xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision 0e407915)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42 
43 #include <linux/hash.h>
44 
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50 
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "s390-cpumsf.h"
56 #include "util/mmap.h"
57 
58 #include <linux/ctype.h>
59 #include "symbol/kallsyms.h"
60 #include <internal/lib.h>
61 
62 /*
63  * Make a group from 'leader' to 'last', requiring that the events were not
64  * already grouped to a different leader.
65  */
66 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
67 {
68 	struct evsel *evsel;
69 	bool grp;
70 
71 	if (!evsel__is_group_leader(leader))
72 		return -EINVAL;
73 
74 	grp = false;
75 	evlist__for_each_entry(evlist, evsel) {
76 		if (grp) {
77 			if (!(evsel__leader(evsel) == leader ||
78 			     (evsel__leader(evsel) == evsel &&
79 			      evsel->core.nr_members <= 1)))
80 				return -EINVAL;
81 		} else if (evsel == leader) {
82 			grp = true;
83 		}
84 		if (evsel == last)
85 			break;
86 	}
87 
88 	grp = false;
89 	evlist__for_each_entry(evlist, evsel) {
90 		if (grp) {
91 			if (!evsel__has_leader(evsel, leader)) {
92 				evsel__set_leader(evsel, leader);
93 				if (leader->core.nr_members < 1)
94 					leader->core.nr_members = 1;
95 				leader->core.nr_members += 1;
96 			}
97 		} else if (evsel == leader) {
98 			grp = true;
99 		}
100 		if (evsel == last)
101 			break;
102 	}
103 
104 	return 0;
105 }
106 
107 static bool auxtrace__dont_decode(struct perf_session *session)
108 {
109 	return !session->itrace_synth_opts ||
110 	       session->itrace_synth_opts->dont_decode;
111 }
112 
113 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
114 			struct auxtrace_mmap_params *mp,
115 			void *userpg, int fd)
116 {
117 	struct perf_event_mmap_page *pc = userpg;
118 
119 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
120 
121 	mm->userpg = userpg;
122 	mm->mask = mp->mask;
123 	mm->len = mp->len;
124 	mm->prev = 0;
125 	mm->idx = mp->idx;
126 	mm->tid = mp->tid;
127 	mm->cpu = mp->cpu.cpu;
128 
129 	if (!mp->len || !mp->mmap_needed) {
130 		mm->base = NULL;
131 		return 0;
132 	}
133 
134 	pc->aux_offset = mp->offset;
135 	pc->aux_size = mp->len;
136 
137 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
138 	if (mm->base == MAP_FAILED) {
139 		pr_debug2("failed to mmap AUX area\n");
140 		mm->base = NULL;
141 		return -1;
142 	}
143 
144 	return 0;
145 }
146 
147 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
148 {
149 	if (mm->base) {
150 		munmap(mm->base, mm->len);
151 		mm->base = NULL;
152 	}
153 }
154 
155 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
156 				off_t auxtrace_offset,
157 				unsigned int auxtrace_pages,
158 				bool auxtrace_overwrite)
159 {
160 	if (auxtrace_pages) {
161 		mp->offset = auxtrace_offset;
162 		mp->len = auxtrace_pages * (size_t)page_size;
163 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
164 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
165 		pr_debug2("AUX area mmap length %zu\n", mp->len);
166 	} else {
167 		mp->len = 0;
168 	}
169 }
170 
171 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
172 				   struct evlist *evlist,
173 				   struct evsel *evsel, int idx)
174 {
175 	bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
176 
177 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
178 
179 	if (!mp->mmap_needed)
180 		return;
181 
182 	mp->idx = idx;
183 
184 	if (per_cpu) {
185 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
186 		if (evlist->core.threads)
187 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
188 		else
189 			mp->tid = -1;
190 	} else {
191 		mp->cpu.cpu = -1;
192 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
193 	}
194 }
195 
196 #define AUXTRACE_INIT_NR_QUEUES	32
197 
198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
199 {
200 	struct auxtrace_queue *queue_array;
201 	unsigned int max_nr_queues, i;
202 
203 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
204 	if (nr_queues > max_nr_queues)
205 		return NULL;
206 
207 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
208 	if (!queue_array)
209 		return NULL;
210 
211 	for (i = 0; i < nr_queues; i++) {
212 		INIT_LIST_HEAD(&queue_array[i].head);
213 		queue_array[i].priv = NULL;
214 	}
215 
216 	return queue_array;
217 }
218 
219 int auxtrace_queues__init(struct auxtrace_queues *queues)
220 {
221 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
222 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
223 	if (!queues->queue_array)
224 		return -ENOMEM;
225 	return 0;
226 }
227 
228 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
229 				 unsigned int new_nr_queues)
230 {
231 	unsigned int nr_queues = queues->nr_queues;
232 	struct auxtrace_queue *queue_array;
233 	unsigned int i;
234 
235 	if (!nr_queues)
236 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
237 
238 	while (nr_queues && nr_queues < new_nr_queues)
239 		nr_queues <<= 1;
240 
241 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
242 		return -EINVAL;
243 
244 	queue_array = auxtrace_alloc_queue_array(nr_queues);
245 	if (!queue_array)
246 		return -ENOMEM;
247 
248 	for (i = 0; i < queues->nr_queues; i++) {
249 		list_splice_tail(&queues->queue_array[i].head,
250 				 &queue_array[i].head);
251 		queue_array[i].tid = queues->queue_array[i].tid;
252 		queue_array[i].cpu = queues->queue_array[i].cpu;
253 		queue_array[i].set = queues->queue_array[i].set;
254 		queue_array[i].priv = queues->queue_array[i].priv;
255 	}
256 
257 	queues->nr_queues = nr_queues;
258 	queues->queue_array = queue_array;
259 
260 	return 0;
261 }
262 
263 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
264 {
265 	int fd = perf_data__fd(session->data);
266 	void *p;
267 	ssize_t ret;
268 
269 	if (size > SSIZE_MAX)
270 		return NULL;
271 
272 	p = malloc(size);
273 	if (!p)
274 		return NULL;
275 
276 	ret = readn(fd, p, size);
277 	if (ret != (ssize_t)size) {
278 		free(p);
279 		return NULL;
280 	}
281 
282 	return p;
283 }
284 
285 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
286 					 unsigned int idx,
287 					 struct auxtrace_buffer *buffer)
288 {
289 	struct auxtrace_queue *queue;
290 	int err;
291 
292 	if (idx >= queues->nr_queues) {
293 		err = auxtrace_queues__grow(queues, idx + 1);
294 		if (err)
295 			return err;
296 	}
297 
298 	queue = &queues->queue_array[idx];
299 
300 	if (!queue->set) {
301 		queue->set = true;
302 		queue->tid = buffer->tid;
303 		queue->cpu = buffer->cpu.cpu;
304 	}
305 
306 	buffer->buffer_nr = queues->next_buffer_nr++;
307 
308 	list_add_tail(&buffer->list, &queue->head);
309 
310 	queues->new_data = true;
311 	queues->populated = true;
312 
313 	return 0;
314 }
315 
316 /* Limit buffers to 32MiB on 32-bit */
317 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
318 
319 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
320 					 unsigned int idx,
321 					 struct auxtrace_buffer *buffer)
322 {
323 	u64 sz = buffer->size;
324 	bool consecutive = false;
325 	struct auxtrace_buffer *b;
326 	int err;
327 
328 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
329 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
330 		if (!b)
331 			return -ENOMEM;
332 		b->size = BUFFER_LIMIT_FOR_32_BIT;
333 		b->consecutive = consecutive;
334 		err = auxtrace_queues__queue_buffer(queues, idx, b);
335 		if (err) {
336 			auxtrace_buffer__free(b);
337 			return err;
338 		}
339 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
340 		sz -= BUFFER_LIMIT_FOR_32_BIT;
341 		consecutive = true;
342 	}
343 
344 	buffer->size = sz;
345 	buffer->consecutive = consecutive;
346 
347 	return 0;
348 }
349 
350 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
351 {
352 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
353 
354 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
355 }
356 
357 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
358 				       struct perf_session *session,
359 				       unsigned int idx,
360 				       struct auxtrace_buffer *buffer,
361 				       struct auxtrace_buffer **buffer_ptr)
362 {
363 	int err = -ENOMEM;
364 
365 	if (filter_cpu(session, buffer->cpu))
366 		return 0;
367 
368 	buffer = memdup(buffer, sizeof(*buffer));
369 	if (!buffer)
370 		return -ENOMEM;
371 
372 	if (session->one_mmap) {
373 		buffer->data = buffer->data_offset - session->one_mmap_offset +
374 			       session->one_mmap_addr;
375 	} else if (perf_data__is_pipe(session->data)) {
376 		buffer->data = auxtrace_copy_data(buffer->size, session);
377 		if (!buffer->data)
378 			goto out_free;
379 		buffer->data_needs_freeing = true;
380 	} else if (BITS_PER_LONG == 32 &&
381 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
382 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
383 		if (err)
384 			goto out_free;
385 	}
386 
387 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
388 	if (err)
389 		goto out_free;
390 
391 	/* FIXME: Doesn't work for split buffer */
392 	if (buffer_ptr)
393 		*buffer_ptr = buffer;
394 
395 	return 0;
396 
397 out_free:
398 	auxtrace_buffer__free(buffer);
399 	return err;
400 }
401 
402 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
403 			       struct perf_session *session,
404 			       union perf_event *event, off_t data_offset,
405 			       struct auxtrace_buffer **buffer_ptr)
406 {
407 	struct auxtrace_buffer buffer = {
408 		.pid = -1,
409 		.tid = event->auxtrace.tid,
410 		.cpu = { event->auxtrace.cpu },
411 		.data_offset = data_offset,
412 		.offset = event->auxtrace.offset,
413 		.reference = event->auxtrace.reference,
414 		.size = event->auxtrace.size,
415 	};
416 	unsigned int idx = event->auxtrace.idx;
417 
418 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
419 					   buffer_ptr);
420 }
421 
422 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
423 					      struct perf_session *session,
424 					      off_t file_offset, size_t sz)
425 {
426 	union perf_event *event;
427 	int err;
428 	char buf[PERF_SAMPLE_MAX_SIZE];
429 
430 	err = perf_session__peek_event(session, file_offset, buf,
431 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
432 	if (err)
433 		return err;
434 
435 	if (event->header.type == PERF_RECORD_AUXTRACE) {
436 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
437 		    event->header.size != sz) {
438 			err = -EINVAL;
439 			goto out;
440 		}
441 		file_offset += event->header.size;
442 		err = auxtrace_queues__add_event(queues, session, event,
443 						 file_offset, NULL);
444 	}
445 out:
446 	return err;
447 }
448 
449 void auxtrace_queues__free(struct auxtrace_queues *queues)
450 {
451 	unsigned int i;
452 
453 	for (i = 0; i < queues->nr_queues; i++) {
454 		while (!list_empty(&queues->queue_array[i].head)) {
455 			struct auxtrace_buffer *buffer;
456 
457 			buffer = list_entry(queues->queue_array[i].head.next,
458 					    struct auxtrace_buffer, list);
459 			list_del_init(&buffer->list);
460 			auxtrace_buffer__free(buffer);
461 		}
462 	}
463 
464 	zfree(&queues->queue_array);
465 	queues->nr_queues = 0;
466 }
467 
468 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
469 			     unsigned int pos, unsigned int queue_nr,
470 			     u64 ordinal)
471 {
472 	unsigned int parent;
473 
474 	while (pos) {
475 		parent = (pos - 1) >> 1;
476 		if (heap_array[parent].ordinal <= ordinal)
477 			break;
478 		heap_array[pos] = heap_array[parent];
479 		pos = parent;
480 	}
481 	heap_array[pos].queue_nr = queue_nr;
482 	heap_array[pos].ordinal = ordinal;
483 }
484 
485 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
486 		       u64 ordinal)
487 {
488 	struct auxtrace_heap_item *heap_array;
489 
490 	if (queue_nr >= heap->heap_sz) {
491 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
492 
493 		while (heap_sz <= queue_nr)
494 			heap_sz <<= 1;
495 		heap_array = realloc(heap->heap_array,
496 				     heap_sz * sizeof(struct auxtrace_heap_item));
497 		if (!heap_array)
498 			return -ENOMEM;
499 		heap->heap_array = heap_array;
500 		heap->heap_sz = heap_sz;
501 	}
502 
503 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
504 
505 	return 0;
506 }
507 
508 void auxtrace_heap__free(struct auxtrace_heap *heap)
509 {
510 	zfree(&heap->heap_array);
511 	heap->heap_cnt = 0;
512 	heap->heap_sz = 0;
513 }
514 
515 void auxtrace_heap__pop(struct auxtrace_heap *heap)
516 {
517 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
518 	struct auxtrace_heap_item *heap_array;
519 
520 	if (!heap_cnt)
521 		return;
522 
523 	heap->heap_cnt -= 1;
524 
525 	heap_array = heap->heap_array;
526 
527 	pos = 0;
528 	while (1) {
529 		unsigned int left, right;
530 
531 		left = (pos << 1) + 1;
532 		if (left >= heap_cnt)
533 			break;
534 		right = left + 1;
535 		if (right >= heap_cnt) {
536 			heap_array[pos] = heap_array[left];
537 			return;
538 		}
539 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
540 			heap_array[pos] = heap_array[left];
541 			pos = left;
542 		} else {
543 			heap_array[pos] = heap_array[right];
544 			pos = right;
545 		}
546 	}
547 
548 	last = heap_cnt - 1;
549 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
550 			 heap_array[last].ordinal);
551 }
552 
553 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
554 				       struct evlist *evlist)
555 {
556 	if (itr)
557 		return itr->info_priv_size(itr, evlist);
558 	return 0;
559 }
560 
561 static int auxtrace_not_supported(void)
562 {
563 	pr_err("AUX area tracing is not supported on this architecture\n");
564 	return -EINVAL;
565 }
566 
567 int auxtrace_record__info_fill(struct auxtrace_record *itr,
568 			       struct perf_session *session,
569 			       struct perf_record_auxtrace_info *auxtrace_info,
570 			       size_t priv_size)
571 {
572 	if (itr)
573 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
574 	return auxtrace_not_supported();
575 }
576 
577 void auxtrace_record__free(struct auxtrace_record *itr)
578 {
579 	if (itr)
580 		itr->free(itr);
581 }
582 
583 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
584 {
585 	if (itr && itr->snapshot_start)
586 		return itr->snapshot_start(itr);
587 	return 0;
588 }
589 
590 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
591 {
592 	if (!on_exit && itr && itr->snapshot_finish)
593 		return itr->snapshot_finish(itr);
594 	return 0;
595 }
596 
597 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
598 				   struct auxtrace_mmap *mm,
599 				   unsigned char *data, u64 *head, u64 *old)
600 {
601 	if (itr && itr->find_snapshot)
602 		return itr->find_snapshot(itr, idx, mm, data, head, old);
603 	return 0;
604 }
605 
606 int auxtrace_record__options(struct auxtrace_record *itr,
607 			     struct evlist *evlist,
608 			     struct record_opts *opts)
609 {
610 	if (itr) {
611 		itr->evlist = evlist;
612 		return itr->recording_options(itr, evlist, opts);
613 	}
614 	return 0;
615 }
616 
617 u64 auxtrace_record__reference(struct auxtrace_record *itr)
618 {
619 	if (itr)
620 		return itr->reference(itr);
621 	return 0;
622 }
623 
624 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
625 				    struct record_opts *opts, const char *str)
626 {
627 	if (!str)
628 		return 0;
629 
630 	/* PMU-agnostic options */
631 	switch (*str) {
632 	case 'e':
633 		opts->auxtrace_snapshot_on_exit = true;
634 		str++;
635 		break;
636 	default:
637 		break;
638 	}
639 
640 	if (itr && itr->parse_snapshot_options)
641 		return itr->parse_snapshot_options(itr, opts, str);
642 
643 	pr_err("No AUX area tracing to snapshot\n");
644 	return -EINVAL;
645 }
646 
647 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
648 {
649 	bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
650 
651 	if (per_cpu_mmaps) {
652 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
653 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
654 
655 		if (cpu_map_idx == -1)
656 			return -EINVAL;
657 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
658 	}
659 
660 	return perf_evsel__enable_thread(&evsel->core, idx);
661 }
662 
663 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
664 {
665 	struct evsel *evsel;
666 
667 	if (!itr->evlist || !itr->pmu)
668 		return -EINVAL;
669 
670 	evlist__for_each_entry(itr->evlist, evsel) {
671 		if (evsel->core.attr.type == itr->pmu->type) {
672 			if (evsel->disabled)
673 				return 0;
674 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
675 		}
676 	}
677 	return -EINVAL;
678 }
679 
680 /*
681  * Event record size is 16-bit which results in a maximum size of about 64KiB.
682  * Allow about 4KiB for the rest of the sample record, to give a maximum
683  * AUX area sample size of 60KiB.
684  */
685 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
686 
687 /* Arbitrary default size if no other default provided */
688 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
689 
690 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
691 					     struct record_opts *opts)
692 {
693 	struct evsel *evsel;
694 	bool has_aux_leader = false;
695 	u32 sz;
696 
697 	evlist__for_each_entry(evlist, evsel) {
698 		sz = evsel->core.attr.aux_sample_size;
699 		if (evsel__is_group_leader(evsel)) {
700 			has_aux_leader = evsel__is_aux_event(evsel);
701 			if (sz) {
702 				if (has_aux_leader)
703 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
704 				else
705 					pr_err("Cannot add AUX area sampling to a group leader\n");
706 				return -EINVAL;
707 			}
708 		}
709 		if (sz > MAX_AUX_SAMPLE_SIZE) {
710 			pr_err("AUX area sample size %u too big, max. %d\n",
711 			       sz, MAX_AUX_SAMPLE_SIZE);
712 			return -EINVAL;
713 		}
714 		if (sz) {
715 			if (!has_aux_leader) {
716 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
717 				return -EINVAL;
718 			}
719 			evsel__set_sample_bit(evsel, AUX);
720 			opts->auxtrace_sample_mode = true;
721 		} else {
722 			evsel__reset_sample_bit(evsel, AUX);
723 		}
724 	}
725 
726 	if (!opts->auxtrace_sample_mode) {
727 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
728 		return -EINVAL;
729 	}
730 
731 	if (!perf_can_aux_sample()) {
732 		pr_err("AUX area sampling is not supported by kernel\n");
733 		return -EINVAL;
734 	}
735 
736 	return 0;
737 }
738 
739 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
740 				  struct evlist *evlist,
741 				  struct record_opts *opts, const char *str)
742 {
743 	struct evsel_config_term *term;
744 	struct evsel *aux_evsel;
745 	bool has_aux_sample_size = false;
746 	bool has_aux_leader = false;
747 	struct evsel *evsel;
748 	char *endptr;
749 	unsigned long sz;
750 
751 	if (!str)
752 		goto no_opt;
753 
754 	if (!itr) {
755 		pr_err("No AUX area event to sample\n");
756 		return -EINVAL;
757 	}
758 
759 	sz = strtoul(str, &endptr, 0);
760 	if (*endptr || sz > UINT_MAX) {
761 		pr_err("Bad AUX area sampling option: '%s'\n", str);
762 		return -EINVAL;
763 	}
764 
765 	if (!sz)
766 		sz = itr->default_aux_sample_size;
767 
768 	if (!sz)
769 		sz = DEFAULT_AUX_SAMPLE_SIZE;
770 
771 	/* Set aux_sample_size based on --aux-sample option */
772 	evlist__for_each_entry(evlist, evsel) {
773 		if (evsel__is_group_leader(evsel)) {
774 			has_aux_leader = evsel__is_aux_event(evsel);
775 		} else if (has_aux_leader) {
776 			evsel->core.attr.aux_sample_size = sz;
777 		}
778 	}
779 no_opt:
780 	aux_evsel = NULL;
781 	/* Override with aux_sample_size from config term */
782 	evlist__for_each_entry(evlist, evsel) {
783 		if (evsel__is_aux_event(evsel))
784 			aux_evsel = evsel;
785 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
786 		if (term) {
787 			has_aux_sample_size = true;
788 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
789 			/* If possible, group with the AUX event */
790 			if (aux_evsel && evsel->core.attr.aux_sample_size)
791 				evlist__regroup(evlist, aux_evsel, evsel);
792 		}
793 	}
794 
795 	if (!str && !has_aux_sample_size)
796 		return 0;
797 
798 	if (!itr) {
799 		pr_err("No AUX area event to sample\n");
800 		return -EINVAL;
801 	}
802 
803 	return auxtrace_validate_aux_sample_size(evlist, opts);
804 }
805 
806 void auxtrace_regroup_aux_output(struct evlist *evlist)
807 {
808 	struct evsel *evsel, *aux_evsel = NULL;
809 	struct evsel_config_term *term;
810 
811 	evlist__for_each_entry(evlist, evsel) {
812 		if (evsel__is_aux_event(evsel))
813 			aux_evsel = evsel;
814 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
815 		/* If possible, group with the AUX event */
816 		if (term && aux_evsel)
817 			evlist__regroup(evlist, aux_evsel, evsel);
818 	}
819 }
820 
821 struct auxtrace_record *__weak
822 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
823 {
824 	*err = 0;
825 	return NULL;
826 }
827 
828 static int auxtrace_index__alloc(struct list_head *head)
829 {
830 	struct auxtrace_index *auxtrace_index;
831 
832 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
833 	if (!auxtrace_index)
834 		return -ENOMEM;
835 
836 	auxtrace_index->nr = 0;
837 	INIT_LIST_HEAD(&auxtrace_index->list);
838 
839 	list_add_tail(&auxtrace_index->list, head);
840 
841 	return 0;
842 }
843 
844 void auxtrace_index__free(struct list_head *head)
845 {
846 	struct auxtrace_index *auxtrace_index, *n;
847 
848 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
849 		list_del_init(&auxtrace_index->list);
850 		free(auxtrace_index);
851 	}
852 }
853 
854 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
855 {
856 	struct auxtrace_index *auxtrace_index;
857 	int err;
858 
859 	if (list_empty(head)) {
860 		err = auxtrace_index__alloc(head);
861 		if (err)
862 			return NULL;
863 	}
864 
865 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
866 
867 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
868 		err = auxtrace_index__alloc(head);
869 		if (err)
870 			return NULL;
871 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
872 					    list);
873 	}
874 
875 	return auxtrace_index;
876 }
877 
878 int auxtrace_index__auxtrace_event(struct list_head *head,
879 				   union perf_event *event, off_t file_offset)
880 {
881 	struct auxtrace_index *auxtrace_index;
882 	size_t nr;
883 
884 	auxtrace_index = auxtrace_index__last(head);
885 	if (!auxtrace_index)
886 		return -ENOMEM;
887 
888 	nr = auxtrace_index->nr;
889 	auxtrace_index->entries[nr].file_offset = file_offset;
890 	auxtrace_index->entries[nr].sz = event->header.size;
891 	auxtrace_index->nr += 1;
892 
893 	return 0;
894 }
895 
896 static int auxtrace_index__do_write(int fd,
897 				    struct auxtrace_index *auxtrace_index)
898 {
899 	struct auxtrace_index_entry ent;
900 	size_t i;
901 
902 	for (i = 0; i < auxtrace_index->nr; i++) {
903 		ent.file_offset = auxtrace_index->entries[i].file_offset;
904 		ent.sz = auxtrace_index->entries[i].sz;
905 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
906 			return -errno;
907 	}
908 	return 0;
909 }
910 
911 int auxtrace_index__write(int fd, struct list_head *head)
912 {
913 	struct auxtrace_index *auxtrace_index;
914 	u64 total = 0;
915 	int err;
916 
917 	list_for_each_entry(auxtrace_index, head, list)
918 		total += auxtrace_index->nr;
919 
920 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
921 		return -errno;
922 
923 	list_for_each_entry(auxtrace_index, head, list) {
924 		err = auxtrace_index__do_write(fd, auxtrace_index);
925 		if (err)
926 			return err;
927 	}
928 
929 	return 0;
930 }
931 
932 static int auxtrace_index__process_entry(int fd, struct list_head *head,
933 					 bool needs_swap)
934 {
935 	struct auxtrace_index *auxtrace_index;
936 	struct auxtrace_index_entry ent;
937 	size_t nr;
938 
939 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
940 		return -1;
941 
942 	auxtrace_index = auxtrace_index__last(head);
943 	if (!auxtrace_index)
944 		return -1;
945 
946 	nr = auxtrace_index->nr;
947 	if (needs_swap) {
948 		auxtrace_index->entries[nr].file_offset =
949 						bswap_64(ent.file_offset);
950 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
951 	} else {
952 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
953 		auxtrace_index->entries[nr].sz = ent.sz;
954 	}
955 
956 	auxtrace_index->nr = nr + 1;
957 
958 	return 0;
959 }
960 
961 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
962 			    bool needs_swap)
963 {
964 	struct list_head *head = &session->auxtrace_index;
965 	u64 nr;
966 
967 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
968 		return -1;
969 
970 	if (needs_swap)
971 		nr = bswap_64(nr);
972 
973 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
974 		return -1;
975 
976 	while (nr--) {
977 		int err;
978 
979 		err = auxtrace_index__process_entry(fd, head, needs_swap);
980 		if (err)
981 			return -1;
982 	}
983 
984 	return 0;
985 }
986 
987 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
988 						struct perf_session *session,
989 						struct auxtrace_index_entry *ent)
990 {
991 	return auxtrace_queues__add_indexed_event(queues, session,
992 						  ent->file_offset, ent->sz);
993 }
994 
995 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
996 				   struct perf_session *session)
997 {
998 	struct auxtrace_index *auxtrace_index;
999 	struct auxtrace_index_entry *ent;
1000 	size_t i;
1001 	int err;
1002 
1003 	if (auxtrace__dont_decode(session))
1004 		return 0;
1005 
1006 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1007 		for (i = 0; i < auxtrace_index->nr; i++) {
1008 			ent = &auxtrace_index->entries[i];
1009 			err = auxtrace_queues__process_index_entry(queues,
1010 								   session,
1011 								   ent);
1012 			if (err)
1013 				return err;
1014 		}
1015 	}
1016 	return 0;
1017 }
1018 
1019 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1020 					      struct auxtrace_buffer *buffer)
1021 {
1022 	if (buffer) {
1023 		if (list_is_last(&buffer->list, &queue->head))
1024 			return NULL;
1025 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1026 				  list);
1027 	} else {
1028 		if (list_empty(&queue->head))
1029 			return NULL;
1030 		return list_entry(queue->head.next, struct auxtrace_buffer,
1031 				  list);
1032 	}
1033 }
1034 
1035 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1036 						     struct perf_sample *sample,
1037 						     struct perf_session *session)
1038 {
1039 	struct perf_sample_id *sid;
1040 	unsigned int idx;
1041 	u64 id;
1042 
1043 	id = sample->id;
1044 	if (!id)
1045 		return NULL;
1046 
1047 	sid = evlist__id2sid(session->evlist, id);
1048 	if (!sid)
1049 		return NULL;
1050 
1051 	idx = sid->idx;
1052 
1053 	if (idx >= queues->nr_queues)
1054 		return NULL;
1055 
1056 	return &queues->queue_array[idx];
1057 }
1058 
1059 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1060 				struct perf_session *session,
1061 				struct perf_sample *sample, u64 data_offset,
1062 				u64 reference)
1063 {
1064 	struct auxtrace_buffer buffer = {
1065 		.pid = -1,
1066 		.data_offset = data_offset,
1067 		.reference = reference,
1068 		.size = sample->aux_sample.size,
1069 	};
1070 	struct perf_sample_id *sid;
1071 	u64 id = sample->id;
1072 	unsigned int idx;
1073 
1074 	if (!id)
1075 		return -EINVAL;
1076 
1077 	sid = evlist__id2sid(session->evlist, id);
1078 	if (!sid)
1079 		return -ENOENT;
1080 
1081 	idx = sid->idx;
1082 	buffer.tid = sid->tid;
1083 	buffer.cpu = sid->cpu;
1084 
1085 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1086 }
1087 
1088 struct queue_data {
1089 	bool samples;
1090 	bool events;
1091 };
1092 
1093 static int auxtrace_queue_data_cb(struct perf_session *session,
1094 				  union perf_event *event, u64 offset,
1095 				  void *data)
1096 {
1097 	struct queue_data *qd = data;
1098 	struct perf_sample sample;
1099 	int err;
1100 
1101 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1102 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1103 			return -EINVAL;
1104 		offset += event->header.size;
1105 		return session->auxtrace->queue_data(session, NULL, event,
1106 						     offset);
1107 	}
1108 
1109 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1110 		return 0;
1111 
1112 	err = evlist__parse_sample(session->evlist, event, &sample);
1113 	if (err)
1114 		return err;
1115 
1116 	if (!sample.aux_sample.size)
1117 		return 0;
1118 
1119 	offset += sample.aux_sample.data - (void *)event;
1120 
1121 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1122 }
1123 
1124 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1125 {
1126 	struct queue_data qd = {
1127 		.samples = samples,
1128 		.events = events,
1129 	};
1130 
1131 	if (auxtrace__dont_decode(session))
1132 		return 0;
1133 
1134 	if (!session->auxtrace || !session->auxtrace->queue_data)
1135 		return -EINVAL;
1136 
1137 	return perf_session__peek_events(session, session->header.data_offset,
1138 					 session->header.data_size,
1139 					 auxtrace_queue_data_cb, &qd);
1140 }
1141 
1142 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1143 {
1144 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1145 	size_t adj = buffer->data_offset & (page_size - 1);
1146 	size_t size = buffer->size + adj;
1147 	off_t file_offset = buffer->data_offset - adj;
1148 	void *addr;
1149 
1150 	if (buffer->data)
1151 		return buffer->data;
1152 
1153 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1154 	if (addr == MAP_FAILED)
1155 		return NULL;
1156 
1157 	buffer->mmap_addr = addr;
1158 	buffer->mmap_size = size;
1159 
1160 	buffer->data = addr + adj;
1161 
1162 	return buffer->data;
1163 }
1164 
1165 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1166 {
1167 	if (!buffer->data || !buffer->mmap_addr)
1168 		return;
1169 	munmap(buffer->mmap_addr, buffer->mmap_size);
1170 	buffer->mmap_addr = NULL;
1171 	buffer->mmap_size = 0;
1172 	buffer->data = NULL;
1173 	buffer->use_data = NULL;
1174 }
1175 
1176 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1177 {
1178 	auxtrace_buffer__put_data(buffer);
1179 	if (buffer->data_needs_freeing) {
1180 		buffer->data_needs_freeing = false;
1181 		zfree(&buffer->data);
1182 		buffer->use_data = NULL;
1183 		buffer->size = 0;
1184 	}
1185 }
1186 
1187 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1188 {
1189 	auxtrace_buffer__drop_data(buffer);
1190 	free(buffer);
1191 }
1192 
1193 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1194 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1195 				const char *msg, u64 timestamp,
1196 				pid_t machine_pid, int vcpu)
1197 {
1198 	size_t size;
1199 
1200 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1201 
1202 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1203 	auxtrace_error->type = type;
1204 	auxtrace_error->code = code;
1205 	auxtrace_error->cpu = cpu;
1206 	auxtrace_error->pid = pid;
1207 	auxtrace_error->tid = tid;
1208 	auxtrace_error->fmt = 1;
1209 	auxtrace_error->ip = ip;
1210 	auxtrace_error->time = timestamp;
1211 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1212 	if (machine_pid) {
1213 		auxtrace_error->fmt = 2;
1214 		auxtrace_error->machine_pid = machine_pid;
1215 		auxtrace_error->vcpu = vcpu;
1216 		size = sizeof(*auxtrace_error);
1217 	} else {
1218 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1219 		       strlen(auxtrace_error->msg) + 1;
1220 	}
1221 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1222 }
1223 
1224 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1225 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1226 			  const char *msg, u64 timestamp)
1227 {
1228 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1229 				   ip, msg, timestamp, 0, -1);
1230 }
1231 
1232 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1233 					 struct perf_tool *tool,
1234 					 struct perf_session *session,
1235 					 perf_event__handler_t process)
1236 {
1237 	union perf_event *ev;
1238 	size_t priv_size;
1239 	int err;
1240 
1241 	pr_debug2("Synthesizing auxtrace information\n");
1242 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1243 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1244 	if (!ev)
1245 		return -ENOMEM;
1246 
1247 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1248 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1249 					priv_size;
1250 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1251 					 priv_size);
1252 	if (err)
1253 		goto out_free;
1254 
1255 	err = process(tool, ev, NULL, NULL);
1256 out_free:
1257 	free(ev);
1258 	return err;
1259 }
1260 
1261 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1262 {
1263 	struct evsel *new_leader = NULL;
1264 	struct evsel *evsel;
1265 
1266 	/* Find new leader for the group */
1267 	evlist__for_each_entry(evlist, evsel) {
1268 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1269 			continue;
1270 		if (!new_leader)
1271 			new_leader = evsel;
1272 		evsel__set_leader(evsel, new_leader);
1273 	}
1274 
1275 	/* Update group information */
1276 	if (new_leader) {
1277 		zfree(&new_leader->group_name);
1278 		new_leader->group_name = leader->group_name;
1279 		leader->group_name = NULL;
1280 
1281 		new_leader->core.nr_members = leader->core.nr_members - 1;
1282 		leader->core.nr_members = 1;
1283 	}
1284 }
1285 
1286 static void unleader_auxtrace(struct perf_session *session)
1287 {
1288 	struct evsel *evsel;
1289 
1290 	evlist__for_each_entry(session->evlist, evsel) {
1291 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1292 		    evsel__is_group_leader(evsel)) {
1293 			unleader_evsel(session->evlist, evsel);
1294 		}
1295 	}
1296 }
1297 
1298 int perf_event__process_auxtrace_info(struct perf_session *session,
1299 				      union perf_event *event)
1300 {
1301 	enum auxtrace_type type = event->auxtrace_info.type;
1302 	int err;
1303 
1304 	if (dump_trace)
1305 		fprintf(stdout, " type: %u\n", type);
1306 
1307 	switch (type) {
1308 	case PERF_AUXTRACE_INTEL_PT:
1309 		err = intel_pt_process_auxtrace_info(event, session);
1310 		break;
1311 	case PERF_AUXTRACE_INTEL_BTS:
1312 		err = intel_bts_process_auxtrace_info(event, session);
1313 		break;
1314 	case PERF_AUXTRACE_ARM_SPE:
1315 		err = arm_spe_process_auxtrace_info(event, session);
1316 		break;
1317 	case PERF_AUXTRACE_CS_ETM:
1318 		err = cs_etm__process_auxtrace_info(event, session);
1319 		break;
1320 	case PERF_AUXTRACE_S390_CPUMSF:
1321 		err = s390_cpumsf_process_auxtrace_info(event, session);
1322 		break;
1323 	case PERF_AUXTRACE_UNKNOWN:
1324 	default:
1325 		return -EINVAL;
1326 	}
1327 
1328 	if (err)
1329 		return err;
1330 
1331 	unleader_auxtrace(session);
1332 
1333 	return 0;
1334 }
1335 
1336 s64 perf_event__process_auxtrace(struct perf_session *session,
1337 				 union perf_event *event)
1338 {
1339 	s64 err;
1340 
1341 	if (dump_trace)
1342 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1343 			event->auxtrace.size, event->auxtrace.offset,
1344 			event->auxtrace.reference, event->auxtrace.idx,
1345 			event->auxtrace.tid, event->auxtrace.cpu);
1346 
1347 	if (auxtrace__dont_decode(session))
1348 		return event->auxtrace.size;
1349 
1350 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1351 		return -EINVAL;
1352 
1353 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1354 	if (err < 0)
1355 		return err;
1356 
1357 	return event->auxtrace.size;
1358 }
1359 
1360 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1361 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1362 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1363 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1364 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1365 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1366 
1367 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1368 				    bool no_sample)
1369 {
1370 	synth_opts->branches = true;
1371 	synth_opts->transactions = true;
1372 	synth_opts->ptwrites = true;
1373 	synth_opts->pwr_events = true;
1374 	synth_opts->other_events = true;
1375 	synth_opts->intr_events = true;
1376 	synth_opts->errors = true;
1377 	synth_opts->flc = true;
1378 	synth_opts->llc = true;
1379 	synth_opts->tlb = true;
1380 	synth_opts->mem = true;
1381 	synth_opts->remote_access = true;
1382 
1383 	if (no_sample) {
1384 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1385 		synth_opts->period = 1;
1386 		synth_opts->calls = true;
1387 	} else {
1388 		synth_opts->instructions = true;
1389 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1390 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1391 	}
1392 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1393 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1394 	synth_opts->initial_skip = 0;
1395 }
1396 
1397 static int get_flag(const char **ptr, unsigned int *flags)
1398 {
1399 	while (1) {
1400 		char c = **ptr;
1401 
1402 		if (c >= 'a' && c <= 'z') {
1403 			*flags |= 1 << (c - 'a');
1404 			++*ptr;
1405 			return 0;
1406 		} else if (c == ' ') {
1407 			++*ptr;
1408 			continue;
1409 		} else {
1410 			return -1;
1411 		}
1412 	}
1413 }
1414 
1415 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1416 {
1417 	while (1) {
1418 		switch (**ptr) {
1419 		case '+':
1420 			++*ptr;
1421 			if (get_flag(ptr, plus_flags))
1422 				return -1;
1423 			break;
1424 		case '-':
1425 			++*ptr;
1426 			if (get_flag(ptr, minus_flags))
1427 				return -1;
1428 			break;
1429 		case ' ':
1430 			++*ptr;
1431 			break;
1432 		default:
1433 			return 0;
1434 		}
1435 	}
1436 }
1437 
1438 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1439 
1440 static unsigned int itrace_log_on_error_size(void)
1441 {
1442 	unsigned int sz = 0;
1443 
1444 	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1445 	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1446 }
1447 
1448 /*
1449  * Please check tools/perf/Documentation/perf-script.txt for information
1450  * about the options parsed here, which is introduced after this cset,
1451  * when support in 'perf script' for these options is introduced.
1452  */
1453 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1454 			       const char *str, int unset)
1455 {
1456 	const char *p;
1457 	char *endptr;
1458 	bool period_type_set = false;
1459 	bool period_set = false;
1460 
1461 	synth_opts->set = true;
1462 
1463 	if (unset) {
1464 		synth_opts->dont_decode = true;
1465 		return 0;
1466 	}
1467 
1468 	if (!str) {
1469 		itrace_synth_opts__set_default(synth_opts,
1470 					       synth_opts->default_no_sample);
1471 		return 0;
1472 	}
1473 
1474 	for (p = str; *p;) {
1475 		switch (*p++) {
1476 		case 'i':
1477 			synth_opts->instructions = true;
1478 			while (*p == ' ' || *p == ',')
1479 				p += 1;
1480 			if (isdigit(*p)) {
1481 				synth_opts->period = strtoull(p, &endptr, 10);
1482 				period_set = true;
1483 				p = endptr;
1484 				while (*p == ' ' || *p == ',')
1485 					p += 1;
1486 				switch (*p++) {
1487 				case 'i':
1488 					synth_opts->period_type =
1489 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1490 					period_type_set = true;
1491 					break;
1492 				case 't':
1493 					synth_opts->period_type =
1494 						PERF_ITRACE_PERIOD_TICKS;
1495 					period_type_set = true;
1496 					break;
1497 				case 'm':
1498 					synth_opts->period *= 1000;
1499 					/* Fall through */
1500 				case 'u':
1501 					synth_opts->period *= 1000;
1502 					/* Fall through */
1503 				case 'n':
1504 					if (*p++ != 's')
1505 						goto out_err;
1506 					synth_opts->period_type =
1507 						PERF_ITRACE_PERIOD_NANOSECS;
1508 					period_type_set = true;
1509 					break;
1510 				case '\0':
1511 					goto out;
1512 				default:
1513 					goto out_err;
1514 				}
1515 			}
1516 			break;
1517 		case 'b':
1518 			synth_opts->branches = true;
1519 			break;
1520 		case 'x':
1521 			synth_opts->transactions = true;
1522 			break;
1523 		case 'w':
1524 			synth_opts->ptwrites = true;
1525 			break;
1526 		case 'p':
1527 			synth_opts->pwr_events = true;
1528 			break;
1529 		case 'o':
1530 			synth_opts->other_events = true;
1531 			break;
1532 		case 'I':
1533 			synth_opts->intr_events = true;
1534 			break;
1535 		case 'e':
1536 			synth_opts->errors = true;
1537 			if (get_flags(&p, &synth_opts->error_plus_flags,
1538 				      &synth_opts->error_minus_flags))
1539 				goto out_err;
1540 			break;
1541 		case 'd':
1542 			synth_opts->log = true;
1543 			if (get_flags(&p, &synth_opts->log_plus_flags,
1544 				      &synth_opts->log_minus_flags))
1545 				goto out_err;
1546 			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1547 				synth_opts->log_on_error_size = itrace_log_on_error_size();
1548 			break;
1549 		case 'c':
1550 			synth_opts->branches = true;
1551 			synth_opts->calls = true;
1552 			break;
1553 		case 'r':
1554 			synth_opts->branches = true;
1555 			synth_opts->returns = true;
1556 			break;
1557 		case 'G':
1558 		case 'g':
1559 			if (p[-1] == 'G')
1560 				synth_opts->add_callchain = true;
1561 			else
1562 				synth_opts->callchain = true;
1563 			synth_opts->callchain_sz =
1564 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1565 			while (*p == ' ' || *p == ',')
1566 				p += 1;
1567 			if (isdigit(*p)) {
1568 				unsigned int val;
1569 
1570 				val = strtoul(p, &endptr, 10);
1571 				p = endptr;
1572 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1573 					goto out_err;
1574 				synth_opts->callchain_sz = val;
1575 			}
1576 			break;
1577 		case 'L':
1578 		case 'l':
1579 			if (p[-1] == 'L')
1580 				synth_opts->add_last_branch = true;
1581 			else
1582 				synth_opts->last_branch = true;
1583 			synth_opts->last_branch_sz =
1584 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1585 			while (*p == ' ' || *p == ',')
1586 				p += 1;
1587 			if (isdigit(*p)) {
1588 				unsigned int val;
1589 
1590 				val = strtoul(p, &endptr, 10);
1591 				p = endptr;
1592 				if (!val ||
1593 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1594 					goto out_err;
1595 				synth_opts->last_branch_sz = val;
1596 			}
1597 			break;
1598 		case 's':
1599 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1600 			if (p == endptr)
1601 				goto out_err;
1602 			p = endptr;
1603 			break;
1604 		case 'f':
1605 			synth_opts->flc = true;
1606 			break;
1607 		case 'm':
1608 			synth_opts->llc = true;
1609 			break;
1610 		case 't':
1611 			synth_opts->tlb = true;
1612 			break;
1613 		case 'a':
1614 			synth_opts->remote_access = true;
1615 			break;
1616 		case 'M':
1617 			synth_opts->mem = true;
1618 			break;
1619 		case 'q':
1620 			synth_opts->quick += 1;
1621 			break;
1622 		case 'A':
1623 			synth_opts->approx_ipc = true;
1624 			break;
1625 		case 'Z':
1626 			synth_opts->timeless_decoding = true;
1627 			break;
1628 		case ' ':
1629 		case ',':
1630 			break;
1631 		default:
1632 			goto out_err;
1633 		}
1634 	}
1635 out:
1636 	if (synth_opts->instructions) {
1637 		if (!period_type_set)
1638 			synth_opts->period_type =
1639 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1640 		if (!period_set)
1641 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1642 	}
1643 
1644 	return 0;
1645 
1646 out_err:
1647 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1648 	return -EINVAL;
1649 }
1650 
1651 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1652 {
1653 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1654 }
1655 
1656 static const char * const auxtrace_error_type_name[] = {
1657 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1658 };
1659 
1660 static const char *auxtrace_error_name(int type)
1661 {
1662 	const char *error_type_name = NULL;
1663 
1664 	if (type < PERF_AUXTRACE_ERROR_MAX)
1665 		error_type_name = auxtrace_error_type_name[type];
1666 	if (!error_type_name)
1667 		error_type_name = "unknown AUX";
1668 	return error_type_name;
1669 }
1670 
1671 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1672 {
1673 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1674 	unsigned long long nsecs = e->time;
1675 	const char *msg = e->msg;
1676 	int ret;
1677 
1678 	ret = fprintf(fp, " %s error type %u",
1679 		      auxtrace_error_name(e->type), e->type);
1680 
1681 	if (e->fmt && nsecs) {
1682 		unsigned long secs = nsecs / NSEC_PER_SEC;
1683 
1684 		nsecs -= secs * NSEC_PER_SEC;
1685 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1686 	} else {
1687 		ret += fprintf(fp, " time 0");
1688 	}
1689 
1690 	if (!e->fmt)
1691 		msg = (const char *)&e->time;
1692 
1693 	if (e->fmt >= 2 && e->machine_pid)
1694 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1695 
1696 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1697 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1698 	return ret;
1699 }
1700 
1701 void perf_session__auxtrace_error_inc(struct perf_session *session,
1702 				      union perf_event *event)
1703 {
1704 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1705 
1706 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1707 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1708 }
1709 
1710 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1711 {
1712 	int i;
1713 
1714 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1715 		if (!stats->nr_auxtrace_errors[i])
1716 			continue;
1717 		ui__warning("%u %s errors\n",
1718 			    stats->nr_auxtrace_errors[i],
1719 			    auxtrace_error_name(i));
1720 	}
1721 }
1722 
1723 int perf_event__process_auxtrace_error(struct perf_session *session,
1724 				       union perf_event *event)
1725 {
1726 	if (auxtrace__dont_decode(session))
1727 		return 0;
1728 
1729 	perf_event__fprintf_auxtrace_error(event, stdout);
1730 	return 0;
1731 }
1732 
1733 /*
1734  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1735  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1736  * the issues caused by the below sequence on multiple CPUs: when perf tool
1737  * accesses either the load operation or the store operation for 64-bit value,
1738  * on some architectures the operation is divided into two instructions, one
1739  * is for accessing the low 32-bit value and another is for the high 32-bit;
1740  * thus these two user operations can give the kernel chances to access the
1741  * 64-bit value, and thus leads to the unexpected load values.
1742  *
1743  *   kernel (64-bit)                        user (32-bit)
1744  *
1745  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1746  *       STORE $aux_data      |       ,--->
1747  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1748  *       STORE ->aux_head   --|-------`     smp_rmb()
1749  *   }                        |             LOAD $data
1750  *                            |             smp_mb()
1751  *                            |             STORE ->aux_tail_lo
1752  *                            `----------->
1753  *                                          STORE ->aux_tail_hi
1754  *
1755  * For this reason, it's impossible for the perf tool to work correctly when
1756  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1757  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1758  * the pointers can be increased monotonically, whatever the buffer size it is,
1759  * at the end the head and tail can be bigger than 4GB and carry out to the
1760  * high 32-bit.
1761  *
1762  * To mitigate the issues and improve the user experience, we can allow the
1763  * perf tool working in certain conditions and bail out with error if detect
1764  * any overflow cannot be handled.
1765  *
1766  * For reading the AUX head, it reads out the values for three times, and
1767  * compares the high 4 bytes of the values between the first time and the last
1768  * time, if there has no change for high 4 bytes injected by the kernel during
1769  * the user reading sequence, it's safe for use the second value.
1770  *
1771  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1772  * 32 bits, it means there have two store operations in user space and it cannot
1773  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1774  * the caller an overflow error has happened.
1775  */
1776 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1777 {
1778 	struct perf_event_mmap_page *pc = mm->userpg;
1779 	u64 first, second, last;
1780 	u64 mask = (u64)(UINT32_MAX) << 32;
1781 
1782 	do {
1783 		first = READ_ONCE(pc->aux_head);
1784 		/* Ensure all reads are done after we read the head */
1785 		smp_rmb();
1786 		second = READ_ONCE(pc->aux_head);
1787 		/* Ensure all reads are done after we read the head */
1788 		smp_rmb();
1789 		last = READ_ONCE(pc->aux_head);
1790 	} while ((first & mask) != (last & mask));
1791 
1792 	return second;
1793 }
1794 
1795 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1796 {
1797 	struct perf_event_mmap_page *pc = mm->userpg;
1798 	u64 mask = (u64)(UINT32_MAX) << 32;
1799 
1800 	if (tail & mask)
1801 		return -1;
1802 
1803 	/* Ensure all reads are done before we write the tail out */
1804 	smp_mb();
1805 	WRITE_ONCE(pc->aux_tail, tail);
1806 	return 0;
1807 }
1808 
1809 static int __auxtrace_mmap__read(struct mmap *map,
1810 				 struct auxtrace_record *itr,
1811 				 struct perf_tool *tool, process_auxtrace_t fn,
1812 				 bool snapshot, size_t snapshot_size)
1813 {
1814 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1815 	u64 head, old = mm->prev, offset, ref;
1816 	unsigned char *data = mm->base;
1817 	size_t size, head_off, old_off, len1, len2, padding;
1818 	union perf_event ev;
1819 	void *data1, *data2;
1820 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1821 
1822 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1823 
1824 	if (snapshot &&
1825 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1826 		return -1;
1827 
1828 	if (old == head)
1829 		return 0;
1830 
1831 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1832 		  mm->idx, old, head, head - old);
1833 
1834 	if (mm->mask) {
1835 		head_off = head & mm->mask;
1836 		old_off = old & mm->mask;
1837 	} else {
1838 		head_off = head % mm->len;
1839 		old_off = old % mm->len;
1840 	}
1841 
1842 	if (head_off > old_off)
1843 		size = head_off - old_off;
1844 	else
1845 		size = mm->len - (old_off - head_off);
1846 
1847 	if (snapshot && size > snapshot_size)
1848 		size = snapshot_size;
1849 
1850 	ref = auxtrace_record__reference(itr);
1851 
1852 	if (head > old || size <= head || mm->mask) {
1853 		offset = head - size;
1854 	} else {
1855 		/*
1856 		 * When the buffer size is not a power of 2, 'head' wraps at the
1857 		 * highest multiple of the buffer size, so we have to subtract
1858 		 * the remainder here.
1859 		 */
1860 		u64 rem = (0ULL - mm->len) % mm->len;
1861 
1862 		offset = head - size - rem;
1863 	}
1864 
1865 	if (size > head_off) {
1866 		len1 = size - head_off;
1867 		data1 = &data[mm->len - len1];
1868 		len2 = head_off;
1869 		data2 = &data[0];
1870 	} else {
1871 		len1 = size;
1872 		data1 = &data[head_off - len1];
1873 		len2 = 0;
1874 		data2 = NULL;
1875 	}
1876 
1877 	if (itr->alignment) {
1878 		unsigned int unwanted = len1 % itr->alignment;
1879 
1880 		len1 -= unwanted;
1881 		size -= unwanted;
1882 	}
1883 
1884 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1885 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1886 	if (padding)
1887 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1888 
1889 	memset(&ev, 0, sizeof(ev));
1890 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1891 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1892 	ev.auxtrace.size = size + padding;
1893 	ev.auxtrace.offset = offset;
1894 	ev.auxtrace.reference = ref;
1895 	ev.auxtrace.idx = mm->idx;
1896 	ev.auxtrace.tid = mm->tid;
1897 	ev.auxtrace.cpu = mm->cpu;
1898 
1899 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1900 		return -1;
1901 
1902 	mm->prev = head;
1903 
1904 	if (!snapshot) {
1905 		int err;
1906 
1907 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1908 		if (err < 0)
1909 			return err;
1910 
1911 		if (itr->read_finish) {
1912 			err = itr->read_finish(itr, mm->idx);
1913 			if (err < 0)
1914 				return err;
1915 		}
1916 	}
1917 
1918 	return 1;
1919 }
1920 
1921 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1922 			struct perf_tool *tool, process_auxtrace_t fn)
1923 {
1924 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1925 }
1926 
1927 int auxtrace_mmap__read_snapshot(struct mmap *map,
1928 				 struct auxtrace_record *itr,
1929 				 struct perf_tool *tool, process_auxtrace_t fn,
1930 				 size_t snapshot_size)
1931 {
1932 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1933 }
1934 
1935 /**
1936  * struct auxtrace_cache - hash table to implement a cache
1937  * @hashtable: the hashtable
1938  * @sz: hashtable size (number of hlists)
1939  * @entry_size: size of an entry
1940  * @limit: limit the number of entries to this maximum, when reached the cache
1941  *         is dropped and caching begins again with an empty cache
1942  * @cnt: current number of entries
1943  * @bits: hashtable size (@sz = 2^@bits)
1944  */
1945 struct auxtrace_cache {
1946 	struct hlist_head *hashtable;
1947 	size_t sz;
1948 	size_t entry_size;
1949 	size_t limit;
1950 	size_t cnt;
1951 	unsigned int bits;
1952 };
1953 
1954 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1955 					   unsigned int limit_percent)
1956 {
1957 	struct auxtrace_cache *c;
1958 	struct hlist_head *ht;
1959 	size_t sz, i;
1960 
1961 	c = zalloc(sizeof(struct auxtrace_cache));
1962 	if (!c)
1963 		return NULL;
1964 
1965 	sz = 1UL << bits;
1966 
1967 	ht = calloc(sz, sizeof(struct hlist_head));
1968 	if (!ht)
1969 		goto out_free;
1970 
1971 	for (i = 0; i < sz; i++)
1972 		INIT_HLIST_HEAD(&ht[i]);
1973 
1974 	c->hashtable = ht;
1975 	c->sz = sz;
1976 	c->entry_size = entry_size;
1977 	c->limit = (c->sz * limit_percent) / 100;
1978 	c->bits = bits;
1979 
1980 	return c;
1981 
1982 out_free:
1983 	free(c);
1984 	return NULL;
1985 }
1986 
1987 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1988 {
1989 	struct auxtrace_cache_entry *entry;
1990 	struct hlist_node *tmp;
1991 	size_t i;
1992 
1993 	if (!c)
1994 		return;
1995 
1996 	for (i = 0; i < c->sz; i++) {
1997 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1998 			hlist_del(&entry->hash);
1999 			auxtrace_cache__free_entry(c, entry);
2000 		}
2001 	}
2002 
2003 	c->cnt = 0;
2004 }
2005 
2006 void auxtrace_cache__free(struct auxtrace_cache *c)
2007 {
2008 	if (!c)
2009 		return;
2010 
2011 	auxtrace_cache__drop(c);
2012 	zfree(&c->hashtable);
2013 	free(c);
2014 }
2015 
2016 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2017 {
2018 	return malloc(c->entry_size);
2019 }
2020 
2021 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2022 				void *entry)
2023 {
2024 	free(entry);
2025 }
2026 
2027 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2028 			struct auxtrace_cache_entry *entry)
2029 {
2030 	if (c->limit && ++c->cnt > c->limit)
2031 		auxtrace_cache__drop(c);
2032 
2033 	entry->key = key;
2034 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2035 
2036 	return 0;
2037 }
2038 
2039 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2040 						       u32 key)
2041 {
2042 	struct auxtrace_cache_entry *entry;
2043 	struct hlist_head *hlist;
2044 	struct hlist_node *n;
2045 
2046 	if (!c)
2047 		return NULL;
2048 
2049 	hlist = &c->hashtable[hash_32(key, c->bits)];
2050 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2051 		if (entry->key == key) {
2052 			hlist_del(&entry->hash);
2053 			return entry;
2054 		}
2055 	}
2056 
2057 	return NULL;
2058 }
2059 
2060 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2061 {
2062 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2063 
2064 	auxtrace_cache__free_entry(c, entry);
2065 }
2066 
2067 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2068 {
2069 	struct auxtrace_cache_entry *entry;
2070 	struct hlist_head *hlist;
2071 
2072 	if (!c)
2073 		return NULL;
2074 
2075 	hlist = &c->hashtable[hash_32(key, c->bits)];
2076 	hlist_for_each_entry(entry, hlist, hash) {
2077 		if (entry->key == key)
2078 			return entry;
2079 	}
2080 
2081 	return NULL;
2082 }
2083 
2084 static void addr_filter__free_str(struct addr_filter *filt)
2085 {
2086 	zfree(&filt->str);
2087 	filt->action   = NULL;
2088 	filt->sym_from = NULL;
2089 	filt->sym_to   = NULL;
2090 	filt->filename = NULL;
2091 }
2092 
2093 static struct addr_filter *addr_filter__new(void)
2094 {
2095 	struct addr_filter *filt = zalloc(sizeof(*filt));
2096 
2097 	if (filt)
2098 		INIT_LIST_HEAD(&filt->list);
2099 
2100 	return filt;
2101 }
2102 
2103 static void addr_filter__free(struct addr_filter *filt)
2104 {
2105 	if (filt)
2106 		addr_filter__free_str(filt);
2107 	free(filt);
2108 }
2109 
2110 static void addr_filters__add(struct addr_filters *filts,
2111 			      struct addr_filter *filt)
2112 {
2113 	list_add_tail(&filt->list, &filts->head);
2114 	filts->cnt += 1;
2115 }
2116 
2117 static void addr_filters__del(struct addr_filters *filts,
2118 			      struct addr_filter *filt)
2119 {
2120 	list_del_init(&filt->list);
2121 	filts->cnt -= 1;
2122 }
2123 
2124 void addr_filters__init(struct addr_filters *filts)
2125 {
2126 	INIT_LIST_HEAD(&filts->head);
2127 	filts->cnt = 0;
2128 }
2129 
2130 void addr_filters__exit(struct addr_filters *filts)
2131 {
2132 	struct addr_filter *filt, *n;
2133 
2134 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2135 		addr_filters__del(filts, filt);
2136 		addr_filter__free(filt);
2137 	}
2138 }
2139 
2140 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2141 			    const char *str_delim)
2142 {
2143 	*inp += strspn(*inp, " ");
2144 
2145 	if (isdigit(**inp)) {
2146 		char *endptr;
2147 
2148 		if (!num)
2149 			return -EINVAL;
2150 		errno = 0;
2151 		*num = strtoull(*inp, &endptr, 0);
2152 		if (errno)
2153 			return -errno;
2154 		if (endptr == *inp)
2155 			return -EINVAL;
2156 		*inp = endptr;
2157 	} else {
2158 		size_t n;
2159 
2160 		if (!str)
2161 			return -EINVAL;
2162 		*inp += strspn(*inp, " ");
2163 		*str = *inp;
2164 		n = strcspn(*inp, str_delim);
2165 		if (!n)
2166 			return -EINVAL;
2167 		*inp += n;
2168 		if (**inp) {
2169 			**inp = '\0';
2170 			*inp += 1;
2171 		}
2172 	}
2173 	return 0;
2174 }
2175 
2176 static int parse_action(struct addr_filter *filt)
2177 {
2178 	if (!strcmp(filt->action, "filter")) {
2179 		filt->start = true;
2180 		filt->range = true;
2181 	} else if (!strcmp(filt->action, "start")) {
2182 		filt->start = true;
2183 	} else if (!strcmp(filt->action, "stop")) {
2184 		filt->start = false;
2185 	} else if (!strcmp(filt->action, "tracestop")) {
2186 		filt->start = false;
2187 		filt->range = true;
2188 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2189 	} else {
2190 		return -EINVAL;
2191 	}
2192 	return 0;
2193 }
2194 
2195 static int parse_sym_idx(char **inp, int *idx)
2196 {
2197 	*idx = -1;
2198 
2199 	*inp += strspn(*inp, " ");
2200 
2201 	if (**inp != '#')
2202 		return 0;
2203 
2204 	*inp += 1;
2205 
2206 	if (**inp == 'g' || **inp == 'G') {
2207 		*inp += 1;
2208 		*idx = 0;
2209 	} else {
2210 		unsigned long num;
2211 		char *endptr;
2212 
2213 		errno = 0;
2214 		num = strtoul(*inp, &endptr, 0);
2215 		if (errno)
2216 			return -errno;
2217 		if (endptr == *inp || num > INT_MAX)
2218 			return -EINVAL;
2219 		*inp = endptr;
2220 		*idx = num;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2227 {
2228 	int err = parse_num_or_str(inp, num, str, " ");
2229 
2230 	if (!err && *str)
2231 		err = parse_sym_idx(inp, idx);
2232 
2233 	return err;
2234 }
2235 
2236 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2237 {
2238 	char *fstr;
2239 	int err;
2240 
2241 	filt->str = fstr = strdup(*filter_inp);
2242 	if (!fstr)
2243 		return -ENOMEM;
2244 
2245 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2246 	if (err)
2247 		goto out_err;
2248 
2249 	err = parse_action(filt);
2250 	if (err)
2251 		goto out_err;
2252 
2253 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2254 			      &filt->sym_from_idx);
2255 	if (err)
2256 		goto out_err;
2257 
2258 	fstr += strspn(fstr, " ");
2259 
2260 	if (*fstr == '/') {
2261 		fstr += 1;
2262 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2263 				      &filt->sym_to_idx);
2264 		if (err)
2265 			goto out_err;
2266 		filt->range = true;
2267 	}
2268 
2269 	fstr += strspn(fstr, " ");
2270 
2271 	if (*fstr == '@') {
2272 		fstr += 1;
2273 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2274 		if (err)
2275 			goto out_err;
2276 	}
2277 
2278 	fstr += strspn(fstr, " ,");
2279 
2280 	*filter_inp += fstr - filt->str;
2281 
2282 	return 0;
2283 
2284 out_err:
2285 	addr_filter__free_str(filt);
2286 
2287 	return err;
2288 }
2289 
2290 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2291 				    const char *filter)
2292 {
2293 	struct addr_filter *filt;
2294 	const char *fstr = filter;
2295 	int err;
2296 
2297 	while (*fstr) {
2298 		filt = addr_filter__new();
2299 		err = parse_one_filter(filt, &fstr);
2300 		if (err) {
2301 			addr_filter__free(filt);
2302 			addr_filters__exit(filts);
2303 			return err;
2304 		}
2305 		addr_filters__add(filts, filt);
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 struct sym_args {
2312 	const char	*name;
2313 	u64		start;
2314 	u64		size;
2315 	int		idx;
2316 	int		cnt;
2317 	bool		started;
2318 	bool		global;
2319 	bool		selected;
2320 	bool		duplicate;
2321 	bool		near;
2322 };
2323 
2324 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2325 {
2326 	/* A function with the same name, and global or the n'th found or any */
2327 	return kallsyms__is_function(type) &&
2328 	       !strcmp(name, args->name) &&
2329 	       ((args->global && isupper(type)) ||
2330 		(args->selected && ++(args->cnt) == args->idx) ||
2331 		(!args->global && !args->selected));
2332 }
2333 
2334 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2335 {
2336 	struct sym_args *args = arg;
2337 
2338 	if (args->started) {
2339 		if (!args->size)
2340 			args->size = start - args->start;
2341 		if (args->selected) {
2342 			if (args->size)
2343 				return 1;
2344 		} else if (kern_sym_match(args, name, type)) {
2345 			args->duplicate = true;
2346 			return 1;
2347 		}
2348 	} else if (kern_sym_match(args, name, type)) {
2349 		args->started = true;
2350 		args->start = start;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2357 {
2358 	struct sym_args *args = arg;
2359 
2360 	if (kern_sym_match(args, name, type)) {
2361 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2362 		       ++args->cnt, start, type, name);
2363 		args->near = true;
2364 	} else if (args->near) {
2365 		args->near = false;
2366 		pr_err("\t\twhich is near\t\t%s\n", name);
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static int sym_not_found_error(const char *sym_name, int idx)
2373 {
2374 	if (idx > 0) {
2375 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2376 		       idx, sym_name);
2377 	} else if (!idx) {
2378 		pr_err("Global symbol '%s' not found.\n", sym_name);
2379 	} else {
2380 		pr_err("Symbol '%s' not found.\n", sym_name);
2381 	}
2382 	pr_err("Note that symbols must be functions.\n");
2383 
2384 	return -EINVAL;
2385 }
2386 
2387 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2388 {
2389 	struct sym_args args = {
2390 		.name = sym_name,
2391 		.idx = idx,
2392 		.global = !idx,
2393 		.selected = idx > 0,
2394 	};
2395 	int err;
2396 
2397 	*start = 0;
2398 	*size = 0;
2399 
2400 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2401 	if (err < 0) {
2402 		pr_err("Failed to parse /proc/kallsyms\n");
2403 		return err;
2404 	}
2405 
2406 	if (args.duplicate) {
2407 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2408 		args.cnt = 0;
2409 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2410 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2411 		       sym_name);
2412 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2413 		return -EINVAL;
2414 	}
2415 
2416 	if (!args.started) {
2417 		pr_err("Kernel symbol lookup: ");
2418 		return sym_not_found_error(sym_name, idx);
2419 	}
2420 
2421 	*start = args.start;
2422 	*size = args.size;
2423 
2424 	return 0;
2425 }
2426 
2427 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2428 			       char type, u64 start)
2429 {
2430 	struct sym_args *args = arg;
2431 
2432 	if (!kallsyms__is_function(type))
2433 		return 0;
2434 
2435 	if (!args->started) {
2436 		args->started = true;
2437 		args->start = start;
2438 	}
2439 	/* Don't know exactly where the kernel ends, so we add a page */
2440 	args->size = round_up(start, page_size) + page_size - args->start;
2441 
2442 	return 0;
2443 }
2444 
2445 static int addr_filter__entire_kernel(struct addr_filter *filt)
2446 {
2447 	struct sym_args args = { .started = false };
2448 	int err;
2449 
2450 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2451 	if (err < 0 || !args.started) {
2452 		pr_err("Failed to parse /proc/kallsyms\n");
2453 		return err;
2454 	}
2455 
2456 	filt->addr = args.start;
2457 	filt->size = args.size;
2458 
2459 	return 0;
2460 }
2461 
2462 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2463 {
2464 	if (start + size >= filt->addr)
2465 		return 0;
2466 
2467 	if (filt->sym_from) {
2468 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2469 		       filt->sym_to, start, filt->sym_from, filt->addr);
2470 	} else {
2471 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2472 		       filt->sym_to, start, filt->addr);
2473 	}
2474 
2475 	return -EINVAL;
2476 }
2477 
2478 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2479 {
2480 	bool no_size = false;
2481 	u64 start, size;
2482 	int err;
2483 
2484 	if (symbol_conf.kptr_restrict) {
2485 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2486 		return -EINVAL;
2487 	}
2488 
2489 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2490 		return addr_filter__entire_kernel(filt);
2491 
2492 	if (filt->sym_from) {
2493 		err = find_kern_sym(filt->sym_from, &start, &size,
2494 				    filt->sym_from_idx);
2495 		if (err)
2496 			return err;
2497 		filt->addr = start;
2498 		if (filt->range && !filt->size && !filt->sym_to) {
2499 			filt->size = size;
2500 			no_size = !size;
2501 		}
2502 	}
2503 
2504 	if (filt->sym_to) {
2505 		err = find_kern_sym(filt->sym_to, &start, &size,
2506 				    filt->sym_to_idx);
2507 		if (err)
2508 			return err;
2509 
2510 		err = check_end_after_start(filt, start, size);
2511 		if (err)
2512 			return err;
2513 		filt->size = start + size - filt->addr;
2514 		no_size = !size;
2515 	}
2516 
2517 	/* The very last symbol in kallsyms does not imply a particular size */
2518 	if (no_size) {
2519 		pr_err("Cannot determine size of symbol '%s'\n",
2520 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2521 		return -EINVAL;
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 static struct dso *load_dso(const char *name)
2528 {
2529 	struct map *map;
2530 	struct dso *dso;
2531 
2532 	map = dso__new_map(name);
2533 	if (!map)
2534 		return NULL;
2535 
2536 	if (map__load(map) < 0)
2537 		pr_err("File '%s' not found or has no symbols.\n", name);
2538 
2539 	dso = dso__get(map->dso);
2540 
2541 	map__put(map);
2542 
2543 	return dso;
2544 }
2545 
2546 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2547 			  int idx)
2548 {
2549 	/* Same name, and global or the n'th found or any */
2550 	return !arch__compare_symbol_names(name, sym->name) &&
2551 	       ((!idx && sym->binding == STB_GLOBAL) ||
2552 		(idx > 0 && ++*cnt == idx) ||
2553 		idx < 0);
2554 }
2555 
2556 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2557 {
2558 	struct symbol *sym;
2559 	bool near = false;
2560 	int cnt = 0;
2561 
2562 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2563 
2564 	sym = dso__first_symbol(dso);
2565 	while (sym) {
2566 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2567 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2568 			       ++cnt, sym->start,
2569 			       sym->binding == STB_GLOBAL ? 'g' :
2570 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2571 			       sym->name);
2572 			near = true;
2573 		} else if (near) {
2574 			near = false;
2575 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2576 		}
2577 		sym = dso__next_symbol(sym);
2578 	}
2579 
2580 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2581 	       sym_name);
2582 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2583 }
2584 
2585 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2586 			u64 *size, int idx)
2587 {
2588 	struct symbol *sym;
2589 	int cnt = 0;
2590 
2591 	*start = 0;
2592 	*size = 0;
2593 
2594 	sym = dso__first_symbol(dso);
2595 	while (sym) {
2596 		if (*start) {
2597 			if (!*size)
2598 				*size = sym->start - *start;
2599 			if (idx > 0) {
2600 				if (*size)
2601 					return 1;
2602 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2603 				print_duplicate_syms(dso, sym_name);
2604 				return -EINVAL;
2605 			}
2606 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2607 			*start = sym->start;
2608 			*size = sym->end - sym->start;
2609 		}
2610 		sym = dso__next_symbol(sym);
2611 	}
2612 
2613 	if (!*start)
2614 		return sym_not_found_error(sym_name, idx);
2615 
2616 	return 0;
2617 }
2618 
2619 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2620 {
2621 	if (dso__data_file_size(dso, NULL)) {
2622 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2623 		       filt->filename);
2624 		return -EINVAL;
2625 	}
2626 
2627 	filt->addr = 0;
2628 	filt->size = dso->data.file_size;
2629 
2630 	return 0;
2631 }
2632 
2633 static int addr_filter__resolve_syms(struct addr_filter *filt)
2634 {
2635 	u64 start, size;
2636 	struct dso *dso;
2637 	int err = 0;
2638 
2639 	if (!filt->sym_from && !filt->sym_to)
2640 		return 0;
2641 
2642 	if (!filt->filename)
2643 		return addr_filter__resolve_kernel_syms(filt);
2644 
2645 	dso = load_dso(filt->filename);
2646 	if (!dso) {
2647 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2648 		return -EINVAL;
2649 	}
2650 
2651 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2652 		err = addr_filter__entire_dso(filt, dso);
2653 		goto put_dso;
2654 	}
2655 
2656 	if (filt->sym_from) {
2657 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2658 				   filt->sym_from_idx);
2659 		if (err)
2660 			goto put_dso;
2661 		filt->addr = start;
2662 		if (filt->range && !filt->size && !filt->sym_to)
2663 			filt->size = size;
2664 	}
2665 
2666 	if (filt->sym_to) {
2667 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2668 				   filt->sym_to_idx);
2669 		if (err)
2670 			goto put_dso;
2671 
2672 		err = check_end_after_start(filt, start, size);
2673 		if (err)
2674 			return err;
2675 
2676 		filt->size = start + size - filt->addr;
2677 	}
2678 
2679 put_dso:
2680 	dso__put(dso);
2681 
2682 	return err;
2683 }
2684 
2685 static char *addr_filter__to_str(struct addr_filter *filt)
2686 {
2687 	char filename_buf[PATH_MAX];
2688 	const char *at = "";
2689 	const char *fn = "";
2690 	char *filter;
2691 	int err;
2692 
2693 	if (filt->filename) {
2694 		at = "@";
2695 		fn = realpath(filt->filename, filename_buf);
2696 		if (!fn)
2697 			return NULL;
2698 	}
2699 
2700 	if (filt->range) {
2701 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2702 			       filt->action, filt->addr, filt->size, at, fn);
2703 	} else {
2704 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2705 			       filt->action, filt->addr, at, fn);
2706 	}
2707 
2708 	return err < 0 ? NULL : filter;
2709 }
2710 
2711 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2712 			     int max_nr)
2713 {
2714 	struct addr_filters filts;
2715 	struct addr_filter *filt;
2716 	int err;
2717 
2718 	addr_filters__init(&filts);
2719 
2720 	err = addr_filters__parse_bare_filter(&filts, filter);
2721 	if (err)
2722 		goto out_exit;
2723 
2724 	if (filts.cnt > max_nr) {
2725 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2726 		       filts.cnt, max_nr);
2727 		err = -EINVAL;
2728 		goto out_exit;
2729 	}
2730 
2731 	list_for_each_entry(filt, &filts.head, list) {
2732 		char *new_filter;
2733 
2734 		err = addr_filter__resolve_syms(filt);
2735 		if (err)
2736 			goto out_exit;
2737 
2738 		new_filter = addr_filter__to_str(filt);
2739 		if (!new_filter) {
2740 			err = -ENOMEM;
2741 			goto out_exit;
2742 		}
2743 
2744 		if (evsel__append_addr_filter(evsel, new_filter)) {
2745 			err = -ENOMEM;
2746 			goto out_exit;
2747 		}
2748 	}
2749 
2750 out_exit:
2751 	addr_filters__exit(&filts);
2752 
2753 	if (err) {
2754 		pr_err("Failed to parse address filter: '%s'\n", filter);
2755 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2756 		pr_err("Where multiple filters are separated by space or comma.\n");
2757 	}
2758 
2759 	return err;
2760 }
2761 
2762 static int evsel__nr_addr_filter(struct evsel *evsel)
2763 {
2764 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2765 	int nr_addr_filters = 0;
2766 
2767 	if (!pmu)
2768 		return 0;
2769 
2770 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2771 
2772 	return nr_addr_filters;
2773 }
2774 
2775 int auxtrace_parse_filters(struct evlist *evlist)
2776 {
2777 	struct evsel *evsel;
2778 	char *filter;
2779 	int err, max_nr;
2780 
2781 	evlist__for_each_entry(evlist, evsel) {
2782 		filter = evsel->filter;
2783 		max_nr = evsel__nr_addr_filter(evsel);
2784 		if (!filter || !max_nr)
2785 			continue;
2786 		evsel->filter = NULL;
2787 		err = parse_addr_filter(evsel, filter, max_nr);
2788 		free(filter);
2789 		if (err)
2790 			return err;
2791 		pr_debug("Address filter: %s\n", evsel->filter);
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2798 			    struct perf_sample *sample, struct perf_tool *tool)
2799 {
2800 	if (!session->auxtrace)
2801 		return 0;
2802 
2803 	return session->auxtrace->process_event(session, event, sample, tool);
2804 }
2805 
2806 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2807 				    struct perf_sample *sample)
2808 {
2809 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2810 	    auxtrace__dont_decode(session))
2811 		return;
2812 
2813 	session->auxtrace->dump_auxtrace_sample(session, sample);
2814 }
2815 
2816 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2817 {
2818 	if (!session->auxtrace)
2819 		return 0;
2820 
2821 	return session->auxtrace->flush_events(session, tool);
2822 }
2823 
2824 void auxtrace__free_events(struct perf_session *session)
2825 {
2826 	if (!session->auxtrace)
2827 		return;
2828 
2829 	return session->auxtrace->free_events(session);
2830 }
2831 
2832 void auxtrace__free(struct perf_session *session)
2833 {
2834 	if (!session->auxtrace)
2835 		return;
2836 
2837 	return session->auxtrace->free(session);
2838 }
2839 
2840 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2841 				 struct evsel *evsel)
2842 {
2843 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2844 		return false;
2845 
2846 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2847 }
2848