1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "evlist.h" 30 #include "dso.h" 31 #include "map.h" 32 #include "pmu.h" 33 #include "evsel.h" 34 #include "evsel_config.h" 35 #include "symbol.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "thread_map.h" 39 #include "asm/bug.h" 40 #include "auxtrace.h" 41 42 #include <linux/hash.h> 43 44 #include "event.h" 45 #include "record.h" 46 #include "session.h" 47 #include "debug.h" 48 #include <subcmd/parse-options.h> 49 50 #include "cs-etm.h" 51 #include "intel-pt.h" 52 #include "intel-bts.h" 53 #include "arm-spe.h" 54 #include "s390-cpumsf.h" 55 #include "util/mmap.h" 56 57 #include <linux/ctype.h> 58 #include "symbol/kallsyms.h" 59 #include <internal/lib.h> 60 61 /* 62 * Make a group from 'leader' to 'last', requiring that the events were not 63 * already grouped to a different leader. 64 */ 65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 66 { 67 struct evsel *evsel; 68 bool grp; 69 70 if (!evsel__is_group_leader(leader)) 71 return -EINVAL; 72 73 grp = false; 74 evlist__for_each_entry(evlist, evsel) { 75 if (grp) { 76 if (!(evsel__leader(evsel) == leader || 77 (evsel__leader(evsel) == evsel && 78 evsel->core.nr_members <= 1))) 79 return -EINVAL; 80 } else if (evsel == leader) { 81 grp = true; 82 } 83 if (evsel == last) 84 break; 85 } 86 87 grp = false; 88 evlist__for_each_entry(evlist, evsel) { 89 if (grp) { 90 if (!evsel__has_leader(evsel, leader)) { 91 evsel__set_leader(evsel, leader); 92 if (leader->core.nr_members < 1) 93 leader->core.nr_members = 1; 94 leader->core.nr_members += 1; 95 } 96 } else if (evsel == leader) { 97 grp = true; 98 } 99 if (evsel == last) 100 break; 101 } 102 103 return 0; 104 } 105 106 static bool auxtrace__dont_decode(struct perf_session *session) 107 { 108 return !session->itrace_synth_opts || 109 session->itrace_synth_opts->dont_decode; 110 } 111 112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 113 struct auxtrace_mmap_params *mp, 114 void *userpg, int fd) 115 { 116 struct perf_event_mmap_page *pc = userpg; 117 118 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 119 120 mm->userpg = userpg; 121 mm->mask = mp->mask; 122 mm->len = mp->len; 123 mm->prev = 0; 124 mm->idx = mp->idx; 125 mm->tid = mp->tid; 126 mm->cpu = mp->cpu.cpu; 127 128 if (!mp->len || !mp->mmap_needed) { 129 mm->base = NULL; 130 return 0; 131 } 132 133 pc->aux_offset = mp->offset; 134 pc->aux_size = mp->len; 135 136 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 137 if (mm->base == MAP_FAILED) { 138 pr_debug2("failed to mmap AUX area\n"); 139 mm->base = NULL; 140 return -1; 141 } 142 143 return 0; 144 } 145 146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 147 { 148 if (mm->base) { 149 munmap(mm->base, mm->len); 150 mm->base = NULL; 151 } 152 } 153 154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 155 off_t auxtrace_offset, 156 unsigned int auxtrace_pages, 157 bool auxtrace_overwrite) 158 { 159 if (auxtrace_pages) { 160 mp->offset = auxtrace_offset; 161 mp->len = auxtrace_pages * (size_t)page_size; 162 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 163 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 164 pr_debug2("AUX area mmap length %zu\n", mp->len); 165 } else { 166 mp->len = 0; 167 } 168 } 169 170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 171 struct evlist *evlist, 172 struct evsel *evsel, int idx) 173 { 174 bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus); 175 176 mp->mmap_needed = evsel->needs_auxtrace_mmap; 177 178 if (!mp->mmap_needed) 179 return; 180 181 mp->idx = idx; 182 183 if (per_cpu) { 184 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 185 if (evlist->core.threads) 186 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 187 else 188 mp->tid = -1; 189 } else { 190 mp->cpu.cpu = -1; 191 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 192 } 193 } 194 195 #define AUXTRACE_INIT_NR_QUEUES 32 196 197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 198 { 199 struct auxtrace_queue *queue_array; 200 unsigned int max_nr_queues, i; 201 202 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 203 if (nr_queues > max_nr_queues) 204 return NULL; 205 206 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 207 if (!queue_array) 208 return NULL; 209 210 for (i = 0; i < nr_queues; i++) { 211 INIT_LIST_HEAD(&queue_array[i].head); 212 queue_array[i].priv = NULL; 213 } 214 215 return queue_array; 216 } 217 218 int auxtrace_queues__init(struct auxtrace_queues *queues) 219 { 220 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 221 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 222 if (!queues->queue_array) 223 return -ENOMEM; 224 return 0; 225 } 226 227 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 228 unsigned int new_nr_queues) 229 { 230 unsigned int nr_queues = queues->nr_queues; 231 struct auxtrace_queue *queue_array; 232 unsigned int i; 233 234 if (!nr_queues) 235 nr_queues = AUXTRACE_INIT_NR_QUEUES; 236 237 while (nr_queues && nr_queues < new_nr_queues) 238 nr_queues <<= 1; 239 240 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 241 return -EINVAL; 242 243 queue_array = auxtrace_alloc_queue_array(nr_queues); 244 if (!queue_array) 245 return -ENOMEM; 246 247 for (i = 0; i < queues->nr_queues; i++) { 248 list_splice_tail(&queues->queue_array[i].head, 249 &queue_array[i].head); 250 queue_array[i].tid = queues->queue_array[i].tid; 251 queue_array[i].cpu = queues->queue_array[i].cpu; 252 queue_array[i].set = queues->queue_array[i].set; 253 queue_array[i].priv = queues->queue_array[i].priv; 254 } 255 256 queues->nr_queues = nr_queues; 257 queues->queue_array = queue_array; 258 259 return 0; 260 } 261 262 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 263 { 264 int fd = perf_data__fd(session->data); 265 void *p; 266 ssize_t ret; 267 268 if (size > SSIZE_MAX) 269 return NULL; 270 271 p = malloc(size); 272 if (!p) 273 return NULL; 274 275 ret = readn(fd, p, size); 276 if (ret != (ssize_t)size) { 277 free(p); 278 return NULL; 279 } 280 281 return p; 282 } 283 284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 285 unsigned int idx, 286 struct auxtrace_buffer *buffer) 287 { 288 struct auxtrace_queue *queue; 289 int err; 290 291 if (idx >= queues->nr_queues) { 292 err = auxtrace_queues__grow(queues, idx + 1); 293 if (err) 294 return err; 295 } 296 297 queue = &queues->queue_array[idx]; 298 299 if (!queue->set) { 300 queue->set = true; 301 queue->tid = buffer->tid; 302 queue->cpu = buffer->cpu.cpu; 303 } 304 305 buffer->buffer_nr = queues->next_buffer_nr++; 306 307 list_add_tail(&buffer->list, &queue->head); 308 309 queues->new_data = true; 310 queues->populated = true; 311 312 return 0; 313 } 314 315 /* Limit buffers to 32MiB on 32-bit */ 316 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 317 318 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 319 unsigned int idx, 320 struct auxtrace_buffer *buffer) 321 { 322 u64 sz = buffer->size; 323 bool consecutive = false; 324 struct auxtrace_buffer *b; 325 int err; 326 327 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 328 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 329 if (!b) 330 return -ENOMEM; 331 b->size = BUFFER_LIMIT_FOR_32_BIT; 332 b->consecutive = consecutive; 333 err = auxtrace_queues__queue_buffer(queues, idx, b); 334 if (err) { 335 auxtrace_buffer__free(b); 336 return err; 337 } 338 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 339 sz -= BUFFER_LIMIT_FOR_32_BIT; 340 consecutive = true; 341 } 342 343 buffer->size = sz; 344 buffer->consecutive = consecutive; 345 346 return 0; 347 } 348 349 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 350 { 351 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 352 353 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 354 } 355 356 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 357 struct perf_session *session, 358 unsigned int idx, 359 struct auxtrace_buffer *buffer, 360 struct auxtrace_buffer **buffer_ptr) 361 { 362 int err = -ENOMEM; 363 364 if (filter_cpu(session, buffer->cpu)) 365 return 0; 366 367 buffer = memdup(buffer, sizeof(*buffer)); 368 if (!buffer) 369 return -ENOMEM; 370 371 if (session->one_mmap) { 372 buffer->data = buffer->data_offset - session->one_mmap_offset + 373 session->one_mmap_addr; 374 } else if (perf_data__is_pipe(session->data)) { 375 buffer->data = auxtrace_copy_data(buffer->size, session); 376 if (!buffer->data) 377 goto out_free; 378 buffer->data_needs_freeing = true; 379 } else if (BITS_PER_LONG == 32 && 380 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 381 err = auxtrace_queues__split_buffer(queues, idx, buffer); 382 if (err) 383 goto out_free; 384 } 385 386 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 387 if (err) 388 goto out_free; 389 390 /* FIXME: Doesn't work for split buffer */ 391 if (buffer_ptr) 392 *buffer_ptr = buffer; 393 394 return 0; 395 396 out_free: 397 auxtrace_buffer__free(buffer); 398 return err; 399 } 400 401 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 402 struct perf_session *session, 403 union perf_event *event, off_t data_offset, 404 struct auxtrace_buffer **buffer_ptr) 405 { 406 struct auxtrace_buffer buffer = { 407 .pid = -1, 408 .tid = event->auxtrace.tid, 409 .cpu = { event->auxtrace.cpu }, 410 .data_offset = data_offset, 411 .offset = event->auxtrace.offset, 412 .reference = event->auxtrace.reference, 413 .size = event->auxtrace.size, 414 }; 415 unsigned int idx = event->auxtrace.idx; 416 417 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 418 buffer_ptr); 419 } 420 421 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 422 struct perf_session *session, 423 off_t file_offset, size_t sz) 424 { 425 union perf_event *event; 426 int err; 427 char buf[PERF_SAMPLE_MAX_SIZE]; 428 429 err = perf_session__peek_event(session, file_offset, buf, 430 PERF_SAMPLE_MAX_SIZE, &event, NULL); 431 if (err) 432 return err; 433 434 if (event->header.type == PERF_RECORD_AUXTRACE) { 435 if (event->header.size < sizeof(struct perf_record_auxtrace) || 436 event->header.size != sz) { 437 err = -EINVAL; 438 goto out; 439 } 440 file_offset += event->header.size; 441 err = auxtrace_queues__add_event(queues, session, event, 442 file_offset, NULL); 443 } 444 out: 445 return err; 446 } 447 448 void auxtrace_queues__free(struct auxtrace_queues *queues) 449 { 450 unsigned int i; 451 452 for (i = 0; i < queues->nr_queues; i++) { 453 while (!list_empty(&queues->queue_array[i].head)) { 454 struct auxtrace_buffer *buffer; 455 456 buffer = list_entry(queues->queue_array[i].head.next, 457 struct auxtrace_buffer, list); 458 list_del_init(&buffer->list); 459 auxtrace_buffer__free(buffer); 460 } 461 } 462 463 zfree(&queues->queue_array); 464 queues->nr_queues = 0; 465 } 466 467 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 468 unsigned int pos, unsigned int queue_nr, 469 u64 ordinal) 470 { 471 unsigned int parent; 472 473 while (pos) { 474 parent = (pos - 1) >> 1; 475 if (heap_array[parent].ordinal <= ordinal) 476 break; 477 heap_array[pos] = heap_array[parent]; 478 pos = parent; 479 } 480 heap_array[pos].queue_nr = queue_nr; 481 heap_array[pos].ordinal = ordinal; 482 } 483 484 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 485 u64 ordinal) 486 { 487 struct auxtrace_heap_item *heap_array; 488 489 if (queue_nr >= heap->heap_sz) { 490 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 491 492 while (heap_sz <= queue_nr) 493 heap_sz <<= 1; 494 heap_array = realloc(heap->heap_array, 495 heap_sz * sizeof(struct auxtrace_heap_item)); 496 if (!heap_array) 497 return -ENOMEM; 498 heap->heap_array = heap_array; 499 heap->heap_sz = heap_sz; 500 } 501 502 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 503 504 return 0; 505 } 506 507 void auxtrace_heap__free(struct auxtrace_heap *heap) 508 { 509 zfree(&heap->heap_array); 510 heap->heap_cnt = 0; 511 heap->heap_sz = 0; 512 } 513 514 void auxtrace_heap__pop(struct auxtrace_heap *heap) 515 { 516 unsigned int pos, last, heap_cnt = heap->heap_cnt; 517 struct auxtrace_heap_item *heap_array; 518 519 if (!heap_cnt) 520 return; 521 522 heap->heap_cnt -= 1; 523 524 heap_array = heap->heap_array; 525 526 pos = 0; 527 while (1) { 528 unsigned int left, right; 529 530 left = (pos << 1) + 1; 531 if (left >= heap_cnt) 532 break; 533 right = left + 1; 534 if (right >= heap_cnt) { 535 heap_array[pos] = heap_array[left]; 536 return; 537 } 538 if (heap_array[left].ordinal < heap_array[right].ordinal) { 539 heap_array[pos] = heap_array[left]; 540 pos = left; 541 } else { 542 heap_array[pos] = heap_array[right]; 543 pos = right; 544 } 545 } 546 547 last = heap_cnt - 1; 548 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 549 heap_array[last].ordinal); 550 } 551 552 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 553 struct evlist *evlist) 554 { 555 if (itr) 556 return itr->info_priv_size(itr, evlist); 557 return 0; 558 } 559 560 static int auxtrace_not_supported(void) 561 { 562 pr_err("AUX area tracing is not supported on this architecture\n"); 563 return -EINVAL; 564 } 565 566 int auxtrace_record__info_fill(struct auxtrace_record *itr, 567 struct perf_session *session, 568 struct perf_record_auxtrace_info *auxtrace_info, 569 size_t priv_size) 570 { 571 if (itr) 572 return itr->info_fill(itr, session, auxtrace_info, priv_size); 573 return auxtrace_not_supported(); 574 } 575 576 void auxtrace_record__free(struct auxtrace_record *itr) 577 { 578 if (itr) 579 itr->free(itr); 580 } 581 582 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 583 { 584 if (itr && itr->snapshot_start) 585 return itr->snapshot_start(itr); 586 return 0; 587 } 588 589 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 590 { 591 if (!on_exit && itr && itr->snapshot_finish) 592 return itr->snapshot_finish(itr); 593 return 0; 594 } 595 596 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 597 struct auxtrace_mmap *mm, 598 unsigned char *data, u64 *head, u64 *old) 599 { 600 if (itr && itr->find_snapshot) 601 return itr->find_snapshot(itr, idx, mm, data, head, old); 602 return 0; 603 } 604 605 int auxtrace_record__options(struct auxtrace_record *itr, 606 struct evlist *evlist, 607 struct record_opts *opts) 608 { 609 if (itr) { 610 itr->evlist = evlist; 611 return itr->recording_options(itr, evlist, opts); 612 } 613 return 0; 614 } 615 616 u64 auxtrace_record__reference(struct auxtrace_record *itr) 617 { 618 if (itr) 619 return itr->reference(itr); 620 return 0; 621 } 622 623 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 624 struct record_opts *opts, const char *str) 625 { 626 if (!str) 627 return 0; 628 629 /* PMU-agnostic options */ 630 switch (*str) { 631 case 'e': 632 opts->auxtrace_snapshot_on_exit = true; 633 str++; 634 break; 635 default: 636 break; 637 } 638 639 if (itr && itr->parse_snapshot_options) 640 return itr->parse_snapshot_options(itr, opts, str); 641 642 pr_err("No AUX area tracing to snapshot\n"); 643 return -EINVAL; 644 } 645 646 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 647 { 648 bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus); 649 650 if (per_cpu_mmaps) { 651 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 652 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 653 654 if (cpu_map_idx == -1) 655 return -EINVAL; 656 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 657 } 658 659 return perf_evsel__enable_thread(&evsel->core, idx); 660 } 661 662 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 663 { 664 struct evsel *evsel; 665 666 if (!itr->evlist || !itr->pmu) 667 return -EINVAL; 668 669 evlist__for_each_entry(itr->evlist, evsel) { 670 if (evsel->core.attr.type == itr->pmu->type) { 671 if (evsel->disabled) 672 return 0; 673 return evlist__enable_event_idx(itr->evlist, evsel, idx); 674 } 675 } 676 return -EINVAL; 677 } 678 679 /* 680 * Event record size is 16-bit which results in a maximum size of about 64KiB. 681 * Allow about 4KiB for the rest of the sample record, to give a maximum 682 * AUX area sample size of 60KiB. 683 */ 684 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 685 686 /* Arbitrary default size if no other default provided */ 687 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 688 689 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 690 struct record_opts *opts) 691 { 692 struct evsel *evsel; 693 bool has_aux_leader = false; 694 u32 sz; 695 696 evlist__for_each_entry(evlist, evsel) { 697 sz = evsel->core.attr.aux_sample_size; 698 if (evsel__is_group_leader(evsel)) { 699 has_aux_leader = evsel__is_aux_event(evsel); 700 if (sz) { 701 if (has_aux_leader) 702 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 703 else 704 pr_err("Cannot add AUX area sampling to a group leader\n"); 705 return -EINVAL; 706 } 707 } 708 if (sz > MAX_AUX_SAMPLE_SIZE) { 709 pr_err("AUX area sample size %u too big, max. %d\n", 710 sz, MAX_AUX_SAMPLE_SIZE); 711 return -EINVAL; 712 } 713 if (sz) { 714 if (!has_aux_leader) { 715 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 716 return -EINVAL; 717 } 718 evsel__set_sample_bit(evsel, AUX); 719 opts->auxtrace_sample_mode = true; 720 } else { 721 evsel__reset_sample_bit(evsel, AUX); 722 } 723 } 724 725 if (!opts->auxtrace_sample_mode) { 726 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 727 return -EINVAL; 728 } 729 730 if (!perf_can_aux_sample()) { 731 pr_err("AUX area sampling is not supported by kernel\n"); 732 return -EINVAL; 733 } 734 735 return 0; 736 } 737 738 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 739 struct evlist *evlist, 740 struct record_opts *opts, const char *str) 741 { 742 struct evsel_config_term *term; 743 struct evsel *aux_evsel; 744 bool has_aux_sample_size = false; 745 bool has_aux_leader = false; 746 struct evsel *evsel; 747 char *endptr; 748 unsigned long sz; 749 750 if (!str) 751 goto no_opt; 752 753 if (!itr) { 754 pr_err("No AUX area event to sample\n"); 755 return -EINVAL; 756 } 757 758 sz = strtoul(str, &endptr, 0); 759 if (*endptr || sz > UINT_MAX) { 760 pr_err("Bad AUX area sampling option: '%s'\n", str); 761 return -EINVAL; 762 } 763 764 if (!sz) 765 sz = itr->default_aux_sample_size; 766 767 if (!sz) 768 sz = DEFAULT_AUX_SAMPLE_SIZE; 769 770 /* Set aux_sample_size based on --aux-sample option */ 771 evlist__for_each_entry(evlist, evsel) { 772 if (evsel__is_group_leader(evsel)) { 773 has_aux_leader = evsel__is_aux_event(evsel); 774 } else if (has_aux_leader) { 775 evsel->core.attr.aux_sample_size = sz; 776 } 777 } 778 no_opt: 779 aux_evsel = NULL; 780 /* Override with aux_sample_size from config term */ 781 evlist__for_each_entry(evlist, evsel) { 782 if (evsel__is_aux_event(evsel)) 783 aux_evsel = evsel; 784 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 785 if (term) { 786 has_aux_sample_size = true; 787 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 788 /* If possible, group with the AUX event */ 789 if (aux_evsel && evsel->core.attr.aux_sample_size) 790 evlist__regroup(evlist, aux_evsel, evsel); 791 } 792 } 793 794 if (!str && !has_aux_sample_size) 795 return 0; 796 797 if (!itr) { 798 pr_err("No AUX area event to sample\n"); 799 return -EINVAL; 800 } 801 802 return auxtrace_validate_aux_sample_size(evlist, opts); 803 } 804 805 void auxtrace_regroup_aux_output(struct evlist *evlist) 806 { 807 struct evsel *evsel, *aux_evsel = NULL; 808 struct evsel_config_term *term; 809 810 evlist__for_each_entry(evlist, evsel) { 811 if (evsel__is_aux_event(evsel)) 812 aux_evsel = evsel; 813 term = evsel__get_config_term(evsel, AUX_OUTPUT); 814 /* If possible, group with the AUX event */ 815 if (term && aux_evsel) 816 evlist__regroup(evlist, aux_evsel, evsel); 817 } 818 } 819 820 struct auxtrace_record *__weak 821 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 822 { 823 *err = 0; 824 return NULL; 825 } 826 827 static int auxtrace_index__alloc(struct list_head *head) 828 { 829 struct auxtrace_index *auxtrace_index; 830 831 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 832 if (!auxtrace_index) 833 return -ENOMEM; 834 835 auxtrace_index->nr = 0; 836 INIT_LIST_HEAD(&auxtrace_index->list); 837 838 list_add_tail(&auxtrace_index->list, head); 839 840 return 0; 841 } 842 843 void auxtrace_index__free(struct list_head *head) 844 { 845 struct auxtrace_index *auxtrace_index, *n; 846 847 list_for_each_entry_safe(auxtrace_index, n, head, list) { 848 list_del_init(&auxtrace_index->list); 849 free(auxtrace_index); 850 } 851 } 852 853 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 854 { 855 struct auxtrace_index *auxtrace_index; 856 int err; 857 858 if (list_empty(head)) { 859 err = auxtrace_index__alloc(head); 860 if (err) 861 return NULL; 862 } 863 864 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 865 866 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 867 err = auxtrace_index__alloc(head); 868 if (err) 869 return NULL; 870 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 871 list); 872 } 873 874 return auxtrace_index; 875 } 876 877 int auxtrace_index__auxtrace_event(struct list_head *head, 878 union perf_event *event, off_t file_offset) 879 { 880 struct auxtrace_index *auxtrace_index; 881 size_t nr; 882 883 auxtrace_index = auxtrace_index__last(head); 884 if (!auxtrace_index) 885 return -ENOMEM; 886 887 nr = auxtrace_index->nr; 888 auxtrace_index->entries[nr].file_offset = file_offset; 889 auxtrace_index->entries[nr].sz = event->header.size; 890 auxtrace_index->nr += 1; 891 892 return 0; 893 } 894 895 static int auxtrace_index__do_write(int fd, 896 struct auxtrace_index *auxtrace_index) 897 { 898 struct auxtrace_index_entry ent; 899 size_t i; 900 901 for (i = 0; i < auxtrace_index->nr; i++) { 902 ent.file_offset = auxtrace_index->entries[i].file_offset; 903 ent.sz = auxtrace_index->entries[i].sz; 904 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 905 return -errno; 906 } 907 return 0; 908 } 909 910 int auxtrace_index__write(int fd, struct list_head *head) 911 { 912 struct auxtrace_index *auxtrace_index; 913 u64 total = 0; 914 int err; 915 916 list_for_each_entry(auxtrace_index, head, list) 917 total += auxtrace_index->nr; 918 919 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 920 return -errno; 921 922 list_for_each_entry(auxtrace_index, head, list) { 923 err = auxtrace_index__do_write(fd, auxtrace_index); 924 if (err) 925 return err; 926 } 927 928 return 0; 929 } 930 931 static int auxtrace_index__process_entry(int fd, struct list_head *head, 932 bool needs_swap) 933 { 934 struct auxtrace_index *auxtrace_index; 935 struct auxtrace_index_entry ent; 936 size_t nr; 937 938 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 939 return -1; 940 941 auxtrace_index = auxtrace_index__last(head); 942 if (!auxtrace_index) 943 return -1; 944 945 nr = auxtrace_index->nr; 946 if (needs_swap) { 947 auxtrace_index->entries[nr].file_offset = 948 bswap_64(ent.file_offset); 949 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 950 } else { 951 auxtrace_index->entries[nr].file_offset = ent.file_offset; 952 auxtrace_index->entries[nr].sz = ent.sz; 953 } 954 955 auxtrace_index->nr = nr + 1; 956 957 return 0; 958 } 959 960 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 961 bool needs_swap) 962 { 963 struct list_head *head = &session->auxtrace_index; 964 u64 nr; 965 966 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 967 return -1; 968 969 if (needs_swap) 970 nr = bswap_64(nr); 971 972 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 973 return -1; 974 975 while (nr--) { 976 int err; 977 978 err = auxtrace_index__process_entry(fd, head, needs_swap); 979 if (err) 980 return -1; 981 } 982 983 return 0; 984 } 985 986 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 987 struct perf_session *session, 988 struct auxtrace_index_entry *ent) 989 { 990 return auxtrace_queues__add_indexed_event(queues, session, 991 ent->file_offset, ent->sz); 992 } 993 994 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 995 struct perf_session *session) 996 { 997 struct auxtrace_index *auxtrace_index; 998 struct auxtrace_index_entry *ent; 999 size_t i; 1000 int err; 1001 1002 if (auxtrace__dont_decode(session)) 1003 return 0; 1004 1005 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1006 for (i = 0; i < auxtrace_index->nr; i++) { 1007 ent = &auxtrace_index->entries[i]; 1008 err = auxtrace_queues__process_index_entry(queues, 1009 session, 1010 ent); 1011 if (err) 1012 return err; 1013 } 1014 } 1015 return 0; 1016 } 1017 1018 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1019 struct auxtrace_buffer *buffer) 1020 { 1021 if (buffer) { 1022 if (list_is_last(&buffer->list, &queue->head)) 1023 return NULL; 1024 return list_entry(buffer->list.next, struct auxtrace_buffer, 1025 list); 1026 } else { 1027 if (list_empty(&queue->head)) 1028 return NULL; 1029 return list_entry(queue->head.next, struct auxtrace_buffer, 1030 list); 1031 } 1032 } 1033 1034 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1035 struct perf_sample *sample, 1036 struct perf_session *session) 1037 { 1038 struct perf_sample_id *sid; 1039 unsigned int idx; 1040 u64 id; 1041 1042 id = sample->id; 1043 if (!id) 1044 return NULL; 1045 1046 sid = evlist__id2sid(session->evlist, id); 1047 if (!sid) 1048 return NULL; 1049 1050 idx = sid->idx; 1051 1052 if (idx >= queues->nr_queues) 1053 return NULL; 1054 1055 return &queues->queue_array[idx]; 1056 } 1057 1058 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1059 struct perf_session *session, 1060 struct perf_sample *sample, u64 data_offset, 1061 u64 reference) 1062 { 1063 struct auxtrace_buffer buffer = { 1064 .pid = -1, 1065 .data_offset = data_offset, 1066 .reference = reference, 1067 .size = sample->aux_sample.size, 1068 }; 1069 struct perf_sample_id *sid; 1070 u64 id = sample->id; 1071 unsigned int idx; 1072 1073 if (!id) 1074 return -EINVAL; 1075 1076 sid = evlist__id2sid(session->evlist, id); 1077 if (!sid) 1078 return -ENOENT; 1079 1080 idx = sid->idx; 1081 buffer.tid = sid->tid; 1082 buffer.cpu = sid->cpu; 1083 1084 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1085 } 1086 1087 struct queue_data { 1088 bool samples; 1089 bool events; 1090 }; 1091 1092 static int auxtrace_queue_data_cb(struct perf_session *session, 1093 union perf_event *event, u64 offset, 1094 void *data) 1095 { 1096 struct queue_data *qd = data; 1097 struct perf_sample sample; 1098 int err; 1099 1100 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1101 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1102 return -EINVAL; 1103 offset += event->header.size; 1104 return session->auxtrace->queue_data(session, NULL, event, 1105 offset); 1106 } 1107 1108 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1109 return 0; 1110 1111 err = evlist__parse_sample(session->evlist, event, &sample); 1112 if (err) 1113 return err; 1114 1115 if (!sample.aux_sample.size) 1116 return 0; 1117 1118 offset += sample.aux_sample.data - (void *)event; 1119 1120 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1121 } 1122 1123 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1124 { 1125 struct queue_data qd = { 1126 .samples = samples, 1127 .events = events, 1128 }; 1129 1130 if (auxtrace__dont_decode(session)) 1131 return 0; 1132 1133 if (!session->auxtrace || !session->auxtrace->queue_data) 1134 return -EINVAL; 1135 1136 return perf_session__peek_events(session, session->header.data_offset, 1137 session->header.data_size, 1138 auxtrace_queue_data_cb, &qd); 1139 } 1140 1141 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1142 { 1143 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1144 size_t adj = buffer->data_offset & (page_size - 1); 1145 size_t size = buffer->size + adj; 1146 off_t file_offset = buffer->data_offset - adj; 1147 void *addr; 1148 1149 if (buffer->data) 1150 return buffer->data; 1151 1152 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1153 if (addr == MAP_FAILED) 1154 return NULL; 1155 1156 buffer->mmap_addr = addr; 1157 buffer->mmap_size = size; 1158 1159 buffer->data = addr + adj; 1160 1161 return buffer->data; 1162 } 1163 1164 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1165 { 1166 if (!buffer->data || !buffer->mmap_addr) 1167 return; 1168 munmap(buffer->mmap_addr, buffer->mmap_size); 1169 buffer->mmap_addr = NULL; 1170 buffer->mmap_size = 0; 1171 buffer->data = NULL; 1172 buffer->use_data = NULL; 1173 } 1174 1175 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1176 { 1177 auxtrace_buffer__put_data(buffer); 1178 if (buffer->data_needs_freeing) { 1179 buffer->data_needs_freeing = false; 1180 zfree(&buffer->data); 1181 buffer->use_data = NULL; 1182 buffer->size = 0; 1183 } 1184 } 1185 1186 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1187 { 1188 auxtrace_buffer__drop_data(buffer); 1189 free(buffer); 1190 } 1191 1192 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1193 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1194 const char *msg, u64 timestamp) 1195 { 1196 size_t size; 1197 1198 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1199 1200 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1201 auxtrace_error->type = type; 1202 auxtrace_error->code = code; 1203 auxtrace_error->cpu = cpu; 1204 auxtrace_error->pid = pid; 1205 auxtrace_error->tid = tid; 1206 auxtrace_error->fmt = 1; 1207 auxtrace_error->ip = ip; 1208 auxtrace_error->time = timestamp; 1209 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1210 1211 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1212 strlen(auxtrace_error->msg) + 1; 1213 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1214 } 1215 1216 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1217 struct perf_tool *tool, 1218 struct perf_session *session, 1219 perf_event__handler_t process) 1220 { 1221 union perf_event *ev; 1222 size_t priv_size; 1223 int err; 1224 1225 pr_debug2("Synthesizing auxtrace information\n"); 1226 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1227 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1228 if (!ev) 1229 return -ENOMEM; 1230 1231 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1232 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1233 priv_size; 1234 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1235 priv_size); 1236 if (err) 1237 goto out_free; 1238 1239 err = process(tool, ev, NULL, NULL); 1240 out_free: 1241 free(ev); 1242 return err; 1243 } 1244 1245 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1246 { 1247 struct evsel *new_leader = NULL; 1248 struct evsel *evsel; 1249 1250 /* Find new leader for the group */ 1251 evlist__for_each_entry(evlist, evsel) { 1252 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1253 continue; 1254 if (!new_leader) 1255 new_leader = evsel; 1256 evsel__set_leader(evsel, new_leader); 1257 } 1258 1259 /* Update group information */ 1260 if (new_leader) { 1261 zfree(&new_leader->group_name); 1262 new_leader->group_name = leader->group_name; 1263 leader->group_name = NULL; 1264 1265 new_leader->core.nr_members = leader->core.nr_members - 1; 1266 leader->core.nr_members = 1; 1267 } 1268 } 1269 1270 static void unleader_auxtrace(struct perf_session *session) 1271 { 1272 struct evsel *evsel; 1273 1274 evlist__for_each_entry(session->evlist, evsel) { 1275 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1276 evsel__is_group_leader(evsel)) { 1277 unleader_evsel(session->evlist, evsel); 1278 } 1279 } 1280 } 1281 1282 int perf_event__process_auxtrace_info(struct perf_session *session, 1283 union perf_event *event) 1284 { 1285 enum auxtrace_type type = event->auxtrace_info.type; 1286 int err; 1287 1288 if (dump_trace) 1289 fprintf(stdout, " type: %u\n", type); 1290 1291 switch (type) { 1292 case PERF_AUXTRACE_INTEL_PT: 1293 err = intel_pt_process_auxtrace_info(event, session); 1294 break; 1295 case PERF_AUXTRACE_INTEL_BTS: 1296 err = intel_bts_process_auxtrace_info(event, session); 1297 break; 1298 case PERF_AUXTRACE_ARM_SPE: 1299 err = arm_spe_process_auxtrace_info(event, session); 1300 break; 1301 case PERF_AUXTRACE_CS_ETM: 1302 err = cs_etm__process_auxtrace_info(event, session); 1303 break; 1304 case PERF_AUXTRACE_S390_CPUMSF: 1305 err = s390_cpumsf_process_auxtrace_info(event, session); 1306 break; 1307 case PERF_AUXTRACE_UNKNOWN: 1308 default: 1309 return -EINVAL; 1310 } 1311 1312 if (err) 1313 return err; 1314 1315 unleader_auxtrace(session); 1316 1317 return 0; 1318 } 1319 1320 s64 perf_event__process_auxtrace(struct perf_session *session, 1321 union perf_event *event) 1322 { 1323 s64 err; 1324 1325 if (dump_trace) 1326 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1327 event->auxtrace.size, event->auxtrace.offset, 1328 event->auxtrace.reference, event->auxtrace.idx, 1329 event->auxtrace.tid, event->auxtrace.cpu); 1330 1331 if (auxtrace__dont_decode(session)) 1332 return event->auxtrace.size; 1333 1334 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1335 return -EINVAL; 1336 1337 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1338 if (err < 0) 1339 return err; 1340 1341 return event->auxtrace.size; 1342 } 1343 1344 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1345 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1346 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1347 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1348 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1349 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1350 1351 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1352 bool no_sample) 1353 { 1354 synth_opts->branches = true; 1355 synth_opts->transactions = true; 1356 synth_opts->ptwrites = true; 1357 synth_opts->pwr_events = true; 1358 synth_opts->other_events = true; 1359 synth_opts->intr_events = true; 1360 synth_opts->errors = true; 1361 synth_opts->flc = true; 1362 synth_opts->llc = true; 1363 synth_opts->tlb = true; 1364 synth_opts->mem = true; 1365 synth_opts->remote_access = true; 1366 1367 if (no_sample) { 1368 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1369 synth_opts->period = 1; 1370 synth_opts->calls = true; 1371 } else { 1372 synth_opts->instructions = true; 1373 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1374 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1375 } 1376 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1377 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1378 synth_opts->initial_skip = 0; 1379 } 1380 1381 static int get_flag(const char **ptr, unsigned int *flags) 1382 { 1383 while (1) { 1384 char c = **ptr; 1385 1386 if (c >= 'a' && c <= 'z') { 1387 *flags |= 1 << (c - 'a'); 1388 ++*ptr; 1389 return 0; 1390 } else if (c == ' ') { 1391 ++*ptr; 1392 continue; 1393 } else { 1394 return -1; 1395 } 1396 } 1397 } 1398 1399 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1400 { 1401 while (1) { 1402 switch (**ptr) { 1403 case '+': 1404 ++*ptr; 1405 if (get_flag(ptr, plus_flags)) 1406 return -1; 1407 break; 1408 case '-': 1409 ++*ptr; 1410 if (get_flag(ptr, minus_flags)) 1411 return -1; 1412 break; 1413 case ' ': 1414 ++*ptr; 1415 break; 1416 default: 1417 return 0; 1418 } 1419 } 1420 } 1421 1422 /* 1423 * Please check tools/perf/Documentation/perf-script.txt for information 1424 * about the options parsed here, which is introduced after this cset, 1425 * when support in 'perf script' for these options is introduced. 1426 */ 1427 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1428 const char *str, int unset) 1429 { 1430 const char *p; 1431 char *endptr; 1432 bool period_type_set = false; 1433 bool period_set = false; 1434 1435 synth_opts->set = true; 1436 1437 if (unset) { 1438 synth_opts->dont_decode = true; 1439 return 0; 1440 } 1441 1442 if (!str) { 1443 itrace_synth_opts__set_default(synth_opts, 1444 synth_opts->default_no_sample); 1445 return 0; 1446 } 1447 1448 for (p = str; *p;) { 1449 switch (*p++) { 1450 case 'i': 1451 synth_opts->instructions = true; 1452 while (*p == ' ' || *p == ',') 1453 p += 1; 1454 if (isdigit(*p)) { 1455 synth_opts->period = strtoull(p, &endptr, 10); 1456 period_set = true; 1457 p = endptr; 1458 while (*p == ' ' || *p == ',') 1459 p += 1; 1460 switch (*p++) { 1461 case 'i': 1462 synth_opts->period_type = 1463 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1464 period_type_set = true; 1465 break; 1466 case 't': 1467 synth_opts->period_type = 1468 PERF_ITRACE_PERIOD_TICKS; 1469 period_type_set = true; 1470 break; 1471 case 'm': 1472 synth_opts->period *= 1000; 1473 /* Fall through */ 1474 case 'u': 1475 synth_opts->period *= 1000; 1476 /* Fall through */ 1477 case 'n': 1478 if (*p++ != 's') 1479 goto out_err; 1480 synth_opts->period_type = 1481 PERF_ITRACE_PERIOD_NANOSECS; 1482 period_type_set = true; 1483 break; 1484 case '\0': 1485 goto out; 1486 default: 1487 goto out_err; 1488 } 1489 } 1490 break; 1491 case 'b': 1492 synth_opts->branches = true; 1493 break; 1494 case 'x': 1495 synth_opts->transactions = true; 1496 break; 1497 case 'w': 1498 synth_opts->ptwrites = true; 1499 break; 1500 case 'p': 1501 synth_opts->pwr_events = true; 1502 break; 1503 case 'o': 1504 synth_opts->other_events = true; 1505 break; 1506 case 'I': 1507 synth_opts->intr_events = true; 1508 break; 1509 case 'e': 1510 synth_opts->errors = true; 1511 if (get_flags(&p, &synth_opts->error_plus_flags, 1512 &synth_opts->error_minus_flags)) 1513 goto out_err; 1514 break; 1515 case 'd': 1516 synth_opts->log = true; 1517 if (get_flags(&p, &synth_opts->log_plus_flags, 1518 &synth_opts->log_minus_flags)) 1519 goto out_err; 1520 break; 1521 case 'c': 1522 synth_opts->branches = true; 1523 synth_opts->calls = true; 1524 break; 1525 case 'r': 1526 synth_opts->branches = true; 1527 synth_opts->returns = true; 1528 break; 1529 case 'G': 1530 case 'g': 1531 if (p[-1] == 'G') 1532 synth_opts->add_callchain = true; 1533 else 1534 synth_opts->callchain = true; 1535 synth_opts->callchain_sz = 1536 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1537 while (*p == ' ' || *p == ',') 1538 p += 1; 1539 if (isdigit(*p)) { 1540 unsigned int val; 1541 1542 val = strtoul(p, &endptr, 10); 1543 p = endptr; 1544 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1545 goto out_err; 1546 synth_opts->callchain_sz = val; 1547 } 1548 break; 1549 case 'L': 1550 case 'l': 1551 if (p[-1] == 'L') 1552 synth_opts->add_last_branch = true; 1553 else 1554 synth_opts->last_branch = true; 1555 synth_opts->last_branch_sz = 1556 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1557 while (*p == ' ' || *p == ',') 1558 p += 1; 1559 if (isdigit(*p)) { 1560 unsigned int val; 1561 1562 val = strtoul(p, &endptr, 10); 1563 p = endptr; 1564 if (!val || 1565 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1566 goto out_err; 1567 synth_opts->last_branch_sz = val; 1568 } 1569 break; 1570 case 's': 1571 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1572 if (p == endptr) 1573 goto out_err; 1574 p = endptr; 1575 break; 1576 case 'f': 1577 synth_opts->flc = true; 1578 break; 1579 case 'm': 1580 synth_opts->llc = true; 1581 break; 1582 case 't': 1583 synth_opts->tlb = true; 1584 break; 1585 case 'a': 1586 synth_opts->remote_access = true; 1587 break; 1588 case 'M': 1589 synth_opts->mem = true; 1590 break; 1591 case 'q': 1592 synth_opts->quick += 1; 1593 break; 1594 case 'A': 1595 synth_opts->approx_ipc = true; 1596 break; 1597 case 'Z': 1598 synth_opts->timeless_decoding = true; 1599 break; 1600 case ' ': 1601 case ',': 1602 break; 1603 default: 1604 goto out_err; 1605 } 1606 } 1607 out: 1608 if (synth_opts->instructions) { 1609 if (!period_type_set) 1610 synth_opts->period_type = 1611 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1612 if (!period_set) 1613 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1614 } 1615 1616 return 0; 1617 1618 out_err: 1619 pr_err("Bad Instruction Tracing options '%s'\n", str); 1620 return -EINVAL; 1621 } 1622 1623 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1624 { 1625 return itrace_do_parse_synth_opts(opt->value, str, unset); 1626 } 1627 1628 static const char * const auxtrace_error_type_name[] = { 1629 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1630 }; 1631 1632 static const char *auxtrace_error_name(int type) 1633 { 1634 const char *error_type_name = NULL; 1635 1636 if (type < PERF_AUXTRACE_ERROR_MAX) 1637 error_type_name = auxtrace_error_type_name[type]; 1638 if (!error_type_name) 1639 error_type_name = "unknown AUX"; 1640 return error_type_name; 1641 } 1642 1643 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1644 { 1645 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1646 unsigned long long nsecs = e->time; 1647 const char *msg = e->msg; 1648 int ret; 1649 1650 ret = fprintf(fp, " %s error type %u", 1651 auxtrace_error_name(e->type), e->type); 1652 1653 if (e->fmt && nsecs) { 1654 unsigned long secs = nsecs / NSEC_PER_SEC; 1655 1656 nsecs -= secs * NSEC_PER_SEC; 1657 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1658 } else { 1659 ret += fprintf(fp, " time 0"); 1660 } 1661 1662 if (!e->fmt) 1663 msg = (const char *)&e->time; 1664 1665 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1666 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1667 return ret; 1668 } 1669 1670 void perf_session__auxtrace_error_inc(struct perf_session *session, 1671 union perf_event *event) 1672 { 1673 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1674 1675 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1676 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1677 } 1678 1679 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1680 { 1681 int i; 1682 1683 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1684 if (!stats->nr_auxtrace_errors[i]) 1685 continue; 1686 ui__warning("%u %s errors\n", 1687 stats->nr_auxtrace_errors[i], 1688 auxtrace_error_name(i)); 1689 } 1690 } 1691 1692 int perf_event__process_auxtrace_error(struct perf_session *session, 1693 union perf_event *event) 1694 { 1695 if (auxtrace__dont_decode(session)) 1696 return 0; 1697 1698 perf_event__fprintf_auxtrace_error(event, stdout); 1699 return 0; 1700 } 1701 1702 /* 1703 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1704 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1705 * the issues caused by the below sequence on multiple CPUs: when perf tool 1706 * accesses either the load operation or the store operation for 64-bit value, 1707 * on some architectures the operation is divided into two instructions, one 1708 * is for accessing the low 32-bit value and another is for the high 32-bit; 1709 * thus these two user operations can give the kernel chances to access the 1710 * 64-bit value, and thus leads to the unexpected load values. 1711 * 1712 * kernel (64-bit) user (32-bit) 1713 * 1714 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1715 * STORE $aux_data | ,---> 1716 * FLUSH $aux_data | | LOAD ->aux_head_hi 1717 * STORE ->aux_head --|-------` smp_rmb() 1718 * } | LOAD $data 1719 * | smp_mb() 1720 * | STORE ->aux_tail_lo 1721 * `-----------> 1722 * STORE ->aux_tail_hi 1723 * 1724 * For this reason, it's impossible for the perf tool to work correctly when 1725 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1726 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1727 * the pointers can be increased monotonically, whatever the buffer size it is, 1728 * at the end the head and tail can be bigger than 4GB and carry out to the 1729 * high 32-bit. 1730 * 1731 * To mitigate the issues and improve the user experience, we can allow the 1732 * perf tool working in certain conditions and bail out with error if detect 1733 * any overflow cannot be handled. 1734 * 1735 * For reading the AUX head, it reads out the values for three times, and 1736 * compares the high 4 bytes of the values between the first time and the last 1737 * time, if there has no change for high 4 bytes injected by the kernel during 1738 * the user reading sequence, it's safe for use the second value. 1739 * 1740 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1741 * 32 bits, it means there have two store operations in user space and it cannot 1742 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1743 * the caller an overflow error has happened. 1744 */ 1745 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1746 { 1747 struct perf_event_mmap_page *pc = mm->userpg; 1748 u64 first, second, last; 1749 u64 mask = (u64)(UINT32_MAX) << 32; 1750 1751 do { 1752 first = READ_ONCE(pc->aux_head); 1753 /* Ensure all reads are done after we read the head */ 1754 smp_rmb(); 1755 second = READ_ONCE(pc->aux_head); 1756 /* Ensure all reads are done after we read the head */ 1757 smp_rmb(); 1758 last = READ_ONCE(pc->aux_head); 1759 } while ((first & mask) != (last & mask)); 1760 1761 return second; 1762 } 1763 1764 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1765 { 1766 struct perf_event_mmap_page *pc = mm->userpg; 1767 u64 mask = (u64)(UINT32_MAX) << 32; 1768 1769 if (tail & mask) 1770 return -1; 1771 1772 /* Ensure all reads are done before we write the tail out */ 1773 smp_mb(); 1774 WRITE_ONCE(pc->aux_tail, tail); 1775 return 0; 1776 } 1777 1778 static int __auxtrace_mmap__read(struct mmap *map, 1779 struct auxtrace_record *itr, 1780 struct perf_tool *tool, process_auxtrace_t fn, 1781 bool snapshot, size_t snapshot_size) 1782 { 1783 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1784 u64 head, old = mm->prev, offset, ref; 1785 unsigned char *data = mm->base; 1786 size_t size, head_off, old_off, len1, len2, padding; 1787 union perf_event ev; 1788 void *data1, *data2; 1789 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); 1790 1791 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1792 1793 if (snapshot && 1794 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1795 return -1; 1796 1797 if (old == head) 1798 return 0; 1799 1800 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1801 mm->idx, old, head, head - old); 1802 1803 if (mm->mask) { 1804 head_off = head & mm->mask; 1805 old_off = old & mm->mask; 1806 } else { 1807 head_off = head % mm->len; 1808 old_off = old % mm->len; 1809 } 1810 1811 if (head_off > old_off) 1812 size = head_off - old_off; 1813 else 1814 size = mm->len - (old_off - head_off); 1815 1816 if (snapshot && size > snapshot_size) 1817 size = snapshot_size; 1818 1819 ref = auxtrace_record__reference(itr); 1820 1821 if (head > old || size <= head || mm->mask) { 1822 offset = head - size; 1823 } else { 1824 /* 1825 * When the buffer size is not a power of 2, 'head' wraps at the 1826 * highest multiple of the buffer size, so we have to subtract 1827 * the remainder here. 1828 */ 1829 u64 rem = (0ULL - mm->len) % mm->len; 1830 1831 offset = head - size - rem; 1832 } 1833 1834 if (size > head_off) { 1835 len1 = size - head_off; 1836 data1 = &data[mm->len - len1]; 1837 len2 = head_off; 1838 data2 = &data[0]; 1839 } else { 1840 len1 = size; 1841 data1 = &data[head_off - len1]; 1842 len2 = 0; 1843 data2 = NULL; 1844 } 1845 1846 if (itr->alignment) { 1847 unsigned int unwanted = len1 % itr->alignment; 1848 1849 len1 -= unwanted; 1850 size -= unwanted; 1851 } 1852 1853 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1854 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1855 if (padding) 1856 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1857 1858 memset(&ev, 0, sizeof(ev)); 1859 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1860 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1861 ev.auxtrace.size = size + padding; 1862 ev.auxtrace.offset = offset; 1863 ev.auxtrace.reference = ref; 1864 ev.auxtrace.idx = mm->idx; 1865 ev.auxtrace.tid = mm->tid; 1866 ev.auxtrace.cpu = mm->cpu; 1867 1868 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1869 return -1; 1870 1871 mm->prev = head; 1872 1873 if (!snapshot) { 1874 int err; 1875 1876 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1877 if (err < 0) 1878 return err; 1879 1880 if (itr->read_finish) { 1881 err = itr->read_finish(itr, mm->idx); 1882 if (err < 0) 1883 return err; 1884 } 1885 } 1886 1887 return 1; 1888 } 1889 1890 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1891 struct perf_tool *tool, process_auxtrace_t fn) 1892 { 1893 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1894 } 1895 1896 int auxtrace_mmap__read_snapshot(struct mmap *map, 1897 struct auxtrace_record *itr, 1898 struct perf_tool *tool, process_auxtrace_t fn, 1899 size_t snapshot_size) 1900 { 1901 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1902 } 1903 1904 /** 1905 * struct auxtrace_cache - hash table to implement a cache 1906 * @hashtable: the hashtable 1907 * @sz: hashtable size (number of hlists) 1908 * @entry_size: size of an entry 1909 * @limit: limit the number of entries to this maximum, when reached the cache 1910 * is dropped and caching begins again with an empty cache 1911 * @cnt: current number of entries 1912 * @bits: hashtable size (@sz = 2^@bits) 1913 */ 1914 struct auxtrace_cache { 1915 struct hlist_head *hashtable; 1916 size_t sz; 1917 size_t entry_size; 1918 size_t limit; 1919 size_t cnt; 1920 unsigned int bits; 1921 }; 1922 1923 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1924 unsigned int limit_percent) 1925 { 1926 struct auxtrace_cache *c; 1927 struct hlist_head *ht; 1928 size_t sz, i; 1929 1930 c = zalloc(sizeof(struct auxtrace_cache)); 1931 if (!c) 1932 return NULL; 1933 1934 sz = 1UL << bits; 1935 1936 ht = calloc(sz, sizeof(struct hlist_head)); 1937 if (!ht) 1938 goto out_free; 1939 1940 for (i = 0; i < sz; i++) 1941 INIT_HLIST_HEAD(&ht[i]); 1942 1943 c->hashtable = ht; 1944 c->sz = sz; 1945 c->entry_size = entry_size; 1946 c->limit = (c->sz * limit_percent) / 100; 1947 c->bits = bits; 1948 1949 return c; 1950 1951 out_free: 1952 free(c); 1953 return NULL; 1954 } 1955 1956 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1957 { 1958 struct auxtrace_cache_entry *entry; 1959 struct hlist_node *tmp; 1960 size_t i; 1961 1962 if (!c) 1963 return; 1964 1965 for (i = 0; i < c->sz; i++) { 1966 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1967 hlist_del(&entry->hash); 1968 auxtrace_cache__free_entry(c, entry); 1969 } 1970 } 1971 1972 c->cnt = 0; 1973 } 1974 1975 void auxtrace_cache__free(struct auxtrace_cache *c) 1976 { 1977 if (!c) 1978 return; 1979 1980 auxtrace_cache__drop(c); 1981 zfree(&c->hashtable); 1982 free(c); 1983 } 1984 1985 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1986 { 1987 return malloc(c->entry_size); 1988 } 1989 1990 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1991 void *entry) 1992 { 1993 free(entry); 1994 } 1995 1996 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1997 struct auxtrace_cache_entry *entry) 1998 { 1999 if (c->limit && ++c->cnt > c->limit) 2000 auxtrace_cache__drop(c); 2001 2002 entry->key = key; 2003 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2004 2005 return 0; 2006 } 2007 2008 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2009 u32 key) 2010 { 2011 struct auxtrace_cache_entry *entry; 2012 struct hlist_head *hlist; 2013 struct hlist_node *n; 2014 2015 if (!c) 2016 return NULL; 2017 2018 hlist = &c->hashtable[hash_32(key, c->bits)]; 2019 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2020 if (entry->key == key) { 2021 hlist_del(&entry->hash); 2022 return entry; 2023 } 2024 } 2025 2026 return NULL; 2027 } 2028 2029 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2030 { 2031 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2032 2033 auxtrace_cache__free_entry(c, entry); 2034 } 2035 2036 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2037 { 2038 struct auxtrace_cache_entry *entry; 2039 struct hlist_head *hlist; 2040 2041 if (!c) 2042 return NULL; 2043 2044 hlist = &c->hashtable[hash_32(key, c->bits)]; 2045 hlist_for_each_entry(entry, hlist, hash) { 2046 if (entry->key == key) 2047 return entry; 2048 } 2049 2050 return NULL; 2051 } 2052 2053 static void addr_filter__free_str(struct addr_filter *filt) 2054 { 2055 zfree(&filt->str); 2056 filt->action = NULL; 2057 filt->sym_from = NULL; 2058 filt->sym_to = NULL; 2059 filt->filename = NULL; 2060 } 2061 2062 static struct addr_filter *addr_filter__new(void) 2063 { 2064 struct addr_filter *filt = zalloc(sizeof(*filt)); 2065 2066 if (filt) 2067 INIT_LIST_HEAD(&filt->list); 2068 2069 return filt; 2070 } 2071 2072 static void addr_filter__free(struct addr_filter *filt) 2073 { 2074 if (filt) 2075 addr_filter__free_str(filt); 2076 free(filt); 2077 } 2078 2079 static void addr_filters__add(struct addr_filters *filts, 2080 struct addr_filter *filt) 2081 { 2082 list_add_tail(&filt->list, &filts->head); 2083 filts->cnt += 1; 2084 } 2085 2086 static void addr_filters__del(struct addr_filters *filts, 2087 struct addr_filter *filt) 2088 { 2089 list_del_init(&filt->list); 2090 filts->cnt -= 1; 2091 } 2092 2093 void addr_filters__init(struct addr_filters *filts) 2094 { 2095 INIT_LIST_HEAD(&filts->head); 2096 filts->cnt = 0; 2097 } 2098 2099 void addr_filters__exit(struct addr_filters *filts) 2100 { 2101 struct addr_filter *filt, *n; 2102 2103 list_for_each_entry_safe(filt, n, &filts->head, list) { 2104 addr_filters__del(filts, filt); 2105 addr_filter__free(filt); 2106 } 2107 } 2108 2109 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2110 const char *str_delim) 2111 { 2112 *inp += strspn(*inp, " "); 2113 2114 if (isdigit(**inp)) { 2115 char *endptr; 2116 2117 if (!num) 2118 return -EINVAL; 2119 errno = 0; 2120 *num = strtoull(*inp, &endptr, 0); 2121 if (errno) 2122 return -errno; 2123 if (endptr == *inp) 2124 return -EINVAL; 2125 *inp = endptr; 2126 } else { 2127 size_t n; 2128 2129 if (!str) 2130 return -EINVAL; 2131 *inp += strspn(*inp, " "); 2132 *str = *inp; 2133 n = strcspn(*inp, str_delim); 2134 if (!n) 2135 return -EINVAL; 2136 *inp += n; 2137 if (**inp) { 2138 **inp = '\0'; 2139 *inp += 1; 2140 } 2141 } 2142 return 0; 2143 } 2144 2145 static int parse_action(struct addr_filter *filt) 2146 { 2147 if (!strcmp(filt->action, "filter")) { 2148 filt->start = true; 2149 filt->range = true; 2150 } else if (!strcmp(filt->action, "start")) { 2151 filt->start = true; 2152 } else if (!strcmp(filt->action, "stop")) { 2153 filt->start = false; 2154 } else if (!strcmp(filt->action, "tracestop")) { 2155 filt->start = false; 2156 filt->range = true; 2157 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2158 } else { 2159 return -EINVAL; 2160 } 2161 return 0; 2162 } 2163 2164 static int parse_sym_idx(char **inp, int *idx) 2165 { 2166 *idx = -1; 2167 2168 *inp += strspn(*inp, " "); 2169 2170 if (**inp != '#') 2171 return 0; 2172 2173 *inp += 1; 2174 2175 if (**inp == 'g' || **inp == 'G') { 2176 *inp += 1; 2177 *idx = 0; 2178 } else { 2179 unsigned long num; 2180 char *endptr; 2181 2182 errno = 0; 2183 num = strtoul(*inp, &endptr, 0); 2184 if (errno) 2185 return -errno; 2186 if (endptr == *inp || num > INT_MAX) 2187 return -EINVAL; 2188 *inp = endptr; 2189 *idx = num; 2190 } 2191 2192 return 0; 2193 } 2194 2195 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2196 { 2197 int err = parse_num_or_str(inp, num, str, " "); 2198 2199 if (!err && *str) 2200 err = parse_sym_idx(inp, idx); 2201 2202 return err; 2203 } 2204 2205 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2206 { 2207 char *fstr; 2208 int err; 2209 2210 filt->str = fstr = strdup(*filter_inp); 2211 if (!fstr) 2212 return -ENOMEM; 2213 2214 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2215 if (err) 2216 goto out_err; 2217 2218 err = parse_action(filt); 2219 if (err) 2220 goto out_err; 2221 2222 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2223 &filt->sym_from_idx); 2224 if (err) 2225 goto out_err; 2226 2227 fstr += strspn(fstr, " "); 2228 2229 if (*fstr == '/') { 2230 fstr += 1; 2231 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2232 &filt->sym_to_idx); 2233 if (err) 2234 goto out_err; 2235 filt->range = true; 2236 } 2237 2238 fstr += strspn(fstr, " "); 2239 2240 if (*fstr == '@') { 2241 fstr += 1; 2242 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2243 if (err) 2244 goto out_err; 2245 } 2246 2247 fstr += strspn(fstr, " ,"); 2248 2249 *filter_inp += fstr - filt->str; 2250 2251 return 0; 2252 2253 out_err: 2254 addr_filter__free_str(filt); 2255 2256 return err; 2257 } 2258 2259 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2260 const char *filter) 2261 { 2262 struct addr_filter *filt; 2263 const char *fstr = filter; 2264 int err; 2265 2266 while (*fstr) { 2267 filt = addr_filter__new(); 2268 err = parse_one_filter(filt, &fstr); 2269 if (err) { 2270 addr_filter__free(filt); 2271 addr_filters__exit(filts); 2272 return err; 2273 } 2274 addr_filters__add(filts, filt); 2275 } 2276 2277 return 0; 2278 } 2279 2280 struct sym_args { 2281 const char *name; 2282 u64 start; 2283 u64 size; 2284 int idx; 2285 int cnt; 2286 bool started; 2287 bool global; 2288 bool selected; 2289 bool duplicate; 2290 bool near; 2291 }; 2292 2293 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2294 { 2295 /* A function with the same name, and global or the n'th found or any */ 2296 return kallsyms__is_function(type) && 2297 !strcmp(name, args->name) && 2298 ((args->global && isupper(type)) || 2299 (args->selected && ++(args->cnt) == args->idx) || 2300 (!args->global && !args->selected)); 2301 } 2302 2303 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2304 { 2305 struct sym_args *args = arg; 2306 2307 if (args->started) { 2308 if (!args->size) 2309 args->size = start - args->start; 2310 if (args->selected) { 2311 if (args->size) 2312 return 1; 2313 } else if (kern_sym_match(args, name, type)) { 2314 args->duplicate = true; 2315 return 1; 2316 } 2317 } else if (kern_sym_match(args, name, type)) { 2318 args->started = true; 2319 args->start = start; 2320 } 2321 2322 return 0; 2323 } 2324 2325 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2326 { 2327 struct sym_args *args = arg; 2328 2329 if (kern_sym_match(args, name, type)) { 2330 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2331 ++args->cnt, start, type, name); 2332 args->near = true; 2333 } else if (args->near) { 2334 args->near = false; 2335 pr_err("\t\twhich is near\t\t%s\n", name); 2336 } 2337 2338 return 0; 2339 } 2340 2341 static int sym_not_found_error(const char *sym_name, int idx) 2342 { 2343 if (idx > 0) { 2344 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2345 idx, sym_name); 2346 } else if (!idx) { 2347 pr_err("Global symbol '%s' not found.\n", sym_name); 2348 } else { 2349 pr_err("Symbol '%s' not found.\n", sym_name); 2350 } 2351 pr_err("Note that symbols must be functions.\n"); 2352 2353 return -EINVAL; 2354 } 2355 2356 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2357 { 2358 struct sym_args args = { 2359 .name = sym_name, 2360 .idx = idx, 2361 .global = !idx, 2362 .selected = idx > 0, 2363 }; 2364 int err; 2365 2366 *start = 0; 2367 *size = 0; 2368 2369 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2370 if (err < 0) { 2371 pr_err("Failed to parse /proc/kallsyms\n"); 2372 return err; 2373 } 2374 2375 if (args.duplicate) { 2376 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2377 args.cnt = 0; 2378 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2379 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2380 sym_name); 2381 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2382 return -EINVAL; 2383 } 2384 2385 if (!args.started) { 2386 pr_err("Kernel symbol lookup: "); 2387 return sym_not_found_error(sym_name, idx); 2388 } 2389 2390 *start = args.start; 2391 *size = args.size; 2392 2393 return 0; 2394 } 2395 2396 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2397 char type, u64 start) 2398 { 2399 struct sym_args *args = arg; 2400 2401 if (!kallsyms__is_function(type)) 2402 return 0; 2403 2404 if (!args->started) { 2405 args->started = true; 2406 args->start = start; 2407 } 2408 /* Don't know exactly where the kernel ends, so we add a page */ 2409 args->size = round_up(start, page_size) + page_size - args->start; 2410 2411 return 0; 2412 } 2413 2414 static int addr_filter__entire_kernel(struct addr_filter *filt) 2415 { 2416 struct sym_args args = { .started = false }; 2417 int err; 2418 2419 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2420 if (err < 0 || !args.started) { 2421 pr_err("Failed to parse /proc/kallsyms\n"); 2422 return err; 2423 } 2424 2425 filt->addr = args.start; 2426 filt->size = args.size; 2427 2428 return 0; 2429 } 2430 2431 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2432 { 2433 if (start + size >= filt->addr) 2434 return 0; 2435 2436 if (filt->sym_from) { 2437 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2438 filt->sym_to, start, filt->sym_from, filt->addr); 2439 } else { 2440 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2441 filt->sym_to, start, filt->addr); 2442 } 2443 2444 return -EINVAL; 2445 } 2446 2447 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2448 { 2449 bool no_size = false; 2450 u64 start, size; 2451 int err; 2452 2453 if (symbol_conf.kptr_restrict) { 2454 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2455 return -EINVAL; 2456 } 2457 2458 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2459 return addr_filter__entire_kernel(filt); 2460 2461 if (filt->sym_from) { 2462 err = find_kern_sym(filt->sym_from, &start, &size, 2463 filt->sym_from_idx); 2464 if (err) 2465 return err; 2466 filt->addr = start; 2467 if (filt->range && !filt->size && !filt->sym_to) { 2468 filt->size = size; 2469 no_size = !size; 2470 } 2471 } 2472 2473 if (filt->sym_to) { 2474 err = find_kern_sym(filt->sym_to, &start, &size, 2475 filt->sym_to_idx); 2476 if (err) 2477 return err; 2478 2479 err = check_end_after_start(filt, start, size); 2480 if (err) 2481 return err; 2482 filt->size = start + size - filt->addr; 2483 no_size = !size; 2484 } 2485 2486 /* The very last symbol in kallsyms does not imply a particular size */ 2487 if (no_size) { 2488 pr_err("Cannot determine size of symbol '%s'\n", 2489 filt->sym_to ? filt->sym_to : filt->sym_from); 2490 return -EINVAL; 2491 } 2492 2493 return 0; 2494 } 2495 2496 static struct dso *load_dso(const char *name) 2497 { 2498 struct map *map; 2499 struct dso *dso; 2500 2501 map = dso__new_map(name); 2502 if (!map) 2503 return NULL; 2504 2505 if (map__load(map) < 0) 2506 pr_err("File '%s' not found or has no symbols.\n", name); 2507 2508 dso = dso__get(map->dso); 2509 2510 map__put(map); 2511 2512 return dso; 2513 } 2514 2515 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2516 int idx) 2517 { 2518 /* Same name, and global or the n'th found or any */ 2519 return !arch__compare_symbol_names(name, sym->name) && 2520 ((!idx && sym->binding == STB_GLOBAL) || 2521 (idx > 0 && ++*cnt == idx) || 2522 idx < 0); 2523 } 2524 2525 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2526 { 2527 struct symbol *sym; 2528 bool near = false; 2529 int cnt = 0; 2530 2531 pr_err("Multiple symbols with name '%s'\n", sym_name); 2532 2533 sym = dso__first_symbol(dso); 2534 while (sym) { 2535 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2536 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2537 ++cnt, sym->start, 2538 sym->binding == STB_GLOBAL ? 'g' : 2539 sym->binding == STB_LOCAL ? 'l' : 'w', 2540 sym->name); 2541 near = true; 2542 } else if (near) { 2543 near = false; 2544 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2545 } 2546 sym = dso__next_symbol(sym); 2547 } 2548 2549 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2550 sym_name); 2551 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2552 } 2553 2554 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2555 u64 *size, int idx) 2556 { 2557 struct symbol *sym; 2558 int cnt = 0; 2559 2560 *start = 0; 2561 *size = 0; 2562 2563 sym = dso__first_symbol(dso); 2564 while (sym) { 2565 if (*start) { 2566 if (!*size) 2567 *size = sym->start - *start; 2568 if (idx > 0) { 2569 if (*size) 2570 return 1; 2571 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2572 print_duplicate_syms(dso, sym_name); 2573 return -EINVAL; 2574 } 2575 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2576 *start = sym->start; 2577 *size = sym->end - sym->start; 2578 } 2579 sym = dso__next_symbol(sym); 2580 } 2581 2582 if (!*start) 2583 return sym_not_found_error(sym_name, idx); 2584 2585 return 0; 2586 } 2587 2588 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2589 { 2590 if (dso__data_file_size(dso, NULL)) { 2591 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2592 filt->filename); 2593 return -EINVAL; 2594 } 2595 2596 filt->addr = 0; 2597 filt->size = dso->data.file_size; 2598 2599 return 0; 2600 } 2601 2602 static int addr_filter__resolve_syms(struct addr_filter *filt) 2603 { 2604 u64 start, size; 2605 struct dso *dso; 2606 int err = 0; 2607 2608 if (!filt->sym_from && !filt->sym_to) 2609 return 0; 2610 2611 if (!filt->filename) 2612 return addr_filter__resolve_kernel_syms(filt); 2613 2614 dso = load_dso(filt->filename); 2615 if (!dso) { 2616 pr_err("Failed to load symbols from: %s\n", filt->filename); 2617 return -EINVAL; 2618 } 2619 2620 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2621 err = addr_filter__entire_dso(filt, dso); 2622 goto put_dso; 2623 } 2624 2625 if (filt->sym_from) { 2626 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2627 filt->sym_from_idx); 2628 if (err) 2629 goto put_dso; 2630 filt->addr = start; 2631 if (filt->range && !filt->size && !filt->sym_to) 2632 filt->size = size; 2633 } 2634 2635 if (filt->sym_to) { 2636 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2637 filt->sym_to_idx); 2638 if (err) 2639 goto put_dso; 2640 2641 err = check_end_after_start(filt, start, size); 2642 if (err) 2643 return err; 2644 2645 filt->size = start + size - filt->addr; 2646 } 2647 2648 put_dso: 2649 dso__put(dso); 2650 2651 return err; 2652 } 2653 2654 static char *addr_filter__to_str(struct addr_filter *filt) 2655 { 2656 char filename_buf[PATH_MAX]; 2657 const char *at = ""; 2658 const char *fn = ""; 2659 char *filter; 2660 int err; 2661 2662 if (filt->filename) { 2663 at = "@"; 2664 fn = realpath(filt->filename, filename_buf); 2665 if (!fn) 2666 return NULL; 2667 } 2668 2669 if (filt->range) { 2670 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2671 filt->action, filt->addr, filt->size, at, fn); 2672 } else { 2673 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2674 filt->action, filt->addr, at, fn); 2675 } 2676 2677 return err < 0 ? NULL : filter; 2678 } 2679 2680 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2681 int max_nr) 2682 { 2683 struct addr_filters filts; 2684 struct addr_filter *filt; 2685 int err; 2686 2687 addr_filters__init(&filts); 2688 2689 err = addr_filters__parse_bare_filter(&filts, filter); 2690 if (err) 2691 goto out_exit; 2692 2693 if (filts.cnt > max_nr) { 2694 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2695 filts.cnt, max_nr); 2696 err = -EINVAL; 2697 goto out_exit; 2698 } 2699 2700 list_for_each_entry(filt, &filts.head, list) { 2701 char *new_filter; 2702 2703 err = addr_filter__resolve_syms(filt); 2704 if (err) 2705 goto out_exit; 2706 2707 new_filter = addr_filter__to_str(filt); 2708 if (!new_filter) { 2709 err = -ENOMEM; 2710 goto out_exit; 2711 } 2712 2713 if (evsel__append_addr_filter(evsel, new_filter)) { 2714 err = -ENOMEM; 2715 goto out_exit; 2716 } 2717 } 2718 2719 out_exit: 2720 addr_filters__exit(&filts); 2721 2722 if (err) { 2723 pr_err("Failed to parse address filter: '%s'\n", filter); 2724 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2725 pr_err("Where multiple filters are separated by space or comma.\n"); 2726 } 2727 2728 return err; 2729 } 2730 2731 static int evsel__nr_addr_filter(struct evsel *evsel) 2732 { 2733 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2734 int nr_addr_filters = 0; 2735 2736 if (!pmu) 2737 return 0; 2738 2739 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2740 2741 return nr_addr_filters; 2742 } 2743 2744 int auxtrace_parse_filters(struct evlist *evlist) 2745 { 2746 struct evsel *evsel; 2747 char *filter; 2748 int err, max_nr; 2749 2750 evlist__for_each_entry(evlist, evsel) { 2751 filter = evsel->filter; 2752 max_nr = evsel__nr_addr_filter(evsel); 2753 if (!filter || !max_nr) 2754 continue; 2755 evsel->filter = NULL; 2756 err = parse_addr_filter(evsel, filter, max_nr); 2757 free(filter); 2758 if (err) 2759 return err; 2760 pr_debug("Address filter: %s\n", evsel->filter); 2761 } 2762 2763 return 0; 2764 } 2765 2766 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2767 struct perf_sample *sample, struct perf_tool *tool) 2768 { 2769 if (!session->auxtrace) 2770 return 0; 2771 2772 return session->auxtrace->process_event(session, event, sample, tool); 2773 } 2774 2775 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2776 struct perf_sample *sample) 2777 { 2778 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2779 auxtrace__dont_decode(session)) 2780 return; 2781 2782 session->auxtrace->dump_auxtrace_sample(session, sample); 2783 } 2784 2785 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2786 { 2787 if (!session->auxtrace) 2788 return 0; 2789 2790 return session->auxtrace->flush_events(session, tool); 2791 } 2792 2793 void auxtrace__free_events(struct perf_session *session) 2794 { 2795 if (!session->auxtrace) 2796 return; 2797 2798 return session->auxtrace->free_events(session); 2799 } 2800 2801 void auxtrace__free(struct perf_session *session) 2802 { 2803 if (!session->auxtrace) 2804 return; 2805 2806 return session->auxtrace->free(session); 2807 } 2808 2809 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2810 struct evsel *evsel) 2811 { 2812 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2813 return false; 2814 2815 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2816 } 2817