1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "s390-cpumsf.h" 56 #include "util/mmap.h" 57 58 #include <linux/ctype.h> 59 #include "symbol/kallsyms.h" 60 #include <internal/lib.h> 61 62 /* 63 * Make a group from 'leader' to 'last', requiring that the events were not 64 * already grouped to a different leader. 65 */ 66 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 67 { 68 struct evsel *evsel; 69 bool grp; 70 71 if (!evsel__is_group_leader(leader)) 72 return -EINVAL; 73 74 grp = false; 75 evlist__for_each_entry(evlist, evsel) { 76 if (grp) { 77 if (!(evsel__leader(evsel) == leader || 78 (evsel__leader(evsel) == evsel && 79 evsel->core.nr_members <= 1))) 80 return -EINVAL; 81 } else if (evsel == leader) { 82 grp = true; 83 } 84 if (evsel == last) 85 break; 86 } 87 88 grp = false; 89 evlist__for_each_entry(evlist, evsel) { 90 if (grp) { 91 if (!evsel__has_leader(evsel, leader)) { 92 evsel__set_leader(evsel, leader); 93 if (leader->core.nr_members < 1) 94 leader->core.nr_members = 1; 95 leader->core.nr_members += 1; 96 } 97 } else if (evsel == leader) { 98 grp = true; 99 } 100 if (evsel == last) 101 break; 102 } 103 104 return 0; 105 } 106 107 static bool auxtrace__dont_decode(struct perf_session *session) 108 { 109 return !session->itrace_synth_opts || 110 session->itrace_synth_opts->dont_decode; 111 } 112 113 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 114 struct auxtrace_mmap_params *mp, 115 void *userpg, int fd) 116 { 117 struct perf_event_mmap_page *pc = userpg; 118 119 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 120 121 mm->userpg = userpg; 122 mm->mask = mp->mask; 123 mm->len = mp->len; 124 mm->prev = 0; 125 mm->idx = mp->idx; 126 mm->tid = mp->tid; 127 mm->cpu = mp->cpu.cpu; 128 129 if (!mp->len || !mp->mmap_needed) { 130 mm->base = NULL; 131 return 0; 132 } 133 134 pc->aux_offset = mp->offset; 135 pc->aux_size = mp->len; 136 137 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 138 if (mm->base == MAP_FAILED) { 139 pr_debug2("failed to mmap AUX area\n"); 140 mm->base = NULL; 141 return -1; 142 } 143 144 return 0; 145 } 146 147 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 148 { 149 if (mm->base) { 150 munmap(mm->base, mm->len); 151 mm->base = NULL; 152 } 153 } 154 155 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 156 off_t auxtrace_offset, 157 unsigned int auxtrace_pages, 158 bool auxtrace_overwrite) 159 { 160 if (auxtrace_pages) { 161 mp->offset = auxtrace_offset; 162 mp->len = auxtrace_pages * (size_t)page_size; 163 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 164 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 165 pr_debug2("AUX area mmap length %zu\n", mp->len); 166 } else { 167 mp->len = 0; 168 } 169 } 170 171 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 172 struct evlist *evlist, 173 struct evsel *evsel, int idx) 174 { 175 bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus); 176 177 mp->mmap_needed = evsel->needs_auxtrace_mmap; 178 179 if (!mp->mmap_needed) 180 return; 181 182 mp->idx = idx; 183 184 if (per_cpu) { 185 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 186 if (evlist->core.threads) 187 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 188 else 189 mp->tid = -1; 190 } else { 191 mp->cpu.cpu = -1; 192 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 193 } 194 } 195 196 #define AUXTRACE_INIT_NR_QUEUES 32 197 198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 199 { 200 struct auxtrace_queue *queue_array; 201 unsigned int max_nr_queues, i; 202 203 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 204 if (nr_queues > max_nr_queues) 205 return NULL; 206 207 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 208 if (!queue_array) 209 return NULL; 210 211 for (i = 0; i < nr_queues; i++) { 212 INIT_LIST_HEAD(&queue_array[i].head); 213 queue_array[i].priv = NULL; 214 } 215 216 return queue_array; 217 } 218 219 int auxtrace_queues__init(struct auxtrace_queues *queues) 220 { 221 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 222 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 223 if (!queues->queue_array) 224 return -ENOMEM; 225 return 0; 226 } 227 228 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 229 unsigned int new_nr_queues) 230 { 231 unsigned int nr_queues = queues->nr_queues; 232 struct auxtrace_queue *queue_array; 233 unsigned int i; 234 235 if (!nr_queues) 236 nr_queues = AUXTRACE_INIT_NR_QUEUES; 237 238 while (nr_queues && nr_queues < new_nr_queues) 239 nr_queues <<= 1; 240 241 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 242 return -EINVAL; 243 244 queue_array = auxtrace_alloc_queue_array(nr_queues); 245 if (!queue_array) 246 return -ENOMEM; 247 248 for (i = 0; i < queues->nr_queues; i++) { 249 list_splice_tail(&queues->queue_array[i].head, 250 &queue_array[i].head); 251 queue_array[i].tid = queues->queue_array[i].tid; 252 queue_array[i].cpu = queues->queue_array[i].cpu; 253 queue_array[i].set = queues->queue_array[i].set; 254 queue_array[i].priv = queues->queue_array[i].priv; 255 } 256 257 queues->nr_queues = nr_queues; 258 queues->queue_array = queue_array; 259 260 return 0; 261 } 262 263 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 264 { 265 int fd = perf_data__fd(session->data); 266 void *p; 267 ssize_t ret; 268 269 if (size > SSIZE_MAX) 270 return NULL; 271 272 p = malloc(size); 273 if (!p) 274 return NULL; 275 276 ret = readn(fd, p, size); 277 if (ret != (ssize_t)size) { 278 free(p); 279 return NULL; 280 } 281 282 return p; 283 } 284 285 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 286 unsigned int idx, 287 struct auxtrace_buffer *buffer) 288 { 289 struct auxtrace_queue *queue; 290 int err; 291 292 if (idx >= queues->nr_queues) { 293 err = auxtrace_queues__grow(queues, idx + 1); 294 if (err) 295 return err; 296 } 297 298 queue = &queues->queue_array[idx]; 299 300 if (!queue->set) { 301 queue->set = true; 302 queue->tid = buffer->tid; 303 queue->cpu = buffer->cpu.cpu; 304 } 305 306 buffer->buffer_nr = queues->next_buffer_nr++; 307 308 list_add_tail(&buffer->list, &queue->head); 309 310 queues->new_data = true; 311 queues->populated = true; 312 313 return 0; 314 } 315 316 /* Limit buffers to 32MiB on 32-bit */ 317 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 318 319 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 320 unsigned int idx, 321 struct auxtrace_buffer *buffer) 322 { 323 u64 sz = buffer->size; 324 bool consecutive = false; 325 struct auxtrace_buffer *b; 326 int err; 327 328 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 329 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 330 if (!b) 331 return -ENOMEM; 332 b->size = BUFFER_LIMIT_FOR_32_BIT; 333 b->consecutive = consecutive; 334 err = auxtrace_queues__queue_buffer(queues, idx, b); 335 if (err) { 336 auxtrace_buffer__free(b); 337 return err; 338 } 339 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 340 sz -= BUFFER_LIMIT_FOR_32_BIT; 341 consecutive = true; 342 } 343 344 buffer->size = sz; 345 buffer->consecutive = consecutive; 346 347 return 0; 348 } 349 350 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 351 { 352 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 353 354 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 355 } 356 357 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 358 struct perf_session *session, 359 unsigned int idx, 360 struct auxtrace_buffer *buffer, 361 struct auxtrace_buffer **buffer_ptr) 362 { 363 int err = -ENOMEM; 364 365 if (filter_cpu(session, buffer->cpu)) 366 return 0; 367 368 buffer = memdup(buffer, sizeof(*buffer)); 369 if (!buffer) 370 return -ENOMEM; 371 372 if (session->one_mmap) { 373 buffer->data = buffer->data_offset - session->one_mmap_offset + 374 session->one_mmap_addr; 375 } else if (perf_data__is_pipe(session->data)) { 376 buffer->data = auxtrace_copy_data(buffer->size, session); 377 if (!buffer->data) 378 goto out_free; 379 buffer->data_needs_freeing = true; 380 } else if (BITS_PER_LONG == 32 && 381 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 382 err = auxtrace_queues__split_buffer(queues, idx, buffer); 383 if (err) 384 goto out_free; 385 } 386 387 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 388 if (err) 389 goto out_free; 390 391 /* FIXME: Doesn't work for split buffer */ 392 if (buffer_ptr) 393 *buffer_ptr = buffer; 394 395 return 0; 396 397 out_free: 398 auxtrace_buffer__free(buffer); 399 return err; 400 } 401 402 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 403 struct perf_session *session, 404 union perf_event *event, off_t data_offset, 405 struct auxtrace_buffer **buffer_ptr) 406 { 407 struct auxtrace_buffer buffer = { 408 .pid = -1, 409 .tid = event->auxtrace.tid, 410 .cpu = { event->auxtrace.cpu }, 411 .data_offset = data_offset, 412 .offset = event->auxtrace.offset, 413 .reference = event->auxtrace.reference, 414 .size = event->auxtrace.size, 415 }; 416 unsigned int idx = event->auxtrace.idx; 417 418 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 419 buffer_ptr); 420 } 421 422 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 423 struct perf_session *session, 424 off_t file_offset, size_t sz) 425 { 426 union perf_event *event; 427 int err; 428 char buf[PERF_SAMPLE_MAX_SIZE]; 429 430 err = perf_session__peek_event(session, file_offset, buf, 431 PERF_SAMPLE_MAX_SIZE, &event, NULL); 432 if (err) 433 return err; 434 435 if (event->header.type == PERF_RECORD_AUXTRACE) { 436 if (event->header.size < sizeof(struct perf_record_auxtrace) || 437 event->header.size != sz) { 438 err = -EINVAL; 439 goto out; 440 } 441 file_offset += event->header.size; 442 err = auxtrace_queues__add_event(queues, session, event, 443 file_offset, NULL); 444 } 445 out: 446 return err; 447 } 448 449 void auxtrace_queues__free(struct auxtrace_queues *queues) 450 { 451 unsigned int i; 452 453 for (i = 0; i < queues->nr_queues; i++) { 454 while (!list_empty(&queues->queue_array[i].head)) { 455 struct auxtrace_buffer *buffer; 456 457 buffer = list_entry(queues->queue_array[i].head.next, 458 struct auxtrace_buffer, list); 459 list_del_init(&buffer->list); 460 auxtrace_buffer__free(buffer); 461 } 462 } 463 464 zfree(&queues->queue_array); 465 queues->nr_queues = 0; 466 } 467 468 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 469 unsigned int pos, unsigned int queue_nr, 470 u64 ordinal) 471 { 472 unsigned int parent; 473 474 while (pos) { 475 parent = (pos - 1) >> 1; 476 if (heap_array[parent].ordinal <= ordinal) 477 break; 478 heap_array[pos] = heap_array[parent]; 479 pos = parent; 480 } 481 heap_array[pos].queue_nr = queue_nr; 482 heap_array[pos].ordinal = ordinal; 483 } 484 485 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 486 u64 ordinal) 487 { 488 struct auxtrace_heap_item *heap_array; 489 490 if (queue_nr >= heap->heap_sz) { 491 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 492 493 while (heap_sz <= queue_nr) 494 heap_sz <<= 1; 495 heap_array = realloc(heap->heap_array, 496 heap_sz * sizeof(struct auxtrace_heap_item)); 497 if (!heap_array) 498 return -ENOMEM; 499 heap->heap_array = heap_array; 500 heap->heap_sz = heap_sz; 501 } 502 503 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 504 505 return 0; 506 } 507 508 void auxtrace_heap__free(struct auxtrace_heap *heap) 509 { 510 zfree(&heap->heap_array); 511 heap->heap_cnt = 0; 512 heap->heap_sz = 0; 513 } 514 515 void auxtrace_heap__pop(struct auxtrace_heap *heap) 516 { 517 unsigned int pos, last, heap_cnt = heap->heap_cnt; 518 struct auxtrace_heap_item *heap_array; 519 520 if (!heap_cnt) 521 return; 522 523 heap->heap_cnt -= 1; 524 525 heap_array = heap->heap_array; 526 527 pos = 0; 528 while (1) { 529 unsigned int left, right; 530 531 left = (pos << 1) + 1; 532 if (left >= heap_cnt) 533 break; 534 right = left + 1; 535 if (right >= heap_cnt) { 536 heap_array[pos] = heap_array[left]; 537 return; 538 } 539 if (heap_array[left].ordinal < heap_array[right].ordinal) { 540 heap_array[pos] = heap_array[left]; 541 pos = left; 542 } else { 543 heap_array[pos] = heap_array[right]; 544 pos = right; 545 } 546 } 547 548 last = heap_cnt - 1; 549 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 550 heap_array[last].ordinal); 551 } 552 553 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 554 struct evlist *evlist) 555 { 556 if (itr) 557 return itr->info_priv_size(itr, evlist); 558 return 0; 559 } 560 561 static int auxtrace_not_supported(void) 562 { 563 pr_err("AUX area tracing is not supported on this architecture\n"); 564 return -EINVAL; 565 } 566 567 int auxtrace_record__info_fill(struct auxtrace_record *itr, 568 struct perf_session *session, 569 struct perf_record_auxtrace_info *auxtrace_info, 570 size_t priv_size) 571 { 572 if (itr) 573 return itr->info_fill(itr, session, auxtrace_info, priv_size); 574 return auxtrace_not_supported(); 575 } 576 577 void auxtrace_record__free(struct auxtrace_record *itr) 578 { 579 if (itr) 580 itr->free(itr); 581 } 582 583 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 584 { 585 if (itr && itr->snapshot_start) 586 return itr->snapshot_start(itr); 587 return 0; 588 } 589 590 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 591 { 592 if (!on_exit && itr && itr->snapshot_finish) 593 return itr->snapshot_finish(itr); 594 return 0; 595 } 596 597 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 598 struct auxtrace_mmap *mm, 599 unsigned char *data, u64 *head, u64 *old) 600 { 601 if (itr && itr->find_snapshot) 602 return itr->find_snapshot(itr, idx, mm, data, head, old); 603 return 0; 604 } 605 606 int auxtrace_record__options(struct auxtrace_record *itr, 607 struct evlist *evlist, 608 struct record_opts *opts) 609 { 610 if (itr) { 611 itr->evlist = evlist; 612 return itr->recording_options(itr, evlist, opts); 613 } 614 return 0; 615 } 616 617 u64 auxtrace_record__reference(struct auxtrace_record *itr) 618 { 619 if (itr) 620 return itr->reference(itr); 621 return 0; 622 } 623 624 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 625 struct record_opts *opts, const char *str) 626 { 627 if (!str) 628 return 0; 629 630 /* PMU-agnostic options */ 631 switch (*str) { 632 case 'e': 633 opts->auxtrace_snapshot_on_exit = true; 634 str++; 635 break; 636 default: 637 break; 638 } 639 640 if (itr && itr->parse_snapshot_options) 641 return itr->parse_snapshot_options(itr, opts, str); 642 643 pr_err("No AUX area tracing to snapshot\n"); 644 return -EINVAL; 645 } 646 647 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 648 { 649 bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus); 650 651 if (per_cpu_mmaps) { 652 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 653 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 654 655 if (cpu_map_idx == -1) 656 return -EINVAL; 657 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 658 } 659 660 return perf_evsel__enable_thread(&evsel->core, idx); 661 } 662 663 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 664 { 665 struct evsel *evsel; 666 667 if (!itr->evlist || !itr->pmu) 668 return -EINVAL; 669 670 evlist__for_each_entry(itr->evlist, evsel) { 671 if (evsel->core.attr.type == itr->pmu->type) { 672 if (evsel->disabled) 673 return 0; 674 return evlist__enable_event_idx(itr->evlist, evsel, idx); 675 } 676 } 677 return -EINVAL; 678 } 679 680 /* 681 * Event record size is 16-bit which results in a maximum size of about 64KiB. 682 * Allow about 4KiB for the rest of the sample record, to give a maximum 683 * AUX area sample size of 60KiB. 684 */ 685 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 686 687 /* Arbitrary default size if no other default provided */ 688 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 689 690 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 691 struct record_opts *opts) 692 { 693 struct evsel *evsel; 694 bool has_aux_leader = false; 695 u32 sz; 696 697 evlist__for_each_entry(evlist, evsel) { 698 sz = evsel->core.attr.aux_sample_size; 699 if (evsel__is_group_leader(evsel)) { 700 has_aux_leader = evsel__is_aux_event(evsel); 701 if (sz) { 702 if (has_aux_leader) 703 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 704 else 705 pr_err("Cannot add AUX area sampling to a group leader\n"); 706 return -EINVAL; 707 } 708 } 709 if (sz > MAX_AUX_SAMPLE_SIZE) { 710 pr_err("AUX area sample size %u too big, max. %d\n", 711 sz, MAX_AUX_SAMPLE_SIZE); 712 return -EINVAL; 713 } 714 if (sz) { 715 if (!has_aux_leader) { 716 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 717 return -EINVAL; 718 } 719 evsel__set_sample_bit(evsel, AUX); 720 opts->auxtrace_sample_mode = true; 721 } else { 722 evsel__reset_sample_bit(evsel, AUX); 723 } 724 } 725 726 if (!opts->auxtrace_sample_mode) { 727 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 728 return -EINVAL; 729 } 730 731 if (!perf_can_aux_sample()) { 732 pr_err("AUX area sampling is not supported by kernel\n"); 733 return -EINVAL; 734 } 735 736 return 0; 737 } 738 739 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 740 struct evlist *evlist, 741 struct record_opts *opts, const char *str) 742 { 743 struct evsel_config_term *term; 744 struct evsel *aux_evsel; 745 bool has_aux_sample_size = false; 746 bool has_aux_leader = false; 747 struct evsel *evsel; 748 char *endptr; 749 unsigned long sz; 750 751 if (!str) 752 goto no_opt; 753 754 if (!itr) { 755 pr_err("No AUX area event to sample\n"); 756 return -EINVAL; 757 } 758 759 sz = strtoul(str, &endptr, 0); 760 if (*endptr || sz > UINT_MAX) { 761 pr_err("Bad AUX area sampling option: '%s'\n", str); 762 return -EINVAL; 763 } 764 765 if (!sz) 766 sz = itr->default_aux_sample_size; 767 768 if (!sz) 769 sz = DEFAULT_AUX_SAMPLE_SIZE; 770 771 /* Set aux_sample_size based on --aux-sample option */ 772 evlist__for_each_entry(evlist, evsel) { 773 if (evsel__is_group_leader(evsel)) { 774 has_aux_leader = evsel__is_aux_event(evsel); 775 } else if (has_aux_leader) { 776 evsel->core.attr.aux_sample_size = sz; 777 } 778 } 779 no_opt: 780 aux_evsel = NULL; 781 /* Override with aux_sample_size from config term */ 782 evlist__for_each_entry(evlist, evsel) { 783 if (evsel__is_aux_event(evsel)) 784 aux_evsel = evsel; 785 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 786 if (term) { 787 has_aux_sample_size = true; 788 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 789 /* If possible, group with the AUX event */ 790 if (aux_evsel && evsel->core.attr.aux_sample_size) 791 evlist__regroup(evlist, aux_evsel, evsel); 792 } 793 } 794 795 if (!str && !has_aux_sample_size) 796 return 0; 797 798 if (!itr) { 799 pr_err("No AUX area event to sample\n"); 800 return -EINVAL; 801 } 802 803 return auxtrace_validate_aux_sample_size(evlist, opts); 804 } 805 806 void auxtrace_regroup_aux_output(struct evlist *evlist) 807 { 808 struct evsel *evsel, *aux_evsel = NULL; 809 struct evsel_config_term *term; 810 811 evlist__for_each_entry(evlist, evsel) { 812 if (evsel__is_aux_event(evsel)) 813 aux_evsel = evsel; 814 term = evsel__get_config_term(evsel, AUX_OUTPUT); 815 /* If possible, group with the AUX event */ 816 if (term && aux_evsel) 817 evlist__regroup(evlist, aux_evsel, evsel); 818 } 819 } 820 821 struct auxtrace_record *__weak 822 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 823 { 824 *err = 0; 825 return NULL; 826 } 827 828 static int auxtrace_index__alloc(struct list_head *head) 829 { 830 struct auxtrace_index *auxtrace_index; 831 832 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 833 if (!auxtrace_index) 834 return -ENOMEM; 835 836 auxtrace_index->nr = 0; 837 INIT_LIST_HEAD(&auxtrace_index->list); 838 839 list_add_tail(&auxtrace_index->list, head); 840 841 return 0; 842 } 843 844 void auxtrace_index__free(struct list_head *head) 845 { 846 struct auxtrace_index *auxtrace_index, *n; 847 848 list_for_each_entry_safe(auxtrace_index, n, head, list) { 849 list_del_init(&auxtrace_index->list); 850 free(auxtrace_index); 851 } 852 } 853 854 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 855 { 856 struct auxtrace_index *auxtrace_index; 857 int err; 858 859 if (list_empty(head)) { 860 err = auxtrace_index__alloc(head); 861 if (err) 862 return NULL; 863 } 864 865 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 866 867 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 868 err = auxtrace_index__alloc(head); 869 if (err) 870 return NULL; 871 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 872 list); 873 } 874 875 return auxtrace_index; 876 } 877 878 int auxtrace_index__auxtrace_event(struct list_head *head, 879 union perf_event *event, off_t file_offset) 880 { 881 struct auxtrace_index *auxtrace_index; 882 size_t nr; 883 884 auxtrace_index = auxtrace_index__last(head); 885 if (!auxtrace_index) 886 return -ENOMEM; 887 888 nr = auxtrace_index->nr; 889 auxtrace_index->entries[nr].file_offset = file_offset; 890 auxtrace_index->entries[nr].sz = event->header.size; 891 auxtrace_index->nr += 1; 892 893 return 0; 894 } 895 896 static int auxtrace_index__do_write(int fd, 897 struct auxtrace_index *auxtrace_index) 898 { 899 struct auxtrace_index_entry ent; 900 size_t i; 901 902 for (i = 0; i < auxtrace_index->nr; i++) { 903 ent.file_offset = auxtrace_index->entries[i].file_offset; 904 ent.sz = auxtrace_index->entries[i].sz; 905 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 906 return -errno; 907 } 908 return 0; 909 } 910 911 int auxtrace_index__write(int fd, struct list_head *head) 912 { 913 struct auxtrace_index *auxtrace_index; 914 u64 total = 0; 915 int err; 916 917 list_for_each_entry(auxtrace_index, head, list) 918 total += auxtrace_index->nr; 919 920 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 921 return -errno; 922 923 list_for_each_entry(auxtrace_index, head, list) { 924 err = auxtrace_index__do_write(fd, auxtrace_index); 925 if (err) 926 return err; 927 } 928 929 return 0; 930 } 931 932 static int auxtrace_index__process_entry(int fd, struct list_head *head, 933 bool needs_swap) 934 { 935 struct auxtrace_index *auxtrace_index; 936 struct auxtrace_index_entry ent; 937 size_t nr; 938 939 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 940 return -1; 941 942 auxtrace_index = auxtrace_index__last(head); 943 if (!auxtrace_index) 944 return -1; 945 946 nr = auxtrace_index->nr; 947 if (needs_swap) { 948 auxtrace_index->entries[nr].file_offset = 949 bswap_64(ent.file_offset); 950 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 951 } else { 952 auxtrace_index->entries[nr].file_offset = ent.file_offset; 953 auxtrace_index->entries[nr].sz = ent.sz; 954 } 955 956 auxtrace_index->nr = nr + 1; 957 958 return 0; 959 } 960 961 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 962 bool needs_swap) 963 { 964 struct list_head *head = &session->auxtrace_index; 965 u64 nr; 966 967 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 968 return -1; 969 970 if (needs_swap) 971 nr = bswap_64(nr); 972 973 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 974 return -1; 975 976 while (nr--) { 977 int err; 978 979 err = auxtrace_index__process_entry(fd, head, needs_swap); 980 if (err) 981 return -1; 982 } 983 984 return 0; 985 } 986 987 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 988 struct perf_session *session, 989 struct auxtrace_index_entry *ent) 990 { 991 return auxtrace_queues__add_indexed_event(queues, session, 992 ent->file_offset, ent->sz); 993 } 994 995 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 996 struct perf_session *session) 997 { 998 struct auxtrace_index *auxtrace_index; 999 struct auxtrace_index_entry *ent; 1000 size_t i; 1001 int err; 1002 1003 if (auxtrace__dont_decode(session)) 1004 return 0; 1005 1006 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1007 for (i = 0; i < auxtrace_index->nr; i++) { 1008 ent = &auxtrace_index->entries[i]; 1009 err = auxtrace_queues__process_index_entry(queues, 1010 session, 1011 ent); 1012 if (err) 1013 return err; 1014 } 1015 } 1016 return 0; 1017 } 1018 1019 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1020 struct auxtrace_buffer *buffer) 1021 { 1022 if (buffer) { 1023 if (list_is_last(&buffer->list, &queue->head)) 1024 return NULL; 1025 return list_entry(buffer->list.next, struct auxtrace_buffer, 1026 list); 1027 } else { 1028 if (list_empty(&queue->head)) 1029 return NULL; 1030 return list_entry(queue->head.next, struct auxtrace_buffer, 1031 list); 1032 } 1033 } 1034 1035 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1036 struct perf_sample *sample, 1037 struct perf_session *session) 1038 { 1039 struct perf_sample_id *sid; 1040 unsigned int idx; 1041 u64 id; 1042 1043 id = sample->id; 1044 if (!id) 1045 return NULL; 1046 1047 sid = evlist__id2sid(session->evlist, id); 1048 if (!sid) 1049 return NULL; 1050 1051 idx = sid->idx; 1052 1053 if (idx >= queues->nr_queues) 1054 return NULL; 1055 1056 return &queues->queue_array[idx]; 1057 } 1058 1059 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1060 struct perf_session *session, 1061 struct perf_sample *sample, u64 data_offset, 1062 u64 reference) 1063 { 1064 struct auxtrace_buffer buffer = { 1065 .pid = -1, 1066 .data_offset = data_offset, 1067 .reference = reference, 1068 .size = sample->aux_sample.size, 1069 }; 1070 struct perf_sample_id *sid; 1071 u64 id = sample->id; 1072 unsigned int idx; 1073 1074 if (!id) 1075 return -EINVAL; 1076 1077 sid = evlist__id2sid(session->evlist, id); 1078 if (!sid) 1079 return -ENOENT; 1080 1081 idx = sid->idx; 1082 buffer.tid = sid->tid; 1083 buffer.cpu = sid->cpu; 1084 1085 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1086 } 1087 1088 struct queue_data { 1089 bool samples; 1090 bool events; 1091 }; 1092 1093 static int auxtrace_queue_data_cb(struct perf_session *session, 1094 union perf_event *event, u64 offset, 1095 void *data) 1096 { 1097 struct queue_data *qd = data; 1098 struct perf_sample sample; 1099 int err; 1100 1101 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1102 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1103 return -EINVAL; 1104 offset += event->header.size; 1105 return session->auxtrace->queue_data(session, NULL, event, 1106 offset); 1107 } 1108 1109 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1110 return 0; 1111 1112 err = evlist__parse_sample(session->evlist, event, &sample); 1113 if (err) 1114 return err; 1115 1116 if (!sample.aux_sample.size) 1117 return 0; 1118 1119 offset += sample.aux_sample.data - (void *)event; 1120 1121 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1122 } 1123 1124 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1125 { 1126 struct queue_data qd = { 1127 .samples = samples, 1128 .events = events, 1129 }; 1130 1131 if (auxtrace__dont_decode(session)) 1132 return 0; 1133 1134 if (!session->auxtrace || !session->auxtrace->queue_data) 1135 return -EINVAL; 1136 1137 return perf_session__peek_events(session, session->header.data_offset, 1138 session->header.data_size, 1139 auxtrace_queue_data_cb, &qd); 1140 } 1141 1142 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1143 { 1144 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1145 size_t adj = buffer->data_offset & (page_size - 1); 1146 size_t size = buffer->size + adj; 1147 off_t file_offset = buffer->data_offset - adj; 1148 void *addr; 1149 1150 if (buffer->data) 1151 return buffer->data; 1152 1153 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1154 if (addr == MAP_FAILED) 1155 return NULL; 1156 1157 buffer->mmap_addr = addr; 1158 buffer->mmap_size = size; 1159 1160 buffer->data = addr + adj; 1161 1162 return buffer->data; 1163 } 1164 1165 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1166 { 1167 if (!buffer->data || !buffer->mmap_addr) 1168 return; 1169 munmap(buffer->mmap_addr, buffer->mmap_size); 1170 buffer->mmap_addr = NULL; 1171 buffer->mmap_size = 0; 1172 buffer->data = NULL; 1173 buffer->use_data = NULL; 1174 } 1175 1176 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1177 { 1178 auxtrace_buffer__put_data(buffer); 1179 if (buffer->data_needs_freeing) { 1180 buffer->data_needs_freeing = false; 1181 zfree(&buffer->data); 1182 buffer->use_data = NULL; 1183 buffer->size = 0; 1184 } 1185 } 1186 1187 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1188 { 1189 auxtrace_buffer__drop_data(buffer); 1190 free(buffer); 1191 } 1192 1193 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1194 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1195 const char *msg, u64 timestamp, 1196 pid_t machine_pid, int vcpu) 1197 { 1198 size_t size; 1199 1200 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1201 1202 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1203 auxtrace_error->type = type; 1204 auxtrace_error->code = code; 1205 auxtrace_error->cpu = cpu; 1206 auxtrace_error->pid = pid; 1207 auxtrace_error->tid = tid; 1208 auxtrace_error->fmt = 1; 1209 auxtrace_error->ip = ip; 1210 auxtrace_error->time = timestamp; 1211 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1212 if (machine_pid) { 1213 auxtrace_error->fmt = 2; 1214 auxtrace_error->machine_pid = machine_pid; 1215 auxtrace_error->vcpu = vcpu; 1216 size = sizeof(*auxtrace_error); 1217 } else { 1218 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1219 strlen(auxtrace_error->msg) + 1; 1220 } 1221 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1222 } 1223 1224 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1225 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1226 const char *msg, u64 timestamp) 1227 { 1228 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1229 ip, msg, timestamp, 0, -1); 1230 } 1231 1232 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1233 struct perf_tool *tool, 1234 struct perf_session *session, 1235 perf_event__handler_t process) 1236 { 1237 union perf_event *ev; 1238 size_t priv_size; 1239 int err; 1240 1241 pr_debug2("Synthesizing auxtrace information\n"); 1242 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1243 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1244 if (!ev) 1245 return -ENOMEM; 1246 1247 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1248 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1249 priv_size; 1250 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1251 priv_size); 1252 if (err) 1253 goto out_free; 1254 1255 err = process(tool, ev, NULL, NULL); 1256 out_free: 1257 free(ev); 1258 return err; 1259 } 1260 1261 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1262 { 1263 struct evsel *new_leader = NULL; 1264 struct evsel *evsel; 1265 1266 /* Find new leader for the group */ 1267 evlist__for_each_entry(evlist, evsel) { 1268 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1269 continue; 1270 if (!new_leader) 1271 new_leader = evsel; 1272 evsel__set_leader(evsel, new_leader); 1273 } 1274 1275 /* Update group information */ 1276 if (new_leader) { 1277 zfree(&new_leader->group_name); 1278 new_leader->group_name = leader->group_name; 1279 leader->group_name = NULL; 1280 1281 new_leader->core.nr_members = leader->core.nr_members - 1; 1282 leader->core.nr_members = 1; 1283 } 1284 } 1285 1286 static void unleader_auxtrace(struct perf_session *session) 1287 { 1288 struct evsel *evsel; 1289 1290 evlist__for_each_entry(session->evlist, evsel) { 1291 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1292 evsel__is_group_leader(evsel)) { 1293 unleader_evsel(session->evlist, evsel); 1294 } 1295 } 1296 } 1297 1298 int perf_event__process_auxtrace_info(struct perf_session *session, 1299 union perf_event *event) 1300 { 1301 enum auxtrace_type type = event->auxtrace_info.type; 1302 int err; 1303 1304 if (dump_trace) 1305 fprintf(stdout, " type: %u\n", type); 1306 1307 switch (type) { 1308 case PERF_AUXTRACE_INTEL_PT: 1309 err = intel_pt_process_auxtrace_info(event, session); 1310 break; 1311 case PERF_AUXTRACE_INTEL_BTS: 1312 err = intel_bts_process_auxtrace_info(event, session); 1313 break; 1314 case PERF_AUXTRACE_ARM_SPE: 1315 err = arm_spe_process_auxtrace_info(event, session); 1316 break; 1317 case PERF_AUXTRACE_CS_ETM: 1318 err = cs_etm__process_auxtrace_info(event, session); 1319 break; 1320 case PERF_AUXTRACE_S390_CPUMSF: 1321 err = s390_cpumsf_process_auxtrace_info(event, session); 1322 break; 1323 case PERF_AUXTRACE_UNKNOWN: 1324 default: 1325 return -EINVAL; 1326 } 1327 1328 if (err) 1329 return err; 1330 1331 unleader_auxtrace(session); 1332 1333 return 0; 1334 } 1335 1336 s64 perf_event__process_auxtrace(struct perf_session *session, 1337 union perf_event *event) 1338 { 1339 s64 err; 1340 1341 if (dump_trace) 1342 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1343 event->auxtrace.size, event->auxtrace.offset, 1344 event->auxtrace.reference, event->auxtrace.idx, 1345 event->auxtrace.tid, event->auxtrace.cpu); 1346 1347 if (auxtrace__dont_decode(session)) 1348 return event->auxtrace.size; 1349 1350 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1351 return -EINVAL; 1352 1353 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1354 if (err < 0) 1355 return err; 1356 1357 return event->auxtrace.size; 1358 } 1359 1360 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1361 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1362 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1363 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1364 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1365 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1366 1367 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1368 bool no_sample) 1369 { 1370 synth_opts->branches = true; 1371 synth_opts->transactions = true; 1372 synth_opts->ptwrites = true; 1373 synth_opts->pwr_events = true; 1374 synth_opts->other_events = true; 1375 synth_opts->intr_events = true; 1376 synth_opts->errors = true; 1377 synth_opts->flc = true; 1378 synth_opts->llc = true; 1379 synth_opts->tlb = true; 1380 synth_opts->mem = true; 1381 synth_opts->remote_access = true; 1382 1383 if (no_sample) { 1384 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1385 synth_opts->period = 1; 1386 synth_opts->calls = true; 1387 } else { 1388 synth_opts->instructions = true; 1389 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1390 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1391 } 1392 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1393 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1394 synth_opts->initial_skip = 0; 1395 } 1396 1397 static int get_flag(const char **ptr, unsigned int *flags) 1398 { 1399 while (1) { 1400 char c = **ptr; 1401 1402 if (c >= 'a' && c <= 'z') { 1403 *flags |= 1 << (c - 'a'); 1404 ++*ptr; 1405 return 0; 1406 } else if (c == ' ') { 1407 ++*ptr; 1408 continue; 1409 } else { 1410 return -1; 1411 } 1412 } 1413 } 1414 1415 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1416 { 1417 while (1) { 1418 switch (**ptr) { 1419 case '+': 1420 ++*ptr; 1421 if (get_flag(ptr, plus_flags)) 1422 return -1; 1423 break; 1424 case '-': 1425 ++*ptr; 1426 if (get_flag(ptr, minus_flags)) 1427 return -1; 1428 break; 1429 case ' ': 1430 ++*ptr; 1431 break; 1432 default: 1433 return 0; 1434 } 1435 } 1436 } 1437 1438 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1439 1440 static unsigned int itrace_log_on_error_size(void) 1441 { 1442 unsigned int sz = 0; 1443 1444 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1445 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1446 } 1447 1448 /* 1449 * Please check tools/perf/Documentation/perf-script.txt for information 1450 * about the options parsed here, which is introduced after this cset, 1451 * when support in 'perf script' for these options is introduced. 1452 */ 1453 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1454 const char *str, int unset) 1455 { 1456 const char *p; 1457 char *endptr; 1458 bool period_type_set = false; 1459 bool period_set = false; 1460 1461 synth_opts->set = true; 1462 1463 if (unset) { 1464 synth_opts->dont_decode = true; 1465 return 0; 1466 } 1467 1468 if (!str) { 1469 itrace_synth_opts__set_default(synth_opts, 1470 synth_opts->default_no_sample); 1471 return 0; 1472 } 1473 1474 for (p = str; *p;) { 1475 switch (*p++) { 1476 case 'i': 1477 synth_opts->instructions = true; 1478 while (*p == ' ' || *p == ',') 1479 p += 1; 1480 if (isdigit(*p)) { 1481 synth_opts->period = strtoull(p, &endptr, 10); 1482 period_set = true; 1483 p = endptr; 1484 while (*p == ' ' || *p == ',') 1485 p += 1; 1486 switch (*p++) { 1487 case 'i': 1488 synth_opts->period_type = 1489 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1490 period_type_set = true; 1491 break; 1492 case 't': 1493 synth_opts->period_type = 1494 PERF_ITRACE_PERIOD_TICKS; 1495 period_type_set = true; 1496 break; 1497 case 'm': 1498 synth_opts->period *= 1000; 1499 /* Fall through */ 1500 case 'u': 1501 synth_opts->period *= 1000; 1502 /* Fall through */ 1503 case 'n': 1504 if (*p++ != 's') 1505 goto out_err; 1506 synth_opts->period_type = 1507 PERF_ITRACE_PERIOD_NANOSECS; 1508 period_type_set = true; 1509 break; 1510 case '\0': 1511 goto out; 1512 default: 1513 goto out_err; 1514 } 1515 } 1516 break; 1517 case 'b': 1518 synth_opts->branches = true; 1519 break; 1520 case 'x': 1521 synth_opts->transactions = true; 1522 break; 1523 case 'w': 1524 synth_opts->ptwrites = true; 1525 break; 1526 case 'p': 1527 synth_opts->pwr_events = true; 1528 break; 1529 case 'o': 1530 synth_opts->other_events = true; 1531 break; 1532 case 'I': 1533 synth_opts->intr_events = true; 1534 break; 1535 case 'e': 1536 synth_opts->errors = true; 1537 if (get_flags(&p, &synth_opts->error_plus_flags, 1538 &synth_opts->error_minus_flags)) 1539 goto out_err; 1540 break; 1541 case 'd': 1542 synth_opts->log = true; 1543 if (get_flags(&p, &synth_opts->log_plus_flags, 1544 &synth_opts->log_minus_flags)) 1545 goto out_err; 1546 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1547 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1548 break; 1549 case 'c': 1550 synth_opts->branches = true; 1551 synth_opts->calls = true; 1552 break; 1553 case 'r': 1554 synth_opts->branches = true; 1555 synth_opts->returns = true; 1556 break; 1557 case 'G': 1558 case 'g': 1559 if (p[-1] == 'G') 1560 synth_opts->add_callchain = true; 1561 else 1562 synth_opts->callchain = true; 1563 synth_opts->callchain_sz = 1564 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1565 while (*p == ' ' || *p == ',') 1566 p += 1; 1567 if (isdigit(*p)) { 1568 unsigned int val; 1569 1570 val = strtoul(p, &endptr, 10); 1571 p = endptr; 1572 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1573 goto out_err; 1574 synth_opts->callchain_sz = val; 1575 } 1576 break; 1577 case 'L': 1578 case 'l': 1579 if (p[-1] == 'L') 1580 synth_opts->add_last_branch = true; 1581 else 1582 synth_opts->last_branch = true; 1583 synth_opts->last_branch_sz = 1584 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1585 while (*p == ' ' || *p == ',') 1586 p += 1; 1587 if (isdigit(*p)) { 1588 unsigned int val; 1589 1590 val = strtoul(p, &endptr, 10); 1591 p = endptr; 1592 if (!val || 1593 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1594 goto out_err; 1595 synth_opts->last_branch_sz = val; 1596 } 1597 break; 1598 case 's': 1599 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1600 if (p == endptr) 1601 goto out_err; 1602 p = endptr; 1603 break; 1604 case 'f': 1605 synth_opts->flc = true; 1606 break; 1607 case 'm': 1608 synth_opts->llc = true; 1609 break; 1610 case 't': 1611 synth_opts->tlb = true; 1612 break; 1613 case 'a': 1614 synth_opts->remote_access = true; 1615 break; 1616 case 'M': 1617 synth_opts->mem = true; 1618 break; 1619 case 'q': 1620 synth_opts->quick += 1; 1621 break; 1622 case 'A': 1623 synth_opts->approx_ipc = true; 1624 break; 1625 case 'Z': 1626 synth_opts->timeless_decoding = true; 1627 break; 1628 case ' ': 1629 case ',': 1630 break; 1631 default: 1632 goto out_err; 1633 } 1634 } 1635 out: 1636 if (synth_opts->instructions) { 1637 if (!period_type_set) 1638 synth_opts->period_type = 1639 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1640 if (!period_set) 1641 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1642 } 1643 1644 return 0; 1645 1646 out_err: 1647 pr_err("Bad Instruction Tracing options '%s'\n", str); 1648 return -EINVAL; 1649 } 1650 1651 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1652 { 1653 return itrace_do_parse_synth_opts(opt->value, str, unset); 1654 } 1655 1656 static const char * const auxtrace_error_type_name[] = { 1657 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1658 }; 1659 1660 static const char *auxtrace_error_name(int type) 1661 { 1662 const char *error_type_name = NULL; 1663 1664 if (type < PERF_AUXTRACE_ERROR_MAX) 1665 error_type_name = auxtrace_error_type_name[type]; 1666 if (!error_type_name) 1667 error_type_name = "unknown AUX"; 1668 return error_type_name; 1669 } 1670 1671 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1672 { 1673 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1674 unsigned long long nsecs = e->time; 1675 const char *msg = e->msg; 1676 int ret; 1677 1678 ret = fprintf(fp, " %s error type %u", 1679 auxtrace_error_name(e->type), e->type); 1680 1681 if (e->fmt && nsecs) { 1682 unsigned long secs = nsecs / NSEC_PER_SEC; 1683 1684 nsecs -= secs * NSEC_PER_SEC; 1685 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1686 } else { 1687 ret += fprintf(fp, " time 0"); 1688 } 1689 1690 if (!e->fmt) 1691 msg = (const char *)&e->time; 1692 1693 if (e->fmt >= 2 && e->machine_pid) 1694 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1695 1696 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1697 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1698 return ret; 1699 } 1700 1701 void perf_session__auxtrace_error_inc(struct perf_session *session, 1702 union perf_event *event) 1703 { 1704 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1705 1706 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1707 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1708 } 1709 1710 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1711 { 1712 int i; 1713 1714 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1715 if (!stats->nr_auxtrace_errors[i]) 1716 continue; 1717 ui__warning("%u %s errors\n", 1718 stats->nr_auxtrace_errors[i], 1719 auxtrace_error_name(i)); 1720 } 1721 } 1722 1723 int perf_event__process_auxtrace_error(struct perf_session *session, 1724 union perf_event *event) 1725 { 1726 if (auxtrace__dont_decode(session)) 1727 return 0; 1728 1729 perf_event__fprintf_auxtrace_error(event, stdout); 1730 return 0; 1731 } 1732 1733 /* 1734 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1735 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1736 * the issues caused by the below sequence on multiple CPUs: when perf tool 1737 * accesses either the load operation or the store operation for 64-bit value, 1738 * on some architectures the operation is divided into two instructions, one 1739 * is for accessing the low 32-bit value and another is for the high 32-bit; 1740 * thus these two user operations can give the kernel chances to access the 1741 * 64-bit value, and thus leads to the unexpected load values. 1742 * 1743 * kernel (64-bit) user (32-bit) 1744 * 1745 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1746 * STORE $aux_data | ,---> 1747 * FLUSH $aux_data | | LOAD ->aux_head_hi 1748 * STORE ->aux_head --|-------` smp_rmb() 1749 * } | LOAD $data 1750 * | smp_mb() 1751 * | STORE ->aux_tail_lo 1752 * `-----------> 1753 * STORE ->aux_tail_hi 1754 * 1755 * For this reason, it's impossible for the perf tool to work correctly when 1756 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1757 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1758 * the pointers can be increased monotonically, whatever the buffer size it is, 1759 * at the end the head and tail can be bigger than 4GB and carry out to the 1760 * high 32-bit. 1761 * 1762 * To mitigate the issues and improve the user experience, we can allow the 1763 * perf tool working in certain conditions and bail out with error if detect 1764 * any overflow cannot be handled. 1765 * 1766 * For reading the AUX head, it reads out the values for three times, and 1767 * compares the high 4 bytes of the values between the first time and the last 1768 * time, if there has no change for high 4 bytes injected by the kernel during 1769 * the user reading sequence, it's safe for use the second value. 1770 * 1771 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1772 * 32 bits, it means there have two store operations in user space and it cannot 1773 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1774 * the caller an overflow error has happened. 1775 */ 1776 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1777 { 1778 struct perf_event_mmap_page *pc = mm->userpg; 1779 u64 first, second, last; 1780 u64 mask = (u64)(UINT32_MAX) << 32; 1781 1782 do { 1783 first = READ_ONCE(pc->aux_head); 1784 /* Ensure all reads are done after we read the head */ 1785 smp_rmb(); 1786 second = READ_ONCE(pc->aux_head); 1787 /* Ensure all reads are done after we read the head */ 1788 smp_rmb(); 1789 last = READ_ONCE(pc->aux_head); 1790 } while ((first & mask) != (last & mask)); 1791 1792 return second; 1793 } 1794 1795 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1796 { 1797 struct perf_event_mmap_page *pc = mm->userpg; 1798 u64 mask = (u64)(UINT32_MAX) << 32; 1799 1800 if (tail & mask) 1801 return -1; 1802 1803 /* Ensure all reads are done before we write the tail out */ 1804 smp_mb(); 1805 WRITE_ONCE(pc->aux_tail, tail); 1806 return 0; 1807 } 1808 1809 static int __auxtrace_mmap__read(struct mmap *map, 1810 struct auxtrace_record *itr, 1811 struct perf_tool *tool, process_auxtrace_t fn, 1812 bool snapshot, size_t snapshot_size) 1813 { 1814 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1815 u64 head, old = mm->prev, offset, ref; 1816 unsigned char *data = mm->base; 1817 size_t size, head_off, old_off, len1, len2, padding; 1818 union perf_event ev; 1819 void *data1, *data2; 1820 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); 1821 1822 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1823 1824 if (snapshot && 1825 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1826 return -1; 1827 1828 if (old == head) 1829 return 0; 1830 1831 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1832 mm->idx, old, head, head - old); 1833 1834 if (mm->mask) { 1835 head_off = head & mm->mask; 1836 old_off = old & mm->mask; 1837 } else { 1838 head_off = head % mm->len; 1839 old_off = old % mm->len; 1840 } 1841 1842 if (head_off > old_off) 1843 size = head_off - old_off; 1844 else 1845 size = mm->len - (old_off - head_off); 1846 1847 if (snapshot && size > snapshot_size) 1848 size = snapshot_size; 1849 1850 ref = auxtrace_record__reference(itr); 1851 1852 if (head > old || size <= head || mm->mask) { 1853 offset = head - size; 1854 } else { 1855 /* 1856 * When the buffer size is not a power of 2, 'head' wraps at the 1857 * highest multiple of the buffer size, so we have to subtract 1858 * the remainder here. 1859 */ 1860 u64 rem = (0ULL - mm->len) % mm->len; 1861 1862 offset = head - size - rem; 1863 } 1864 1865 if (size > head_off) { 1866 len1 = size - head_off; 1867 data1 = &data[mm->len - len1]; 1868 len2 = head_off; 1869 data2 = &data[0]; 1870 } else { 1871 len1 = size; 1872 data1 = &data[head_off - len1]; 1873 len2 = 0; 1874 data2 = NULL; 1875 } 1876 1877 if (itr->alignment) { 1878 unsigned int unwanted = len1 % itr->alignment; 1879 1880 len1 -= unwanted; 1881 size -= unwanted; 1882 } 1883 1884 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1885 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1886 if (padding) 1887 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1888 1889 memset(&ev, 0, sizeof(ev)); 1890 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1891 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1892 ev.auxtrace.size = size + padding; 1893 ev.auxtrace.offset = offset; 1894 ev.auxtrace.reference = ref; 1895 ev.auxtrace.idx = mm->idx; 1896 ev.auxtrace.tid = mm->tid; 1897 ev.auxtrace.cpu = mm->cpu; 1898 1899 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1900 return -1; 1901 1902 mm->prev = head; 1903 1904 if (!snapshot) { 1905 int err; 1906 1907 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1908 if (err < 0) 1909 return err; 1910 1911 if (itr->read_finish) { 1912 err = itr->read_finish(itr, mm->idx); 1913 if (err < 0) 1914 return err; 1915 } 1916 } 1917 1918 return 1; 1919 } 1920 1921 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1922 struct perf_tool *tool, process_auxtrace_t fn) 1923 { 1924 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1925 } 1926 1927 int auxtrace_mmap__read_snapshot(struct mmap *map, 1928 struct auxtrace_record *itr, 1929 struct perf_tool *tool, process_auxtrace_t fn, 1930 size_t snapshot_size) 1931 { 1932 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1933 } 1934 1935 /** 1936 * struct auxtrace_cache - hash table to implement a cache 1937 * @hashtable: the hashtable 1938 * @sz: hashtable size (number of hlists) 1939 * @entry_size: size of an entry 1940 * @limit: limit the number of entries to this maximum, when reached the cache 1941 * is dropped and caching begins again with an empty cache 1942 * @cnt: current number of entries 1943 * @bits: hashtable size (@sz = 2^@bits) 1944 */ 1945 struct auxtrace_cache { 1946 struct hlist_head *hashtable; 1947 size_t sz; 1948 size_t entry_size; 1949 size_t limit; 1950 size_t cnt; 1951 unsigned int bits; 1952 }; 1953 1954 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1955 unsigned int limit_percent) 1956 { 1957 struct auxtrace_cache *c; 1958 struct hlist_head *ht; 1959 size_t sz, i; 1960 1961 c = zalloc(sizeof(struct auxtrace_cache)); 1962 if (!c) 1963 return NULL; 1964 1965 sz = 1UL << bits; 1966 1967 ht = calloc(sz, sizeof(struct hlist_head)); 1968 if (!ht) 1969 goto out_free; 1970 1971 for (i = 0; i < sz; i++) 1972 INIT_HLIST_HEAD(&ht[i]); 1973 1974 c->hashtable = ht; 1975 c->sz = sz; 1976 c->entry_size = entry_size; 1977 c->limit = (c->sz * limit_percent) / 100; 1978 c->bits = bits; 1979 1980 return c; 1981 1982 out_free: 1983 free(c); 1984 return NULL; 1985 } 1986 1987 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1988 { 1989 struct auxtrace_cache_entry *entry; 1990 struct hlist_node *tmp; 1991 size_t i; 1992 1993 if (!c) 1994 return; 1995 1996 for (i = 0; i < c->sz; i++) { 1997 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1998 hlist_del(&entry->hash); 1999 auxtrace_cache__free_entry(c, entry); 2000 } 2001 } 2002 2003 c->cnt = 0; 2004 } 2005 2006 void auxtrace_cache__free(struct auxtrace_cache *c) 2007 { 2008 if (!c) 2009 return; 2010 2011 auxtrace_cache__drop(c); 2012 zfree(&c->hashtable); 2013 free(c); 2014 } 2015 2016 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2017 { 2018 return malloc(c->entry_size); 2019 } 2020 2021 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2022 void *entry) 2023 { 2024 free(entry); 2025 } 2026 2027 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2028 struct auxtrace_cache_entry *entry) 2029 { 2030 if (c->limit && ++c->cnt > c->limit) 2031 auxtrace_cache__drop(c); 2032 2033 entry->key = key; 2034 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2035 2036 return 0; 2037 } 2038 2039 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2040 u32 key) 2041 { 2042 struct auxtrace_cache_entry *entry; 2043 struct hlist_head *hlist; 2044 struct hlist_node *n; 2045 2046 if (!c) 2047 return NULL; 2048 2049 hlist = &c->hashtable[hash_32(key, c->bits)]; 2050 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2051 if (entry->key == key) { 2052 hlist_del(&entry->hash); 2053 return entry; 2054 } 2055 } 2056 2057 return NULL; 2058 } 2059 2060 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2061 { 2062 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2063 2064 auxtrace_cache__free_entry(c, entry); 2065 } 2066 2067 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2068 { 2069 struct auxtrace_cache_entry *entry; 2070 struct hlist_head *hlist; 2071 2072 if (!c) 2073 return NULL; 2074 2075 hlist = &c->hashtable[hash_32(key, c->bits)]; 2076 hlist_for_each_entry(entry, hlist, hash) { 2077 if (entry->key == key) 2078 return entry; 2079 } 2080 2081 return NULL; 2082 } 2083 2084 static void addr_filter__free_str(struct addr_filter *filt) 2085 { 2086 zfree(&filt->str); 2087 filt->action = NULL; 2088 filt->sym_from = NULL; 2089 filt->sym_to = NULL; 2090 filt->filename = NULL; 2091 } 2092 2093 static struct addr_filter *addr_filter__new(void) 2094 { 2095 struct addr_filter *filt = zalloc(sizeof(*filt)); 2096 2097 if (filt) 2098 INIT_LIST_HEAD(&filt->list); 2099 2100 return filt; 2101 } 2102 2103 static void addr_filter__free(struct addr_filter *filt) 2104 { 2105 if (filt) 2106 addr_filter__free_str(filt); 2107 free(filt); 2108 } 2109 2110 static void addr_filters__add(struct addr_filters *filts, 2111 struct addr_filter *filt) 2112 { 2113 list_add_tail(&filt->list, &filts->head); 2114 filts->cnt += 1; 2115 } 2116 2117 static void addr_filters__del(struct addr_filters *filts, 2118 struct addr_filter *filt) 2119 { 2120 list_del_init(&filt->list); 2121 filts->cnt -= 1; 2122 } 2123 2124 void addr_filters__init(struct addr_filters *filts) 2125 { 2126 INIT_LIST_HEAD(&filts->head); 2127 filts->cnt = 0; 2128 } 2129 2130 void addr_filters__exit(struct addr_filters *filts) 2131 { 2132 struct addr_filter *filt, *n; 2133 2134 list_for_each_entry_safe(filt, n, &filts->head, list) { 2135 addr_filters__del(filts, filt); 2136 addr_filter__free(filt); 2137 } 2138 } 2139 2140 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2141 const char *str_delim) 2142 { 2143 *inp += strspn(*inp, " "); 2144 2145 if (isdigit(**inp)) { 2146 char *endptr; 2147 2148 if (!num) 2149 return -EINVAL; 2150 errno = 0; 2151 *num = strtoull(*inp, &endptr, 0); 2152 if (errno) 2153 return -errno; 2154 if (endptr == *inp) 2155 return -EINVAL; 2156 *inp = endptr; 2157 } else { 2158 size_t n; 2159 2160 if (!str) 2161 return -EINVAL; 2162 *inp += strspn(*inp, " "); 2163 *str = *inp; 2164 n = strcspn(*inp, str_delim); 2165 if (!n) 2166 return -EINVAL; 2167 *inp += n; 2168 if (**inp) { 2169 **inp = '\0'; 2170 *inp += 1; 2171 } 2172 } 2173 return 0; 2174 } 2175 2176 static int parse_action(struct addr_filter *filt) 2177 { 2178 if (!strcmp(filt->action, "filter")) { 2179 filt->start = true; 2180 filt->range = true; 2181 } else if (!strcmp(filt->action, "start")) { 2182 filt->start = true; 2183 } else if (!strcmp(filt->action, "stop")) { 2184 filt->start = false; 2185 } else if (!strcmp(filt->action, "tracestop")) { 2186 filt->start = false; 2187 filt->range = true; 2188 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2189 } else { 2190 return -EINVAL; 2191 } 2192 return 0; 2193 } 2194 2195 static int parse_sym_idx(char **inp, int *idx) 2196 { 2197 *idx = -1; 2198 2199 *inp += strspn(*inp, " "); 2200 2201 if (**inp != '#') 2202 return 0; 2203 2204 *inp += 1; 2205 2206 if (**inp == 'g' || **inp == 'G') { 2207 *inp += 1; 2208 *idx = 0; 2209 } else { 2210 unsigned long num; 2211 char *endptr; 2212 2213 errno = 0; 2214 num = strtoul(*inp, &endptr, 0); 2215 if (errno) 2216 return -errno; 2217 if (endptr == *inp || num > INT_MAX) 2218 return -EINVAL; 2219 *inp = endptr; 2220 *idx = num; 2221 } 2222 2223 return 0; 2224 } 2225 2226 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2227 { 2228 int err = parse_num_or_str(inp, num, str, " "); 2229 2230 if (!err && *str) 2231 err = parse_sym_idx(inp, idx); 2232 2233 return err; 2234 } 2235 2236 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2237 { 2238 char *fstr; 2239 int err; 2240 2241 filt->str = fstr = strdup(*filter_inp); 2242 if (!fstr) 2243 return -ENOMEM; 2244 2245 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2246 if (err) 2247 goto out_err; 2248 2249 err = parse_action(filt); 2250 if (err) 2251 goto out_err; 2252 2253 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2254 &filt->sym_from_idx); 2255 if (err) 2256 goto out_err; 2257 2258 fstr += strspn(fstr, " "); 2259 2260 if (*fstr == '/') { 2261 fstr += 1; 2262 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2263 &filt->sym_to_idx); 2264 if (err) 2265 goto out_err; 2266 filt->range = true; 2267 } 2268 2269 fstr += strspn(fstr, " "); 2270 2271 if (*fstr == '@') { 2272 fstr += 1; 2273 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2274 if (err) 2275 goto out_err; 2276 } 2277 2278 fstr += strspn(fstr, " ,"); 2279 2280 *filter_inp += fstr - filt->str; 2281 2282 return 0; 2283 2284 out_err: 2285 addr_filter__free_str(filt); 2286 2287 return err; 2288 } 2289 2290 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2291 const char *filter) 2292 { 2293 struct addr_filter *filt; 2294 const char *fstr = filter; 2295 int err; 2296 2297 while (*fstr) { 2298 filt = addr_filter__new(); 2299 err = parse_one_filter(filt, &fstr); 2300 if (err) { 2301 addr_filter__free(filt); 2302 addr_filters__exit(filts); 2303 return err; 2304 } 2305 addr_filters__add(filts, filt); 2306 } 2307 2308 return 0; 2309 } 2310 2311 struct sym_args { 2312 const char *name; 2313 u64 start; 2314 u64 size; 2315 int idx; 2316 int cnt; 2317 bool started; 2318 bool global; 2319 bool selected; 2320 bool duplicate; 2321 bool near; 2322 }; 2323 2324 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2325 { 2326 /* A function with the same name, and global or the n'th found or any */ 2327 return kallsyms__is_function(type) && 2328 !strcmp(name, args->name) && 2329 ((args->global && isupper(type)) || 2330 (args->selected && ++(args->cnt) == args->idx) || 2331 (!args->global && !args->selected)); 2332 } 2333 2334 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2335 { 2336 struct sym_args *args = arg; 2337 2338 if (args->started) { 2339 if (!args->size) 2340 args->size = start - args->start; 2341 if (args->selected) { 2342 if (args->size) 2343 return 1; 2344 } else if (kern_sym_match(args, name, type)) { 2345 args->duplicate = true; 2346 return 1; 2347 } 2348 } else if (kern_sym_match(args, name, type)) { 2349 args->started = true; 2350 args->start = start; 2351 } 2352 2353 return 0; 2354 } 2355 2356 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2357 { 2358 struct sym_args *args = arg; 2359 2360 if (kern_sym_match(args, name, type)) { 2361 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2362 ++args->cnt, start, type, name); 2363 args->near = true; 2364 } else if (args->near) { 2365 args->near = false; 2366 pr_err("\t\twhich is near\t\t%s\n", name); 2367 } 2368 2369 return 0; 2370 } 2371 2372 static int sym_not_found_error(const char *sym_name, int idx) 2373 { 2374 if (idx > 0) { 2375 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2376 idx, sym_name); 2377 } else if (!idx) { 2378 pr_err("Global symbol '%s' not found.\n", sym_name); 2379 } else { 2380 pr_err("Symbol '%s' not found.\n", sym_name); 2381 } 2382 pr_err("Note that symbols must be functions.\n"); 2383 2384 return -EINVAL; 2385 } 2386 2387 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2388 { 2389 struct sym_args args = { 2390 .name = sym_name, 2391 .idx = idx, 2392 .global = !idx, 2393 .selected = idx > 0, 2394 }; 2395 int err; 2396 2397 *start = 0; 2398 *size = 0; 2399 2400 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2401 if (err < 0) { 2402 pr_err("Failed to parse /proc/kallsyms\n"); 2403 return err; 2404 } 2405 2406 if (args.duplicate) { 2407 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2408 args.cnt = 0; 2409 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2410 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2411 sym_name); 2412 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2413 return -EINVAL; 2414 } 2415 2416 if (!args.started) { 2417 pr_err("Kernel symbol lookup: "); 2418 return sym_not_found_error(sym_name, idx); 2419 } 2420 2421 *start = args.start; 2422 *size = args.size; 2423 2424 return 0; 2425 } 2426 2427 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2428 char type, u64 start) 2429 { 2430 struct sym_args *args = arg; 2431 2432 if (!kallsyms__is_function(type)) 2433 return 0; 2434 2435 if (!args->started) { 2436 args->started = true; 2437 args->start = start; 2438 } 2439 /* Don't know exactly where the kernel ends, so we add a page */ 2440 args->size = round_up(start, page_size) + page_size - args->start; 2441 2442 return 0; 2443 } 2444 2445 static int addr_filter__entire_kernel(struct addr_filter *filt) 2446 { 2447 struct sym_args args = { .started = false }; 2448 int err; 2449 2450 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2451 if (err < 0 || !args.started) { 2452 pr_err("Failed to parse /proc/kallsyms\n"); 2453 return err; 2454 } 2455 2456 filt->addr = args.start; 2457 filt->size = args.size; 2458 2459 return 0; 2460 } 2461 2462 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2463 { 2464 if (start + size >= filt->addr) 2465 return 0; 2466 2467 if (filt->sym_from) { 2468 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2469 filt->sym_to, start, filt->sym_from, filt->addr); 2470 } else { 2471 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2472 filt->sym_to, start, filt->addr); 2473 } 2474 2475 return -EINVAL; 2476 } 2477 2478 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2479 { 2480 bool no_size = false; 2481 u64 start, size; 2482 int err; 2483 2484 if (symbol_conf.kptr_restrict) { 2485 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2486 return -EINVAL; 2487 } 2488 2489 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2490 return addr_filter__entire_kernel(filt); 2491 2492 if (filt->sym_from) { 2493 err = find_kern_sym(filt->sym_from, &start, &size, 2494 filt->sym_from_idx); 2495 if (err) 2496 return err; 2497 filt->addr = start; 2498 if (filt->range && !filt->size && !filt->sym_to) { 2499 filt->size = size; 2500 no_size = !size; 2501 } 2502 } 2503 2504 if (filt->sym_to) { 2505 err = find_kern_sym(filt->sym_to, &start, &size, 2506 filt->sym_to_idx); 2507 if (err) 2508 return err; 2509 2510 err = check_end_after_start(filt, start, size); 2511 if (err) 2512 return err; 2513 filt->size = start + size - filt->addr; 2514 no_size = !size; 2515 } 2516 2517 /* The very last symbol in kallsyms does not imply a particular size */ 2518 if (no_size) { 2519 pr_err("Cannot determine size of symbol '%s'\n", 2520 filt->sym_to ? filt->sym_to : filt->sym_from); 2521 return -EINVAL; 2522 } 2523 2524 return 0; 2525 } 2526 2527 static struct dso *load_dso(const char *name) 2528 { 2529 struct map *map; 2530 struct dso *dso; 2531 2532 map = dso__new_map(name); 2533 if (!map) 2534 return NULL; 2535 2536 if (map__load(map) < 0) 2537 pr_err("File '%s' not found or has no symbols.\n", name); 2538 2539 dso = dso__get(map->dso); 2540 2541 map__put(map); 2542 2543 return dso; 2544 } 2545 2546 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2547 int idx) 2548 { 2549 /* Same name, and global or the n'th found or any */ 2550 return !arch__compare_symbol_names(name, sym->name) && 2551 ((!idx && sym->binding == STB_GLOBAL) || 2552 (idx > 0 && ++*cnt == idx) || 2553 idx < 0); 2554 } 2555 2556 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2557 { 2558 struct symbol *sym; 2559 bool near = false; 2560 int cnt = 0; 2561 2562 pr_err("Multiple symbols with name '%s'\n", sym_name); 2563 2564 sym = dso__first_symbol(dso); 2565 while (sym) { 2566 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2567 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2568 ++cnt, sym->start, 2569 sym->binding == STB_GLOBAL ? 'g' : 2570 sym->binding == STB_LOCAL ? 'l' : 'w', 2571 sym->name); 2572 near = true; 2573 } else if (near) { 2574 near = false; 2575 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2576 } 2577 sym = dso__next_symbol(sym); 2578 } 2579 2580 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2581 sym_name); 2582 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2583 } 2584 2585 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2586 u64 *size, int idx) 2587 { 2588 struct symbol *sym; 2589 int cnt = 0; 2590 2591 *start = 0; 2592 *size = 0; 2593 2594 sym = dso__first_symbol(dso); 2595 while (sym) { 2596 if (*start) { 2597 if (!*size) 2598 *size = sym->start - *start; 2599 if (idx > 0) { 2600 if (*size) 2601 return 1; 2602 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2603 print_duplicate_syms(dso, sym_name); 2604 return -EINVAL; 2605 } 2606 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2607 *start = sym->start; 2608 *size = sym->end - sym->start; 2609 } 2610 sym = dso__next_symbol(sym); 2611 } 2612 2613 if (!*start) 2614 return sym_not_found_error(sym_name, idx); 2615 2616 return 0; 2617 } 2618 2619 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2620 { 2621 if (dso__data_file_size(dso, NULL)) { 2622 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2623 filt->filename); 2624 return -EINVAL; 2625 } 2626 2627 filt->addr = 0; 2628 filt->size = dso->data.file_size; 2629 2630 return 0; 2631 } 2632 2633 static int addr_filter__resolve_syms(struct addr_filter *filt) 2634 { 2635 u64 start, size; 2636 struct dso *dso; 2637 int err = 0; 2638 2639 if (!filt->sym_from && !filt->sym_to) 2640 return 0; 2641 2642 if (!filt->filename) 2643 return addr_filter__resolve_kernel_syms(filt); 2644 2645 dso = load_dso(filt->filename); 2646 if (!dso) { 2647 pr_err("Failed to load symbols from: %s\n", filt->filename); 2648 return -EINVAL; 2649 } 2650 2651 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2652 err = addr_filter__entire_dso(filt, dso); 2653 goto put_dso; 2654 } 2655 2656 if (filt->sym_from) { 2657 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2658 filt->sym_from_idx); 2659 if (err) 2660 goto put_dso; 2661 filt->addr = start; 2662 if (filt->range && !filt->size && !filt->sym_to) 2663 filt->size = size; 2664 } 2665 2666 if (filt->sym_to) { 2667 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2668 filt->sym_to_idx); 2669 if (err) 2670 goto put_dso; 2671 2672 err = check_end_after_start(filt, start, size); 2673 if (err) 2674 return err; 2675 2676 filt->size = start + size - filt->addr; 2677 } 2678 2679 put_dso: 2680 dso__put(dso); 2681 2682 return err; 2683 } 2684 2685 static char *addr_filter__to_str(struct addr_filter *filt) 2686 { 2687 char filename_buf[PATH_MAX]; 2688 const char *at = ""; 2689 const char *fn = ""; 2690 char *filter; 2691 int err; 2692 2693 if (filt->filename) { 2694 at = "@"; 2695 fn = realpath(filt->filename, filename_buf); 2696 if (!fn) 2697 return NULL; 2698 } 2699 2700 if (filt->range) { 2701 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2702 filt->action, filt->addr, filt->size, at, fn); 2703 } else { 2704 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2705 filt->action, filt->addr, at, fn); 2706 } 2707 2708 return err < 0 ? NULL : filter; 2709 } 2710 2711 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2712 int max_nr) 2713 { 2714 struct addr_filters filts; 2715 struct addr_filter *filt; 2716 int err; 2717 2718 addr_filters__init(&filts); 2719 2720 err = addr_filters__parse_bare_filter(&filts, filter); 2721 if (err) 2722 goto out_exit; 2723 2724 if (filts.cnt > max_nr) { 2725 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2726 filts.cnt, max_nr); 2727 err = -EINVAL; 2728 goto out_exit; 2729 } 2730 2731 list_for_each_entry(filt, &filts.head, list) { 2732 char *new_filter; 2733 2734 err = addr_filter__resolve_syms(filt); 2735 if (err) 2736 goto out_exit; 2737 2738 new_filter = addr_filter__to_str(filt); 2739 if (!new_filter) { 2740 err = -ENOMEM; 2741 goto out_exit; 2742 } 2743 2744 if (evsel__append_addr_filter(evsel, new_filter)) { 2745 err = -ENOMEM; 2746 goto out_exit; 2747 } 2748 } 2749 2750 out_exit: 2751 addr_filters__exit(&filts); 2752 2753 if (err) { 2754 pr_err("Failed to parse address filter: '%s'\n", filter); 2755 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2756 pr_err("Where multiple filters are separated by space or comma.\n"); 2757 } 2758 2759 return err; 2760 } 2761 2762 static int evsel__nr_addr_filter(struct evsel *evsel) 2763 { 2764 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2765 int nr_addr_filters = 0; 2766 2767 if (!pmu) 2768 return 0; 2769 2770 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2771 2772 return nr_addr_filters; 2773 } 2774 2775 int auxtrace_parse_filters(struct evlist *evlist) 2776 { 2777 struct evsel *evsel; 2778 char *filter; 2779 int err, max_nr; 2780 2781 evlist__for_each_entry(evlist, evsel) { 2782 filter = evsel->filter; 2783 max_nr = evsel__nr_addr_filter(evsel); 2784 if (!filter || !max_nr) 2785 continue; 2786 evsel->filter = NULL; 2787 err = parse_addr_filter(evsel, filter, max_nr); 2788 free(filter); 2789 if (err) 2790 return err; 2791 pr_debug("Address filter: %s\n", evsel->filter); 2792 } 2793 2794 return 0; 2795 } 2796 2797 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2798 struct perf_sample *sample, struct perf_tool *tool) 2799 { 2800 if (!session->auxtrace) 2801 return 0; 2802 2803 return session->auxtrace->process_event(session, event, sample, tool); 2804 } 2805 2806 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2807 struct perf_sample *sample) 2808 { 2809 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2810 auxtrace__dont_decode(session)) 2811 return; 2812 2813 session->auxtrace->dump_auxtrace_sample(session, sample); 2814 } 2815 2816 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2817 { 2818 if (!session->auxtrace) 2819 return 0; 2820 2821 return session->auxtrace->flush_events(session, tool); 2822 } 2823 2824 void auxtrace__free_events(struct perf_session *session) 2825 { 2826 if (!session->auxtrace) 2827 return; 2828 2829 return session->auxtrace->free_events(session); 2830 } 2831 2832 void auxtrace__free(struct perf_session *session) 2833 { 2834 if (!session->auxtrace) 2835 return; 2836 2837 return session->auxtrace->free(session); 2838 } 2839 2840 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2841 struct evsel *evsel) 2842 { 2843 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2844 return false; 2845 2846 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2847 } 2848