xref: /openbmc/linux/tools/perf/tests/code-reading.c (revision e5c86679)
1 #include <linux/types.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <stdio.h>
5 #include <ctype.h>
6 #include <string.h>
7 
8 #include "parse-events.h"
9 #include "evlist.h"
10 #include "evsel.h"
11 #include "thread_map.h"
12 #include "cpumap.h"
13 #include "machine.h"
14 #include "event.h"
15 #include "thread.h"
16 
17 #include "tests.h"
18 
19 #define BUFSZ	1024
20 #define READLEN	128
21 
22 struct state {
23 	u64 done[1024];
24 	size_t done_cnt;
25 };
26 
27 static unsigned int hex(char c)
28 {
29 	if (c >= '0' && c <= '9')
30 		return c - '0';
31 	if (c >= 'a' && c <= 'f')
32 		return c - 'a' + 10;
33 	return c - 'A' + 10;
34 }
35 
36 static size_t read_objdump_chunk(const char **line, unsigned char **buf,
37 				 size_t *buf_len)
38 {
39 	size_t bytes_read = 0;
40 	unsigned char *chunk_start = *buf;
41 
42 	/* Read bytes */
43 	while (*buf_len > 0) {
44 		char c1, c2;
45 
46 		/* Get 2 hex digits */
47 		c1 = *(*line)++;
48 		if (!isxdigit(c1))
49 			break;
50 		c2 = *(*line)++;
51 		if (!isxdigit(c2))
52 			break;
53 
54 		/* Store byte and advance buf */
55 		**buf = (hex(c1) << 4) | hex(c2);
56 		(*buf)++;
57 		(*buf_len)--;
58 		bytes_read++;
59 
60 		/* End of chunk? */
61 		if (isspace(**line))
62 			break;
63 	}
64 
65 	/*
66 	 * objdump will display raw insn as LE if code endian
67 	 * is LE and bytes_per_chunk > 1. In that case reverse
68 	 * the chunk we just read.
69 	 *
70 	 * see disassemble_bytes() at binutils/objdump.c for details
71 	 * how objdump chooses display endian)
72 	 */
73 	if (bytes_read > 1 && !bigendian()) {
74 		unsigned char *chunk_end = chunk_start + bytes_read - 1;
75 		unsigned char tmp;
76 
77 		while (chunk_start < chunk_end) {
78 			tmp = *chunk_start;
79 			*chunk_start = *chunk_end;
80 			*chunk_end = tmp;
81 			chunk_start++;
82 			chunk_end--;
83 		}
84 	}
85 
86 	return bytes_read;
87 }
88 
89 static size_t read_objdump_line(const char *line, unsigned char *buf,
90 				size_t buf_len)
91 {
92 	const char *p;
93 	size_t ret, bytes_read = 0;
94 
95 	/* Skip to a colon */
96 	p = strchr(line, ':');
97 	if (!p)
98 		return 0;
99 	p++;
100 
101 	/* Skip initial spaces */
102 	while (*p) {
103 		if (!isspace(*p))
104 			break;
105 		p++;
106 	}
107 
108 	do {
109 		ret = read_objdump_chunk(&p, &buf, &buf_len);
110 		bytes_read += ret;
111 		p++;
112 	} while (ret > 0);
113 
114 	/* return number of successfully read bytes */
115 	return bytes_read;
116 }
117 
118 static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
119 {
120 	char *line = NULL;
121 	size_t line_len, off_last = 0;
122 	ssize_t ret;
123 	int err = 0;
124 	u64 addr, last_addr = start_addr;
125 
126 	while (off_last < *len) {
127 		size_t off, read_bytes, written_bytes;
128 		unsigned char tmp[BUFSZ];
129 
130 		ret = getline(&line, &line_len, f);
131 		if (feof(f))
132 			break;
133 		if (ret < 0) {
134 			pr_debug("getline failed\n");
135 			err = -1;
136 			break;
137 		}
138 
139 		/* read objdump data into temporary buffer */
140 		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
141 		if (!read_bytes)
142 			continue;
143 
144 		if (sscanf(line, "%"PRIx64, &addr) != 1)
145 			continue;
146 		if (addr < last_addr) {
147 			pr_debug("addr going backwards, read beyond section?\n");
148 			break;
149 		}
150 		last_addr = addr;
151 
152 		/* copy it from temporary buffer to 'buf' according
153 		 * to address on current objdump line */
154 		off = addr - start_addr;
155 		if (off >= *len)
156 			break;
157 		written_bytes = MIN(read_bytes, *len - off);
158 		memcpy(buf + off, tmp, written_bytes);
159 		off_last = off + written_bytes;
160 	}
161 
162 	/* len returns number of bytes that could not be read */
163 	*len -= off_last;
164 
165 	free(line);
166 
167 	return err;
168 }
169 
170 static int read_via_objdump(const char *filename, u64 addr, void *buf,
171 			    size_t len)
172 {
173 	char cmd[PATH_MAX * 2];
174 	const char *fmt;
175 	FILE *f;
176 	int ret;
177 
178 	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
179 	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
180 		       filename);
181 	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
182 		return -1;
183 
184 	pr_debug("Objdump command is: %s\n", cmd);
185 
186 	/* Ignore objdump errors */
187 	strcat(cmd, " 2>/dev/null");
188 
189 	f = popen(cmd, "r");
190 	if (!f) {
191 		pr_debug("popen failed\n");
192 		return -1;
193 	}
194 
195 	ret = read_objdump_output(f, buf, &len, addr);
196 	if (len) {
197 		pr_debug("objdump read too few bytes: %zd\n", len);
198 		if (!ret)
199 			ret = len;
200 	}
201 
202 	pclose(f);
203 
204 	return ret;
205 }
206 
207 static void dump_buf(unsigned char *buf, size_t len)
208 {
209 	size_t i;
210 
211 	for (i = 0; i < len; i++) {
212 		pr_debug("0x%02x ", buf[i]);
213 		if (i % 16 == 15)
214 			pr_debug("\n");
215 	}
216 	pr_debug("\n");
217 }
218 
219 static int read_object_code(u64 addr, size_t len, u8 cpumode,
220 			    struct thread *thread, struct state *state)
221 {
222 	struct addr_location al;
223 	unsigned char buf1[BUFSZ];
224 	unsigned char buf2[BUFSZ];
225 	size_t ret_len;
226 	u64 objdump_addr;
227 	int ret;
228 
229 	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);
230 
231 	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
232 	if (!al.map || !al.map->dso) {
233 		pr_debug("thread__find_addr_map failed\n");
234 		return -1;
235 	}
236 
237 	pr_debug("File is: %s\n", al.map->dso->long_name);
238 
239 	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
240 	    !dso__is_kcore(al.map->dso)) {
241 		pr_debug("Unexpected kernel address - skipping\n");
242 		return 0;
243 	}
244 
245 	pr_debug("On file address is: %#"PRIx64"\n", al.addr);
246 
247 	if (len > BUFSZ)
248 		len = BUFSZ;
249 
250 	/* Do not go off the map */
251 	if (addr + len > al.map->end)
252 		len = al.map->end - addr;
253 
254 	/* Read the object code using perf */
255 	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
256 					al.addr, buf1, len);
257 	if (ret_len != len) {
258 		pr_debug("dso__data_read_offset failed\n");
259 		return -1;
260 	}
261 
262 	/*
263 	 * Converting addresses for use by objdump requires more information.
264 	 * map__load() does that.  See map__rip_2objdump() for details.
265 	 */
266 	if (map__load(al.map))
267 		return -1;
268 
269 	/* objdump struggles with kcore - try each map only once */
270 	if (dso__is_kcore(al.map->dso)) {
271 		size_t d;
272 
273 		for (d = 0; d < state->done_cnt; d++) {
274 			if (state->done[d] == al.map->start) {
275 				pr_debug("kcore map tested already");
276 				pr_debug(" - skipping\n");
277 				return 0;
278 			}
279 		}
280 		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
281 			pr_debug("Too many kcore maps - skipping\n");
282 			return 0;
283 		}
284 		state->done[state->done_cnt++] = al.map->start;
285 	}
286 
287 	/* Read the object code using objdump */
288 	objdump_addr = map__rip_2objdump(al.map, al.addr);
289 	ret = read_via_objdump(al.map->dso->long_name, objdump_addr, buf2, len);
290 	if (ret > 0) {
291 		/*
292 		 * The kernel maps are inaccurate - assume objdump is right in
293 		 * that case.
294 		 */
295 		if (cpumode == PERF_RECORD_MISC_KERNEL ||
296 		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
297 			len -= ret;
298 			if (len) {
299 				pr_debug("Reducing len to %zu\n", len);
300 			} else if (dso__is_kcore(al.map->dso)) {
301 				/*
302 				 * objdump cannot handle very large segments
303 				 * that may be found in kcore.
304 				 */
305 				pr_debug("objdump failed for kcore");
306 				pr_debug(" - skipping\n");
307 				return 0;
308 			} else {
309 				return -1;
310 			}
311 		}
312 	}
313 	if (ret < 0) {
314 		pr_debug("read_via_objdump failed\n");
315 		return -1;
316 	}
317 
318 	/* The results should be identical */
319 	if (memcmp(buf1, buf2, len)) {
320 		pr_debug("Bytes read differ from those read by objdump\n");
321 		pr_debug("buf1 (dso):\n");
322 		dump_buf(buf1, len);
323 		pr_debug("buf2 (objdump):\n");
324 		dump_buf(buf2, len);
325 		return -1;
326 	}
327 	pr_debug("Bytes read match those read by objdump\n");
328 
329 	return 0;
330 }
331 
332 static int process_sample_event(struct machine *machine,
333 				struct perf_evlist *evlist,
334 				union perf_event *event, struct state *state)
335 {
336 	struct perf_sample sample;
337 	struct thread *thread;
338 	int ret;
339 
340 	if (perf_evlist__parse_sample(evlist, event, &sample)) {
341 		pr_debug("perf_evlist__parse_sample failed\n");
342 		return -1;
343 	}
344 
345 	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
346 	if (!thread) {
347 		pr_debug("machine__findnew_thread failed\n");
348 		return -1;
349 	}
350 
351 	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
352 	thread__put(thread);
353 	return ret;
354 }
355 
356 static int process_event(struct machine *machine, struct perf_evlist *evlist,
357 			 union perf_event *event, struct state *state)
358 {
359 	if (event->header.type == PERF_RECORD_SAMPLE)
360 		return process_sample_event(machine, evlist, event, state);
361 
362 	if (event->header.type == PERF_RECORD_THROTTLE ||
363 	    event->header.type == PERF_RECORD_UNTHROTTLE)
364 		return 0;
365 
366 	if (event->header.type < PERF_RECORD_MAX) {
367 		int ret;
368 
369 		ret = machine__process_event(machine, event, NULL);
370 		if (ret < 0)
371 			pr_debug("machine__process_event failed, event type %u\n",
372 				 event->header.type);
373 		return ret;
374 	}
375 
376 	return 0;
377 }
378 
379 static int process_events(struct machine *machine, struct perf_evlist *evlist,
380 			  struct state *state)
381 {
382 	union perf_event *event;
383 	int i, ret;
384 
385 	for (i = 0; i < evlist->nr_mmaps; i++) {
386 		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
387 			ret = process_event(machine, evlist, event, state);
388 			perf_evlist__mmap_consume(evlist, i);
389 			if (ret < 0)
390 				return ret;
391 		}
392 	}
393 	return 0;
394 }
395 
396 static int comp(const void *a, const void *b)
397 {
398 	return *(int *)a - *(int *)b;
399 }
400 
401 static void do_sort_something(void)
402 {
403 	int buf[40960], i;
404 
405 	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
406 		buf[i] = ARRAY_SIZE(buf) - i - 1;
407 
408 	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
409 
410 	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
411 		if (buf[i] != i) {
412 			pr_debug("qsort failed\n");
413 			break;
414 		}
415 	}
416 }
417 
418 static void sort_something(void)
419 {
420 	int i;
421 
422 	for (i = 0; i < 10; i++)
423 		do_sort_something();
424 }
425 
426 static void syscall_something(void)
427 {
428 	int pipefd[2];
429 	int i;
430 
431 	for (i = 0; i < 1000; i++) {
432 		if (pipe(pipefd) < 0) {
433 			pr_debug("pipe failed\n");
434 			break;
435 		}
436 		close(pipefd[1]);
437 		close(pipefd[0]);
438 	}
439 }
440 
441 static void fs_something(void)
442 {
443 	const char *test_file_name = "temp-perf-code-reading-test-file--";
444 	FILE *f;
445 	int i;
446 
447 	for (i = 0; i < 1000; i++) {
448 		f = fopen(test_file_name, "w+");
449 		if (f) {
450 			fclose(f);
451 			unlink(test_file_name);
452 		}
453 	}
454 }
455 
456 static void do_something(void)
457 {
458 	fs_something();
459 
460 	sort_something();
461 
462 	syscall_something();
463 }
464 
465 enum {
466 	TEST_CODE_READING_OK,
467 	TEST_CODE_READING_NO_VMLINUX,
468 	TEST_CODE_READING_NO_KCORE,
469 	TEST_CODE_READING_NO_ACCESS,
470 	TEST_CODE_READING_NO_KERNEL_OBJ,
471 };
472 
473 static int do_test_code_reading(bool try_kcore)
474 {
475 	struct machine *machine;
476 	struct thread *thread;
477 	struct record_opts opts = {
478 		.mmap_pages	     = UINT_MAX,
479 		.user_freq	     = UINT_MAX,
480 		.user_interval	     = ULLONG_MAX,
481 		.freq		     = 500,
482 		.target		     = {
483 			.uses_mmap   = true,
484 		},
485 	};
486 	struct state state = {
487 		.done_cnt = 0,
488 	};
489 	struct thread_map *threads = NULL;
490 	struct cpu_map *cpus = NULL;
491 	struct perf_evlist *evlist = NULL;
492 	struct perf_evsel *evsel = NULL;
493 	int err = -1, ret;
494 	pid_t pid;
495 	struct map *map;
496 	bool have_vmlinux, have_kcore, excl_kernel = false;
497 
498 	pid = getpid();
499 
500 	machine = machine__new_host();
501 
502 	ret = machine__create_kernel_maps(machine);
503 	if (ret < 0) {
504 		pr_debug("machine__create_kernel_maps failed\n");
505 		goto out_err;
506 	}
507 
508 	/* Force the use of kallsyms instead of vmlinux to try kcore */
509 	if (try_kcore)
510 		symbol_conf.kallsyms_name = "/proc/kallsyms";
511 
512 	/* Load kernel map */
513 	map = machine__kernel_map(machine);
514 	ret = map__load(map);
515 	if (ret < 0) {
516 		pr_debug("map__load failed\n");
517 		goto out_err;
518 	}
519 	have_vmlinux = dso__is_vmlinux(map->dso);
520 	have_kcore = dso__is_kcore(map->dso);
521 
522 	/* 2nd time through we just try kcore */
523 	if (try_kcore && !have_kcore)
524 		return TEST_CODE_READING_NO_KCORE;
525 
526 	/* No point getting kernel events if there is no kernel object */
527 	if (!have_vmlinux && !have_kcore)
528 		excl_kernel = true;
529 
530 	threads = thread_map__new_by_tid(pid);
531 	if (!threads) {
532 		pr_debug("thread_map__new_by_tid failed\n");
533 		goto out_err;
534 	}
535 
536 	ret = perf_event__synthesize_thread_map(NULL, threads,
537 						perf_event__process, machine, false, 500);
538 	if (ret < 0) {
539 		pr_debug("perf_event__synthesize_thread_map failed\n");
540 		goto out_err;
541 	}
542 
543 	thread = machine__findnew_thread(machine, pid, pid);
544 	if (!thread) {
545 		pr_debug("machine__findnew_thread failed\n");
546 		goto out_put;
547 	}
548 
549 	cpus = cpu_map__new(NULL);
550 	if (!cpus) {
551 		pr_debug("cpu_map__new failed\n");
552 		goto out_put;
553 	}
554 
555 	while (1) {
556 		const char *str;
557 
558 		evlist = perf_evlist__new();
559 		if (!evlist) {
560 			pr_debug("perf_evlist__new failed\n");
561 			goto out_put;
562 		}
563 
564 		perf_evlist__set_maps(evlist, cpus, threads);
565 
566 		if (excl_kernel)
567 			str = "cycles:u";
568 		else
569 			str = "cycles";
570 		pr_debug("Parsing event '%s'\n", str);
571 		ret = parse_events(evlist, str, NULL);
572 		if (ret < 0) {
573 			pr_debug("parse_events failed\n");
574 			goto out_put;
575 		}
576 
577 		perf_evlist__config(evlist, &opts, NULL);
578 
579 		evsel = perf_evlist__first(evlist);
580 
581 		evsel->attr.comm = 1;
582 		evsel->attr.disabled = 1;
583 		evsel->attr.enable_on_exec = 0;
584 
585 		ret = perf_evlist__open(evlist);
586 		if (ret < 0) {
587 			if (!excl_kernel) {
588 				excl_kernel = true;
589 				/*
590 				 * Both cpus and threads are now owned by evlist
591 				 * and will be freed by following perf_evlist__set_maps
592 				 * call. Getting refference to keep them alive.
593 				 */
594 				cpu_map__get(cpus);
595 				thread_map__get(threads);
596 				perf_evlist__set_maps(evlist, NULL, NULL);
597 				perf_evlist__delete(evlist);
598 				evlist = NULL;
599 				continue;
600 			}
601 
602 			if (verbose > 0) {
603 				char errbuf[512];
604 				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
605 				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
606 			}
607 
608 			goto out_put;
609 		}
610 		break;
611 	}
612 
613 	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
614 	if (ret < 0) {
615 		pr_debug("perf_evlist__mmap failed\n");
616 		goto out_put;
617 	}
618 
619 	perf_evlist__enable(evlist);
620 
621 	do_something();
622 
623 	perf_evlist__disable(evlist);
624 
625 	ret = process_events(machine, evlist, &state);
626 	if (ret < 0)
627 		goto out_put;
628 
629 	if (!have_vmlinux && !have_kcore && !try_kcore)
630 		err = TEST_CODE_READING_NO_KERNEL_OBJ;
631 	else if (!have_vmlinux && !try_kcore)
632 		err = TEST_CODE_READING_NO_VMLINUX;
633 	else if (excl_kernel)
634 		err = TEST_CODE_READING_NO_ACCESS;
635 	else
636 		err = TEST_CODE_READING_OK;
637 out_put:
638 	thread__put(thread);
639 out_err:
640 
641 	if (evlist) {
642 		perf_evlist__delete(evlist);
643 	} else {
644 		cpu_map__put(cpus);
645 		thread_map__put(threads);
646 	}
647 	machine__delete_threads(machine);
648 	machine__delete(machine);
649 
650 	return err;
651 }
652 
653 int test__code_reading(int subtest __maybe_unused)
654 {
655 	int ret;
656 
657 	ret = do_test_code_reading(false);
658 	if (!ret)
659 		ret = do_test_code_reading(true);
660 
661 	switch (ret) {
662 	case TEST_CODE_READING_OK:
663 		return 0;
664 	case TEST_CODE_READING_NO_VMLINUX:
665 		pr_debug("no vmlinux\n");
666 		return 0;
667 	case TEST_CODE_READING_NO_KCORE:
668 		pr_debug("no kcore\n");
669 		return 0;
670 	case TEST_CODE_READING_NO_ACCESS:
671 		pr_debug("no access\n");
672 		return 0;
673 	case TEST_CODE_READING_NO_KERNEL_OBJ:
674 		pr_debug("no kernel obj\n");
675 		return 0;
676 	default:
677 		return -1;
678 	};
679 }
680