xref: /openbmc/linux/tools/perf/util/arm-spe.c (revision be801411)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arm Statistical Profiling Extensions (SPE) support
4  * Copyright (c) 2017-2018, Arm Ltd.
5  */
6 
7 #include <byteswap.h>
8 #include <endian.h>
9 #include <errno.h>
10 #include <inttypes.h>
11 #include <linux/bitops.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 #include <stdlib.h>
17 #include <unistd.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "debug.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "machine.h"
25 #include "session.h"
26 #include "symbol.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "tsc.h"
30 #include "tool.h"
31 #include "util/synthetic-events.h"
32 
33 #include "arm-spe.h"
34 #include "arm-spe-decoder/arm-spe-decoder.h"
35 #include "arm-spe-decoder/arm-spe-pkt-decoder.h"
36 
37 #define MAX_TIMESTAMP (~0ULL)
38 
39 struct arm_spe {
40 	struct auxtrace			auxtrace;
41 	struct auxtrace_queues		queues;
42 	struct auxtrace_heap		heap;
43 	struct itrace_synth_opts        synth_opts;
44 	u32				auxtrace_type;
45 	struct perf_session		*session;
46 	struct machine			*machine;
47 	u32				pmu_type;
48 
49 	struct perf_tsc_conversion	tc;
50 
51 	u8				timeless_decoding;
52 	u8				data_queued;
53 
54 	u64				sample_type;
55 	u8				sample_flc;
56 	u8				sample_llc;
57 	u8				sample_tlb;
58 	u8				sample_branch;
59 	u8				sample_remote_access;
60 	u8				sample_memory;
61 	u8				sample_instructions;
62 	u64				instructions_sample_period;
63 
64 	u64				l1d_miss_id;
65 	u64				l1d_access_id;
66 	u64				llc_miss_id;
67 	u64				llc_access_id;
68 	u64				tlb_miss_id;
69 	u64				tlb_access_id;
70 	u64				branch_miss_id;
71 	u64				remote_access_id;
72 	u64				memory_id;
73 	u64				instructions_id;
74 
75 	u64				kernel_start;
76 
77 	unsigned long			num_events;
78 	u8				use_ctx_pkt_for_pid;
79 };
80 
81 struct arm_spe_queue {
82 	struct arm_spe			*spe;
83 	unsigned int			queue_nr;
84 	struct auxtrace_buffer		*buffer;
85 	struct auxtrace_buffer		*old_buffer;
86 	union perf_event		*event_buf;
87 	bool				on_heap;
88 	bool				done;
89 	pid_t				pid;
90 	pid_t				tid;
91 	int				cpu;
92 	struct arm_spe_decoder		*decoder;
93 	u64				time;
94 	u64				timestamp;
95 	struct thread			*thread;
96 	u64				period_instructions;
97 };
98 
99 static void arm_spe_dump(struct arm_spe *spe __maybe_unused,
100 			 unsigned char *buf, size_t len)
101 {
102 	struct arm_spe_pkt packet;
103 	size_t pos = 0;
104 	int ret, pkt_len, i;
105 	char desc[ARM_SPE_PKT_DESC_MAX];
106 	const char *color = PERF_COLOR_BLUE;
107 
108 	color_fprintf(stdout, color,
109 		      ". ... ARM SPE data: size %#zx bytes\n",
110 		      len);
111 
112 	while (len) {
113 		ret = arm_spe_get_packet(buf, len, &packet);
114 		if (ret > 0)
115 			pkt_len = ret;
116 		else
117 			pkt_len = 1;
118 		printf(".");
119 		color_fprintf(stdout, color, "  %08x: ", pos);
120 		for (i = 0; i < pkt_len; i++)
121 			color_fprintf(stdout, color, " %02x", buf[i]);
122 		for (; i < 16; i++)
123 			color_fprintf(stdout, color, "   ");
124 		if (ret > 0) {
125 			ret = arm_spe_pkt_desc(&packet, desc,
126 					       ARM_SPE_PKT_DESC_MAX);
127 			if (!ret)
128 				color_fprintf(stdout, color, " %s\n", desc);
129 		} else {
130 			color_fprintf(stdout, color, " Bad packet!\n");
131 		}
132 		pos += pkt_len;
133 		buf += pkt_len;
134 		len -= pkt_len;
135 	}
136 }
137 
138 static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf,
139 			       size_t len)
140 {
141 	printf(".\n");
142 	arm_spe_dump(spe, buf, len);
143 }
144 
145 static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data)
146 {
147 	struct arm_spe_queue *speq = data;
148 	struct auxtrace_buffer *buffer = speq->buffer;
149 	struct auxtrace_buffer *old_buffer = speq->old_buffer;
150 	struct auxtrace_queue *queue;
151 
152 	queue = &speq->spe->queues.queue_array[speq->queue_nr];
153 
154 	buffer = auxtrace_buffer__next(queue, buffer);
155 	/* If no more data, drop the previous auxtrace_buffer and return */
156 	if (!buffer) {
157 		if (old_buffer)
158 			auxtrace_buffer__drop_data(old_buffer);
159 		b->len = 0;
160 		return 0;
161 	}
162 
163 	speq->buffer = buffer;
164 
165 	/* If the aux_buffer doesn't have data associated, try to load it */
166 	if (!buffer->data) {
167 		/* get the file desc associated with the perf data file */
168 		int fd = perf_data__fd(speq->spe->session->data);
169 
170 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
171 		if (!buffer->data)
172 			return -ENOMEM;
173 	}
174 
175 	b->len = buffer->size;
176 	b->buf = buffer->data;
177 
178 	if (b->len) {
179 		if (old_buffer)
180 			auxtrace_buffer__drop_data(old_buffer);
181 		speq->old_buffer = buffer;
182 	} else {
183 		auxtrace_buffer__drop_data(buffer);
184 		return arm_spe_get_trace(b, data);
185 	}
186 
187 	return 0;
188 }
189 
190 static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe,
191 		unsigned int queue_nr)
192 {
193 	struct arm_spe_params params = { .get_trace = 0, };
194 	struct arm_spe_queue *speq;
195 
196 	speq = zalloc(sizeof(*speq));
197 	if (!speq)
198 		return NULL;
199 
200 	speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
201 	if (!speq->event_buf)
202 		goto out_free;
203 
204 	speq->spe = spe;
205 	speq->queue_nr = queue_nr;
206 	speq->pid = -1;
207 	speq->tid = -1;
208 	speq->cpu = -1;
209 	speq->period_instructions = 0;
210 
211 	/* params set */
212 	params.get_trace = arm_spe_get_trace;
213 	params.data = speq;
214 
215 	/* create new decoder */
216 	speq->decoder = arm_spe_decoder_new(&params);
217 	if (!speq->decoder)
218 		goto out_free;
219 
220 	return speq;
221 
222 out_free:
223 	zfree(&speq->event_buf);
224 	free(speq);
225 
226 	return NULL;
227 }
228 
229 static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip)
230 {
231 	return ip >= spe->kernel_start ?
232 		PERF_RECORD_MISC_KERNEL :
233 		PERF_RECORD_MISC_USER;
234 }
235 
236 static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe,
237 				    struct auxtrace_queue *queue)
238 {
239 	struct arm_spe_queue *speq = queue->priv;
240 	pid_t tid;
241 
242 	tid = machine__get_current_tid(spe->machine, speq->cpu);
243 	if (tid != -1) {
244 		speq->tid = tid;
245 		thread__zput(speq->thread);
246 	} else
247 		speq->tid = queue->tid;
248 
249 	if ((!speq->thread) && (speq->tid != -1)) {
250 		speq->thread = machine__find_thread(spe->machine, -1,
251 						    speq->tid);
252 	}
253 
254 	if (speq->thread) {
255 		speq->pid = speq->thread->pid_;
256 		if (queue->cpu == -1)
257 			speq->cpu = speq->thread->cpu;
258 	}
259 }
260 
261 static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid)
262 {
263 	struct arm_spe *spe = speq->spe;
264 	int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid);
265 
266 	if (err)
267 		return err;
268 
269 	arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]);
270 
271 	return 0;
272 }
273 
274 static void arm_spe_prep_sample(struct arm_spe *spe,
275 				struct arm_spe_queue *speq,
276 				union perf_event *event,
277 				struct perf_sample *sample)
278 {
279 	struct arm_spe_record *record = &speq->decoder->record;
280 
281 	if (!spe->timeless_decoding)
282 		sample->time = tsc_to_perf_time(record->timestamp, &spe->tc);
283 
284 	sample->ip = record->from_ip;
285 	sample->cpumode = arm_spe_cpumode(spe, sample->ip);
286 	sample->pid = speq->pid;
287 	sample->tid = speq->tid;
288 	sample->period = 1;
289 	sample->cpu = speq->cpu;
290 
291 	event->sample.header.type = PERF_RECORD_SAMPLE;
292 	event->sample.header.misc = sample->cpumode;
293 	event->sample.header.size = sizeof(struct perf_event_header);
294 }
295 
296 static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type)
297 {
298 	event->header.size = perf_event__sample_event_size(sample, type, 0);
299 	return perf_event__synthesize_sample(event, type, 0, sample);
300 }
301 
302 static inline int
303 arm_spe_deliver_synth_event(struct arm_spe *spe,
304 			    struct arm_spe_queue *speq __maybe_unused,
305 			    union perf_event *event,
306 			    struct perf_sample *sample)
307 {
308 	int ret;
309 
310 	if (spe->synth_opts.inject) {
311 		ret = arm_spe__inject_event(event, sample, spe->sample_type);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	ret = perf_session__deliver_synth_event(spe->session, event, sample);
317 	if (ret)
318 		pr_err("ARM SPE: failed to deliver event, error %d\n", ret);
319 
320 	return ret;
321 }
322 
323 static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq,
324 				     u64 spe_events_id, u64 data_src)
325 {
326 	struct arm_spe *spe = speq->spe;
327 	struct arm_spe_record *record = &speq->decoder->record;
328 	union perf_event *event = speq->event_buf;
329 	struct perf_sample sample = { .ip = 0, };
330 
331 	arm_spe_prep_sample(spe, speq, event, &sample);
332 
333 	sample.id = spe_events_id;
334 	sample.stream_id = spe_events_id;
335 	sample.addr = record->virt_addr;
336 	sample.phys_addr = record->phys_addr;
337 	sample.data_src = data_src;
338 	sample.weight = record->latency;
339 
340 	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
341 }
342 
343 static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq,
344 					u64 spe_events_id)
345 {
346 	struct arm_spe *spe = speq->spe;
347 	struct arm_spe_record *record = &speq->decoder->record;
348 	union perf_event *event = speq->event_buf;
349 	struct perf_sample sample = { .ip = 0, };
350 
351 	arm_spe_prep_sample(spe, speq, event, &sample);
352 
353 	sample.id = spe_events_id;
354 	sample.stream_id = spe_events_id;
355 	sample.addr = record->to_ip;
356 	sample.weight = record->latency;
357 
358 	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
359 }
360 
361 static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq,
362 					     u64 spe_events_id, u64 data_src)
363 {
364 	struct arm_spe *spe = speq->spe;
365 	struct arm_spe_record *record = &speq->decoder->record;
366 	union perf_event *event = speq->event_buf;
367 	struct perf_sample sample = { .ip = 0, };
368 
369 	/*
370 	 * Handles perf instruction sampling period.
371 	 */
372 	speq->period_instructions++;
373 	if (speq->period_instructions < spe->instructions_sample_period)
374 		return 0;
375 	speq->period_instructions = 0;
376 
377 	arm_spe_prep_sample(spe, speq, event, &sample);
378 
379 	sample.id = spe_events_id;
380 	sample.stream_id = spe_events_id;
381 	sample.addr = record->virt_addr;
382 	sample.phys_addr = record->phys_addr;
383 	sample.data_src = data_src;
384 	sample.period = spe->instructions_sample_period;
385 	sample.weight = record->latency;
386 
387 	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
388 }
389 
390 static u64 arm_spe__synth_data_source(const struct arm_spe_record *record)
391 {
392 	union perf_mem_data_src	data_src = { 0 };
393 
394 	if (record->op == ARM_SPE_LD)
395 		data_src.mem_op = PERF_MEM_OP_LOAD;
396 	else if (record->op == ARM_SPE_ST)
397 		data_src.mem_op = PERF_MEM_OP_STORE;
398 	else
399 		return 0;
400 
401 	if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) {
402 		data_src.mem_lvl = PERF_MEM_LVL_L3;
403 
404 		if (record->type & ARM_SPE_LLC_MISS)
405 			data_src.mem_lvl |= PERF_MEM_LVL_MISS;
406 		else
407 			data_src.mem_lvl |= PERF_MEM_LVL_HIT;
408 	} else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) {
409 		data_src.mem_lvl = PERF_MEM_LVL_L1;
410 
411 		if (record->type & ARM_SPE_L1D_MISS)
412 			data_src.mem_lvl |= PERF_MEM_LVL_MISS;
413 		else
414 			data_src.mem_lvl |= PERF_MEM_LVL_HIT;
415 	}
416 
417 	if (record->type & ARM_SPE_REMOTE_ACCESS)
418 		data_src.mem_lvl |= PERF_MEM_LVL_REM_CCE1;
419 
420 	if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) {
421 		data_src.mem_dtlb = PERF_MEM_TLB_WK;
422 
423 		if (record->type & ARM_SPE_TLB_MISS)
424 			data_src.mem_dtlb |= PERF_MEM_TLB_MISS;
425 		else
426 			data_src.mem_dtlb |= PERF_MEM_TLB_HIT;
427 	}
428 
429 	return data_src.val;
430 }
431 
432 static int arm_spe_sample(struct arm_spe_queue *speq)
433 {
434 	const struct arm_spe_record *record = &speq->decoder->record;
435 	struct arm_spe *spe = speq->spe;
436 	u64 data_src;
437 	int err;
438 
439 	data_src = arm_spe__synth_data_source(record);
440 
441 	if (spe->sample_flc) {
442 		if (record->type & ARM_SPE_L1D_MISS) {
443 			err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id,
444 							data_src);
445 			if (err)
446 				return err;
447 		}
448 
449 		if (record->type & ARM_SPE_L1D_ACCESS) {
450 			err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id,
451 							data_src);
452 			if (err)
453 				return err;
454 		}
455 	}
456 
457 	if (spe->sample_llc) {
458 		if (record->type & ARM_SPE_LLC_MISS) {
459 			err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id,
460 							data_src);
461 			if (err)
462 				return err;
463 		}
464 
465 		if (record->type & ARM_SPE_LLC_ACCESS) {
466 			err = arm_spe__synth_mem_sample(speq, spe->llc_access_id,
467 							data_src);
468 			if (err)
469 				return err;
470 		}
471 	}
472 
473 	if (spe->sample_tlb) {
474 		if (record->type & ARM_SPE_TLB_MISS) {
475 			err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id,
476 							data_src);
477 			if (err)
478 				return err;
479 		}
480 
481 		if (record->type & ARM_SPE_TLB_ACCESS) {
482 			err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id,
483 							data_src);
484 			if (err)
485 				return err;
486 		}
487 	}
488 
489 	if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) {
490 		err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id);
491 		if (err)
492 			return err;
493 	}
494 
495 	if (spe->sample_remote_access &&
496 	    (record->type & ARM_SPE_REMOTE_ACCESS)) {
497 		err = arm_spe__synth_mem_sample(speq, spe->remote_access_id,
498 						data_src);
499 		if (err)
500 			return err;
501 	}
502 
503 	/*
504 	 * When data_src is zero it means the record is not a memory operation,
505 	 * skip to synthesize memory sample for this case.
506 	 */
507 	if (spe->sample_memory && data_src) {
508 		err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src);
509 		if (err)
510 			return err;
511 	}
512 
513 	if (spe->sample_instructions) {
514 		err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src);
515 		if (err)
516 			return err;
517 	}
518 
519 	return 0;
520 }
521 
522 static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp)
523 {
524 	struct arm_spe *spe = speq->spe;
525 	struct arm_spe_record *record;
526 	int ret;
527 
528 	if (!spe->kernel_start)
529 		spe->kernel_start = machine__kernel_start(spe->machine);
530 
531 	while (1) {
532 		/*
533 		 * The usual logic is firstly to decode the packets, and then
534 		 * based the record to synthesize sample; but here the flow is
535 		 * reversed: it calls arm_spe_sample() for synthesizing samples
536 		 * prior to arm_spe_decode().
537 		 *
538 		 * Two reasons for this code logic:
539 		 * 1. Firstly, when setup queue in arm_spe__setup_queue(), it
540 		 * has decoded trace data and generated a record, but the record
541 		 * is left to generate sample until run to here, so it's correct
542 		 * to synthesize sample for the left record.
543 		 * 2. After decoding trace data, it needs to compare the record
544 		 * timestamp with the coming perf event, if the record timestamp
545 		 * is later than the perf event, it needs bail out and pushs the
546 		 * record into auxtrace heap, thus the record can be deferred to
547 		 * synthesize sample until run to here at the next time; so this
548 		 * can correlate samples between Arm SPE trace data and other
549 		 * perf events with correct time ordering.
550 		 */
551 
552 		/*
553 		 * Update pid/tid info.
554 		 */
555 		record = &speq->decoder->record;
556 		if (!spe->timeless_decoding && record->context_id != (u64)-1) {
557 			ret = arm_spe_set_tid(speq, record->context_id);
558 			if (ret)
559 				return ret;
560 
561 			spe->use_ctx_pkt_for_pid = true;
562 		}
563 
564 		ret = arm_spe_sample(speq);
565 		if (ret)
566 			return ret;
567 
568 		ret = arm_spe_decode(speq->decoder);
569 		if (!ret) {
570 			pr_debug("No data or all data has been processed.\n");
571 			return 1;
572 		}
573 
574 		/*
575 		 * Error is detected when decode SPE trace data, continue to
576 		 * the next trace data and find out more records.
577 		 */
578 		if (ret < 0)
579 			continue;
580 
581 		record = &speq->decoder->record;
582 
583 		/* Update timestamp for the last record */
584 		if (record->timestamp > speq->timestamp)
585 			speq->timestamp = record->timestamp;
586 
587 		/*
588 		 * If the timestamp of the queue is later than timestamp of the
589 		 * coming perf event, bail out so can allow the perf event to
590 		 * be processed ahead.
591 		 */
592 		if (!spe->timeless_decoding && speq->timestamp >= *timestamp) {
593 			*timestamp = speq->timestamp;
594 			return 0;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 static int arm_spe__setup_queue(struct arm_spe *spe,
602 			       struct auxtrace_queue *queue,
603 			       unsigned int queue_nr)
604 {
605 	struct arm_spe_queue *speq = queue->priv;
606 	struct arm_spe_record *record;
607 
608 	if (list_empty(&queue->head) || speq)
609 		return 0;
610 
611 	speq = arm_spe__alloc_queue(spe, queue_nr);
612 
613 	if (!speq)
614 		return -ENOMEM;
615 
616 	queue->priv = speq;
617 
618 	if (queue->cpu != -1)
619 		speq->cpu = queue->cpu;
620 
621 	if (!speq->on_heap) {
622 		int ret;
623 
624 		if (spe->timeless_decoding)
625 			return 0;
626 
627 retry:
628 		ret = arm_spe_decode(speq->decoder);
629 
630 		if (!ret)
631 			return 0;
632 
633 		if (ret < 0)
634 			goto retry;
635 
636 		record = &speq->decoder->record;
637 
638 		speq->timestamp = record->timestamp;
639 		ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp);
640 		if (ret)
641 			return ret;
642 		speq->on_heap = true;
643 	}
644 
645 	return 0;
646 }
647 
648 static int arm_spe__setup_queues(struct arm_spe *spe)
649 {
650 	unsigned int i;
651 	int ret;
652 
653 	for (i = 0; i < spe->queues.nr_queues; i++) {
654 		ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i);
655 		if (ret)
656 			return ret;
657 	}
658 
659 	return 0;
660 }
661 
662 static int arm_spe__update_queues(struct arm_spe *spe)
663 {
664 	if (spe->queues.new_data) {
665 		spe->queues.new_data = false;
666 		return arm_spe__setup_queues(spe);
667 	}
668 
669 	return 0;
670 }
671 
672 static bool arm_spe__is_timeless_decoding(struct arm_spe *spe)
673 {
674 	struct evsel *evsel;
675 	struct evlist *evlist = spe->session->evlist;
676 	bool timeless_decoding = true;
677 
678 	/*
679 	 * Circle through the list of event and complain if we find one
680 	 * with the time bit set.
681 	 */
682 	evlist__for_each_entry(evlist, evsel) {
683 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
684 			timeless_decoding = false;
685 	}
686 
687 	return timeless_decoding;
688 }
689 
690 static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp)
691 {
692 	unsigned int queue_nr;
693 	u64 ts;
694 	int ret;
695 
696 	while (1) {
697 		struct auxtrace_queue *queue;
698 		struct arm_spe_queue *speq;
699 
700 		if (!spe->heap.heap_cnt)
701 			return 0;
702 
703 		if (spe->heap.heap_array[0].ordinal >= timestamp)
704 			return 0;
705 
706 		queue_nr = spe->heap.heap_array[0].queue_nr;
707 		queue = &spe->queues.queue_array[queue_nr];
708 		speq = queue->priv;
709 
710 		auxtrace_heap__pop(&spe->heap);
711 
712 		if (spe->heap.heap_cnt) {
713 			ts = spe->heap.heap_array[0].ordinal + 1;
714 			if (ts > timestamp)
715 				ts = timestamp;
716 		} else {
717 			ts = timestamp;
718 		}
719 
720 		/*
721 		 * A previous context-switch event has set pid/tid in the machine's context, so
722 		 * here we need to update the pid/tid in the thread and SPE queue.
723 		 */
724 		if (!spe->use_ctx_pkt_for_pid)
725 			arm_spe_set_pid_tid_cpu(spe, queue);
726 
727 		ret = arm_spe_run_decoder(speq, &ts);
728 		if (ret < 0) {
729 			auxtrace_heap__add(&spe->heap, queue_nr, ts);
730 			return ret;
731 		}
732 
733 		if (!ret) {
734 			ret = auxtrace_heap__add(&spe->heap, queue_nr, ts);
735 			if (ret < 0)
736 				return ret;
737 		} else {
738 			speq->on_heap = false;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
745 static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid,
746 					    u64 time_)
747 {
748 	struct auxtrace_queues *queues = &spe->queues;
749 	unsigned int i;
750 	u64 ts = 0;
751 
752 	for (i = 0; i < queues->nr_queues; i++) {
753 		struct auxtrace_queue *queue = &spe->queues.queue_array[i];
754 		struct arm_spe_queue *speq = queue->priv;
755 
756 		if (speq && (tid == -1 || speq->tid == tid)) {
757 			speq->time = time_;
758 			arm_spe_set_pid_tid_cpu(spe, queue);
759 			arm_spe_run_decoder(speq, &ts);
760 		}
761 	}
762 	return 0;
763 }
764 
765 static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event,
766 				  struct perf_sample *sample)
767 {
768 	pid_t pid, tid;
769 	int cpu;
770 
771 	if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT))
772 		return 0;
773 
774 	pid = event->context_switch.next_prev_pid;
775 	tid = event->context_switch.next_prev_tid;
776 	cpu = sample->cpu;
777 
778 	if (tid == -1)
779 		pr_warning("context_switch event has no tid\n");
780 
781 	return machine__set_current_tid(spe->machine, cpu, pid, tid);
782 }
783 
784 static int arm_spe_process_event(struct perf_session *session,
785 				 union perf_event *event,
786 				 struct perf_sample *sample,
787 				 struct perf_tool *tool)
788 {
789 	int err = 0;
790 	u64 timestamp;
791 	struct arm_spe *spe = container_of(session->auxtrace,
792 			struct arm_spe, auxtrace);
793 
794 	if (dump_trace)
795 		return 0;
796 
797 	if (!tool->ordered_events) {
798 		pr_err("SPE trace requires ordered events\n");
799 		return -EINVAL;
800 	}
801 
802 	if (sample->time && (sample->time != (u64) -1))
803 		timestamp = perf_time_to_tsc(sample->time, &spe->tc);
804 	else
805 		timestamp = 0;
806 
807 	if (timestamp || spe->timeless_decoding) {
808 		err = arm_spe__update_queues(spe);
809 		if (err)
810 			return err;
811 	}
812 
813 	if (spe->timeless_decoding) {
814 		if (event->header.type == PERF_RECORD_EXIT) {
815 			err = arm_spe_process_timeless_queues(spe,
816 					event->fork.tid,
817 					sample->time);
818 		}
819 	} else if (timestamp) {
820 		err = arm_spe_process_queues(spe, timestamp);
821 		if (err)
822 			return err;
823 
824 		if (!spe->use_ctx_pkt_for_pid &&
825 		    (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE ||
826 		    event->header.type == PERF_RECORD_SWITCH))
827 			err = arm_spe_context_switch(spe, event, sample);
828 	}
829 
830 	return err;
831 }
832 
833 static int arm_spe_process_auxtrace_event(struct perf_session *session,
834 					  union perf_event *event,
835 					  struct perf_tool *tool __maybe_unused)
836 {
837 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
838 					     auxtrace);
839 
840 	if (!spe->data_queued) {
841 		struct auxtrace_buffer *buffer;
842 		off_t data_offset;
843 		int fd = perf_data__fd(session->data);
844 		int err;
845 
846 		if (perf_data__is_pipe(session->data)) {
847 			data_offset = 0;
848 		} else {
849 			data_offset = lseek(fd, 0, SEEK_CUR);
850 			if (data_offset == -1)
851 				return -errno;
852 		}
853 
854 		err = auxtrace_queues__add_event(&spe->queues, session, event,
855 				data_offset, &buffer);
856 		if (err)
857 			return err;
858 
859 		/* Dump here now we have copied a piped trace out of the pipe */
860 		if (dump_trace) {
861 			if (auxtrace_buffer__get_data(buffer, fd)) {
862 				arm_spe_dump_event(spe, buffer->data,
863 						buffer->size);
864 				auxtrace_buffer__put_data(buffer);
865 			}
866 		}
867 	}
868 
869 	return 0;
870 }
871 
872 static int arm_spe_flush(struct perf_session *session __maybe_unused,
873 			 struct perf_tool *tool __maybe_unused)
874 {
875 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
876 			auxtrace);
877 	int ret;
878 
879 	if (dump_trace)
880 		return 0;
881 
882 	if (!tool->ordered_events)
883 		return -EINVAL;
884 
885 	ret = arm_spe__update_queues(spe);
886 	if (ret < 0)
887 		return ret;
888 
889 	if (spe->timeless_decoding)
890 		return arm_spe_process_timeless_queues(spe, -1,
891 				MAX_TIMESTAMP - 1);
892 
893 	ret = arm_spe_process_queues(spe, MAX_TIMESTAMP);
894 	if (ret)
895 		return ret;
896 
897 	if (!spe->use_ctx_pkt_for_pid)
898 		ui__warning("Arm SPE CONTEXT packets not found in the traces.\n"
899 			    "Matching of TIDs to SPE events could be inaccurate.\n");
900 
901 	return 0;
902 }
903 
904 static void arm_spe_free_queue(void *priv)
905 {
906 	struct arm_spe_queue *speq = priv;
907 
908 	if (!speq)
909 		return;
910 	thread__zput(speq->thread);
911 	arm_spe_decoder_free(speq->decoder);
912 	zfree(&speq->event_buf);
913 	free(speq);
914 }
915 
916 static void arm_spe_free_events(struct perf_session *session)
917 {
918 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
919 					     auxtrace);
920 	struct auxtrace_queues *queues = &spe->queues;
921 	unsigned int i;
922 
923 	for (i = 0; i < queues->nr_queues; i++) {
924 		arm_spe_free_queue(queues->queue_array[i].priv);
925 		queues->queue_array[i].priv = NULL;
926 	}
927 	auxtrace_queues__free(queues);
928 }
929 
930 static void arm_spe_free(struct perf_session *session)
931 {
932 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
933 					     auxtrace);
934 
935 	auxtrace_heap__free(&spe->heap);
936 	arm_spe_free_events(session);
937 	session->auxtrace = NULL;
938 	free(spe);
939 }
940 
941 static bool arm_spe_evsel_is_auxtrace(struct perf_session *session,
942 				      struct evsel *evsel)
943 {
944 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace);
945 
946 	return evsel->core.attr.type == spe->pmu_type;
947 }
948 
949 static const char * const arm_spe_info_fmts[] = {
950 	[ARM_SPE_PMU_TYPE]		= "  PMU Type           %"PRId64"\n",
951 };
952 
953 static void arm_spe_print_info(__u64 *arr)
954 {
955 	if (!dump_trace)
956 		return;
957 
958 	fprintf(stdout, arm_spe_info_fmts[ARM_SPE_PMU_TYPE], arr[ARM_SPE_PMU_TYPE]);
959 }
960 
961 struct arm_spe_synth {
962 	struct perf_tool dummy_tool;
963 	struct perf_session *session;
964 };
965 
966 static int arm_spe_event_synth(struct perf_tool *tool,
967 			       union perf_event *event,
968 			       struct perf_sample *sample __maybe_unused,
969 			       struct machine *machine __maybe_unused)
970 {
971 	struct arm_spe_synth *arm_spe_synth =
972 		      container_of(tool, struct arm_spe_synth, dummy_tool);
973 
974 	return perf_session__deliver_synth_event(arm_spe_synth->session,
975 						 event, NULL);
976 }
977 
978 static int arm_spe_synth_event(struct perf_session *session,
979 			       struct perf_event_attr *attr, u64 id)
980 {
981 	struct arm_spe_synth arm_spe_synth;
982 
983 	memset(&arm_spe_synth, 0, sizeof(struct arm_spe_synth));
984 	arm_spe_synth.session = session;
985 
986 	return perf_event__synthesize_attr(&arm_spe_synth.dummy_tool, attr, 1,
987 					   &id, arm_spe_event_synth);
988 }
989 
990 static void arm_spe_set_event_name(struct evlist *evlist, u64 id,
991 				    const char *name)
992 {
993 	struct evsel *evsel;
994 
995 	evlist__for_each_entry(evlist, evsel) {
996 		if (evsel->core.id && evsel->core.id[0] == id) {
997 			if (evsel->name)
998 				zfree(&evsel->name);
999 			evsel->name = strdup(name);
1000 			break;
1001 		}
1002 	}
1003 }
1004 
1005 static int
1006 arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session)
1007 {
1008 	struct evlist *evlist = session->evlist;
1009 	struct evsel *evsel;
1010 	struct perf_event_attr attr;
1011 	bool found = false;
1012 	u64 id;
1013 	int err;
1014 
1015 	evlist__for_each_entry(evlist, evsel) {
1016 		if (evsel->core.attr.type == spe->pmu_type) {
1017 			found = true;
1018 			break;
1019 		}
1020 	}
1021 
1022 	if (!found) {
1023 		pr_debug("No selected events with SPE trace data\n");
1024 		return 0;
1025 	}
1026 
1027 	memset(&attr, 0, sizeof(struct perf_event_attr));
1028 	attr.size = sizeof(struct perf_event_attr);
1029 	attr.type = PERF_TYPE_HARDWARE;
1030 	attr.sample_type = evsel->core.attr.sample_type &
1031 				(PERF_SAMPLE_MASK | PERF_SAMPLE_PHYS_ADDR);
1032 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1033 			    PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC |
1034 			    PERF_SAMPLE_WEIGHT | PERF_SAMPLE_ADDR;
1035 	if (spe->timeless_decoding)
1036 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1037 	else
1038 		attr.sample_type |= PERF_SAMPLE_TIME;
1039 
1040 	spe->sample_type = attr.sample_type;
1041 
1042 	attr.exclude_user = evsel->core.attr.exclude_user;
1043 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1044 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1045 	attr.exclude_host = evsel->core.attr.exclude_host;
1046 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1047 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1048 	attr.read_format = evsel->core.attr.read_format;
1049 
1050 	/* create new id val to be a fixed offset from evsel id */
1051 	id = evsel->core.id[0] + 1000000000;
1052 
1053 	if (!id)
1054 		id = 1;
1055 
1056 	if (spe->synth_opts.flc) {
1057 		spe->sample_flc = true;
1058 
1059 		/* Level 1 data cache miss */
1060 		err = arm_spe_synth_event(session, &attr, id);
1061 		if (err)
1062 			return err;
1063 		spe->l1d_miss_id = id;
1064 		arm_spe_set_event_name(evlist, id, "l1d-miss");
1065 		id += 1;
1066 
1067 		/* Level 1 data cache access */
1068 		err = arm_spe_synth_event(session, &attr, id);
1069 		if (err)
1070 			return err;
1071 		spe->l1d_access_id = id;
1072 		arm_spe_set_event_name(evlist, id, "l1d-access");
1073 		id += 1;
1074 	}
1075 
1076 	if (spe->synth_opts.llc) {
1077 		spe->sample_llc = true;
1078 
1079 		/* Last level cache miss */
1080 		err = arm_spe_synth_event(session, &attr, id);
1081 		if (err)
1082 			return err;
1083 		spe->llc_miss_id = id;
1084 		arm_spe_set_event_name(evlist, id, "llc-miss");
1085 		id += 1;
1086 
1087 		/* Last level cache access */
1088 		err = arm_spe_synth_event(session, &attr, id);
1089 		if (err)
1090 			return err;
1091 		spe->llc_access_id = id;
1092 		arm_spe_set_event_name(evlist, id, "llc-access");
1093 		id += 1;
1094 	}
1095 
1096 	if (spe->synth_opts.tlb) {
1097 		spe->sample_tlb = true;
1098 
1099 		/* TLB miss */
1100 		err = arm_spe_synth_event(session, &attr, id);
1101 		if (err)
1102 			return err;
1103 		spe->tlb_miss_id = id;
1104 		arm_spe_set_event_name(evlist, id, "tlb-miss");
1105 		id += 1;
1106 
1107 		/* TLB access */
1108 		err = arm_spe_synth_event(session, &attr, id);
1109 		if (err)
1110 			return err;
1111 		spe->tlb_access_id = id;
1112 		arm_spe_set_event_name(evlist, id, "tlb-access");
1113 		id += 1;
1114 	}
1115 
1116 	if (spe->synth_opts.branches) {
1117 		spe->sample_branch = true;
1118 
1119 		/* Branch miss */
1120 		err = arm_spe_synth_event(session, &attr, id);
1121 		if (err)
1122 			return err;
1123 		spe->branch_miss_id = id;
1124 		arm_spe_set_event_name(evlist, id, "branch-miss");
1125 		id += 1;
1126 	}
1127 
1128 	if (spe->synth_opts.remote_access) {
1129 		spe->sample_remote_access = true;
1130 
1131 		/* Remote access */
1132 		err = arm_spe_synth_event(session, &attr, id);
1133 		if (err)
1134 			return err;
1135 		spe->remote_access_id = id;
1136 		arm_spe_set_event_name(evlist, id, "remote-access");
1137 		id += 1;
1138 	}
1139 
1140 	if (spe->synth_opts.mem) {
1141 		spe->sample_memory = true;
1142 
1143 		err = arm_spe_synth_event(session, &attr, id);
1144 		if (err)
1145 			return err;
1146 		spe->memory_id = id;
1147 		arm_spe_set_event_name(evlist, id, "memory");
1148 		id += 1;
1149 	}
1150 
1151 	if (spe->synth_opts.instructions) {
1152 		if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) {
1153 			pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n");
1154 			goto synth_instructions_out;
1155 		}
1156 		if (spe->synth_opts.period > 1)
1157 			pr_warning("Arm SPE has a hardware-based sample period.\n"
1158 				   "Additional instruction events will be discarded by --itrace\n");
1159 
1160 		spe->sample_instructions = true;
1161 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1162 		attr.sample_period = spe->synth_opts.period;
1163 		spe->instructions_sample_period = attr.sample_period;
1164 		err = arm_spe_synth_event(session, &attr, id);
1165 		if (err)
1166 			return err;
1167 		spe->instructions_id = id;
1168 		arm_spe_set_event_name(evlist, id, "instructions");
1169 	}
1170 synth_instructions_out:
1171 
1172 	return 0;
1173 }
1174 
1175 int arm_spe_process_auxtrace_info(union perf_event *event,
1176 				  struct perf_session *session)
1177 {
1178 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
1179 	size_t min_sz = sizeof(u64) * ARM_SPE_AUXTRACE_PRIV_MAX;
1180 	struct perf_record_time_conv *tc = &session->time_conv;
1181 	struct arm_spe *spe;
1182 	int err;
1183 
1184 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
1185 					min_sz)
1186 		return -EINVAL;
1187 
1188 	spe = zalloc(sizeof(struct arm_spe));
1189 	if (!spe)
1190 		return -ENOMEM;
1191 
1192 	err = auxtrace_queues__init(&spe->queues);
1193 	if (err)
1194 		goto err_free;
1195 
1196 	spe->session = session;
1197 	spe->machine = &session->machines.host; /* No kvm support */
1198 	spe->auxtrace_type = auxtrace_info->type;
1199 	spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE];
1200 
1201 	spe->timeless_decoding = arm_spe__is_timeless_decoding(spe);
1202 
1203 	/*
1204 	 * The synthesized event PERF_RECORD_TIME_CONV has been handled ahead
1205 	 * and the parameters for hardware clock are stored in the session
1206 	 * context.  Passes these parameters to the struct perf_tsc_conversion
1207 	 * in "spe->tc", which is used for later conversion between clock
1208 	 * counter and timestamp.
1209 	 *
1210 	 * For backward compatibility, copies the fields starting from
1211 	 * "time_cycles" only if they are contained in the event.
1212 	 */
1213 	spe->tc.time_shift = tc->time_shift;
1214 	spe->tc.time_mult = tc->time_mult;
1215 	spe->tc.time_zero = tc->time_zero;
1216 
1217 	if (event_contains(*tc, time_cycles)) {
1218 		spe->tc.time_cycles = tc->time_cycles;
1219 		spe->tc.time_mask = tc->time_mask;
1220 		spe->tc.cap_user_time_zero = tc->cap_user_time_zero;
1221 		spe->tc.cap_user_time_short = tc->cap_user_time_short;
1222 	}
1223 
1224 	spe->auxtrace.process_event = arm_spe_process_event;
1225 	spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event;
1226 	spe->auxtrace.flush_events = arm_spe_flush;
1227 	spe->auxtrace.free_events = arm_spe_free_events;
1228 	spe->auxtrace.free = arm_spe_free;
1229 	spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace;
1230 	session->auxtrace = &spe->auxtrace;
1231 
1232 	arm_spe_print_info(&auxtrace_info->priv[0]);
1233 
1234 	if (dump_trace)
1235 		return 0;
1236 
1237 	if (session->itrace_synth_opts && session->itrace_synth_opts->set)
1238 		spe->synth_opts = *session->itrace_synth_opts;
1239 	else
1240 		itrace_synth_opts__set_default(&spe->synth_opts, false);
1241 
1242 	err = arm_spe_synth_events(spe, session);
1243 	if (err)
1244 		goto err_free_queues;
1245 
1246 	err = auxtrace_queues__process_index(&spe->queues, session);
1247 	if (err)
1248 		goto err_free_queues;
1249 
1250 	if (spe->queues.populated)
1251 		spe->data_queued = true;
1252 
1253 	return 0;
1254 
1255 err_free_queues:
1256 	auxtrace_queues__free(&spe->queues);
1257 	session->auxtrace = NULL;
1258 err_free:
1259 	free(spe);
1260 	return err;
1261 }
1262