1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arm Statistical Profiling Extensions (SPE) support 4 * Copyright (c) 2017-2018, Arm Ltd. 5 */ 6 7 #include <byteswap.h> 8 #include <endian.h> 9 #include <errno.h> 10 #include <inttypes.h> 11 #include <linux/bitops.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 #include <stdlib.h> 17 #include <unistd.h> 18 19 #include "auxtrace.h" 20 #include "color.h" 21 #include "debug.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "machine.h" 25 #include "session.h" 26 #include "symbol.h" 27 #include "thread.h" 28 #include "thread-stack.h" 29 #include "tsc.h" 30 #include "tool.h" 31 #include "util/synthetic-events.h" 32 33 #include "arm-spe.h" 34 #include "arm-spe-decoder/arm-spe-decoder.h" 35 #include "arm-spe-decoder/arm-spe-pkt-decoder.h" 36 37 #define MAX_TIMESTAMP (~0ULL) 38 39 struct arm_spe { 40 struct auxtrace auxtrace; 41 struct auxtrace_queues queues; 42 struct auxtrace_heap heap; 43 struct itrace_synth_opts synth_opts; 44 u32 auxtrace_type; 45 struct perf_session *session; 46 struct machine *machine; 47 u32 pmu_type; 48 49 struct perf_tsc_conversion tc; 50 51 u8 timeless_decoding; 52 u8 data_queued; 53 54 u64 sample_type; 55 u8 sample_flc; 56 u8 sample_llc; 57 u8 sample_tlb; 58 u8 sample_branch; 59 u8 sample_remote_access; 60 u8 sample_memory; 61 u8 sample_instructions; 62 u64 instructions_sample_period; 63 64 u64 l1d_miss_id; 65 u64 l1d_access_id; 66 u64 llc_miss_id; 67 u64 llc_access_id; 68 u64 tlb_miss_id; 69 u64 tlb_access_id; 70 u64 branch_miss_id; 71 u64 remote_access_id; 72 u64 memory_id; 73 u64 instructions_id; 74 75 u64 kernel_start; 76 77 unsigned long num_events; 78 u8 use_ctx_pkt_for_pid; 79 }; 80 81 struct arm_spe_queue { 82 struct arm_spe *spe; 83 unsigned int queue_nr; 84 struct auxtrace_buffer *buffer; 85 struct auxtrace_buffer *old_buffer; 86 union perf_event *event_buf; 87 bool on_heap; 88 bool done; 89 pid_t pid; 90 pid_t tid; 91 int cpu; 92 struct arm_spe_decoder *decoder; 93 u64 time; 94 u64 timestamp; 95 struct thread *thread; 96 u64 period_instructions; 97 }; 98 99 static void arm_spe_dump(struct arm_spe *spe __maybe_unused, 100 unsigned char *buf, size_t len) 101 { 102 struct arm_spe_pkt packet; 103 size_t pos = 0; 104 int ret, pkt_len, i; 105 char desc[ARM_SPE_PKT_DESC_MAX]; 106 const char *color = PERF_COLOR_BLUE; 107 108 color_fprintf(stdout, color, 109 ". ... ARM SPE data: size %#zx bytes\n", 110 len); 111 112 while (len) { 113 ret = arm_spe_get_packet(buf, len, &packet); 114 if (ret > 0) 115 pkt_len = ret; 116 else 117 pkt_len = 1; 118 printf("."); 119 color_fprintf(stdout, color, " %08x: ", pos); 120 for (i = 0; i < pkt_len; i++) 121 color_fprintf(stdout, color, " %02x", buf[i]); 122 for (; i < 16; i++) 123 color_fprintf(stdout, color, " "); 124 if (ret > 0) { 125 ret = arm_spe_pkt_desc(&packet, desc, 126 ARM_SPE_PKT_DESC_MAX); 127 if (!ret) 128 color_fprintf(stdout, color, " %s\n", desc); 129 } else { 130 color_fprintf(stdout, color, " Bad packet!\n"); 131 } 132 pos += pkt_len; 133 buf += pkt_len; 134 len -= pkt_len; 135 } 136 } 137 138 static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf, 139 size_t len) 140 { 141 printf(".\n"); 142 arm_spe_dump(spe, buf, len); 143 } 144 145 static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data) 146 { 147 struct arm_spe_queue *speq = data; 148 struct auxtrace_buffer *buffer = speq->buffer; 149 struct auxtrace_buffer *old_buffer = speq->old_buffer; 150 struct auxtrace_queue *queue; 151 152 queue = &speq->spe->queues.queue_array[speq->queue_nr]; 153 154 buffer = auxtrace_buffer__next(queue, buffer); 155 /* If no more data, drop the previous auxtrace_buffer and return */ 156 if (!buffer) { 157 if (old_buffer) 158 auxtrace_buffer__drop_data(old_buffer); 159 b->len = 0; 160 return 0; 161 } 162 163 speq->buffer = buffer; 164 165 /* If the aux_buffer doesn't have data associated, try to load it */ 166 if (!buffer->data) { 167 /* get the file desc associated with the perf data file */ 168 int fd = perf_data__fd(speq->spe->session->data); 169 170 buffer->data = auxtrace_buffer__get_data(buffer, fd); 171 if (!buffer->data) 172 return -ENOMEM; 173 } 174 175 b->len = buffer->size; 176 b->buf = buffer->data; 177 178 if (b->len) { 179 if (old_buffer) 180 auxtrace_buffer__drop_data(old_buffer); 181 speq->old_buffer = buffer; 182 } else { 183 auxtrace_buffer__drop_data(buffer); 184 return arm_spe_get_trace(b, data); 185 } 186 187 return 0; 188 } 189 190 static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe, 191 unsigned int queue_nr) 192 { 193 struct arm_spe_params params = { .get_trace = 0, }; 194 struct arm_spe_queue *speq; 195 196 speq = zalloc(sizeof(*speq)); 197 if (!speq) 198 return NULL; 199 200 speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 201 if (!speq->event_buf) 202 goto out_free; 203 204 speq->spe = spe; 205 speq->queue_nr = queue_nr; 206 speq->pid = -1; 207 speq->tid = -1; 208 speq->cpu = -1; 209 speq->period_instructions = 0; 210 211 /* params set */ 212 params.get_trace = arm_spe_get_trace; 213 params.data = speq; 214 215 /* create new decoder */ 216 speq->decoder = arm_spe_decoder_new(¶ms); 217 if (!speq->decoder) 218 goto out_free; 219 220 return speq; 221 222 out_free: 223 zfree(&speq->event_buf); 224 free(speq); 225 226 return NULL; 227 } 228 229 static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip) 230 { 231 return ip >= spe->kernel_start ? 232 PERF_RECORD_MISC_KERNEL : 233 PERF_RECORD_MISC_USER; 234 } 235 236 static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe, 237 struct auxtrace_queue *queue) 238 { 239 struct arm_spe_queue *speq = queue->priv; 240 pid_t tid; 241 242 tid = machine__get_current_tid(spe->machine, speq->cpu); 243 if (tid != -1) { 244 speq->tid = tid; 245 thread__zput(speq->thread); 246 } else 247 speq->tid = queue->tid; 248 249 if ((!speq->thread) && (speq->tid != -1)) { 250 speq->thread = machine__find_thread(spe->machine, -1, 251 speq->tid); 252 } 253 254 if (speq->thread) { 255 speq->pid = speq->thread->pid_; 256 if (queue->cpu == -1) 257 speq->cpu = speq->thread->cpu; 258 } 259 } 260 261 static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid) 262 { 263 struct arm_spe *spe = speq->spe; 264 int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid); 265 266 if (err) 267 return err; 268 269 arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]); 270 271 return 0; 272 } 273 274 static void arm_spe_prep_sample(struct arm_spe *spe, 275 struct arm_spe_queue *speq, 276 union perf_event *event, 277 struct perf_sample *sample) 278 { 279 struct arm_spe_record *record = &speq->decoder->record; 280 281 if (!spe->timeless_decoding) 282 sample->time = tsc_to_perf_time(record->timestamp, &spe->tc); 283 284 sample->ip = record->from_ip; 285 sample->cpumode = arm_spe_cpumode(spe, sample->ip); 286 sample->pid = speq->pid; 287 sample->tid = speq->tid; 288 sample->period = 1; 289 sample->cpu = speq->cpu; 290 291 event->sample.header.type = PERF_RECORD_SAMPLE; 292 event->sample.header.misc = sample->cpumode; 293 event->sample.header.size = sizeof(struct perf_event_header); 294 } 295 296 static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type) 297 { 298 event->header.size = perf_event__sample_event_size(sample, type, 0); 299 return perf_event__synthesize_sample(event, type, 0, sample); 300 } 301 302 static inline int 303 arm_spe_deliver_synth_event(struct arm_spe *spe, 304 struct arm_spe_queue *speq __maybe_unused, 305 union perf_event *event, 306 struct perf_sample *sample) 307 { 308 int ret; 309 310 if (spe->synth_opts.inject) { 311 ret = arm_spe__inject_event(event, sample, spe->sample_type); 312 if (ret) 313 return ret; 314 } 315 316 ret = perf_session__deliver_synth_event(spe->session, event, sample); 317 if (ret) 318 pr_err("ARM SPE: failed to deliver event, error %d\n", ret); 319 320 return ret; 321 } 322 323 static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq, 324 u64 spe_events_id, u64 data_src) 325 { 326 struct arm_spe *spe = speq->spe; 327 struct arm_spe_record *record = &speq->decoder->record; 328 union perf_event *event = speq->event_buf; 329 struct perf_sample sample = { .ip = 0, }; 330 331 arm_spe_prep_sample(spe, speq, event, &sample); 332 333 sample.id = spe_events_id; 334 sample.stream_id = spe_events_id; 335 sample.addr = record->virt_addr; 336 sample.phys_addr = record->phys_addr; 337 sample.data_src = data_src; 338 sample.weight = record->latency; 339 340 return arm_spe_deliver_synth_event(spe, speq, event, &sample); 341 } 342 343 static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq, 344 u64 spe_events_id) 345 { 346 struct arm_spe *spe = speq->spe; 347 struct arm_spe_record *record = &speq->decoder->record; 348 union perf_event *event = speq->event_buf; 349 struct perf_sample sample = { .ip = 0, }; 350 351 arm_spe_prep_sample(spe, speq, event, &sample); 352 353 sample.id = spe_events_id; 354 sample.stream_id = spe_events_id; 355 sample.addr = record->to_ip; 356 sample.weight = record->latency; 357 358 return arm_spe_deliver_synth_event(spe, speq, event, &sample); 359 } 360 361 static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq, 362 u64 spe_events_id, u64 data_src) 363 { 364 struct arm_spe *spe = speq->spe; 365 struct arm_spe_record *record = &speq->decoder->record; 366 union perf_event *event = speq->event_buf; 367 struct perf_sample sample = { .ip = 0, }; 368 369 /* 370 * Handles perf instruction sampling period. 371 */ 372 speq->period_instructions++; 373 if (speq->period_instructions < spe->instructions_sample_period) 374 return 0; 375 speq->period_instructions = 0; 376 377 arm_spe_prep_sample(spe, speq, event, &sample); 378 379 sample.id = spe_events_id; 380 sample.stream_id = spe_events_id; 381 sample.addr = record->virt_addr; 382 sample.phys_addr = record->phys_addr; 383 sample.data_src = data_src; 384 sample.period = spe->instructions_sample_period; 385 sample.weight = record->latency; 386 387 return arm_spe_deliver_synth_event(spe, speq, event, &sample); 388 } 389 390 static u64 arm_spe__synth_data_source(const struct arm_spe_record *record) 391 { 392 union perf_mem_data_src data_src = { 0 }; 393 394 if (record->op == ARM_SPE_LD) 395 data_src.mem_op = PERF_MEM_OP_LOAD; 396 else if (record->op == ARM_SPE_ST) 397 data_src.mem_op = PERF_MEM_OP_STORE; 398 else 399 return 0; 400 401 if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) { 402 data_src.mem_lvl = PERF_MEM_LVL_L3; 403 404 if (record->type & ARM_SPE_LLC_MISS) 405 data_src.mem_lvl |= PERF_MEM_LVL_MISS; 406 else 407 data_src.mem_lvl |= PERF_MEM_LVL_HIT; 408 } else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) { 409 data_src.mem_lvl = PERF_MEM_LVL_L1; 410 411 if (record->type & ARM_SPE_L1D_MISS) 412 data_src.mem_lvl |= PERF_MEM_LVL_MISS; 413 else 414 data_src.mem_lvl |= PERF_MEM_LVL_HIT; 415 } 416 417 if (record->type & ARM_SPE_REMOTE_ACCESS) 418 data_src.mem_lvl |= PERF_MEM_LVL_REM_CCE1; 419 420 if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) { 421 data_src.mem_dtlb = PERF_MEM_TLB_WK; 422 423 if (record->type & ARM_SPE_TLB_MISS) 424 data_src.mem_dtlb |= PERF_MEM_TLB_MISS; 425 else 426 data_src.mem_dtlb |= PERF_MEM_TLB_HIT; 427 } 428 429 return data_src.val; 430 } 431 432 static int arm_spe_sample(struct arm_spe_queue *speq) 433 { 434 const struct arm_spe_record *record = &speq->decoder->record; 435 struct arm_spe *spe = speq->spe; 436 u64 data_src; 437 int err; 438 439 data_src = arm_spe__synth_data_source(record); 440 441 if (spe->sample_flc) { 442 if (record->type & ARM_SPE_L1D_MISS) { 443 err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id, 444 data_src); 445 if (err) 446 return err; 447 } 448 449 if (record->type & ARM_SPE_L1D_ACCESS) { 450 err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id, 451 data_src); 452 if (err) 453 return err; 454 } 455 } 456 457 if (spe->sample_llc) { 458 if (record->type & ARM_SPE_LLC_MISS) { 459 err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id, 460 data_src); 461 if (err) 462 return err; 463 } 464 465 if (record->type & ARM_SPE_LLC_ACCESS) { 466 err = arm_spe__synth_mem_sample(speq, spe->llc_access_id, 467 data_src); 468 if (err) 469 return err; 470 } 471 } 472 473 if (spe->sample_tlb) { 474 if (record->type & ARM_SPE_TLB_MISS) { 475 err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id, 476 data_src); 477 if (err) 478 return err; 479 } 480 481 if (record->type & ARM_SPE_TLB_ACCESS) { 482 err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id, 483 data_src); 484 if (err) 485 return err; 486 } 487 } 488 489 if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) { 490 err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id); 491 if (err) 492 return err; 493 } 494 495 if (spe->sample_remote_access && 496 (record->type & ARM_SPE_REMOTE_ACCESS)) { 497 err = arm_spe__synth_mem_sample(speq, spe->remote_access_id, 498 data_src); 499 if (err) 500 return err; 501 } 502 503 /* 504 * When data_src is zero it means the record is not a memory operation, 505 * skip to synthesize memory sample for this case. 506 */ 507 if (spe->sample_memory && data_src) { 508 err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src); 509 if (err) 510 return err; 511 } 512 513 if (spe->sample_instructions) { 514 err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src); 515 if (err) 516 return err; 517 } 518 519 return 0; 520 } 521 522 static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp) 523 { 524 struct arm_spe *spe = speq->spe; 525 struct arm_spe_record *record; 526 int ret; 527 528 if (!spe->kernel_start) 529 spe->kernel_start = machine__kernel_start(spe->machine); 530 531 while (1) { 532 /* 533 * The usual logic is firstly to decode the packets, and then 534 * based the record to synthesize sample; but here the flow is 535 * reversed: it calls arm_spe_sample() for synthesizing samples 536 * prior to arm_spe_decode(). 537 * 538 * Two reasons for this code logic: 539 * 1. Firstly, when setup queue in arm_spe__setup_queue(), it 540 * has decoded trace data and generated a record, but the record 541 * is left to generate sample until run to here, so it's correct 542 * to synthesize sample for the left record. 543 * 2. After decoding trace data, it needs to compare the record 544 * timestamp with the coming perf event, if the record timestamp 545 * is later than the perf event, it needs bail out and pushs the 546 * record into auxtrace heap, thus the record can be deferred to 547 * synthesize sample until run to here at the next time; so this 548 * can correlate samples between Arm SPE trace data and other 549 * perf events with correct time ordering. 550 */ 551 552 /* 553 * Update pid/tid info. 554 */ 555 record = &speq->decoder->record; 556 if (!spe->timeless_decoding && record->context_id != (u64)-1) { 557 ret = arm_spe_set_tid(speq, record->context_id); 558 if (ret) 559 return ret; 560 561 spe->use_ctx_pkt_for_pid = true; 562 } 563 564 ret = arm_spe_sample(speq); 565 if (ret) 566 return ret; 567 568 ret = arm_spe_decode(speq->decoder); 569 if (!ret) { 570 pr_debug("No data or all data has been processed.\n"); 571 return 1; 572 } 573 574 /* 575 * Error is detected when decode SPE trace data, continue to 576 * the next trace data and find out more records. 577 */ 578 if (ret < 0) 579 continue; 580 581 record = &speq->decoder->record; 582 583 /* Update timestamp for the last record */ 584 if (record->timestamp > speq->timestamp) 585 speq->timestamp = record->timestamp; 586 587 /* 588 * If the timestamp of the queue is later than timestamp of the 589 * coming perf event, bail out so can allow the perf event to 590 * be processed ahead. 591 */ 592 if (!spe->timeless_decoding && speq->timestamp >= *timestamp) { 593 *timestamp = speq->timestamp; 594 return 0; 595 } 596 } 597 598 return 0; 599 } 600 601 static int arm_spe__setup_queue(struct arm_spe *spe, 602 struct auxtrace_queue *queue, 603 unsigned int queue_nr) 604 { 605 struct arm_spe_queue *speq = queue->priv; 606 struct arm_spe_record *record; 607 608 if (list_empty(&queue->head) || speq) 609 return 0; 610 611 speq = arm_spe__alloc_queue(spe, queue_nr); 612 613 if (!speq) 614 return -ENOMEM; 615 616 queue->priv = speq; 617 618 if (queue->cpu != -1) 619 speq->cpu = queue->cpu; 620 621 if (!speq->on_heap) { 622 int ret; 623 624 if (spe->timeless_decoding) 625 return 0; 626 627 retry: 628 ret = arm_spe_decode(speq->decoder); 629 630 if (!ret) 631 return 0; 632 633 if (ret < 0) 634 goto retry; 635 636 record = &speq->decoder->record; 637 638 speq->timestamp = record->timestamp; 639 ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp); 640 if (ret) 641 return ret; 642 speq->on_heap = true; 643 } 644 645 return 0; 646 } 647 648 static int arm_spe__setup_queues(struct arm_spe *spe) 649 { 650 unsigned int i; 651 int ret; 652 653 for (i = 0; i < spe->queues.nr_queues; i++) { 654 ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i); 655 if (ret) 656 return ret; 657 } 658 659 return 0; 660 } 661 662 static int arm_spe__update_queues(struct arm_spe *spe) 663 { 664 if (spe->queues.new_data) { 665 spe->queues.new_data = false; 666 return arm_spe__setup_queues(spe); 667 } 668 669 return 0; 670 } 671 672 static bool arm_spe__is_timeless_decoding(struct arm_spe *spe) 673 { 674 struct evsel *evsel; 675 struct evlist *evlist = spe->session->evlist; 676 bool timeless_decoding = true; 677 678 /* 679 * Circle through the list of event and complain if we find one 680 * with the time bit set. 681 */ 682 evlist__for_each_entry(evlist, evsel) { 683 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 684 timeless_decoding = false; 685 } 686 687 return timeless_decoding; 688 } 689 690 static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp) 691 { 692 unsigned int queue_nr; 693 u64 ts; 694 int ret; 695 696 while (1) { 697 struct auxtrace_queue *queue; 698 struct arm_spe_queue *speq; 699 700 if (!spe->heap.heap_cnt) 701 return 0; 702 703 if (spe->heap.heap_array[0].ordinal >= timestamp) 704 return 0; 705 706 queue_nr = spe->heap.heap_array[0].queue_nr; 707 queue = &spe->queues.queue_array[queue_nr]; 708 speq = queue->priv; 709 710 auxtrace_heap__pop(&spe->heap); 711 712 if (spe->heap.heap_cnt) { 713 ts = spe->heap.heap_array[0].ordinal + 1; 714 if (ts > timestamp) 715 ts = timestamp; 716 } else { 717 ts = timestamp; 718 } 719 720 /* 721 * A previous context-switch event has set pid/tid in the machine's context, so 722 * here we need to update the pid/tid in the thread and SPE queue. 723 */ 724 if (!spe->use_ctx_pkt_for_pid) 725 arm_spe_set_pid_tid_cpu(spe, queue); 726 727 ret = arm_spe_run_decoder(speq, &ts); 728 if (ret < 0) { 729 auxtrace_heap__add(&spe->heap, queue_nr, ts); 730 return ret; 731 } 732 733 if (!ret) { 734 ret = auxtrace_heap__add(&spe->heap, queue_nr, ts); 735 if (ret < 0) 736 return ret; 737 } else { 738 speq->on_heap = false; 739 } 740 } 741 742 return 0; 743 } 744 745 static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid, 746 u64 time_) 747 { 748 struct auxtrace_queues *queues = &spe->queues; 749 unsigned int i; 750 u64 ts = 0; 751 752 for (i = 0; i < queues->nr_queues; i++) { 753 struct auxtrace_queue *queue = &spe->queues.queue_array[i]; 754 struct arm_spe_queue *speq = queue->priv; 755 756 if (speq && (tid == -1 || speq->tid == tid)) { 757 speq->time = time_; 758 arm_spe_set_pid_tid_cpu(spe, queue); 759 arm_spe_run_decoder(speq, &ts); 760 } 761 } 762 return 0; 763 } 764 765 static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event, 766 struct perf_sample *sample) 767 { 768 pid_t pid, tid; 769 int cpu; 770 771 if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT)) 772 return 0; 773 774 pid = event->context_switch.next_prev_pid; 775 tid = event->context_switch.next_prev_tid; 776 cpu = sample->cpu; 777 778 if (tid == -1) 779 pr_warning("context_switch event has no tid\n"); 780 781 return machine__set_current_tid(spe->machine, cpu, pid, tid); 782 } 783 784 static int arm_spe_process_event(struct perf_session *session, 785 union perf_event *event, 786 struct perf_sample *sample, 787 struct perf_tool *tool) 788 { 789 int err = 0; 790 u64 timestamp; 791 struct arm_spe *spe = container_of(session->auxtrace, 792 struct arm_spe, auxtrace); 793 794 if (dump_trace) 795 return 0; 796 797 if (!tool->ordered_events) { 798 pr_err("SPE trace requires ordered events\n"); 799 return -EINVAL; 800 } 801 802 if (sample->time && (sample->time != (u64) -1)) 803 timestamp = perf_time_to_tsc(sample->time, &spe->tc); 804 else 805 timestamp = 0; 806 807 if (timestamp || spe->timeless_decoding) { 808 err = arm_spe__update_queues(spe); 809 if (err) 810 return err; 811 } 812 813 if (spe->timeless_decoding) { 814 if (event->header.type == PERF_RECORD_EXIT) { 815 err = arm_spe_process_timeless_queues(spe, 816 event->fork.tid, 817 sample->time); 818 } 819 } else if (timestamp) { 820 err = arm_spe_process_queues(spe, timestamp); 821 if (err) 822 return err; 823 824 if (!spe->use_ctx_pkt_for_pid && 825 (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE || 826 event->header.type == PERF_RECORD_SWITCH)) 827 err = arm_spe_context_switch(spe, event, sample); 828 } 829 830 return err; 831 } 832 833 static int arm_spe_process_auxtrace_event(struct perf_session *session, 834 union perf_event *event, 835 struct perf_tool *tool __maybe_unused) 836 { 837 struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, 838 auxtrace); 839 840 if (!spe->data_queued) { 841 struct auxtrace_buffer *buffer; 842 off_t data_offset; 843 int fd = perf_data__fd(session->data); 844 int err; 845 846 if (perf_data__is_pipe(session->data)) { 847 data_offset = 0; 848 } else { 849 data_offset = lseek(fd, 0, SEEK_CUR); 850 if (data_offset == -1) 851 return -errno; 852 } 853 854 err = auxtrace_queues__add_event(&spe->queues, session, event, 855 data_offset, &buffer); 856 if (err) 857 return err; 858 859 /* Dump here now we have copied a piped trace out of the pipe */ 860 if (dump_trace) { 861 if (auxtrace_buffer__get_data(buffer, fd)) { 862 arm_spe_dump_event(spe, buffer->data, 863 buffer->size); 864 auxtrace_buffer__put_data(buffer); 865 } 866 } 867 } 868 869 return 0; 870 } 871 872 static int arm_spe_flush(struct perf_session *session __maybe_unused, 873 struct perf_tool *tool __maybe_unused) 874 { 875 struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, 876 auxtrace); 877 int ret; 878 879 if (dump_trace) 880 return 0; 881 882 if (!tool->ordered_events) 883 return -EINVAL; 884 885 ret = arm_spe__update_queues(spe); 886 if (ret < 0) 887 return ret; 888 889 if (spe->timeless_decoding) 890 return arm_spe_process_timeless_queues(spe, -1, 891 MAX_TIMESTAMP - 1); 892 893 ret = arm_spe_process_queues(spe, MAX_TIMESTAMP); 894 if (ret) 895 return ret; 896 897 if (!spe->use_ctx_pkt_for_pid) 898 ui__warning("Arm SPE CONTEXT packets not found in the traces.\n" 899 "Matching of TIDs to SPE events could be inaccurate.\n"); 900 901 return 0; 902 } 903 904 static void arm_spe_free_queue(void *priv) 905 { 906 struct arm_spe_queue *speq = priv; 907 908 if (!speq) 909 return; 910 thread__zput(speq->thread); 911 arm_spe_decoder_free(speq->decoder); 912 zfree(&speq->event_buf); 913 free(speq); 914 } 915 916 static void arm_spe_free_events(struct perf_session *session) 917 { 918 struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, 919 auxtrace); 920 struct auxtrace_queues *queues = &spe->queues; 921 unsigned int i; 922 923 for (i = 0; i < queues->nr_queues; i++) { 924 arm_spe_free_queue(queues->queue_array[i].priv); 925 queues->queue_array[i].priv = NULL; 926 } 927 auxtrace_queues__free(queues); 928 } 929 930 static void arm_spe_free(struct perf_session *session) 931 { 932 struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, 933 auxtrace); 934 935 auxtrace_heap__free(&spe->heap); 936 arm_spe_free_events(session); 937 session->auxtrace = NULL; 938 free(spe); 939 } 940 941 static bool arm_spe_evsel_is_auxtrace(struct perf_session *session, 942 struct evsel *evsel) 943 { 944 struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace); 945 946 return evsel->core.attr.type == spe->pmu_type; 947 } 948 949 static const char * const arm_spe_info_fmts[] = { 950 [ARM_SPE_PMU_TYPE] = " PMU Type %"PRId64"\n", 951 }; 952 953 static void arm_spe_print_info(__u64 *arr) 954 { 955 if (!dump_trace) 956 return; 957 958 fprintf(stdout, arm_spe_info_fmts[ARM_SPE_PMU_TYPE], arr[ARM_SPE_PMU_TYPE]); 959 } 960 961 struct arm_spe_synth { 962 struct perf_tool dummy_tool; 963 struct perf_session *session; 964 }; 965 966 static int arm_spe_event_synth(struct perf_tool *tool, 967 union perf_event *event, 968 struct perf_sample *sample __maybe_unused, 969 struct machine *machine __maybe_unused) 970 { 971 struct arm_spe_synth *arm_spe_synth = 972 container_of(tool, struct arm_spe_synth, dummy_tool); 973 974 return perf_session__deliver_synth_event(arm_spe_synth->session, 975 event, NULL); 976 } 977 978 static int arm_spe_synth_event(struct perf_session *session, 979 struct perf_event_attr *attr, u64 id) 980 { 981 struct arm_spe_synth arm_spe_synth; 982 983 memset(&arm_spe_synth, 0, sizeof(struct arm_spe_synth)); 984 arm_spe_synth.session = session; 985 986 return perf_event__synthesize_attr(&arm_spe_synth.dummy_tool, attr, 1, 987 &id, arm_spe_event_synth); 988 } 989 990 static void arm_spe_set_event_name(struct evlist *evlist, u64 id, 991 const char *name) 992 { 993 struct evsel *evsel; 994 995 evlist__for_each_entry(evlist, evsel) { 996 if (evsel->core.id && evsel->core.id[0] == id) { 997 if (evsel->name) 998 zfree(&evsel->name); 999 evsel->name = strdup(name); 1000 break; 1001 } 1002 } 1003 } 1004 1005 static int 1006 arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session) 1007 { 1008 struct evlist *evlist = session->evlist; 1009 struct evsel *evsel; 1010 struct perf_event_attr attr; 1011 bool found = false; 1012 u64 id; 1013 int err; 1014 1015 evlist__for_each_entry(evlist, evsel) { 1016 if (evsel->core.attr.type == spe->pmu_type) { 1017 found = true; 1018 break; 1019 } 1020 } 1021 1022 if (!found) { 1023 pr_debug("No selected events with SPE trace data\n"); 1024 return 0; 1025 } 1026 1027 memset(&attr, 0, sizeof(struct perf_event_attr)); 1028 attr.size = sizeof(struct perf_event_attr); 1029 attr.type = PERF_TYPE_HARDWARE; 1030 attr.sample_type = evsel->core.attr.sample_type & 1031 (PERF_SAMPLE_MASK | PERF_SAMPLE_PHYS_ADDR); 1032 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1033 PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC | 1034 PERF_SAMPLE_WEIGHT | PERF_SAMPLE_ADDR; 1035 if (spe->timeless_decoding) 1036 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1037 else 1038 attr.sample_type |= PERF_SAMPLE_TIME; 1039 1040 spe->sample_type = attr.sample_type; 1041 1042 attr.exclude_user = evsel->core.attr.exclude_user; 1043 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1044 attr.exclude_hv = evsel->core.attr.exclude_hv; 1045 attr.exclude_host = evsel->core.attr.exclude_host; 1046 attr.exclude_guest = evsel->core.attr.exclude_guest; 1047 attr.sample_id_all = evsel->core.attr.sample_id_all; 1048 attr.read_format = evsel->core.attr.read_format; 1049 1050 /* create new id val to be a fixed offset from evsel id */ 1051 id = evsel->core.id[0] + 1000000000; 1052 1053 if (!id) 1054 id = 1; 1055 1056 if (spe->synth_opts.flc) { 1057 spe->sample_flc = true; 1058 1059 /* Level 1 data cache miss */ 1060 err = arm_spe_synth_event(session, &attr, id); 1061 if (err) 1062 return err; 1063 spe->l1d_miss_id = id; 1064 arm_spe_set_event_name(evlist, id, "l1d-miss"); 1065 id += 1; 1066 1067 /* Level 1 data cache access */ 1068 err = arm_spe_synth_event(session, &attr, id); 1069 if (err) 1070 return err; 1071 spe->l1d_access_id = id; 1072 arm_spe_set_event_name(evlist, id, "l1d-access"); 1073 id += 1; 1074 } 1075 1076 if (spe->synth_opts.llc) { 1077 spe->sample_llc = true; 1078 1079 /* Last level cache miss */ 1080 err = arm_spe_synth_event(session, &attr, id); 1081 if (err) 1082 return err; 1083 spe->llc_miss_id = id; 1084 arm_spe_set_event_name(evlist, id, "llc-miss"); 1085 id += 1; 1086 1087 /* Last level cache access */ 1088 err = arm_spe_synth_event(session, &attr, id); 1089 if (err) 1090 return err; 1091 spe->llc_access_id = id; 1092 arm_spe_set_event_name(evlist, id, "llc-access"); 1093 id += 1; 1094 } 1095 1096 if (spe->synth_opts.tlb) { 1097 spe->sample_tlb = true; 1098 1099 /* TLB miss */ 1100 err = arm_spe_synth_event(session, &attr, id); 1101 if (err) 1102 return err; 1103 spe->tlb_miss_id = id; 1104 arm_spe_set_event_name(evlist, id, "tlb-miss"); 1105 id += 1; 1106 1107 /* TLB access */ 1108 err = arm_spe_synth_event(session, &attr, id); 1109 if (err) 1110 return err; 1111 spe->tlb_access_id = id; 1112 arm_spe_set_event_name(evlist, id, "tlb-access"); 1113 id += 1; 1114 } 1115 1116 if (spe->synth_opts.branches) { 1117 spe->sample_branch = true; 1118 1119 /* Branch miss */ 1120 err = arm_spe_synth_event(session, &attr, id); 1121 if (err) 1122 return err; 1123 spe->branch_miss_id = id; 1124 arm_spe_set_event_name(evlist, id, "branch-miss"); 1125 id += 1; 1126 } 1127 1128 if (spe->synth_opts.remote_access) { 1129 spe->sample_remote_access = true; 1130 1131 /* Remote access */ 1132 err = arm_spe_synth_event(session, &attr, id); 1133 if (err) 1134 return err; 1135 spe->remote_access_id = id; 1136 arm_spe_set_event_name(evlist, id, "remote-access"); 1137 id += 1; 1138 } 1139 1140 if (spe->synth_opts.mem) { 1141 spe->sample_memory = true; 1142 1143 err = arm_spe_synth_event(session, &attr, id); 1144 if (err) 1145 return err; 1146 spe->memory_id = id; 1147 arm_spe_set_event_name(evlist, id, "memory"); 1148 id += 1; 1149 } 1150 1151 if (spe->synth_opts.instructions) { 1152 if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) { 1153 pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n"); 1154 goto synth_instructions_out; 1155 } 1156 if (spe->synth_opts.period > 1) 1157 pr_warning("Arm SPE has a hardware-based sample period.\n" 1158 "Additional instruction events will be discarded by --itrace\n"); 1159 1160 spe->sample_instructions = true; 1161 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1162 attr.sample_period = spe->synth_opts.period; 1163 spe->instructions_sample_period = attr.sample_period; 1164 err = arm_spe_synth_event(session, &attr, id); 1165 if (err) 1166 return err; 1167 spe->instructions_id = id; 1168 arm_spe_set_event_name(evlist, id, "instructions"); 1169 } 1170 synth_instructions_out: 1171 1172 return 0; 1173 } 1174 1175 int arm_spe_process_auxtrace_info(union perf_event *event, 1176 struct perf_session *session) 1177 { 1178 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 1179 size_t min_sz = sizeof(u64) * ARM_SPE_AUXTRACE_PRIV_MAX; 1180 struct perf_record_time_conv *tc = &session->time_conv; 1181 struct arm_spe *spe; 1182 int err; 1183 1184 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 1185 min_sz) 1186 return -EINVAL; 1187 1188 spe = zalloc(sizeof(struct arm_spe)); 1189 if (!spe) 1190 return -ENOMEM; 1191 1192 err = auxtrace_queues__init(&spe->queues); 1193 if (err) 1194 goto err_free; 1195 1196 spe->session = session; 1197 spe->machine = &session->machines.host; /* No kvm support */ 1198 spe->auxtrace_type = auxtrace_info->type; 1199 spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE]; 1200 1201 spe->timeless_decoding = arm_spe__is_timeless_decoding(spe); 1202 1203 /* 1204 * The synthesized event PERF_RECORD_TIME_CONV has been handled ahead 1205 * and the parameters for hardware clock are stored in the session 1206 * context. Passes these parameters to the struct perf_tsc_conversion 1207 * in "spe->tc", which is used for later conversion between clock 1208 * counter and timestamp. 1209 * 1210 * For backward compatibility, copies the fields starting from 1211 * "time_cycles" only if they are contained in the event. 1212 */ 1213 spe->tc.time_shift = tc->time_shift; 1214 spe->tc.time_mult = tc->time_mult; 1215 spe->tc.time_zero = tc->time_zero; 1216 1217 if (event_contains(*tc, time_cycles)) { 1218 spe->tc.time_cycles = tc->time_cycles; 1219 spe->tc.time_mask = tc->time_mask; 1220 spe->tc.cap_user_time_zero = tc->cap_user_time_zero; 1221 spe->tc.cap_user_time_short = tc->cap_user_time_short; 1222 } 1223 1224 spe->auxtrace.process_event = arm_spe_process_event; 1225 spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event; 1226 spe->auxtrace.flush_events = arm_spe_flush; 1227 spe->auxtrace.free_events = arm_spe_free_events; 1228 spe->auxtrace.free = arm_spe_free; 1229 spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace; 1230 session->auxtrace = &spe->auxtrace; 1231 1232 arm_spe_print_info(&auxtrace_info->priv[0]); 1233 1234 if (dump_trace) 1235 return 0; 1236 1237 if (session->itrace_synth_opts && session->itrace_synth_opts->set) 1238 spe->synth_opts = *session->itrace_synth_opts; 1239 else 1240 itrace_synth_opts__set_default(&spe->synth_opts, false); 1241 1242 err = arm_spe_synth_events(spe, session); 1243 if (err) 1244 goto err_free_queues; 1245 1246 err = auxtrace_queues__process_index(&spe->queues, session); 1247 if (err) 1248 goto err_free_queues; 1249 1250 if (spe->queues.populated) 1251 spe->data_queued = true; 1252 1253 return 0; 1254 1255 err_free_queues: 1256 auxtrace_queues__free(&spe->queues); 1257 session->auxtrace = NULL; 1258 err_free: 1259 free(spe); 1260 return err; 1261 } 1262