xref: /openbmc/linux/tools/perf/tests/code-reading.c (revision d236d361)
1 #include <errno.h>
2 #include <linux/kernel.h>
3 #include <linux/types.h>
4 #include <inttypes.h>
5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <sys/param.h>
10 
11 #include "parse-events.h"
12 #include "evlist.h"
13 #include "evsel.h"
14 #include "thread_map.h"
15 #include "cpumap.h"
16 #include "machine.h"
17 #include "event.h"
18 #include "thread.h"
19 
20 #include "tests.h"
21 
22 #include "sane_ctype.h"
23 
24 #define BUFSZ	1024
25 #define READLEN	128
26 
27 struct state {
28 	u64 done[1024];
29 	size_t done_cnt;
30 };
31 
32 static unsigned int hex(char c)
33 {
34 	if (c >= '0' && c <= '9')
35 		return c - '0';
36 	if (c >= 'a' && c <= 'f')
37 		return c - 'a' + 10;
38 	return c - 'A' + 10;
39 }
40 
41 static size_t read_objdump_chunk(const char **line, unsigned char **buf,
42 				 size_t *buf_len)
43 {
44 	size_t bytes_read = 0;
45 	unsigned char *chunk_start = *buf;
46 
47 	/* Read bytes */
48 	while (*buf_len > 0) {
49 		char c1, c2;
50 
51 		/* Get 2 hex digits */
52 		c1 = *(*line)++;
53 		if (!isxdigit(c1))
54 			break;
55 		c2 = *(*line)++;
56 		if (!isxdigit(c2))
57 			break;
58 
59 		/* Store byte and advance buf */
60 		**buf = (hex(c1) << 4) | hex(c2);
61 		(*buf)++;
62 		(*buf_len)--;
63 		bytes_read++;
64 
65 		/* End of chunk? */
66 		if (isspace(**line))
67 			break;
68 	}
69 
70 	/*
71 	 * objdump will display raw insn as LE if code endian
72 	 * is LE and bytes_per_chunk > 1. In that case reverse
73 	 * the chunk we just read.
74 	 *
75 	 * see disassemble_bytes() at binutils/objdump.c for details
76 	 * how objdump chooses display endian)
77 	 */
78 	if (bytes_read > 1 && !bigendian()) {
79 		unsigned char *chunk_end = chunk_start + bytes_read - 1;
80 		unsigned char tmp;
81 
82 		while (chunk_start < chunk_end) {
83 			tmp = *chunk_start;
84 			*chunk_start = *chunk_end;
85 			*chunk_end = tmp;
86 			chunk_start++;
87 			chunk_end--;
88 		}
89 	}
90 
91 	return bytes_read;
92 }
93 
94 static size_t read_objdump_line(const char *line, unsigned char *buf,
95 				size_t buf_len)
96 {
97 	const char *p;
98 	size_t ret, bytes_read = 0;
99 
100 	/* Skip to a colon */
101 	p = strchr(line, ':');
102 	if (!p)
103 		return 0;
104 	p++;
105 
106 	/* Skip initial spaces */
107 	while (*p) {
108 		if (!isspace(*p))
109 			break;
110 		p++;
111 	}
112 
113 	do {
114 		ret = read_objdump_chunk(&p, &buf, &buf_len);
115 		bytes_read += ret;
116 		p++;
117 	} while (ret > 0);
118 
119 	/* return number of successfully read bytes */
120 	return bytes_read;
121 }
122 
123 static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
124 {
125 	char *line = NULL;
126 	size_t line_len, off_last = 0;
127 	ssize_t ret;
128 	int err = 0;
129 	u64 addr, last_addr = start_addr;
130 
131 	while (off_last < *len) {
132 		size_t off, read_bytes, written_bytes;
133 		unsigned char tmp[BUFSZ];
134 
135 		ret = getline(&line, &line_len, f);
136 		if (feof(f))
137 			break;
138 		if (ret < 0) {
139 			pr_debug("getline failed\n");
140 			err = -1;
141 			break;
142 		}
143 
144 		/* read objdump data into temporary buffer */
145 		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
146 		if (!read_bytes)
147 			continue;
148 
149 		if (sscanf(line, "%"PRIx64, &addr) != 1)
150 			continue;
151 		if (addr < last_addr) {
152 			pr_debug("addr going backwards, read beyond section?\n");
153 			break;
154 		}
155 		last_addr = addr;
156 
157 		/* copy it from temporary buffer to 'buf' according
158 		 * to address on current objdump line */
159 		off = addr - start_addr;
160 		if (off >= *len)
161 			break;
162 		written_bytes = MIN(read_bytes, *len - off);
163 		memcpy(buf + off, tmp, written_bytes);
164 		off_last = off + written_bytes;
165 	}
166 
167 	/* len returns number of bytes that could not be read */
168 	*len -= off_last;
169 
170 	free(line);
171 
172 	return err;
173 }
174 
175 static int read_via_objdump(const char *filename, u64 addr, void *buf,
176 			    size_t len)
177 {
178 	char cmd[PATH_MAX * 2];
179 	const char *fmt;
180 	FILE *f;
181 	int ret;
182 
183 	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
184 	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
185 		       filename);
186 	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
187 		return -1;
188 
189 	pr_debug("Objdump command is: %s\n", cmd);
190 
191 	/* Ignore objdump errors */
192 	strcat(cmd, " 2>/dev/null");
193 
194 	f = popen(cmd, "r");
195 	if (!f) {
196 		pr_debug("popen failed\n");
197 		return -1;
198 	}
199 
200 	ret = read_objdump_output(f, buf, &len, addr);
201 	if (len) {
202 		pr_debug("objdump read too few bytes: %zd\n", len);
203 		if (!ret)
204 			ret = len;
205 	}
206 
207 	pclose(f);
208 
209 	return ret;
210 }
211 
212 static void dump_buf(unsigned char *buf, size_t len)
213 {
214 	size_t i;
215 
216 	for (i = 0; i < len; i++) {
217 		pr_debug("0x%02x ", buf[i]);
218 		if (i % 16 == 15)
219 			pr_debug("\n");
220 	}
221 	pr_debug("\n");
222 }
223 
224 static int read_object_code(u64 addr, size_t len, u8 cpumode,
225 			    struct thread *thread, struct state *state)
226 {
227 	struct addr_location al;
228 	unsigned char buf1[BUFSZ];
229 	unsigned char buf2[BUFSZ];
230 	size_t ret_len;
231 	u64 objdump_addr;
232 	int ret;
233 
234 	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);
235 
236 	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
237 	if (!al.map || !al.map->dso) {
238 		pr_debug("thread__find_addr_map failed\n");
239 		return -1;
240 	}
241 
242 	pr_debug("File is: %s\n", al.map->dso->long_name);
243 
244 	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
245 	    !dso__is_kcore(al.map->dso)) {
246 		pr_debug("Unexpected kernel address - skipping\n");
247 		return 0;
248 	}
249 
250 	pr_debug("On file address is: %#"PRIx64"\n", al.addr);
251 
252 	if (len > BUFSZ)
253 		len = BUFSZ;
254 
255 	/* Do not go off the map */
256 	if (addr + len > al.map->end)
257 		len = al.map->end - addr;
258 
259 	/* Read the object code using perf */
260 	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
261 					al.addr, buf1, len);
262 	if (ret_len != len) {
263 		pr_debug("dso__data_read_offset failed\n");
264 		return -1;
265 	}
266 
267 	/*
268 	 * Converting addresses for use by objdump requires more information.
269 	 * map__load() does that.  See map__rip_2objdump() for details.
270 	 */
271 	if (map__load(al.map))
272 		return -1;
273 
274 	/* objdump struggles with kcore - try each map only once */
275 	if (dso__is_kcore(al.map->dso)) {
276 		size_t d;
277 
278 		for (d = 0; d < state->done_cnt; d++) {
279 			if (state->done[d] == al.map->start) {
280 				pr_debug("kcore map tested already");
281 				pr_debug(" - skipping\n");
282 				return 0;
283 			}
284 		}
285 		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
286 			pr_debug("Too many kcore maps - skipping\n");
287 			return 0;
288 		}
289 		state->done[state->done_cnt++] = al.map->start;
290 	}
291 
292 	/* Read the object code using objdump */
293 	objdump_addr = map__rip_2objdump(al.map, al.addr);
294 	ret = read_via_objdump(al.map->dso->long_name, objdump_addr, buf2, len);
295 	if (ret > 0) {
296 		/*
297 		 * The kernel maps are inaccurate - assume objdump is right in
298 		 * that case.
299 		 */
300 		if (cpumode == PERF_RECORD_MISC_KERNEL ||
301 		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
302 			len -= ret;
303 			if (len) {
304 				pr_debug("Reducing len to %zu\n", len);
305 			} else if (dso__is_kcore(al.map->dso)) {
306 				/*
307 				 * objdump cannot handle very large segments
308 				 * that may be found in kcore.
309 				 */
310 				pr_debug("objdump failed for kcore");
311 				pr_debug(" - skipping\n");
312 				return 0;
313 			} else {
314 				return -1;
315 			}
316 		}
317 	}
318 	if (ret < 0) {
319 		pr_debug("read_via_objdump failed\n");
320 		return -1;
321 	}
322 
323 	/* The results should be identical */
324 	if (memcmp(buf1, buf2, len)) {
325 		pr_debug("Bytes read differ from those read by objdump\n");
326 		pr_debug("buf1 (dso):\n");
327 		dump_buf(buf1, len);
328 		pr_debug("buf2 (objdump):\n");
329 		dump_buf(buf2, len);
330 		return -1;
331 	}
332 	pr_debug("Bytes read match those read by objdump\n");
333 
334 	return 0;
335 }
336 
337 static int process_sample_event(struct machine *machine,
338 				struct perf_evlist *evlist,
339 				union perf_event *event, struct state *state)
340 {
341 	struct perf_sample sample;
342 	struct thread *thread;
343 	int ret;
344 
345 	if (perf_evlist__parse_sample(evlist, event, &sample)) {
346 		pr_debug("perf_evlist__parse_sample failed\n");
347 		return -1;
348 	}
349 
350 	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
351 	if (!thread) {
352 		pr_debug("machine__findnew_thread failed\n");
353 		return -1;
354 	}
355 
356 	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
357 	thread__put(thread);
358 	return ret;
359 }
360 
361 static int process_event(struct machine *machine, struct perf_evlist *evlist,
362 			 union perf_event *event, struct state *state)
363 {
364 	if (event->header.type == PERF_RECORD_SAMPLE)
365 		return process_sample_event(machine, evlist, event, state);
366 
367 	if (event->header.type == PERF_RECORD_THROTTLE ||
368 	    event->header.type == PERF_RECORD_UNTHROTTLE)
369 		return 0;
370 
371 	if (event->header.type < PERF_RECORD_MAX) {
372 		int ret;
373 
374 		ret = machine__process_event(machine, event, NULL);
375 		if (ret < 0)
376 			pr_debug("machine__process_event failed, event type %u\n",
377 				 event->header.type);
378 		return ret;
379 	}
380 
381 	return 0;
382 }
383 
384 static int process_events(struct machine *machine, struct perf_evlist *evlist,
385 			  struct state *state)
386 {
387 	union perf_event *event;
388 	int i, ret;
389 
390 	for (i = 0; i < evlist->nr_mmaps; i++) {
391 		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
392 			ret = process_event(machine, evlist, event, state);
393 			perf_evlist__mmap_consume(evlist, i);
394 			if (ret < 0)
395 				return ret;
396 		}
397 	}
398 	return 0;
399 }
400 
401 static int comp(const void *a, const void *b)
402 {
403 	return *(int *)a - *(int *)b;
404 }
405 
406 static void do_sort_something(void)
407 {
408 	int buf[40960], i;
409 
410 	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
411 		buf[i] = ARRAY_SIZE(buf) - i - 1;
412 
413 	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
414 
415 	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
416 		if (buf[i] != i) {
417 			pr_debug("qsort failed\n");
418 			break;
419 		}
420 	}
421 }
422 
423 static void sort_something(void)
424 {
425 	int i;
426 
427 	for (i = 0; i < 10; i++)
428 		do_sort_something();
429 }
430 
431 static void syscall_something(void)
432 {
433 	int pipefd[2];
434 	int i;
435 
436 	for (i = 0; i < 1000; i++) {
437 		if (pipe(pipefd) < 0) {
438 			pr_debug("pipe failed\n");
439 			break;
440 		}
441 		close(pipefd[1]);
442 		close(pipefd[0]);
443 	}
444 }
445 
446 static void fs_something(void)
447 {
448 	const char *test_file_name = "temp-perf-code-reading-test-file--";
449 	FILE *f;
450 	int i;
451 
452 	for (i = 0; i < 1000; i++) {
453 		f = fopen(test_file_name, "w+");
454 		if (f) {
455 			fclose(f);
456 			unlink(test_file_name);
457 		}
458 	}
459 }
460 
461 static void do_something(void)
462 {
463 	fs_something();
464 
465 	sort_something();
466 
467 	syscall_something();
468 }
469 
470 enum {
471 	TEST_CODE_READING_OK,
472 	TEST_CODE_READING_NO_VMLINUX,
473 	TEST_CODE_READING_NO_KCORE,
474 	TEST_CODE_READING_NO_ACCESS,
475 	TEST_CODE_READING_NO_KERNEL_OBJ,
476 };
477 
478 static int do_test_code_reading(bool try_kcore)
479 {
480 	struct machine *machine;
481 	struct thread *thread;
482 	struct record_opts opts = {
483 		.mmap_pages	     = UINT_MAX,
484 		.user_freq	     = UINT_MAX,
485 		.user_interval	     = ULLONG_MAX,
486 		.freq		     = 500,
487 		.target		     = {
488 			.uses_mmap   = true,
489 		},
490 	};
491 	struct state state = {
492 		.done_cnt = 0,
493 	};
494 	struct thread_map *threads = NULL;
495 	struct cpu_map *cpus = NULL;
496 	struct perf_evlist *evlist = NULL;
497 	struct perf_evsel *evsel = NULL;
498 	int err = -1, ret;
499 	pid_t pid;
500 	struct map *map;
501 	bool have_vmlinux, have_kcore, excl_kernel = false;
502 
503 	pid = getpid();
504 
505 	machine = machine__new_host();
506 
507 	ret = machine__create_kernel_maps(machine);
508 	if (ret < 0) {
509 		pr_debug("machine__create_kernel_maps failed\n");
510 		goto out_err;
511 	}
512 
513 	/* Force the use of kallsyms instead of vmlinux to try kcore */
514 	if (try_kcore)
515 		symbol_conf.kallsyms_name = "/proc/kallsyms";
516 
517 	/* Load kernel map */
518 	map = machine__kernel_map(machine);
519 	ret = map__load(map);
520 	if (ret < 0) {
521 		pr_debug("map__load failed\n");
522 		goto out_err;
523 	}
524 	have_vmlinux = dso__is_vmlinux(map->dso);
525 	have_kcore = dso__is_kcore(map->dso);
526 
527 	/* 2nd time through we just try kcore */
528 	if (try_kcore && !have_kcore)
529 		return TEST_CODE_READING_NO_KCORE;
530 
531 	/* No point getting kernel events if there is no kernel object */
532 	if (!have_vmlinux && !have_kcore)
533 		excl_kernel = true;
534 
535 	threads = thread_map__new_by_tid(pid);
536 	if (!threads) {
537 		pr_debug("thread_map__new_by_tid failed\n");
538 		goto out_err;
539 	}
540 
541 	ret = perf_event__synthesize_thread_map(NULL, threads,
542 						perf_event__process, machine, false, 500);
543 	if (ret < 0) {
544 		pr_debug("perf_event__synthesize_thread_map failed\n");
545 		goto out_err;
546 	}
547 
548 	thread = machine__findnew_thread(machine, pid, pid);
549 	if (!thread) {
550 		pr_debug("machine__findnew_thread failed\n");
551 		goto out_put;
552 	}
553 
554 	cpus = cpu_map__new(NULL);
555 	if (!cpus) {
556 		pr_debug("cpu_map__new failed\n");
557 		goto out_put;
558 	}
559 
560 	while (1) {
561 		const char *str;
562 
563 		evlist = perf_evlist__new();
564 		if (!evlist) {
565 			pr_debug("perf_evlist__new failed\n");
566 			goto out_put;
567 		}
568 
569 		perf_evlist__set_maps(evlist, cpus, threads);
570 
571 		if (excl_kernel)
572 			str = "cycles:u";
573 		else
574 			str = "cycles";
575 		pr_debug("Parsing event '%s'\n", str);
576 		ret = parse_events(evlist, str, NULL);
577 		if (ret < 0) {
578 			pr_debug("parse_events failed\n");
579 			goto out_put;
580 		}
581 
582 		perf_evlist__config(evlist, &opts, NULL);
583 
584 		evsel = perf_evlist__first(evlist);
585 
586 		evsel->attr.comm = 1;
587 		evsel->attr.disabled = 1;
588 		evsel->attr.enable_on_exec = 0;
589 
590 		ret = perf_evlist__open(evlist);
591 		if (ret < 0) {
592 			if (!excl_kernel) {
593 				excl_kernel = true;
594 				/*
595 				 * Both cpus and threads are now owned by evlist
596 				 * and will be freed by following perf_evlist__set_maps
597 				 * call. Getting refference to keep them alive.
598 				 */
599 				cpu_map__get(cpus);
600 				thread_map__get(threads);
601 				perf_evlist__set_maps(evlist, NULL, NULL);
602 				perf_evlist__delete(evlist);
603 				evlist = NULL;
604 				continue;
605 			}
606 
607 			if (verbose > 0) {
608 				char errbuf[512];
609 				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
610 				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
611 			}
612 
613 			goto out_put;
614 		}
615 		break;
616 	}
617 
618 	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
619 	if (ret < 0) {
620 		pr_debug("perf_evlist__mmap failed\n");
621 		goto out_put;
622 	}
623 
624 	perf_evlist__enable(evlist);
625 
626 	do_something();
627 
628 	perf_evlist__disable(evlist);
629 
630 	ret = process_events(machine, evlist, &state);
631 	if (ret < 0)
632 		goto out_put;
633 
634 	if (!have_vmlinux && !have_kcore && !try_kcore)
635 		err = TEST_CODE_READING_NO_KERNEL_OBJ;
636 	else if (!have_vmlinux && !try_kcore)
637 		err = TEST_CODE_READING_NO_VMLINUX;
638 	else if (excl_kernel)
639 		err = TEST_CODE_READING_NO_ACCESS;
640 	else
641 		err = TEST_CODE_READING_OK;
642 out_put:
643 	thread__put(thread);
644 out_err:
645 
646 	if (evlist) {
647 		perf_evlist__delete(evlist);
648 	} else {
649 		cpu_map__put(cpus);
650 		thread_map__put(threads);
651 	}
652 	machine__delete_threads(machine);
653 	machine__delete(machine);
654 
655 	return err;
656 }
657 
658 int test__code_reading(int subtest __maybe_unused)
659 {
660 	int ret;
661 
662 	ret = do_test_code_reading(false);
663 	if (!ret)
664 		ret = do_test_code_reading(true);
665 
666 	switch (ret) {
667 	case TEST_CODE_READING_OK:
668 		return 0;
669 	case TEST_CODE_READING_NO_VMLINUX:
670 		pr_debug("no vmlinux\n");
671 		return 0;
672 	case TEST_CODE_READING_NO_KCORE:
673 		pr_debug("no kcore\n");
674 		return 0;
675 	case TEST_CODE_READING_NO_ACCESS:
676 		pr_debug("no access\n");
677 		return 0;
678 	case TEST_CODE_READING_NO_KERNEL_OBJ:
679 		pr_debug("no kernel obj\n");
680 		return 0;
681 	default:
682 		return -1;
683 	};
684 }
685