1 /* 2 * auxtrace.c: AUX area trace support 3 * Copyright (c) 2013-2015, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 16 #include <inttypes.h> 17 #include <sys/types.h> 18 #include <sys/mman.h> 19 #include <stdbool.h> 20 #include <string.h> 21 #include <limits.h> 22 #include <errno.h> 23 24 #include <linux/kernel.h> 25 #include <linux/perf_event.h> 26 #include <linux/types.h> 27 #include <linux/bitops.h> 28 #include <linux/log2.h> 29 #include <linux/string.h> 30 31 #include <sys/param.h> 32 #include <stdlib.h> 33 #include <stdio.h> 34 #include <linux/list.h> 35 36 #include "../perf.h" 37 #include "util.h" 38 #include "evlist.h" 39 #include "dso.h" 40 #include "map.h" 41 #include "pmu.h" 42 #include "evsel.h" 43 #include "cpumap.h" 44 #include "thread_map.h" 45 #include "asm/bug.h" 46 #include "auxtrace.h" 47 48 #include <linux/hash.h> 49 50 #include "event.h" 51 #include "session.h" 52 #include "debug.h" 53 #include <subcmd/parse-options.h> 54 55 #include "cs-etm.h" 56 #include "intel-pt.h" 57 #include "intel-bts.h" 58 #include "arm-spe.h" 59 #include "s390-cpumsf.h" 60 61 #include "sane_ctype.h" 62 #include "symbol/kallsyms.h" 63 64 static bool auxtrace__dont_decode(struct perf_session *session) 65 { 66 return !session->itrace_synth_opts || 67 session->itrace_synth_opts->dont_decode; 68 } 69 70 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 71 struct auxtrace_mmap_params *mp, 72 void *userpg, int fd) 73 { 74 struct perf_event_mmap_page *pc = userpg; 75 76 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 77 78 mm->userpg = userpg; 79 mm->mask = mp->mask; 80 mm->len = mp->len; 81 mm->prev = 0; 82 mm->idx = mp->idx; 83 mm->tid = mp->tid; 84 mm->cpu = mp->cpu; 85 86 if (!mp->len) { 87 mm->base = NULL; 88 return 0; 89 } 90 91 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 92 pr_err("Cannot use AUX area tracing mmaps\n"); 93 return -1; 94 #endif 95 96 pc->aux_offset = mp->offset; 97 pc->aux_size = mp->len; 98 99 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 100 if (mm->base == MAP_FAILED) { 101 pr_debug2("failed to mmap AUX area\n"); 102 mm->base = NULL; 103 return -1; 104 } 105 106 return 0; 107 } 108 109 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 110 { 111 if (mm->base) { 112 munmap(mm->base, mm->len); 113 mm->base = NULL; 114 } 115 } 116 117 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 118 off_t auxtrace_offset, 119 unsigned int auxtrace_pages, 120 bool auxtrace_overwrite) 121 { 122 if (auxtrace_pages) { 123 mp->offset = auxtrace_offset; 124 mp->len = auxtrace_pages * (size_t)page_size; 125 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 126 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 127 pr_debug2("AUX area mmap length %zu\n", mp->len); 128 } else { 129 mp->len = 0; 130 } 131 } 132 133 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 134 struct perf_evlist *evlist, int idx, 135 bool per_cpu) 136 { 137 mp->idx = idx; 138 139 if (per_cpu) { 140 mp->cpu = evlist->cpus->map[idx]; 141 if (evlist->threads) 142 mp->tid = thread_map__pid(evlist->threads, 0); 143 else 144 mp->tid = -1; 145 } else { 146 mp->cpu = -1; 147 mp->tid = thread_map__pid(evlist->threads, idx); 148 } 149 } 150 151 #define AUXTRACE_INIT_NR_QUEUES 32 152 153 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 154 { 155 struct auxtrace_queue *queue_array; 156 unsigned int max_nr_queues, i; 157 158 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 159 if (nr_queues > max_nr_queues) 160 return NULL; 161 162 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 163 if (!queue_array) 164 return NULL; 165 166 for (i = 0; i < nr_queues; i++) { 167 INIT_LIST_HEAD(&queue_array[i].head); 168 queue_array[i].priv = NULL; 169 } 170 171 return queue_array; 172 } 173 174 int auxtrace_queues__init(struct auxtrace_queues *queues) 175 { 176 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 177 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 178 if (!queues->queue_array) 179 return -ENOMEM; 180 return 0; 181 } 182 183 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 184 unsigned int new_nr_queues) 185 { 186 unsigned int nr_queues = queues->nr_queues; 187 struct auxtrace_queue *queue_array; 188 unsigned int i; 189 190 if (!nr_queues) 191 nr_queues = AUXTRACE_INIT_NR_QUEUES; 192 193 while (nr_queues && nr_queues < new_nr_queues) 194 nr_queues <<= 1; 195 196 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 197 return -EINVAL; 198 199 queue_array = auxtrace_alloc_queue_array(nr_queues); 200 if (!queue_array) 201 return -ENOMEM; 202 203 for (i = 0; i < queues->nr_queues; i++) { 204 list_splice_tail(&queues->queue_array[i].head, 205 &queue_array[i].head); 206 queue_array[i].tid = queues->queue_array[i].tid; 207 queue_array[i].cpu = queues->queue_array[i].cpu; 208 queue_array[i].set = queues->queue_array[i].set; 209 queue_array[i].priv = queues->queue_array[i].priv; 210 } 211 212 queues->nr_queues = nr_queues; 213 queues->queue_array = queue_array; 214 215 return 0; 216 } 217 218 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 219 { 220 int fd = perf_data__fd(session->data); 221 void *p; 222 ssize_t ret; 223 224 if (size > SSIZE_MAX) 225 return NULL; 226 227 p = malloc(size); 228 if (!p) 229 return NULL; 230 231 ret = readn(fd, p, size); 232 if (ret != (ssize_t)size) { 233 free(p); 234 return NULL; 235 } 236 237 return p; 238 } 239 240 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 241 unsigned int idx, 242 struct auxtrace_buffer *buffer) 243 { 244 struct auxtrace_queue *queue; 245 int err; 246 247 if (idx >= queues->nr_queues) { 248 err = auxtrace_queues__grow(queues, idx + 1); 249 if (err) 250 return err; 251 } 252 253 queue = &queues->queue_array[idx]; 254 255 if (!queue->set) { 256 queue->set = true; 257 queue->tid = buffer->tid; 258 queue->cpu = buffer->cpu; 259 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 260 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 261 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 262 return -EINVAL; 263 } 264 265 buffer->buffer_nr = queues->next_buffer_nr++; 266 267 list_add_tail(&buffer->list, &queue->head); 268 269 queues->new_data = true; 270 queues->populated = true; 271 272 return 0; 273 } 274 275 /* Limit buffers to 32MiB on 32-bit */ 276 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 277 278 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 279 unsigned int idx, 280 struct auxtrace_buffer *buffer) 281 { 282 u64 sz = buffer->size; 283 bool consecutive = false; 284 struct auxtrace_buffer *b; 285 int err; 286 287 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 288 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 289 if (!b) 290 return -ENOMEM; 291 b->size = BUFFER_LIMIT_FOR_32_BIT; 292 b->consecutive = consecutive; 293 err = auxtrace_queues__queue_buffer(queues, idx, b); 294 if (err) { 295 auxtrace_buffer__free(b); 296 return err; 297 } 298 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 299 sz -= BUFFER_LIMIT_FOR_32_BIT; 300 consecutive = true; 301 } 302 303 buffer->size = sz; 304 buffer->consecutive = consecutive; 305 306 return 0; 307 } 308 309 static bool filter_cpu(struct perf_session *session, int cpu) 310 { 311 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 312 313 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 314 } 315 316 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 317 struct perf_session *session, 318 unsigned int idx, 319 struct auxtrace_buffer *buffer, 320 struct auxtrace_buffer **buffer_ptr) 321 { 322 int err = -ENOMEM; 323 324 if (filter_cpu(session, buffer->cpu)) 325 return 0; 326 327 buffer = memdup(buffer, sizeof(*buffer)); 328 if (!buffer) 329 return -ENOMEM; 330 331 if (session->one_mmap) { 332 buffer->data = buffer->data_offset - session->one_mmap_offset + 333 session->one_mmap_addr; 334 } else if (perf_data__is_pipe(session->data)) { 335 buffer->data = auxtrace_copy_data(buffer->size, session); 336 if (!buffer->data) 337 goto out_free; 338 buffer->data_needs_freeing = true; 339 } else if (BITS_PER_LONG == 32 && 340 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 341 err = auxtrace_queues__split_buffer(queues, idx, buffer); 342 if (err) 343 goto out_free; 344 } 345 346 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 347 if (err) 348 goto out_free; 349 350 /* FIXME: Doesn't work for split buffer */ 351 if (buffer_ptr) 352 *buffer_ptr = buffer; 353 354 return 0; 355 356 out_free: 357 auxtrace_buffer__free(buffer); 358 return err; 359 } 360 361 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 362 struct perf_session *session, 363 union perf_event *event, off_t data_offset, 364 struct auxtrace_buffer **buffer_ptr) 365 { 366 struct auxtrace_buffer buffer = { 367 .pid = -1, 368 .tid = event->auxtrace.tid, 369 .cpu = event->auxtrace.cpu, 370 .data_offset = data_offset, 371 .offset = event->auxtrace.offset, 372 .reference = event->auxtrace.reference, 373 .size = event->auxtrace.size, 374 }; 375 unsigned int idx = event->auxtrace.idx; 376 377 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 378 buffer_ptr); 379 } 380 381 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 382 struct perf_session *session, 383 off_t file_offset, size_t sz) 384 { 385 union perf_event *event; 386 int err; 387 char buf[PERF_SAMPLE_MAX_SIZE]; 388 389 err = perf_session__peek_event(session, file_offset, buf, 390 PERF_SAMPLE_MAX_SIZE, &event, NULL); 391 if (err) 392 return err; 393 394 if (event->header.type == PERF_RECORD_AUXTRACE) { 395 if (event->header.size < sizeof(struct auxtrace_event) || 396 event->header.size != sz) { 397 err = -EINVAL; 398 goto out; 399 } 400 file_offset += event->header.size; 401 err = auxtrace_queues__add_event(queues, session, event, 402 file_offset, NULL); 403 } 404 out: 405 return err; 406 } 407 408 void auxtrace_queues__free(struct auxtrace_queues *queues) 409 { 410 unsigned int i; 411 412 for (i = 0; i < queues->nr_queues; i++) { 413 while (!list_empty(&queues->queue_array[i].head)) { 414 struct auxtrace_buffer *buffer; 415 416 buffer = list_entry(queues->queue_array[i].head.next, 417 struct auxtrace_buffer, list); 418 list_del(&buffer->list); 419 auxtrace_buffer__free(buffer); 420 } 421 } 422 423 zfree(&queues->queue_array); 424 queues->nr_queues = 0; 425 } 426 427 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 428 unsigned int pos, unsigned int queue_nr, 429 u64 ordinal) 430 { 431 unsigned int parent; 432 433 while (pos) { 434 parent = (pos - 1) >> 1; 435 if (heap_array[parent].ordinal <= ordinal) 436 break; 437 heap_array[pos] = heap_array[parent]; 438 pos = parent; 439 } 440 heap_array[pos].queue_nr = queue_nr; 441 heap_array[pos].ordinal = ordinal; 442 } 443 444 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 445 u64 ordinal) 446 { 447 struct auxtrace_heap_item *heap_array; 448 449 if (queue_nr >= heap->heap_sz) { 450 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 451 452 while (heap_sz <= queue_nr) 453 heap_sz <<= 1; 454 heap_array = realloc(heap->heap_array, 455 heap_sz * sizeof(struct auxtrace_heap_item)); 456 if (!heap_array) 457 return -ENOMEM; 458 heap->heap_array = heap_array; 459 heap->heap_sz = heap_sz; 460 } 461 462 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 463 464 return 0; 465 } 466 467 void auxtrace_heap__free(struct auxtrace_heap *heap) 468 { 469 zfree(&heap->heap_array); 470 heap->heap_cnt = 0; 471 heap->heap_sz = 0; 472 } 473 474 void auxtrace_heap__pop(struct auxtrace_heap *heap) 475 { 476 unsigned int pos, last, heap_cnt = heap->heap_cnt; 477 struct auxtrace_heap_item *heap_array; 478 479 if (!heap_cnt) 480 return; 481 482 heap->heap_cnt -= 1; 483 484 heap_array = heap->heap_array; 485 486 pos = 0; 487 while (1) { 488 unsigned int left, right; 489 490 left = (pos << 1) + 1; 491 if (left >= heap_cnt) 492 break; 493 right = left + 1; 494 if (right >= heap_cnt) { 495 heap_array[pos] = heap_array[left]; 496 return; 497 } 498 if (heap_array[left].ordinal < heap_array[right].ordinal) { 499 heap_array[pos] = heap_array[left]; 500 pos = left; 501 } else { 502 heap_array[pos] = heap_array[right]; 503 pos = right; 504 } 505 } 506 507 last = heap_cnt - 1; 508 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 509 heap_array[last].ordinal); 510 } 511 512 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 513 struct perf_evlist *evlist) 514 { 515 if (itr) 516 return itr->info_priv_size(itr, evlist); 517 return 0; 518 } 519 520 static int auxtrace_not_supported(void) 521 { 522 pr_err("AUX area tracing is not supported on this architecture\n"); 523 return -EINVAL; 524 } 525 526 int auxtrace_record__info_fill(struct auxtrace_record *itr, 527 struct perf_session *session, 528 struct auxtrace_info_event *auxtrace_info, 529 size_t priv_size) 530 { 531 if (itr) 532 return itr->info_fill(itr, session, auxtrace_info, priv_size); 533 return auxtrace_not_supported(); 534 } 535 536 void auxtrace_record__free(struct auxtrace_record *itr) 537 { 538 if (itr) 539 itr->free(itr); 540 } 541 542 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 543 { 544 if (itr && itr->snapshot_start) 545 return itr->snapshot_start(itr); 546 return 0; 547 } 548 549 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr) 550 { 551 if (itr && itr->snapshot_finish) 552 return itr->snapshot_finish(itr); 553 return 0; 554 } 555 556 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 557 struct auxtrace_mmap *mm, 558 unsigned char *data, u64 *head, u64 *old) 559 { 560 if (itr && itr->find_snapshot) 561 return itr->find_snapshot(itr, idx, mm, data, head, old); 562 return 0; 563 } 564 565 int auxtrace_record__options(struct auxtrace_record *itr, 566 struct perf_evlist *evlist, 567 struct record_opts *opts) 568 { 569 if (itr) 570 return itr->recording_options(itr, evlist, opts); 571 return 0; 572 } 573 574 u64 auxtrace_record__reference(struct auxtrace_record *itr) 575 { 576 if (itr) 577 return itr->reference(itr); 578 return 0; 579 } 580 581 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 582 struct record_opts *opts, const char *str) 583 { 584 if (!str) 585 return 0; 586 587 if (itr) 588 return itr->parse_snapshot_options(itr, opts, str); 589 590 pr_err("No AUX area tracing to snapshot\n"); 591 return -EINVAL; 592 } 593 594 struct auxtrace_record *__weak 595 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err) 596 { 597 *err = 0; 598 return NULL; 599 } 600 601 static int auxtrace_index__alloc(struct list_head *head) 602 { 603 struct auxtrace_index *auxtrace_index; 604 605 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 606 if (!auxtrace_index) 607 return -ENOMEM; 608 609 auxtrace_index->nr = 0; 610 INIT_LIST_HEAD(&auxtrace_index->list); 611 612 list_add_tail(&auxtrace_index->list, head); 613 614 return 0; 615 } 616 617 void auxtrace_index__free(struct list_head *head) 618 { 619 struct auxtrace_index *auxtrace_index, *n; 620 621 list_for_each_entry_safe(auxtrace_index, n, head, list) { 622 list_del(&auxtrace_index->list); 623 free(auxtrace_index); 624 } 625 } 626 627 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 628 { 629 struct auxtrace_index *auxtrace_index; 630 int err; 631 632 if (list_empty(head)) { 633 err = auxtrace_index__alloc(head); 634 if (err) 635 return NULL; 636 } 637 638 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 639 640 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 641 err = auxtrace_index__alloc(head); 642 if (err) 643 return NULL; 644 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 645 list); 646 } 647 648 return auxtrace_index; 649 } 650 651 int auxtrace_index__auxtrace_event(struct list_head *head, 652 union perf_event *event, off_t file_offset) 653 { 654 struct auxtrace_index *auxtrace_index; 655 size_t nr; 656 657 auxtrace_index = auxtrace_index__last(head); 658 if (!auxtrace_index) 659 return -ENOMEM; 660 661 nr = auxtrace_index->nr; 662 auxtrace_index->entries[nr].file_offset = file_offset; 663 auxtrace_index->entries[nr].sz = event->header.size; 664 auxtrace_index->nr += 1; 665 666 return 0; 667 } 668 669 static int auxtrace_index__do_write(int fd, 670 struct auxtrace_index *auxtrace_index) 671 { 672 struct auxtrace_index_entry ent; 673 size_t i; 674 675 for (i = 0; i < auxtrace_index->nr; i++) { 676 ent.file_offset = auxtrace_index->entries[i].file_offset; 677 ent.sz = auxtrace_index->entries[i].sz; 678 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 679 return -errno; 680 } 681 return 0; 682 } 683 684 int auxtrace_index__write(int fd, struct list_head *head) 685 { 686 struct auxtrace_index *auxtrace_index; 687 u64 total = 0; 688 int err; 689 690 list_for_each_entry(auxtrace_index, head, list) 691 total += auxtrace_index->nr; 692 693 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 694 return -errno; 695 696 list_for_each_entry(auxtrace_index, head, list) { 697 err = auxtrace_index__do_write(fd, auxtrace_index); 698 if (err) 699 return err; 700 } 701 702 return 0; 703 } 704 705 static int auxtrace_index__process_entry(int fd, struct list_head *head, 706 bool needs_swap) 707 { 708 struct auxtrace_index *auxtrace_index; 709 struct auxtrace_index_entry ent; 710 size_t nr; 711 712 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 713 return -1; 714 715 auxtrace_index = auxtrace_index__last(head); 716 if (!auxtrace_index) 717 return -1; 718 719 nr = auxtrace_index->nr; 720 if (needs_swap) { 721 auxtrace_index->entries[nr].file_offset = 722 bswap_64(ent.file_offset); 723 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 724 } else { 725 auxtrace_index->entries[nr].file_offset = ent.file_offset; 726 auxtrace_index->entries[nr].sz = ent.sz; 727 } 728 729 auxtrace_index->nr = nr + 1; 730 731 return 0; 732 } 733 734 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 735 bool needs_swap) 736 { 737 struct list_head *head = &session->auxtrace_index; 738 u64 nr; 739 740 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 741 return -1; 742 743 if (needs_swap) 744 nr = bswap_64(nr); 745 746 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 747 return -1; 748 749 while (nr--) { 750 int err; 751 752 err = auxtrace_index__process_entry(fd, head, needs_swap); 753 if (err) 754 return -1; 755 } 756 757 return 0; 758 } 759 760 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 761 struct perf_session *session, 762 struct auxtrace_index_entry *ent) 763 { 764 return auxtrace_queues__add_indexed_event(queues, session, 765 ent->file_offset, ent->sz); 766 } 767 768 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 769 struct perf_session *session) 770 { 771 struct auxtrace_index *auxtrace_index; 772 struct auxtrace_index_entry *ent; 773 size_t i; 774 int err; 775 776 if (auxtrace__dont_decode(session)) 777 return 0; 778 779 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 780 for (i = 0; i < auxtrace_index->nr; i++) { 781 ent = &auxtrace_index->entries[i]; 782 err = auxtrace_queues__process_index_entry(queues, 783 session, 784 ent); 785 if (err) 786 return err; 787 } 788 } 789 return 0; 790 } 791 792 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 793 struct auxtrace_buffer *buffer) 794 { 795 if (buffer) { 796 if (list_is_last(&buffer->list, &queue->head)) 797 return NULL; 798 return list_entry(buffer->list.next, struct auxtrace_buffer, 799 list); 800 } else { 801 if (list_empty(&queue->head)) 802 return NULL; 803 return list_entry(queue->head.next, struct auxtrace_buffer, 804 list); 805 } 806 } 807 808 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 809 { 810 size_t adj = buffer->data_offset & (page_size - 1); 811 size_t size = buffer->size + adj; 812 off_t file_offset = buffer->data_offset - adj; 813 void *addr; 814 815 if (buffer->data) 816 return buffer->data; 817 818 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 819 if (addr == MAP_FAILED) 820 return NULL; 821 822 buffer->mmap_addr = addr; 823 buffer->mmap_size = size; 824 825 buffer->data = addr + adj; 826 827 return buffer->data; 828 } 829 830 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 831 { 832 if (!buffer->data || !buffer->mmap_addr) 833 return; 834 munmap(buffer->mmap_addr, buffer->mmap_size); 835 buffer->mmap_addr = NULL; 836 buffer->mmap_size = 0; 837 buffer->data = NULL; 838 buffer->use_data = NULL; 839 } 840 841 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 842 { 843 auxtrace_buffer__put_data(buffer); 844 if (buffer->data_needs_freeing) { 845 buffer->data_needs_freeing = false; 846 zfree(&buffer->data); 847 buffer->use_data = NULL; 848 buffer->size = 0; 849 } 850 } 851 852 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 853 { 854 auxtrace_buffer__drop_data(buffer); 855 free(buffer); 856 } 857 858 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type, 859 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 860 const char *msg) 861 { 862 size_t size; 863 864 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event)); 865 866 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 867 auxtrace_error->type = type; 868 auxtrace_error->code = code; 869 auxtrace_error->cpu = cpu; 870 auxtrace_error->pid = pid; 871 auxtrace_error->tid = tid; 872 auxtrace_error->ip = ip; 873 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 874 875 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 876 strlen(auxtrace_error->msg) + 1; 877 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 878 } 879 880 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 881 struct perf_tool *tool, 882 struct perf_session *session, 883 perf_event__handler_t process) 884 { 885 union perf_event *ev; 886 size_t priv_size; 887 int err; 888 889 pr_debug2("Synthesizing auxtrace information\n"); 890 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 891 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size); 892 if (!ev) 893 return -ENOMEM; 894 895 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 896 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) + 897 priv_size; 898 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 899 priv_size); 900 if (err) 901 goto out_free; 902 903 err = process(tool, ev, NULL, NULL); 904 out_free: 905 free(ev); 906 return err; 907 } 908 909 int perf_event__process_auxtrace_info(struct perf_session *session, 910 union perf_event *event) 911 { 912 enum auxtrace_type type = event->auxtrace_info.type; 913 914 if (dump_trace) 915 fprintf(stdout, " type: %u\n", type); 916 917 switch (type) { 918 case PERF_AUXTRACE_INTEL_PT: 919 return intel_pt_process_auxtrace_info(event, session); 920 case PERF_AUXTRACE_INTEL_BTS: 921 return intel_bts_process_auxtrace_info(event, session); 922 case PERF_AUXTRACE_ARM_SPE: 923 return arm_spe_process_auxtrace_info(event, session); 924 case PERF_AUXTRACE_CS_ETM: 925 return cs_etm__process_auxtrace_info(event, session); 926 case PERF_AUXTRACE_S390_CPUMSF: 927 return s390_cpumsf_process_auxtrace_info(event, session); 928 case PERF_AUXTRACE_UNKNOWN: 929 default: 930 return -EINVAL; 931 } 932 } 933 934 s64 perf_event__process_auxtrace(struct perf_session *session, 935 union perf_event *event) 936 { 937 s64 err; 938 939 if (dump_trace) 940 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n", 941 event->auxtrace.size, event->auxtrace.offset, 942 event->auxtrace.reference, event->auxtrace.idx, 943 event->auxtrace.tid, event->auxtrace.cpu); 944 945 if (auxtrace__dont_decode(session)) 946 return event->auxtrace.size; 947 948 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 949 return -EINVAL; 950 951 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 952 if (err < 0) 953 return err; 954 955 return event->auxtrace.size; 956 } 957 958 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 959 #define PERF_ITRACE_DEFAULT_PERIOD 100000 960 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 961 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 962 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 963 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 964 965 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts) 966 { 967 synth_opts->instructions = true; 968 synth_opts->branches = true; 969 synth_opts->transactions = true; 970 synth_opts->ptwrites = true; 971 synth_opts->pwr_events = true; 972 synth_opts->errors = true; 973 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 974 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 975 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 976 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 977 synth_opts->initial_skip = 0; 978 } 979 980 /* 981 * Please check tools/perf/Documentation/perf-script.txt for information 982 * about the options parsed here, which is introduced after this cset, 983 * when support in 'perf script' for these options is introduced. 984 */ 985 int itrace_parse_synth_opts(const struct option *opt, const char *str, 986 int unset) 987 { 988 struct itrace_synth_opts *synth_opts = opt->value; 989 const char *p; 990 char *endptr; 991 bool period_type_set = false; 992 bool period_set = false; 993 994 synth_opts->set = true; 995 996 if (unset) { 997 synth_opts->dont_decode = true; 998 return 0; 999 } 1000 1001 if (!str) { 1002 itrace_synth_opts__set_default(synth_opts); 1003 return 0; 1004 } 1005 1006 for (p = str; *p;) { 1007 switch (*p++) { 1008 case 'i': 1009 synth_opts->instructions = true; 1010 while (*p == ' ' || *p == ',') 1011 p += 1; 1012 if (isdigit(*p)) { 1013 synth_opts->period = strtoull(p, &endptr, 10); 1014 period_set = true; 1015 p = endptr; 1016 while (*p == ' ' || *p == ',') 1017 p += 1; 1018 switch (*p++) { 1019 case 'i': 1020 synth_opts->period_type = 1021 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1022 period_type_set = true; 1023 break; 1024 case 't': 1025 synth_opts->period_type = 1026 PERF_ITRACE_PERIOD_TICKS; 1027 period_type_set = true; 1028 break; 1029 case 'm': 1030 synth_opts->period *= 1000; 1031 /* Fall through */ 1032 case 'u': 1033 synth_opts->period *= 1000; 1034 /* Fall through */ 1035 case 'n': 1036 if (*p++ != 's') 1037 goto out_err; 1038 synth_opts->period_type = 1039 PERF_ITRACE_PERIOD_NANOSECS; 1040 period_type_set = true; 1041 break; 1042 case '\0': 1043 goto out; 1044 default: 1045 goto out_err; 1046 } 1047 } 1048 break; 1049 case 'b': 1050 synth_opts->branches = true; 1051 break; 1052 case 'x': 1053 synth_opts->transactions = true; 1054 break; 1055 case 'w': 1056 synth_opts->ptwrites = true; 1057 break; 1058 case 'p': 1059 synth_opts->pwr_events = true; 1060 break; 1061 case 'e': 1062 synth_opts->errors = true; 1063 break; 1064 case 'd': 1065 synth_opts->log = true; 1066 break; 1067 case 'c': 1068 synth_opts->branches = true; 1069 synth_opts->calls = true; 1070 break; 1071 case 'r': 1072 synth_opts->branches = true; 1073 synth_opts->returns = true; 1074 break; 1075 case 'g': 1076 synth_opts->callchain = true; 1077 synth_opts->callchain_sz = 1078 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1079 while (*p == ' ' || *p == ',') 1080 p += 1; 1081 if (isdigit(*p)) { 1082 unsigned int val; 1083 1084 val = strtoul(p, &endptr, 10); 1085 p = endptr; 1086 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1087 goto out_err; 1088 synth_opts->callchain_sz = val; 1089 } 1090 break; 1091 case 'l': 1092 synth_opts->last_branch = true; 1093 synth_opts->last_branch_sz = 1094 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1095 while (*p == ' ' || *p == ',') 1096 p += 1; 1097 if (isdigit(*p)) { 1098 unsigned int val; 1099 1100 val = strtoul(p, &endptr, 10); 1101 p = endptr; 1102 if (!val || 1103 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1104 goto out_err; 1105 synth_opts->last_branch_sz = val; 1106 } 1107 break; 1108 case 's': 1109 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1110 if (p == endptr) 1111 goto out_err; 1112 p = endptr; 1113 break; 1114 case ' ': 1115 case ',': 1116 break; 1117 default: 1118 goto out_err; 1119 } 1120 } 1121 out: 1122 if (synth_opts->instructions) { 1123 if (!period_type_set) 1124 synth_opts->period_type = 1125 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1126 if (!period_set) 1127 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1128 } 1129 1130 return 0; 1131 1132 out_err: 1133 pr_err("Bad Instruction Tracing options '%s'\n", str); 1134 return -EINVAL; 1135 } 1136 1137 static const char * const auxtrace_error_type_name[] = { 1138 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1139 }; 1140 1141 static const char *auxtrace_error_name(int type) 1142 { 1143 const char *error_type_name = NULL; 1144 1145 if (type < PERF_AUXTRACE_ERROR_MAX) 1146 error_type_name = auxtrace_error_type_name[type]; 1147 if (!error_type_name) 1148 error_type_name = "unknown AUX"; 1149 return error_type_name; 1150 } 1151 1152 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1153 { 1154 struct auxtrace_error_event *e = &event->auxtrace_error; 1155 int ret; 1156 1157 ret = fprintf(fp, " %s error type %u", 1158 auxtrace_error_name(e->type), e->type); 1159 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n", 1160 e->cpu, e->pid, e->tid, e->ip, e->code, e->msg); 1161 return ret; 1162 } 1163 1164 void perf_session__auxtrace_error_inc(struct perf_session *session, 1165 union perf_event *event) 1166 { 1167 struct auxtrace_error_event *e = &event->auxtrace_error; 1168 1169 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1170 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1171 } 1172 1173 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1174 { 1175 int i; 1176 1177 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1178 if (!stats->nr_auxtrace_errors[i]) 1179 continue; 1180 ui__warning("%u %s errors\n", 1181 stats->nr_auxtrace_errors[i], 1182 auxtrace_error_name(i)); 1183 } 1184 } 1185 1186 int perf_event__process_auxtrace_error(struct perf_session *session, 1187 union perf_event *event) 1188 { 1189 if (auxtrace__dont_decode(session)) 1190 return 0; 1191 1192 perf_event__fprintf_auxtrace_error(event, stdout); 1193 return 0; 1194 } 1195 1196 static int __auxtrace_mmap__read(struct perf_mmap *map, 1197 struct auxtrace_record *itr, 1198 struct perf_tool *tool, process_auxtrace_t fn, 1199 bool snapshot, size_t snapshot_size) 1200 { 1201 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1202 u64 head, old = mm->prev, offset, ref; 1203 unsigned char *data = mm->base; 1204 size_t size, head_off, old_off, len1, len2, padding; 1205 union perf_event ev; 1206 void *data1, *data2; 1207 1208 if (snapshot) { 1209 head = auxtrace_mmap__read_snapshot_head(mm); 1210 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1211 &head, &old)) 1212 return -1; 1213 } else { 1214 head = auxtrace_mmap__read_head(mm); 1215 } 1216 1217 if (old == head) 1218 return 0; 1219 1220 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1221 mm->idx, old, head, head - old); 1222 1223 if (mm->mask) { 1224 head_off = head & mm->mask; 1225 old_off = old & mm->mask; 1226 } else { 1227 head_off = head % mm->len; 1228 old_off = old % mm->len; 1229 } 1230 1231 if (head_off > old_off) 1232 size = head_off - old_off; 1233 else 1234 size = mm->len - (old_off - head_off); 1235 1236 if (snapshot && size > snapshot_size) 1237 size = snapshot_size; 1238 1239 ref = auxtrace_record__reference(itr); 1240 1241 if (head > old || size <= head || mm->mask) { 1242 offset = head - size; 1243 } else { 1244 /* 1245 * When the buffer size is not a power of 2, 'head' wraps at the 1246 * highest multiple of the buffer size, so we have to subtract 1247 * the remainder here. 1248 */ 1249 u64 rem = (0ULL - mm->len) % mm->len; 1250 1251 offset = head - size - rem; 1252 } 1253 1254 if (size > head_off) { 1255 len1 = size - head_off; 1256 data1 = &data[mm->len - len1]; 1257 len2 = head_off; 1258 data2 = &data[0]; 1259 } else { 1260 len1 = size; 1261 data1 = &data[head_off - len1]; 1262 len2 = 0; 1263 data2 = NULL; 1264 } 1265 1266 if (itr->alignment) { 1267 unsigned int unwanted = len1 % itr->alignment; 1268 1269 len1 -= unwanted; 1270 size -= unwanted; 1271 } 1272 1273 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1274 padding = size & 7; 1275 if (padding) 1276 padding = 8 - padding; 1277 1278 memset(&ev, 0, sizeof(ev)); 1279 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1280 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1281 ev.auxtrace.size = size + padding; 1282 ev.auxtrace.offset = offset; 1283 ev.auxtrace.reference = ref; 1284 ev.auxtrace.idx = mm->idx; 1285 ev.auxtrace.tid = mm->tid; 1286 ev.auxtrace.cpu = mm->cpu; 1287 1288 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1289 return -1; 1290 1291 mm->prev = head; 1292 1293 if (!snapshot) { 1294 auxtrace_mmap__write_tail(mm, head); 1295 if (itr->read_finish) { 1296 int err; 1297 1298 err = itr->read_finish(itr, mm->idx); 1299 if (err < 0) 1300 return err; 1301 } 1302 } 1303 1304 return 1; 1305 } 1306 1307 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr, 1308 struct perf_tool *tool, process_auxtrace_t fn) 1309 { 1310 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1311 } 1312 1313 int auxtrace_mmap__read_snapshot(struct perf_mmap *map, 1314 struct auxtrace_record *itr, 1315 struct perf_tool *tool, process_auxtrace_t fn, 1316 size_t snapshot_size) 1317 { 1318 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1319 } 1320 1321 /** 1322 * struct auxtrace_cache - hash table to implement a cache 1323 * @hashtable: the hashtable 1324 * @sz: hashtable size (number of hlists) 1325 * @entry_size: size of an entry 1326 * @limit: limit the number of entries to this maximum, when reached the cache 1327 * is dropped and caching begins again with an empty cache 1328 * @cnt: current number of entries 1329 * @bits: hashtable size (@sz = 2^@bits) 1330 */ 1331 struct auxtrace_cache { 1332 struct hlist_head *hashtable; 1333 size_t sz; 1334 size_t entry_size; 1335 size_t limit; 1336 size_t cnt; 1337 unsigned int bits; 1338 }; 1339 1340 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1341 unsigned int limit_percent) 1342 { 1343 struct auxtrace_cache *c; 1344 struct hlist_head *ht; 1345 size_t sz, i; 1346 1347 c = zalloc(sizeof(struct auxtrace_cache)); 1348 if (!c) 1349 return NULL; 1350 1351 sz = 1UL << bits; 1352 1353 ht = calloc(sz, sizeof(struct hlist_head)); 1354 if (!ht) 1355 goto out_free; 1356 1357 for (i = 0; i < sz; i++) 1358 INIT_HLIST_HEAD(&ht[i]); 1359 1360 c->hashtable = ht; 1361 c->sz = sz; 1362 c->entry_size = entry_size; 1363 c->limit = (c->sz * limit_percent) / 100; 1364 c->bits = bits; 1365 1366 return c; 1367 1368 out_free: 1369 free(c); 1370 return NULL; 1371 } 1372 1373 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1374 { 1375 struct auxtrace_cache_entry *entry; 1376 struct hlist_node *tmp; 1377 size_t i; 1378 1379 if (!c) 1380 return; 1381 1382 for (i = 0; i < c->sz; i++) { 1383 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1384 hlist_del(&entry->hash); 1385 auxtrace_cache__free_entry(c, entry); 1386 } 1387 } 1388 1389 c->cnt = 0; 1390 } 1391 1392 void auxtrace_cache__free(struct auxtrace_cache *c) 1393 { 1394 if (!c) 1395 return; 1396 1397 auxtrace_cache__drop(c); 1398 free(c->hashtable); 1399 free(c); 1400 } 1401 1402 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1403 { 1404 return malloc(c->entry_size); 1405 } 1406 1407 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1408 void *entry) 1409 { 1410 free(entry); 1411 } 1412 1413 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1414 struct auxtrace_cache_entry *entry) 1415 { 1416 if (c->limit && ++c->cnt > c->limit) 1417 auxtrace_cache__drop(c); 1418 1419 entry->key = key; 1420 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1421 1422 return 0; 1423 } 1424 1425 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1426 { 1427 struct auxtrace_cache_entry *entry; 1428 struct hlist_head *hlist; 1429 1430 if (!c) 1431 return NULL; 1432 1433 hlist = &c->hashtable[hash_32(key, c->bits)]; 1434 hlist_for_each_entry(entry, hlist, hash) { 1435 if (entry->key == key) 1436 return entry; 1437 } 1438 1439 return NULL; 1440 } 1441 1442 static void addr_filter__free_str(struct addr_filter *filt) 1443 { 1444 free(filt->str); 1445 filt->action = NULL; 1446 filt->sym_from = NULL; 1447 filt->sym_to = NULL; 1448 filt->filename = NULL; 1449 filt->str = NULL; 1450 } 1451 1452 static struct addr_filter *addr_filter__new(void) 1453 { 1454 struct addr_filter *filt = zalloc(sizeof(*filt)); 1455 1456 if (filt) 1457 INIT_LIST_HEAD(&filt->list); 1458 1459 return filt; 1460 } 1461 1462 static void addr_filter__free(struct addr_filter *filt) 1463 { 1464 if (filt) 1465 addr_filter__free_str(filt); 1466 free(filt); 1467 } 1468 1469 static void addr_filters__add(struct addr_filters *filts, 1470 struct addr_filter *filt) 1471 { 1472 list_add_tail(&filt->list, &filts->head); 1473 filts->cnt += 1; 1474 } 1475 1476 static void addr_filters__del(struct addr_filters *filts, 1477 struct addr_filter *filt) 1478 { 1479 list_del_init(&filt->list); 1480 filts->cnt -= 1; 1481 } 1482 1483 void addr_filters__init(struct addr_filters *filts) 1484 { 1485 INIT_LIST_HEAD(&filts->head); 1486 filts->cnt = 0; 1487 } 1488 1489 void addr_filters__exit(struct addr_filters *filts) 1490 { 1491 struct addr_filter *filt, *n; 1492 1493 list_for_each_entry_safe(filt, n, &filts->head, list) { 1494 addr_filters__del(filts, filt); 1495 addr_filter__free(filt); 1496 } 1497 } 1498 1499 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1500 const char *str_delim) 1501 { 1502 *inp += strspn(*inp, " "); 1503 1504 if (isdigit(**inp)) { 1505 char *endptr; 1506 1507 if (!num) 1508 return -EINVAL; 1509 errno = 0; 1510 *num = strtoull(*inp, &endptr, 0); 1511 if (errno) 1512 return -errno; 1513 if (endptr == *inp) 1514 return -EINVAL; 1515 *inp = endptr; 1516 } else { 1517 size_t n; 1518 1519 if (!str) 1520 return -EINVAL; 1521 *inp += strspn(*inp, " "); 1522 *str = *inp; 1523 n = strcspn(*inp, str_delim); 1524 if (!n) 1525 return -EINVAL; 1526 *inp += n; 1527 if (**inp) { 1528 **inp = '\0'; 1529 *inp += 1; 1530 } 1531 } 1532 return 0; 1533 } 1534 1535 static int parse_action(struct addr_filter *filt) 1536 { 1537 if (!strcmp(filt->action, "filter")) { 1538 filt->start = true; 1539 filt->range = true; 1540 } else if (!strcmp(filt->action, "start")) { 1541 filt->start = true; 1542 } else if (!strcmp(filt->action, "stop")) { 1543 filt->start = false; 1544 } else if (!strcmp(filt->action, "tracestop")) { 1545 filt->start = false; 1546 filt->range = true; 1547 filt->action += 5; /* Change 'tracestop' to 'stop' */ 1548 } else { 1549 return -EINVAL; 1550 } 1551 return 0; 1552 } 1553 1554 static int parse_sym_idx(char **inp, int *idx) 1555 { 1556 *idx = -1; 1557 1558 *inp += strspn(*inp, " "); 1559 1560 if (**inp != '#') 1561 return 0; 1562 1563 *inp += 1; 1564 1565 if (**inp == 'g' || **inp == 'G') { 1566 *inp += 1; 1567 *idx = 0; 1568 } else { 1569 unsigned long num; 1570 char *endptr; 1571 1572 errno = 0; 1573 num = strtoul(*inp, &endptr, 0); 1574 if (errno) 1575 return -errno; 1576 if (endptr == *inp || num > INT_MAX) 1577 return -EINVAL; 1578 *inp = endptr; 1579 *idx = num; 1580 } 1581 1582 return 0; 1583 } 1584 1585 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 1586 { 1587 int err = parse_num_or_str(inp, num, str, " "); 1588 1589 if (!err && *str) 1590 err = parse_sym_idx(inp, idx); 1591 1592 return err; 1593 } 1594 1595 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 1596 { 1597 char *fstr; 1598 int err; 1599 1600 filt->str = fstr = strdup(*filter_inp); 1601 if (!fstr) 1602 return -ENOMEM; 1603 1604 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 1605 if (err) 1606 goto out_err; 1607 1608 err = parse_action(filt); 1609 if (err) 1610 goto out_err; 1611 1612 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 1613 &filt->sym_from_idx); 1614 if (err) 1615 goto out_err; 1616 1617 fstr += strspn(fstr, " "); 1618 1619 if (*fstr == '/') { 1620 fstr += 1; 1621 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 1622 &filt->sym_to_idx); 1623 if (err) 1624 goto out_err; 1625 filt->range = true; 1626 } 1627 1628 fstr += strspn(fstr, " "); 1629 1630 if (*fstr == '@') { 1631 fstr += 1; 1632 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 1633 if (err) 1634 goto out_err; 1635 } 1636 1637 fstr += strspn(fstr, " ,"); 1638 1639 *filter_inp += fstr - filt->str; 1640 1641 return 0; 1642 1643 out_err: 1644 addr_filter__free_str(filt); 1645 1646 return err; 1647 } 1648 1649 int addr_filters__parse_bare_filter(struct addr_filters *filts, 1650 const char *filter) 1651 { 1652 struct addr_filter *filt; 1653 const char *fstr = filter; 1654 int err; 1655 1656 while (*fstr) { 1657 filt = addr_filter__new(); 1658 err = parse_one_filter(filt, &fstr); 1659 if (err) { 1660 addr_filter__free(filt); 1661 addr_filters__exit(filts); 1662 return err; 1663 } 1664 addr_filters__add(filts, filt); 1665 } 1666 1667 return 0; 1668 } 1669 1670 struct sym_args { 1671 const char *name; 1672 u64 start; 1673 u64 size; 1674 int idx; 1675 int cnt; 1676 bool started; 1677 bool global; 1678 bool selected; 1679 bool duplicate; 1680 bool near; 1681 }; 1682 1683 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 1684 { 1685 /* A function with the same name, and global or the n'th found or any */ 1686 return kallsyms__is_function(type) && 1687 !strcmp(name, args->name) && 1688 ((args->global && isupper(type)) || 1689 (args->selected && ++(args->cnt) == args->idx) || 1690 (!args->global && !args->selected)); 1691 } 1692 1693 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1694 { 1695 struct sym_args *args = arg; 1696 1697 if (args->started) { 1698 if (!args->size) 1699 args->size = start - args->start; 1700 if (args->selected) { 1701 if (args->size) 1702 return 1; 1703 } else if (kern_sym_match(args, name, type)) { 1704 args->duplicate = true; 1705 return 1; 1706 } 1707 } else if (kern_sym_match(args, name, type)) { 1708 args->started = true; 1709 args->start = start; 1710 } 1711 1712 return 0; 1713 } 1714 1715 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1716 { 1717 struct sym_args *args = arg; 1718 1719 if (kern_sym_match(args, name, type)) { 1720 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1721 ++args->cnt, start, type, name); 1722 args->near = true; 1723 } else if (args->near) { 1724 args->near = false; 1725 pr_err("\t\twhich is near\t\t%s\n", name); 1726 } 1727 1728 return 0; 1729 } 1730 1731 static int sym_not_found_error(const char *sym_name, int idx) 1732 { 1733 if (idx > 0) { 1734 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 1735 idx, sym_name); 1736 } else if (!idx) { 1737 pr_err("Global symbol '%s' not found.\n", sym_name); 1738 } else { 1739 pr_err("Symbol '%s' not found.\n", sym_name); 1740 } 1741 pr_err("Note that symbols must be functions.\n"); 1742 1743 return -EINVAL; 1744 } 1745 1746 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 1747 { 1748 struct sym_args args = { 1749 .name = sym_name, 1750 .idx = idx, 1751 .global = !idx, 1752 .selected = idx > 0, 1753 }; 1754 int err; 1755 1756 *start = 0; 1757 *size = 0; 1758 1759 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 1760 if (err < 0) { 1761 pr_err("Failed to parse /proc/kallsyms\n"); 1762 return err; 1763 } 1764 1765 if (args.duplicate) { 1766 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 1767 args.cnt = 0; 1768 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 1769 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1770 sym_name); 1771 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1772 return -EINVAL; 1773 } 1774 1775 if (!args.started) { 1776 pr_err("Kernel symbol lookup: "); 1777 return sym_not_found_error(sym_name, idx); 1778 } 1779 1780 *start = args.start; 1781 *size = args.size; 1782 1783 return 0; 1784 } 1785 1786 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 1787 char type, u64 start) 1788 { 1789 struct sym_args *args = arg; 1790 1791 if (!kallsyms__is_function(type)) 1792 return 0; 1793 1794 if (!args->started) { 1795 args->started = true; 1796 args->start = start; 1797 } 1798 /* Don't know exactly where the kernel ends, so we add a page */ 1799 args->size = round_up(start, page_size) + page_size - args->start; 1800 1801 return 0; 1802 } 1803 1804 static int addr_filter__entire_kernel(struct addr_filter *filt) 1805 { 1806 struct sym_args args = { .started = false }; 1807 int err; 1808 1809 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 1810 if (err < 0 || !args.started) { 1811 pr_err("Failed to parse /proc/kallsyms\n"); 1812 return err; 1813 } 1814 1815 filt->addr = args.start; 1816 filt->size = args.size; 1817 1818 return 0; 1819 } 1820 1821 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 1822 { 1823 if (start + size >= filt->addr) 1824 return 0; 1825 1826 if (filt->sym_from) { 1827 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 1828 filt->sym_to, start, filt->sym_from, filt->addr); 1829 } else { 1830 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 1831 filt->sym_to, start, filt->addr); 1832 } 1833 1834 return -EINVAL; 1835 } 1836 1837 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 1838 { 1839 bool no_size = false; 1840 u64 start, size; 1841 int err; 1842 1843 if (symbol_conf.kptr_restrict) { 1844 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 1845 return -EINVAL; 1846 } 1847 1848 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 1849 return addr_filter__entire_kernel(filt); 1850 1851 if (filt->sym_from) { 1852 err = find_kern_sym(filt->sym_from, &start, &size, 1853 filt->sym_from_idx); 1854 if (err) 1855 return err; 1856 filt->addr = start; 1857 if (filt->range && !filt->size && !filt->sym_to) { 1858 filt->size = size; 1859 no_size = !size; 1860 } 1861 } 1862 1863 if (filt->sym_to) { 1864 err = find_kern_sym(filt->sym_to, &start, &size, 1865 filt->sym_to_idx); 1866 if (err) 1867 return err; 1868 1869 err = check_end_after_start(filt, start, size); 1870 if (err) 1871 return err; 1872 filt->size = start + size - filt->addr; 1873 no_size = !size; 1874 } 1875 1876 /* The very last symbol in kallsyms does not imply a particular size */ 1877 if (no_size) { 1878 pr_err("Cannot determine size of symbol '%s'\n", 1879 filt->sym_to ? filt->sym_to : filt->sym_from); 1880 return -EINVAL; 1881 } 1882 1883 return 0; 1884 } 1885 1886 static struct dso *load_dso(const char *name) 1887 { 1888 struct map *map; 1889 struct dso *dso; 1890 1891 map = dso__new_map(name); 1892 if (!map) 1893 return NULL; 1894 1895 map__load(map); 1896 1897 dso = dso__get(map->dso); 1898 1899 map__put(map); 1900 1901 return dso; 1902 } 1903 1904 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 1905 int idx) 1906 { 1907 /* Same name, and global or the n'th found or any */ 1908 return !arch__compare_symbol_names(name, sym->name) && 1909 ((!idx && sym->binding == STB_GLOBAL) || 1910 (idx > 0 && ++*cnt == idx) || 1911 idx < 0); 1912 } 1913 1914 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 1915 { 1916 struct symbol *sym; 1917 bool near = false; 1918 int cnt = 0; 1919 1920 pr_err("Multiple symbols with name '%s'\n", sym_name); 1921 1922 sym = dso__first_symbol(dso); 1923 while (sym) { 1924 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 1925 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1926 ++cnt, sym->start, 1927 sym->binding == STB_GLOBAL ? 'g' : 1928 sym->binding == STB_LOCAL ? 'l' : 'w', 1929 sym->name); 1930 near = true; 1931 } else if (near) { 1932 near = false; 1933 pr_err("\t\twhich is near\t\t%s\n", sym->name); 1934 } 1935 sym = dso__next_symbol(sym); 1936 } 1937 1938 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1939 sym_name); 1940 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1941 } 1942 1943 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 1944 u64 *size, int idx) 1945 { 1946 struct symbol *sym; 1947 int cnt = 0; 1948 1949 *start = 0; 1950 *size = 0; 1951 1952 sym = dso__first_symbol(dso); 1953 while (sym) { 1954 if (*start) { 1955 if (!*size) 1956 *size = sym->start - *start; 1957 if (idx > 0) { 1958 if (*size) 1959 return 1; 1960 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1961 print_duplicate_syms(dso, sym_name); 1962 return -EINVAL; 1963 } 1964 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1965 *start = sym->start; 1966 *size = sym->end - sym->start; 1967 } 1968 sym = dso__next_symbol(sym); 1969 } 1970 1971 if (!*start) 1972 return sym_not_found_error(sym_name, idx); 1973 1974 return 0; 1975 } 1976 1977 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 1978 { 1979 struct symbol *first_sym = dso__first_symbol(dso); 1980 struct symbol *last_sym = dso__last_symbol(dso); 1981 1982 if (!first_sym || !last_sym) { 1983 pr_err("Failed to determine filter for %s\nNo symbols found.\n", 1984 filt->filename); 1985 return -EINVAL; 1986 } 1987 1988 filt->addr = first_sym->start; 1989 filt->size = last_sym->end - first_sym->start; 1990 1991 return 0; 1992 } 1993 1994 static int addr_filter__resolve_syms(struct addr_filter *filt) 1995 { 1996 u64 start, size; 1997 struct dso *dso; 1998 int err = 0; 1999 2000 if (!filt->sym_from && !filt->sym_to) 2001 return 0; 2002 2003 if (!filt->filename) 2004 return addr_filter__resolve_kernel_syms(filt); 2005 2006 dso = load_dso(filt->filename); 2007 if (!dso) { 2008 pr_err("Failed to load symbols from: %s\n", filt->filename); 2009 return -EINVAL; 2010 } 2011 2012 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2013 err = addr_filter__entire_dso(filt, dso); 2014 goto put_dso; 2015 } 2016 2017 if (filt->sym_from) { 2018 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2019 filt->sym_from_idx); 2020 if (err) 2021 goto put_dso; 2022 filt->addr = start; 2023 if (filt->range && !filt->size && !filt->sym_to) 2024 filt->size = size; 2025 } 2026 2027 if (filt->sym_to) { 2028 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2029 filt->sym_to_idx); 2030 if (err) 2031 goto put_dso; 2032 2033 err = check_end_after_start(filt, start, size); 2034 if (err) 2035 return err; 2036 2037 filt->size = start + size - filt->addr; 2038 } 2039 2040 put_dso: 2041 dso__put(dso); 2042 2043 return err; 2044 } 2045 2046 static char *addr_filter__to_str(struct addr_filter *filt) 2047 { 2048 char filename_buf[PATH_MAX]; 2049 const char *at = ""; 2050 const char *fn = ""; 2051 char *filter; 2052 int err; 2053 2054 if (filt->filename) { 2055 at = "@"; 2056 fn = realpath(filt->filename, filename_buf); 2057 if (!fn) 2058 return NULL; 2059 } 2060 2061 if (filt->range) { 2062 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2063 filt->action, filt->addr, filt->size, at, fn); 2064 } else { 2065 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2066 filt->action, filt->addr, at, fn); 2067 } 2068 2069 return err < 0 ? NULL : filter; 2070 } 2071 2072 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter, 2073 int max_nr) 2074 { 2075 struct addr_filters filts; 2076 struct addr_filter *filt; 2077 int err; 2078 2079 addr_filters__init(&filts); 2080 2081 err = addr_filters__parse_bare_filter(&filts, filter); 2082 if (err) 2083 goto out_exit; 2084 2085 if (filts.cnt > max_nr) { 2086 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2087 filts.cnt, max_nr); 2088 err = -EINVAL; 2089 goto out_exit; 2090 } 2091 2092 list_for_each_entry(filt, &filts.head, list) { 2093 char *new_filter; 2094 2095 err = addr_filter__resolve_syms(filt); 2096 if (err) 2097 goto out_exit; 2098 2099 new_filter = addr_filter__to_str(filt); 2100 if (!new_filter) { 2101 err = -ENOMEM; 2102 goto out_exit; 2103 } 2104 2105 if (perf_evsel__append_addr_filter(evsel, new_filter)) { 2106 err = -ENOMEM; 2107 goto out_exit; 2108 } 2109 } 2110 2111 out_exit: 2112 addr_filters__exit(&filts); 2113 2114 if (err) { 2115 pr_err("Failed to parse address filter: '%s'\n", filter); 2116 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2117 pr_err("Where multiple filters are separated by space or comma.\n"); 2118 } 2119 2120 return err; 2121 } 2122 2123 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel) 2124 { 2125 struct perf_pmu *pmu = NULL; 2126 2127 while ((pmu = perf_pmu__scan(pmu)) != NULL) { 2128 if (pmu->type == evsel->attr.type) 2129 break; 2130 } 2131 2132 return pmu; 2133 } 2134 2135 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel) 2136 { 2137 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel); 2138 int nr_addr_filters = 0; 2139 2140 if (!pmu) 2141 return 0; 2142 2143 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2144 2145 return nr_addr_filters; 2146 } 2147 2148 int auxtrace_parse_filters(struct perf_evlist *evlist) 2149 { 2150 struct perf_evsel *evsel; 2151 char *filter; 2152 int err, max_nr; 2153 2154 evlist__for_each_entry(evlist, evsel) { 2155 filter = evsel->filter; 2156 max_nr = perf_evsel__nr_addr_filter(evsel); 2157 if (!filter || !max_nr) 2158 continue; 2159 evsel->filter = NULL; 2160 err = parse_addr_filter(evsel, filter, max_nr); 2161 free(filter); 2162 if (err) 2163 return err; 2164 pr_debug("Address filter: %s\n", evsel->filter); 2165 } 2166 2167 return 0; 2168 } 2169