xref: /openbmc/linux/tools/perf/util/arm-spe.c (revision 8e74a48d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arm Statistical Profiling Extensions (SPE) support
4  * Copyright (c) 2017-2018, Arm Ltd.
5  */
6 
7 #include <byteswap.h>
8 #include <endian.h>
9 #include <errno.h>
10 #include <inttypes.h>
11 #include <linux/bitops.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 #include <stdlib.h>
17 #include <unistd.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "debug.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "machine.h"
25 #include "session.h"
26 #include "symbol.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "tsc.h"
30 #include "tool.h"
31 #include "util/synthetic-events.h"
32 
33 #include "arm-spe.h"
34 #include "arm-spe-decoder/arm-spe-decoder.h"
35 #include "arm-spe-decoder/arm-spe-pkt-decoder.h"
36 
37 #define MAX_TIMESTAMP (~0ULL)
38 
39 struct arm_spe {
40 	struct auxtrace			auxtrace;
41 	struct auxtrace_queues		queues;
42 	struct auxtrace_heap		heap;
43 	struct itrace_synth_opts        synth_opts;
44 	u32				auxtrace_type;
45 	struct perf_session		*session;
46 	struct machine			*machine;
47 	u32				pmu_type;
48 
49 	struct perf_tsc_conversion	tc;
50 
51 	u8				timeless_decoding;
52 	u8				data_queued;
53 
54 	u64				sample_type;
55 	u8				sample_flc;
56 	u8				sample_llc;
57 	u8				sample_tlb;
58 	u8				sample_branch;
59 	u8				sample_remote_access;
60 	u8				sample_memory;
61 	u8				sample_instructions;
62 	u64				instructions_sample_period;
63 
64 	u64				l1d_miss_id;
65 	u64				l1d_access_id;
66 	u64				llc_miss_id;
67 	u64				llc_access_id;
68 	u64				tlb_miss_id;
69 	u64				tlb_access_id;
70 	u64				branch_miss_id;
71 	u64				remote_access_id;
72 	u64				memory_id;
73 	u64				instructions_id;
74 
75 	u64				kernel_start;
76 
77 	unsigned long			num_events;
78 	u8				use_ctx_pkt_for_pid;
79 };
80 
81 struct arm_spe_queue {
82 	struct arm_spe			*spe;
83 	unsigned int			queue_nr;
84 	struct auxtrace_buffer		*buffer;
85 	struct auxtrace_buffer		*old_buffer;
86 	union perf_event		*event_buf;
87 	bool				on_heap;
88 	bool				done;
89 	pid_t				pid;
90 	pid_t				tid;
91 	int				cpu;
92 	struct arm_spe_decoder		*decoder;
93 	u64				time;
94 	u64				timestamp;
95 	struct thread			*thread;
96 	u64				period_instructions;
97 };
98 
99 static void arm_spe_dump(struct arm_spe *spe __maybe_unused,
100 			 unsigned char *buf, size_t len)
101 {
102 	struct arm_spe_pkt packet;
103 	size_t pos = 0;
104 	int ret, pkt_len, i;
105 	char desc[ARM_SPE_PKT_DESC_MAX];
106 	const char *color = PERF_COLOR_BLUE;
107 
108 	color_fprintf(stdout, color,
109 		      ". ... ARM SPE data: size %#zx bytes\n",
110 		      len);
111 
112 	while (len) {
113 		ret = arm_spe_get_packet(buf, len, &packet);
114 		if (ret > 0)
115 			pkt_len = ret;
116 		else
117 			pkt_len = 1;
118 		printf(".");
119 		color_fprintf(stdout, color, "  %08x: ", pos);
120 		for (i = 0; i < pkt_len; i++)
121 			color_fprintf(stdout, color, " %02x", buf[i]);
122 		for (; i < 16; i++)
123 			color_fprintf(stdout, color, "   ");
124 		if (ret > 0) {
125 			ret = arm_spe_pkt_desc(&packet, desc,
126 					       ARM_SPE_PKT_DESC_MAX);
127 			if (!ret)
128 				color_fprintf(stdout, color, " %s\n", desc);
129 		} else {
130 			color_fprintf(stdout, color, " Bad packet!\n");
131 		}
132 		pos += pkt_len;
133 		buf += pkt_len;
134 		len -= pkt_len;
135 	}
136 }
137 
138 static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf,
139 			       size_t len)
140 {
141 	printf(".\n");
142 	arm_spe_dump(spe, buf, len);
143 }
144 
145 static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data)
146 {
147 	struct arm_spe_queue *speq = data;
148 	struct auxtrace_buffer *buffer = speq->buffer;
149 	struct auxtrace_buffer *old_buffer = speq->old_buffer;
150 	struct auxtrace_queue *queue;
151 
152 	queue = &speq->spe->queues.queue_array[speq->queue_nr];
153 
154 	buffer = auxtrace_buffer__next(queue, buffer);
155 	/* If no more data, drop the previous auxtrace_buffer and return */
156 	if (!buffer) {
157 		if (old_buffer)
158 			auxtrace_buffer__drop_data(old_buffer);
159 		b->len = 0;
160 		return 0;
161 	}
162 
163 	speq->buffer = buffer;
164 
165 	/* If the aux_buffer doesn't have data associated, try to load it */
166 	if (!buffer->data) {
167 		/* get the file desc associated with the perf data file */
168 		int fd = perf_data__fd(speq->spe->session->data);
169 
170 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
171 		if (!buffer->data)
172 			return -ENOMEM;
173 	}
174 
175 	b->len = buffer->size;
176 	b->buf = buffer->data;
177 
178 	if (b->len) {
179 		if (old_buffer)
180 			auxtrace_buffer__drop_data(old_buffer);
181 		speq->old_buffer = buffer;
182 	} else {
183 		auxtrace_buffer__drop_data(buffer);
184 		return arm_spe_get_trace(b, data);
185 	}
186 
187 	return 0;
188 }
189 
190 static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe,
191 		unsigned int queue_nr)
192 {
193 	struct arm_spe_params params = { .get_trace = 0, };
194 	struct arm_spe_queue *speq;
195 
196 	speq = zalloc(sizeof(*speq));
197 	if (!speq)
198 		return NULL;
199 
200 	speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
201 	if (!speq->event_buf)
202 		goto out_free;
203 
204 	speq->spe = spe;
205 	speq->queue_nr = queue_nr;
206 	speq->pid = -1;
207 	speq->tid = -1;
208 	speq->cpu = -1;
209 	speq->period_instructions = 0;
210 
211 	/* params set */
212 	params.get_trace = arm_spe_get_trace;
213 	params.data = speq;
214 
215 	/* create new decoder */
216 	speq->decoder = arm_spe_decoder_new(&params);
217 	if (!speq->decoder)
218 		goto out_free;
219 
220 	return speq;
221 
222 out_free:
223 	zfree(&speq->event_buf);
224 	free(speq);
225 
226 	return NULL;
227 }
228 
229 static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip)
230 {
231 	return ip >= spe->kernel_start ?
232 		PERF_RECORD_MISC_KERNEL :
233 		PERF_RECORD_MISC_USER;
234 }
235 
236 static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe,
237 				    struct auxtrace_queue *queue)
238 {
239 	struct arm_spe_queue *speq = queue->priv;
240 	pid_t tid;
241 
242 	tid = machine__get_current_tid(spe->machine, speq->cpu);
243 	if (tid != -1) {
244 		speq->tid = tid;
245 		thread__zput(speq->thread);
246 	} else
247 		speq->tid = queue->tid;
248 
249 	if ((!speq->thread) && (speq->tid != -1)) {
250 		speq->thread = machine__find_thread(spe->machine, -1,
251 						    speq->tid);
252 	}
253 
254 	if (speq->thread) {
255 		speq->pid = speq->thread->pid_;
256 		if (queue->cpu == -1)
257 			speq->cpu = speq->thread->cpu;
258 	}
259 }
260 
261 static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid)
262 {
263 	struct arm_spe *spe = speq->spe;
264 	int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid);
265 
266 	if (err)
267 		return err;
268 
269 	arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]);
270 
271 	return 0;
272 }
273 
274 static void arm_spe_prep_sample(struct arm_spe *spe,
275 				struct arm_spe_queue *speq,
276 				union perf_event *event,
277 				struct perf_sample *sample)
278 {
279 	struct arm_spe_record *record = &speq->decoder->record;
280 
281 	if (!spe->timeless_decoding)
282 		sample->time = tsc_to_perf_time(record->timestamp, &spe->tc);
283 
284 	sample->ip = record->from_ip;
285 	sample->cpumode = arm_spe_cpumode(spe, sample->ip);
286 	sample->pid = speq->pid;
287 	sample->tid = speq->tid;
288 	sample->period = 1;
289 	sample->cpu = speq->cpu;
290 
291 	event->sample.header.type = PERF_RECORD_SAMPLE;
292 	event->sample.header.misc = sample->cpumode;
293 	event->sample.header.size = sizeof(struct perf_event_header);
294 }
295 
296 static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type)
297 {
298 	event->header.size = perf_event__sample_event_size(sample, type, 0);
299 	return perf_event__synthesize_sample(event, type, 0, sample);
300 }
301 
302 static inline int
303 arm_spe_deliver_synth_event(struct arm_spe *spe,
304 			    struct arm_spe_queue *speq __maybe_unused,
305 			    union perf_event *event,
306 			    struct perf_sample *sample)
307 {
308 	int ret;
309 
310 	if (spe->synth_opts.inject) {
311 		ret = arm_spe__inject_event(event, sample, spe->sample_type);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	ret = perf_session__deliver_synth_event(spe->session, event, sample);
317 	if (ret)
318 		pr_err("ARM SPE: failed to deliver event, error %d\n", ret);
319 
320 	return ret;
321 }
322 
323 static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq,
324 				     u64 spe_events_id, u64 data_src)
325 {
326 	struct arm_spe *spe = speq->spe;
327 	struct arm_spe_record *record = &speq->decoder->record;
328 	union perf_event *event = speq->event_buf;
329 	struct perf_sample sample = { .ip = 0, };
330 
331 	arm_spe_prep_sample(spe, speq, event, &sample);
332 
333 	sample.id = spe_events_id;
334 	sample.stream_id = spe_events_id;
335 	sample.addr = record->virt_addr;
336 	sample.phys_addr = record->phys_addr;
337 	sample.data_src = data_src;
338 	sample.weight = record->latency;
339 
340 	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
341 }
342 
343 static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq,
344 					u64 spe_events_id)
345 {
346 	struct arm_spe *spe = speq->spe;
347 	struct arm_spe_record *record = &speq->decoder->record;
348 	union perf_event *event = speq->event_buf;
349 	struct perf_sample sample = { .ip = 0, };
350 
351 	arm_spe_prep_sample(spe, speq, event, &sample);
352 
353 	sample.id = spe_events_id;
354 	sample.stream_id = spe_events_id;
355 	sample.addr = record->to_ip;
356 	sample.weight = record->latency;
357 
358 	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
359 }
360 
361 static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq,
362 					     u64 spe_events_id, u64 data_src)
363 {
364 	struct arm_spe *spe = speq->spe;
365 	struct arm_spe_record *record = &speq->decoder->record;
366 	union perf_event *event = speq->event_buf;
367 	struct perf_sample sample = { .ip = 0, };
368 
369 	/*
370 	 * Handles perf instruction sampling period.
371 	 */
372 	speq->period_instructions++;
373 	if (speq->period_instructions < spe->instructions_sample_period)
374 		return 0;
375 	speq->period_instructions = 0;
376 
377 	arm_spe_prep_sample(spe, speq, event, &sample);
378 
379 	sample.id = spe_events_id;
380 	sample.stream_id = spe_events_id;
381 	sample.addr = record->virt_addr;
382 	sample.phys_addr = record->phys_addr;
383 	sample.data_src = data_src;
384 	sample.period = spe->instructions_sample_period;
385 	sample.weight = record->latency;
386 
387 	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
388 }
389 
390 #define SPE_MEM_TYPE	(ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS | \
391 			 ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS | \
392 			 ARM_SPE_REMOTE_ACCESS)
393 
394 static bool arm_spe__is_memory_event(enum arm_spe_sample_type type)
395 {
396 	if (type & SPE_MEM_TYPE)
397 		return true;
398 
399 	return false;
400 }
401 
402 static u64 arm_spe__synth_data_source(const struct arm_spe_record *record)
403 {
404 	union perf_mem_data_src	data_src = { 0 };
405 
406 	if (record->op == ARM_SPE_LD)
407 		data_src.mem_op = PERF_MEM_OP_LOAD;
408 	else
409 		data_src.mem_op = PERF_MEM_OP_STORE;
410 
411 	if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) {
412 		data_src.mem_lvl = PERF_MEM_LVL_L3;
413 
414 		if (record->type & ARM_SPE_LLC_MISS)
415 			data_src.mem_lvl |= PERF_MEM_LVL_MISS;
416 		else
417 			data_src.mem_lvl |= PERF_MEM_LVL_HIT;
418 	} else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) {
419 		data_src.mem_lvl = PERF_MEM_LVL_L1;
420 
421 		if (record->type & ARM_SPE_L1D_MISS)
422 			data_src.mem_lvl |= PERF_MEM_LVL_MISS;
423 		else
424 			data_src.mem_lvl |= PERF_MEM_LVL_HIT;
425 	}
426 
427 	if (record->type & ARM_SPE_REMOTE_ACCESS)
428 		data_src.mem_lvl |= PERF_MEM_LVL_REM_CCE1;
429 
430 	if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) {
431 		data_src.mem_dtlb = PERF_MEM_TLB_WK;
432 
433 		if (record->type & ARM_SPE_TLB_MISS)
434 			data_src.mem_dtlb |= PERF_MEM_TLB_MISS;
435 		else
436 			data_src.mem_dtlb |= PERF_MEM_TLB_HIT;
437 	}
438 
439 	return data_src.val;
440 }
441 
442 static int arm_spe_sample(struct arm_spe_queue *speq)
443 {
444 	const struct arm_spe_record *record = &speq->decoder->record;
445 	struct arm_spe *spe = speq->spe;
446 	u64 data_src;
447 	int err;
448 
449 	data_src = arm_spe__synth_data_source(record);
450 
451 	if (spe->sample_flc) {
452 		if (record->type & ARM_SPE_L1D_MISS) {
453 			err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id,
454 							data_src);
455 			if (err)
456 				return err;
457 		}
458 
459 		if (record->type & ARM_SPE_L1D_ACCESS) {
460 			err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id,
461 							data_src);
462 			if (err)
463 				return err;
464 		}
465 	}
466 
467 	if (spe->sample_llc) {
468 		if (record->type & ARM_SPE_LLC_MISS) {
469 			err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id,
470 							data_src);
471 			if (err)
472 				return err;
473 		}
474 
475 		if (record->type & ARM_SPE_LLC_ACCESS) {
476 			err = arm_spe__synth_mem_sample(speq, spe->llc_access_id,
477 							data_src);
478 			if (err)
479 				return err;
480 		}
481 	}
482 
483 	if (spe->sample_tlb) {
484 		if (record->type & ARM_SPE_TLB_MISS) {
485 			err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id,
486 							data_src);
487 			if (err)
488 				return err;
489 		}
490 
491 		if (record->type & ARM_SPE_TLB_ACCESS) {
492 			err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id,
493 							data_src);
494 			if (err)
495 				return err;
496 		}
497 	}
498 
499 	if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) {
500 		err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id);
501 		if (err)
502 			return err;
503 	}
504 
505 	if (spe->sample_remote_access &&
506 	    (record->type & ARM_SPE_REMOTE_ACCESS)) {
507 		err = arm_spe__synth_mem_sample(speq, spe->remote_access_id,
508 						data_src);
509 		if (err)
510 			return err;
511 	}
512 
513 	if (spe->sample_memory && arm_spe__is_memory_event(record->type)) {
514 		err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src);
515 		if (err)
516 			return err;
517 	}
518 
519 	if (spe->sample_instructions) {
520 		err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src);
521 		if (err)
522 			return err;
523 	}
524 
525 	return 0;
526 }
527 
528 static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp)
529 {
530 	struct arm_spe *spe = speq->spe;
531 	struct arm_spe_record *record;
532 	int ret;
533 
534 	if (!spe->kernel_start)
535 		spe->kernel_start = machine__kernel_start(spe->machine);
536 
537 	while (1) {
538 		/*
539 		 * The usual logic is firstly to decode the packets, and then
540 		 * based the record to synthesize sample; but here the flow is
541 		 * reversed: it calls arm_spe_sample() for synthesizing samples
542 		 * prior to arm_spe_decode().
543 		 *
544 		 * Two reasons for this code logic:
545 		 * 1. Firstly, when setup queue in arm_spe__setup_queue(), it
546 		 * has decoded trace data and generated a record, but the record
547 		 * is left to generate sample until run to here, so it's correct
548 		 * to synthesize sample for the left record.
549 		 * 2. After decoding trace data, it needs to compare the record
550 		 * timestamp with the coming perf event, if the record timestamp
551 		 * is later than the perf event, it needs bail out and pushs the
552 		 * record into auxtrace heap, thus the record can be deferred to
553 		 * synthesize sample until run to here at the next time; so this
554 		 * can correlate samples between Arm SPE trace data and other
555 		 * perf events with correct time ordering.
556 		 */
557 
558 		/*
559 		 * Update pid/tid info.
560 		 */
561 		record = &speq->decoder->record;
562 		if (!spe->timeless_decoding && record->context_id != (u64)-1) {
563 			ret = arm_spe_set_tid(speq, record->context_id);
564 			if (ret)
565 				return ret;
566 
567 			spe->use_ctx_pkt_for_pid = true;
568 		}
569 
570 		ret = arm_spe_sample(speq);
571 		if (ret)
572 			return ret;
573 
574 		ret = arm_spe_decode(speq->decoder);
575 		if (!ret) {
576 			pr_debug("No data or all data has been processed.\n");
577 			return 1;
578 		}
579 
580 		/*
581 		 * Error is detected when decode SPE trace data, continue to
582 		 * the next trace data and find out more records.
583 		 */
584 		if (ret < 0)
585 			continue;
586 
587 		record = &speq->decoder->record;
588 
589 		/* Update timestamp for the last record */
590 		if (record->timestamp > speq->timestamp)
591 			speq->timestamp = record->timestamp;
592 
593 		/*
594 		 * If the timestamp of the queue is later than timestamp of the
595 		 * coming perf event, bail out so can allow the perf event to
596 		 * be processed ahead.
597 		 */
598 		if (!spe->timeless_decoding && speq->timestamp >= *timestamp) {
599 			*timestamp = speq->timestamp;
600 			return 0;
601 		}
602 	}
603 
604 	return 0;
605 }
606 
607 static int arm_spe__setup_queue(struct arm_spe *spe,
608 			       struct auxtrace_queue *queue,
609 			       unsigned int queue_nr)
610 {
611 	struct arm_spe_queue *speq = queue->priv;
612 	struct arm_spe_record *record;
613 
614 	if (list_empty(&queue->head) || speq)
615 		return 0;
616 
617 	speq = arm_spe__alloc_queue(spe, queue_nr);
618 
619 	if (!speq)
620 		return -ENOMEM;
621 
622 	queue->priv = speq;
623 
624 	if (queue->cpu != -1)
625 		speq->cpu = queue->cpu;
626 
627 	if (!speq->on_heap) {
628 		int ret;
629 
630 		if (spe->timeless_decoding)
631 			return 0;
632 
633 retry:
634 		ret = arm_spe_decode(speq->decoder);
635 
636 		if (!ret)
637 			return 0;
638 
639 		if (ret < 0)
640 			goto retry;
641 
642 		record = &speq->decoder->record;
643 
644 		speq->timestamp = record->timestamp;
645 		ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp);
646 		if (ret)
647 			return ret;
648 		speq->on_heap = true;
649 	}
650 
651 	return 0;
652 }
653 
654 static int arm_spe__setup_queues(struct arm_spe *spe)
655 {
656 	unsigned int i;
657 	int ret;
658 
659 	for (i = 0; i < spe->queues.nr_queues; i++) {
660 		ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i);
661 		if (ret)
662 			return ret;
663 	}
664 
665 	return 0;
666 }
667 
668 static int arm_spe__update_queues(struct arm_spe *spe)
669 {
670 	if (spe->queues.new_data) {
671 		spe->queues.new_data = false;
672 		return arm_spe__setup_queues(spe);
673 	}
674 
675 	return 0;
676 }
677 
678 static bool arm_spe__is_timeless_decoding(struct arm_spe *spe)
679 {
680 	struct evsel *evsel;
681 	struct evlist *evlist = spe->session->evlist;
682 	bool timeless_decoding = true;
683 
684 	/*
685 	 * Circle through the list of event and complain if we find one
686 	 * with the time bit set.
687 	 */
688 	evlist__for_each_entry(evlist, evsel) {
689 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
690 			timeless_decoding = false;
691 	}
692 
693 	return timeless_decoding;
694 }
695 
696 static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp)
697 {
698 	unsigned int queue_nr;
699 	u64 ts;
700 	int ret;
701 
702 	while (1) {
703 		struct auxtrace_queue *queue;
704 		struct arm_spe_queue *speq;
705 
706 		if (!spe->heap.heap_cnt)
707 			return 0;
708 
709 		if (spe->heap.heap_array[0].ordinal >= timestamp)
710 			return 0;
711 
712 		queue_nr = spe->heap.heap_array[0].queue_nr;
713 		queue = &spe->queues.queue_array[queue_nr];
714 		speq = queue->priv;
715 
716 		auxtrace_heap__pop(&spe->heap);
717 
718 		if (spe->heap.heap_cnt) {
719 			ts = spe->heap.heap_array[0].ordinal + 1;
720 			if (ts > timestamp)
721 				ts = timestamp;
722 		} else {
723 			ts = timestamp;
724 		}
725 
726 		/*
727 		 * A previous context-switch event has set pid/tid in the machine's context, so
728 		 * here we need to update the pid/tid in the thread and SPE queue.
729 		 */
730 		if (!spe->use_ctx_pkt_for_pid)
731 			arm_spe_set_pid_tid_cpu(spe, queue);
732 
733 		ret = arm_spe_run_decoder(speq, &ts);
734 		if (ret < 0) {
735 			auxtrace_heap__add(&spe->heap, queue_nr, ts);
736 			return ret;
737 		}
738 
739 		if (!ret) {
740 			ret = auxtrace_heap__add(&spe->heap, queue_nr, ts);
741 			if (ret < 0)
742 				return ret;
743 		} else {
744 			speq->on_heap = false;
745 		}
746 	}
747 
748 	return 0;
749 }
750 
751 static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid,
752 					    u64 time_)
753 {
754 	struct auxtrace_queues *queues = &spe->queues;
755 	unsigned int i;
756 	u64 ts = 0;
757 
758 	for (i = 0; i < queues->nr_queues; i++) {
759 		struct auxtrace_queue *queue = &spe->queues.queue_array[i];
760 		struct arm_spe_queue *speq = queue->priv;
761 
762 		if (speq && (tid == -1 || speq->tid == tid)) {
763 			speq->time = time_;
764 			arm_spe_set_pid_tid_cpu(spe, queue);
765 			arm_spe_run_decoder(speq, &ts);
766 		}
767 	}
768 	return 0;
769 }
770 
771 static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event,
772 				  struct perf_sample *sample)
773 {
774 	pid_t pid, tid;
775 	int cpu;
776 
777 	if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT))
778 		return 0;
779 
780 	pid = event->context_switch.next_prev_pid;
781 	tid = event->context_switch.next_prev_tid;
782 	cpu = sample->cpu;
783 
784 	if (tid == -1)
785 		pr_warning("context_switch event has no tid\n");
786 
787 	return machine__set_current_tid(spe->machine, cpu, pid, tid);
788 }
789 
790 static int arm_spe_process_event(struct perf_session *session,
791 				 union perf_event *event,
792 				 struct perf_sample *sample,
793 				 struct perf_tool *tool)
794 {
795 	int err = 0;
796 	u64 timestamp;
797 	struct arm_spe *spe = container_of(session->auxtrace,
798 			struct arm_spe, auxtrace);
799 
800 	if (dump_trace)
801 		return 0;
802 
803 	if (!tool->ordered_events) {
804 		pr_err("SPE trace requires ordered events\n");
805 		return -EINVAL;
806 	}
807 
808 	if (sample->time && (sample->time != (u64) -1))
809 		timestamp = perf_time_to_tsc(sample->time, &spe->tc);
810 	else
811 		timestamp = 0;
812 
813 	if (timestamp || spe->timeless_decoding) {
814 		err = arm_spe__update_queues(spe);
815 		if (err)
816 			return err;
817 	}
818 
819 	if (spe->timeless_decoding) {
820 		if (event->header.type == PERF_RECORD_EXIT) {
821 			err = arm_spe_process_timeless_queues(spe,
822 					event->fork.tid,
823 					sample->time);
824 		}
825 	} else if (timestamp) {
826 		err = arm_spe_process_queues(spe, timestamp);
827 		if (err)
828 			return err;
829 
830 		if (!spe->use_ctx_pkt_for_pid &&
831 		    (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE ||
832 		    event->header.type == PERF_RECORD_SWITCH))
833 			err = arm_spe_context_switch(spe, event, sample);
834 	}
835 
836 	return err;
837 }
838 
839 static int arm_spe_process_auxtrace_event(struct perf_session *session,
840 					  union perf_event *event,
841 					  struct perf_tool *tool __maybe_unused)
842 {
843 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
844 					     auxtrace);
845 
846 	if (!spe->data_queued) {
847 		struct auxtrace_buffer *buffer;
848 		off_t data_offset;
849 		int fd = perf_data__fd(session->data);
850 		int err;
851 
852 		if (perf_data__is_pipe(session->data)) {
853 			data_offset = 0;
854 		} else {
855 			data_offset = lseek(fd, 0, SEEK_CUR);
856 			if (data_offset == -1)
857 				return -errno;
858 		}
859 
860 		err = auxtrace_queues__add_event(&spe->queues, session, event,
861 				data_offset, &buffer);
862 		if (err)
863 			return err;
864 
865 		/* Dump here now we have copied a piped trace out of the pipe */
866 		if (dump_trace) {
867 			if (auxtrace_buffer__get_data(buffer, fd)) {
868 				arm_spe_dump_event(spe, buffer->data,
869 						buffer->size);
870 				auxtrace_buffer__put_data(buffer);
871 			}
872 		}
873 	}
874 
875 	return 0;
876 }
877 
878 static int arm_spe_flush(struct perf_session *session __maybe_unused,
879 			 struct perf_tool *tool __maybe_unused)
880 {
881 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
882 			auxtrace);
883 	int ret;
884 
885 	if (dump_trace)
886 		return 0;
887 
888 	if (!tool->ordered_events)
889 		return -EINVAL;
890 
891 	ret = arm_spe__update_queues(spe);
892 	if (ret < 0)
893 		return ret;
894 
895 	if (spe->timeless_decoding)
896 		return arm_spe_process_timeless_queues(spe, -1,
897 				MAX_TIMESTAMP - 1);
898 
899 	ret = arm_spe_process_queues(spe, MAX_TIMESTAMP);
900 	if (ret)
901 		return ret;
902 
903 	if (!spe->use_ctx_pkt_for_pid)
904 		ui__warning("Arm SPE CONTEXT packets not found in the traces.\n"
905 			    "Matching of TIDs to SPE events could be inaccurate.\n");
906 
907 	return 0;
908 }
909 
910 static void arm_spe_free_queue(void *priv)
911 {
912 	struct arm_spe_queue *speq = priv;
913 
914 	if (!speq)
915 		return;
916 	thread__zput(speq->thread);
917 	arm_spe_decoder_free(speq->decoder);
918 	zfree(&speq->event_buf);
919 	free(speq);
920 }
921 
922 static void arm_spe_free_events(struct perf_session *session)
923 {
924 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
925 					     auxtrace);
926 	struct auxtrace_queues *queues = &spe->queues;
927 	unsigned int i;
928 
929 	for (i = 0; i < queues->nr_queues; i++) {
930 		arm_spe_free_queue(queues->queue_array[i].priv);
931 		queues->queue_array[i].priv = NULL;
932 	}
933 	auxtrace_queues__free(queues);
934 }
935 
936 static void arm_spe_free(struct perf_session *session)
937 {
938 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
939 					     auxtrace);
940 
941 	auxtrace_heap__free(&spe->heap);
942 	arm_spe_free_events(session);
943 	session->auxtrace = NULL;
944 	free(spe);
945 }
946 
947 static bool arm_spe_evsel_is_auxtrace(struct perf_session *session,
948 				      struct evsel *evsel)
949 {
950 	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace);
951 
952 	return evsel->core.attr.type == spe->pmu_type;
953 }
954 
955 static const char * const arm_spe_info_fmts[] = {
956 	[ARM_SPE_PMU_TYPE]		= "  PMU Type           %"PRId64"\n",
957 };
958 
959 static void arm_spe_print_info(__u64 *arr)
960 {
961 	if (!dump_trace)
962 		return;
963 
964 	fprintf(stdout, arm_spe_info_fmts[ARM_SPE_PMU_TYPE], arr[ARM_SPE_PMU_TYPE]);
965 }
966 
967 struct arm_spe_synth {
968 	struct perf_tool dummy_tool;
969 	struct perf_session *session;
970 };
971 
972 static int arm_spe_event_synth(struct perf_tool *tool,
973 			       union perf_event *event,
974 			       struct perf_sample *sample __maybe_unused,
975 			       struct machine *machine __maybe_unused)
976 {
977 	struct arm_spe_synth *arm_spe_synth =
978 		      container_of(tool, struct arm_spe_synth, dummy_tool);
979 
980 	return perf_session__deliver_synth_event(arm_spe_synth->session,
981 						 event, NULL);
982 }
983 
984 static int arm_spe_synth_event(struct perf_session *session,
985 			       struct perf_event_attr *attr, u64 id)
986 {
987 	struct arm_spe_synth arm_spe_synth;
988 
989 	memset(&arm_spe_synth, 0, sizeof(struct arm_spe_synth));
990 	arm_spe_synth.session = session;
991 
992 	return perf_event__synthesize_attr(&arm_spe_synth.dummy_tool, attr, 1,
993 					   &id, arm_spe_event_synth);
994 }
995 
996 static void arm_spe_set_event_name(struct evlist *evlist, u64 id,
997 				    const char *name)
998 {
999 	struct evsel *evsel;
1000 
1001 	evlist__for_each_entry(evlist, evsel) {
1002 		if (evsel->core.id && evsel->core.id[0] == id) {
1003 			if (evsel->name)
1004 				zfree(&evsel->name);
1005 			evsel->name = strdup(name);
1006 			break;
1007 		}
1008 	}
1009 }
1010 
1011 static int
1012 arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session)
1013 {
1014 	struct evlist *evlist = session->evlist;
1015 	struct evsel *evsel;
1016 	struct perf_event_attr attr;
1017 	bool found = false;
1018 	u64 id;
1019 	int err;
1020 
1021 	evlist__for_each_entry(evlist, evsel) {
1022 		if (evsel->core.attr.type == spe->pmu_type) {
1023 			found = true;
1024 			break;
1025 		}
1026 	}
1027 
1028 	if (!found) {
1029 		pr_debug("No selected events with SPE trace data\n");
1030 		return 0;
1031 	}
1032 
1033 	memset(&attr, 0, sizeof(struct perf_event_attr));
1034 	attr.size = sizeof(struct perf_event_attr);
1035 	attr.type = PERF_TYPE_HARDWARE;
1036 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1037 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1038 			    PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC |
1039 			    PERF_SAMPLE_WEIGHT;
1040 	if (spe->timeless_decoding)
1041 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1042 	else
1043 		attr.sample_type |= PERF_SAMPLE_TIME;
1044 
1045 	spe->sample_type = attr.sample_type;
1046 
1047 	attr.exclude_user = evsel->core.attr.exclude_user;
1048 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1049 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1050 	attr.exclude_host = evsel->core.attr.exclude_host;
1051 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1052 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1053 	attr.read_format = evsel->core.attr.read_format;
1054 
1055 	/* create new id val to be a fixed offset from evsel id */
1056 	id = evsel->core.id[0] + 1000000000;
1057 
1058 	if (!id)
1059 		id = 1;
1060 
1061 	if (spe->synth_opts.flc) {
1062 		spe->sample_flc = true;
1063 
1064 		/* Level 1 data cache miss */
1065 		err = arm_spe_synth_event(session, &attr, id);
1066 		if (err)
1067 			return err;
1068 		spe->l1d_miss_id = id;
1069 		arm_spe_set_event_name(evlist, id, "l1d-miss");
1070 		id += 1;
1071 
1072 		/* Level 1 data cache access */
1073 		err = arm_spe_synth_event(session, &attr, id);
1074 		if (err)
1075 			return err;
1076 		spe->l1d_access_id = id;
1077 		arm_spe_set_event_name(evlist, id, "l1d-access");
1078 		id += 1;
1079 	}
1080 
1081 	if (spe->synth_opts.llc) {
1082 		spe->sample_llc = true;
1083 
1084 		/* Last level cache miss */
1085 		err = arm_spe_synth_event(session, &attr, id);
1086 		if (err)
1087 			return err;
1088 		spe->llc_miss_id = id;
1089 		arm_spe_set_event_name(evlist, id, "llc-miss");
1090 		id += 1;
1091 
1092 		/* Last level cache access */
1093 		err = arm_spe_synth_event(session, &attr, id);
1094 		if (err)
1095 			return err;
1096 		spe->llc_access_id = id;
1097 		arm_spe_set_event_name(evlist, id, "llc-access");
1098 		id += 1;
1099 	}
1100 
1101 	if (spe->synth_opts.tlb) {
1102 		spe->sample_tlb = true;
1103 
1104 		/* TLB miss */
1105 		err = arm_spe_synth_event(session, &attr, id);
1106 		if (err)
1107 			return err;
1108 		spe->tlb_miss_id = id;
1109 		arm_spe_set_event_name(evlist, id, "tlb-miss");
1110 		id += 1;
1111 
1112 		/* TLB access */
1113 		err = arm_spe_synth_event(session, &attr, id);
1114 		if (err)
1115 			return err;
1116 		spe->tlb_access_id = id;
1117 		arm_spe_set_event_name(evlist, id, "tlb-access");
1118 		id += 1;
1119 	}
1120 
1121 	if (spe->synth_opts.branches) {
1122 		spe->sample_branch = true;
1123 
1124 		/* Branch miss */
1125 		err = arm_spe_synth_event(session, &attr, id);
1126 		if (err)
1127 			return err;
1128 		spe->branch_miss_id = id;
1129 		arm_spe_set_event_name(evlist, id, "branch-miss");
1130 		id += 1;
1131 	}
1132 
1133 	if (spe->synth_opts.remote_access) {
1134 		spe->sample_remote_access = true;
1135 
1136 		/* Remote access */
1137 		err = arm_spe_synth_event(session, &attr, id);
1138 		if (err)
1139 			return err;
1140 		spe->remote_access_id = id;
1141 		arm_spe_set_event_name(evlist, id, "remote-access");
1142 		id += 1;
1143 	}
1144 
1145 	if (spe->synth_opts.mem) {
1146 		spe->sample_memory = true;
1147 
1148 		err = arm_spe_synth_event(session, &attr, id);
1149 		if (err)
1150 			return err;
1151 		spe->memory_id = id;
1152 		arm_spe_set_event_name(evlist, id, "memory");
1153 		id += 1;
1154 	}
1155 
1156 	if (spe->synth_opts.instructions) {
1157 		if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) {
1158 			pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n");
1159 			goto synth_instructions_out;
1160 		}
1161 		if (spe->synth_opts.period > 1)
1162 			pr_warning("Arm SPE has a hardware-based sample period.\n"
1163 				   "Additional instruction events will be discarded by --itrace\n");
1164 
1165 		spe->sample_instructions = true;
1166 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1167 		attr.sample_period = spe->synth_opts.period;
1168 		spe->instructions_sample_period = attr.sample_period;
1169 		err = arm_spe_synth_event(session, &attr, id);
1170 		if (err)
1171 			return err;
1172 		spe->instructions_id = id;
1173 		arm_spe_set_event_name(evlist, id, "instructions");
1174 	}
1175 synth_instructions_out:
1176 
1177 	return 0;
1178 }
1179 
1180 int arm_spe_process_auxtrace_info(union perf_event *event,
1181 				  struct perf_session *session)
1182 {
1183 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
1184 	size_t min_sz = sizeof(u64) * ARM_SPE_AUXTRACE_PRIV_MAX;
1185 	struct perf_record_time_conv *tc = &session->time_conv;
1186 	struct arm_spe *spe;
1187 	int err;
1188 
1189 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
1190 					min_sz)
1191 		return -EINVAL;
1192 
1193 	spe = zalloc(sizeof(struct arm_spe));
1194 	if (!spe)
1195 		return -ENOMEM;
1196 
1197 	err = auxtrace_queues__init(&spe->queues);
1198 	if (err)
1199 		goto err_free;
1200 
1201 	spe->session = session;
1202 	spe->machine = &session->machines.host; /* No kvm support */
1203 	spe->auxtrace_type = auxtrace_info->type;
1204 	spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE];
1205 
1206 	spe->timeless_decoding = arm_spe__is_timeless_decoding(spe);
1207 
1208 	/*
1209 	 * The synthesized event PERF_RECORD_TIME_CONV has been handled ahead
1210 	 * and the parameters for hardware clock are stored in the session
1211 	 * context.  Passes these parameters to the struct perf_tsc_conversion
1212 	 * in "spe->tc", which is used for later conversion between clock
1213 	 * counter and timestamp.
1214 	 *
1215 	 * For backward compatibility, copies the fields starting from
1216 	 * "time_cycles" only if they are contained in the event.
1217 	 */
1218 	spe->tc.time_shift = tc->time_shift;
1219 	spe->tc.time_mult = tc->time_mult;
1220 	spe->tc.time_zero = tc->time_zero;
1221 
1222 	if (event_contains(*tc, time_cycles)) {
1223 		spe->tc.time_cycles = tc->time_cycles;
1224 		spe->tc.time_mask = tc->time_mask;
1225 		spe->tc.cap_user_time_zero = tc->cap_user_time_zero;
1226 		spe->tc.cap_user_time_short = tc->cap_user_time_short;
1227 	}
1228 
1229 	spe->auxtrace.process_event = arm_spe_process_event;
1230 	spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event;
1231 	spe->auxtrace.flush_events = arm_spe_flush;
1232 	spe->auxtrace.free_events = arm_spe_free_events;
1233 	spe->auxtrace.free = arm_spe_free;
1234 	spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace;
1235 	session->auxtrace = &spe->auxtrace;
1236 
1237 	arm_spe_print_info(&auxtrace_info->priv[0]);
1238 
1239 	if (dump_trace)
1240 		return 0;
1241 
1242 	if (session->itrace_synth_opts && session->itrace_synth_opts->set)
1243 		spe->synth_opts = *session->itrace_synth_opts;
1244 	else
1245 		itrace_synth_opts__set_default(&spe->synth_opts, false);
1246 
1247 	err = arm_spe_synth_events(spe, session);
1248 	if (err)
1249 		goto err_free_queues;
1250 
1251 	err = auxtrace_queues__process_index(&spe->queues, session);
1252 	if (err)
1253 		goto err_free_queues;
1254 
1255 	if (spe->queues.populated)
1256 		spe->data_queued = true;
1257 
1258 	return 0;
1259 
1260 err_free_queues:
1261 	auxtrace_queues__free(&spe->queues);
1262 	session->auxtrace = NULL;
1263 err_free:
1264 	free(spe);
1265 	return err;
1266 }
1267