2151 		filter = evsel->filter;
2152 		max_nr = perf_evsel__nr_addr_filter(evsel);
2153 		if (!filter || !max_nr)
2154 			continue;
2155 		evsel->filter = NULL;
2156 		err = parse_addr_filter(evsel, filter, max_nr);
2157 		free(filter);
2158 		if (err)
2159 			return err;
2160 		pr_debug("Address filter: %s\n", evsel->filter);
2161 	}
2162 
2163 	return 0;
2164 }
2165