xref: /openbmc/linux/tools/perf/tests/code-reading.c (revision 7aacf86b)
1 #include <errno.h>
2 #include <linux/kernel.h>
3 #include <linux/types.h>
4 #include <inttypes.h>
5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <sys/param.h>
10 
11 #include "parse-events.h"
12 #include "evlist.h"
13 #include "evsel.h"
14 #include "thread_map.h"
15 #include "cpumap.h"
16 #include "machine.h"
17 #include "event.h"
18 #include "thread.h"
19 
20 #include "tests.h"
21 
22 #include "sane_ctype.h"
23 
24 #define BUFSZ	1024
25 #define READLEN	128
26 
27 struct state {
28 	u64 done[1024];
29 	size_t done_cnt;
30 };
31 
32 static unsigned int hex(char c)
33 {
34 	if (c >= '0' && c <= '9')
35 		return c - '0';
36 	if (c >= 'a' && c <= 'f')
37 		return c - 'a' + 10;
38 	return c - 'A' + 10;
39 }
40 
41 static size_t read_objdump_chunk(const char **line, unsigned char **buf,
42 				 size_t *buf_len)
43 {
44 	size_t bytes_read = 0;
45 	unsigned char *chunk_start = *buf;
46 
47 	/* Read bytes */
48 	while (*buf_len > 0) {
49 		char c1, c2;
50 
51 		/* Get 2 hex digits */
52 		c1 = *(*line)++;
53 		if (!isxdigit(c1))
54 			break;
55 		c2 = *(*line)++;
56 		if (!isxdigit(c2))
57 			break;
58 
59 		/* Store byte and advance buf */
60 		**buf = (hex(c1) << 4) | hex(c2);
61 		(*buf)++;
62 		(*buf_len)--;
63 		bytes_read++;
64 
65 		/* End of chunk? */
66 		if (isspace(**line))
67 			break;
68 	}
69 
70 	/*
71 	 * objdump will display raw insn as LE if code endian
72 	 * is LE and bytes_per_chunk > 1. In that case reverse
73 	 * the chunk we just read.
74 	 *
75 	 * see disassemble_bytes() at binutils/objdump.c for details
76 	 * how objdump chooses display endian)
77 	 */
78 	if (bytes_read > 1 && !bigendian()) {
79 		unsigned char *chunk_end = chunk_start + bytes_read - 1;
80 		unsigned char tmp;
81 
82 		while (chunk_start < chunk_end) {
83 			tmp = *chunk_start;
84 			*chunk_start = *chunk_end;
85 			*chunk_end = tmp;
86 			chunk_start++;
87 			chunk_end--;
88 		}
89 	}
90 
91 	return bytes_read;
92 }
93 
94 static size_t read_objdump_line(const char *line, unsigned char *buf,
95 				size_t buf_len)
96 {
97 	const char *p;
98 	size_t ret, bytes_read = 0;
99 
100 	/* Skip to a colon */
101 	p = strchr(line, ':');
102 	if (!p)
103 		return 0;
104 	p++;
105 
106 	/* Skip initial spaces */
107 	while (*p) {
108 		if (!isspace(*p))
109 			break;
110 		p++;
111 	}
112 
113 	do {
114 		ret = read_objdump_chunk(&p, &buf, &buf_len);
115 		bytes_read += ret;
116 		p++;
117 	} while (ret > 0);
118 
119 	/* return number of successfully read bytes */
120 	return bytes_read;
121 }
122 
123 static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
124 {
125 	char *line = NULL;
126 	size_t line_len, off_last = 0;
127 	ssize_t ret;
128 	int err = 0;
129 	u64 addr, last_addr = start_addr;
130 
131 	while (off_last < *len) {
132 		size_t off, read_bytes, written_bytes;
133 		unsigned char tmp[BUFSZ];
134 
135 		ret = getline(&line, &line_len, f);
136 		if (feof(f))
137 			break;
138 		if (ret < 0) {
139 			pr_debug("getline failed\n");
140 			err = -1;
141 			break;
142 		}
143 
144 		/* read objdump data into temporary buffer */
145 		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
146 		if (!read_bytes)
147 			continue;
148 
149 		if (sscanf(line, "%"PRIx64, &addr) != 1)
150 			continue;
151 		if (addr < last_addr) {
152 			pr_debug("addr going backwards, read beyond section?\n");
153 			break;
154 		}
155 		last_addr = addr;
156 
157 		/* copy it from temporary buffer to 'buf' according
158 		 * to address on current objdump line */
159 		off = addr - start_addr;
160 		if (off >= *len)
161 			break;
162 		written_bytes = MIN(read_bytes, *len - off);
163 		memcpy(buf + off, tmp, written_bytes);
164 		off_last = off + written_bytes;
165 	}
166 
167 	/* len returns number of bytes that could not be read */
168 	*len -= off_last;
169 
170 	free(line);
171 
172 	return err;
173 }
174 
175 static int read_via_objdump(const char *filename, u64 addr, void *buf,
176 			    size_t len)
177 {
178 	char cmd[PATH_MAX * 2];
179 	const char *fmt;
180 	FILE *f;
181 	int ret;
182 
183 	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
184 	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
185 		       filename);
186 	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
187 		return -1;
188 
189 	pr_debug("Objdump command is: %s\n", cmd);
190 
191 	/* Ignore objdump errors */
192 	strcat(cmd, " 2>/dev/null");
193 
194 	f = popen(cmd, "r");
195 	if (!f) {
196 		pr_debug("popen failed\n");
197 		return -1;
198 	}
199 
200 	ret = read_objdump_output(f, buf, &len, addr);
201 	if (len) {
202 		pr_debug("objdump read too few bytes: %zd\n", len);
203 		if (!ret)
204 			ret = len;
205 	}
206 
207 	pclose(f);
208 
209 	return ret;
210 }
211 
212 static void dump_buf(unsigned char *buf, size_t len)
213 {
214 	size_t i;
215 
216 	for (i = 0; i < len; i++) {
217 		pr_debug("0x%02x ", buf[i]);
218 		if (i % 16 == 15)
219 			pr_debug("\n");
220 	}
221 	pr_debug("\n");
222 }
223 
224 static int read_object_code(u64 addr, size_t len, u8 cpumode,
225 			    struct thread *thread, struct state *state)
226 {
227 	struct addr_location al;
228 	unsigned char buf1[BUFSZ];
229 	unsigned char buf2[BUFSZ];
230 	size_t ret_len;
231 	u64 objdump_addr;
232 	const char *objdump_name;
233 	char decomp_name[KMOD_DECOMP_LEN];
234 	int ret;
235 
236 	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);
237 
238 	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
239 	if (!al.map || !al.map->dso) {
240 		pr_debug("thread__find_addr_map failed\n");
241 		return -1;
242 	}
243 
244 	pr_debug("File is: %s\n", al.map->dso->long_name);
245 
246 	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
247 	    !dso__is_kcore(al.map->dso)) {
248 		pr_debug("Unexpected kernel address - skipping\n");
249 		return 0;
250 	}
251 
252 	pr_debug("On file address is: %#"PRIx64"\n", al.addr);
253 
254 	if (len > BUFSZ)
255 		len = BUFSZ;
256 
257 	/* Do not go off the map */
258 	if (addr + len > al.map->end)
259 		len = al.map->end - addr;
260 
261 	/* Read the object code using perf */
262 	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
263 					al.addr, buf1, len);
264 	if (ret_len != len) {
265 		pr_debug("dso__data_read_offset failed\n");
266 		return -1;
267 	}
268 
269 	/*
270 	 * Converting addresses for use by objdump requires more information.
271 	 * map__load() does that.  See map__rip_2objdump() for details.
272 	 */
273 	if (map__load(al.map))
274 		return -1;
275 
276 	/* objdump struggles with kcore - try each map only once */
277 	if (dso__is_kcore(al.map->dso)) {
278 		size_t d;
279 
280 		for (d = 0; d < state->done_cnt; d++) {
281 			if (state->done[d] == al.map->start) {
282 				pr_debug("kcore map tested already");
283 				pr_debug(" - skipping\n");
284 				return 0;
285 			}
286 		}
287 		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
288 			pr_debug("Too many kcore maps - skipping\n");
289 			return 0;
290 		}
291 		state->done[state->done_cnt++] = al.map->start;
292 	}
293 
294 	objdump_name = al.map->dso->long_name;
295 	if (dso__needs_decompress(al.map->dso)) {
296 		if (dso__decompress_kmodule_path(al.map->dso, objdump_name,
297 						 decomp_name,
298 						 sizeof(decomp_name)) < 0) {
299 			pr_debug("decompression failed\n");
300 			return -1;
301 		}
302 
303 		objdump_name = decomp_name;
304 	}
305 
306 	/* Read the object code using objdump */
307 	objdump_addr = map__rip_2objdump(al.map, al.addr);
308 	ret = read_via_objdump(objdump_name, objdump_addr, buf2, len);
309 
310 	if (dso__needs_decompress(al.map->dso))
311 		unlink(objdump_name);
312 
313 	if (ret > 0) {
314 		/*
315 		 * The kernel maps are inaccurate - assume objdump is right in
316 		 * that case.
317 		 */
318 		if (cpumode == PERF_RECORD_MISC_KERNEL ||
319 		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
320 			len -= ret;
321 			if (len) {
322 				pr_debug("Reducing len to %zu\n", len);
323 			} else if (dso__is_kcore(al.map->dso)) {
324 				/*
325 				 * objdump cannot handle very large segments
326 				 * that may be found in kcore.
327 				 */
328 				pr_debug("objdump failed for kcore");
329 				pr_debug(" - skipping\n");
330 				return 0;
331 			} else {
332 				return -1;
333 			}
334 		}
335 	}
336 	if (ret < 0) {
337 		pr_debug("read_via_objdump failed\n");
338 		return -1;
339 	}
340 
341 	/* The results should be identical */
342 	if (memcmp(buf1, buf2, len)) {
343 		pr_debug("Bytes read differ from those read by objdump\n");
344 		pr_debug("buf1 (dso):\n");
345 		dump_buf(buf1, len);
346 		pr_debug("buf2 (objdump):\n");
347 		dump_buf(buf2, len);
348 		return -1;
349 	}
350 	pr_debug("Bytes read match those read by objdump\n");
351 
352 	return 0;
353 }
354 
355 static int process_sample_event(struct machine *machine,
356 				struct perf_evlist *evlist,
357 				union perf_event *event, struct state *state)
358 {
359 	struct perf_sample sample;
360 	struct thread *thread;
361 	int ret;
362 
363 	if (perf_evlist__parse_sample(evlist, event, &sample)) {
364 		pr_debug("perf_evlist__parse_sample failed\n");
365 		return -1;
366 	}
367 
368 	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
369 	if (!thread) {
370 		pr_debug("machine__findnew_thread failed\n");
371 		return -1;
372 	}
373 
374 	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
375 	thread__put(thread);
376 	return ret;
377 }
378 
379 static int process_event(struct machine *machine, struct perf_evlist *evlist,
380 			 union perf_event *event, struct state *state)
381 {
382 	if (event->header.type == PERF_RECORD_SAMPLE)
383 		return process_sample_event(machine, evlist, event, state);
384 
385 	if (event->header.type == PERF_RECORD_THROTTLE ||
386 	    event->header.type == PERF_RECORD_UNTHROTTLE)
387 		return 0;
388 
389 	if (event->header.type < PERF_RECORD_MAX) {
390 		int ret;
391 
392 		ret = machine__process_event(machine, event, NULL);
393 		if (ret < 0)
394 			pr_debug("machine__process_event failed, event type %u\n",
395 				 event->header.type);
396 		return ret;
397 	}
398 
399 	return 0;
400 }
401 
402 static int process_events(struct machine *machine, struct perf_evlist *evlist,
403 			  struct state *state)
404 {
405 	union perf_event *event;
406 	int i, ret;
407 
408 	for (i = 0; i < evlist->nr_mmaps; i++) {
409 		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
410 			ret = process_event(machine, evlist, event, state);
411 			perf_evlist__mmap_consume(evlist, i);
412 			if (ret < 0)
413 				return ret;
414 		}
415 	}
416 	return 0;
417 }
418 
419 static int comp(const void *a, const void *b)
420 {
421 	return *(int *)a - *(int *)b;
422 }
423 
424 static void do_sort_something(void)
425 {
426 	int buf[40960], i;
427 
428 	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
429 		buf[i] = ARRAY_SIZE(buf) - i - 1;
430 
431 	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
432 
433 	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
434 		if (buf[i] != i) {
435 			pr_debug("qsort failed\n");
436 			break;
437 		}
438 	}
439 }
440 
441 static void sort_something(void)
442 {
443 	int i;
444 
445 	for (i = 0; i < 10; i++)
446 		do_sort_something();
447 }
448 
449 static void syscall_something(void)
450 {
451 	int pipefd[2];
452 	int i;
453 
454 	for (i = 0; i < 1000; i++) {
455 		if (pipe(pipefd) < 0) {
456 			pr_debug("pipe failed\n");
457 			break;
458 		}
459 		close(pipefd[1]);
460 		close(pipefd[0]);
461 	}
462 }
463 
464 static void fs_something(void)
465 {
466 	const char *test_file_name = "temp-perf-code-reading-test-file--";
467 	FILE *f;
468 	int i;
469 
470 	for (i = 0; i < 1000; i++) {
471 		f = fopen(test_file_name, "w+");
472 		if (f) {
473 			fclose(f);
474 			unlink(test_file_name);
475 		}
476 	}
477 }
478 
479 static void do_something(void)
480 {
481 	fs_something();
482 
483 	sort_something();
484 
485 	syscall_something();
486 }
487 
488 enum {
489 	TEST_CODE_READING_OK,
490 	TEST_CODE_READING_NO_VMLINUX,
491 	TEST_CODE_READING_NO_KCORE,
492 	TEST_CODE_READING_NO_ACCESS,
493 	TEST_CODE_READING_NO_KERNEL_OBJ,
494 };
495 
496 static int do_test_code_reading(bool try_kcore)
497 {
498 	struct machine *machine;
499 	struct thread *thread;
500 	struct record_opts opts = {
501 		.mmap_pages	     = UINT_MAX,
502 		.user_freq	     = UINT_MAX,
503 		.user_interval	     = ULLONG_MAX,
504 		.freq		     = 500,
505 		.target		     = {
506 			.uses_mmap   = true,
507 		},
508 	};
509 	struct state state = {
510 		.done_cnt = 0,
511 	};
512 	struct thread_map *threads = NULL;
513 	struct cpu_map *cpus = NULL;
514 	struct perf_evlist *evlist = NULL;
515 	struct perf_evsel *evsel = NULL;
516 	int err = -1, ret;
517 	pid_t pid;
518 	struct map *map;
519 	bool have_vmlinux, have_kcore, excl_kernel = false;
520 
521 	pid = getpid();
522 
523 	machine = machine__new_host();
524 
525 	ret = machine__create_kernel_maps(machine);
526 	if (ret < 0) {
527 		pr_debug("machine__create_kernel_maps failed\n");
528 		goto out_err;
529 	}
530 
531 	/* Force the use of kallsyms instead of vmlinux to try kcore */
532 	if (try_kcore)
533 		symbol_conf.kallsyms_name = "/proc/kallsyms";
534 
535 	/* Load kernel map */
536 	map = machine__kernel_map(machine);
537 	ret = map__load(map);
538 	if (ret < 0) {
539 		pr_debug("map__load failed\n");
540 		goto out_err;
541 	}
542 	have_vmlinux = dso__is_vmlinux(map->dso);
543 	have_kcore = dso__is_kcore(map->dso);
544 
545 	/* 2nd time through we just try kcore */
546 	if (try_kcore && !have_kcore)
547 		return TEST_CODE_READING_NO_KCORE;
548 
549 	/* No point getting kernel events if there is no kernel object */
550 	if (!have_vmlinux && !have_kcore)
551 		excl_kernel = true;
552 
553 	threads = thread_map__new_by_tid(pid);
554 	if (!threads) {
555 		pr_debug("thread_map__new_by_tid failed\n");
556 		goto out_err;
557 	}
558 
559 	ret = perf_event__synthesize_thread_map(NULL, threads,
560 						perf_event__process, machine, false, 500);
561 	if (ret < 0) {
562 		pr_debug("perf_event__synthesize_thread_map failed\n");
563 		goto out_err;
564 	}
565 
566 	thread = machine__findnew_thread(machine, pid, pid);
567 	if (!thread) {
568 		pr_debug("machine__findnew_thread failed\n");
569 		goto out_put;
570 	}
571 
572 	cpus = cpu_map__new(NULL);
573 	if (!cpus) {
574 		pr_debug("cpu_map__new failed\n");
575 		goto out_put;
576 	}
577 
578 	while (1) {
579 		const char *str;
580 
581 		evlist = perf_evlist__new();
582 		if (!evlist) {
583 			pr_debug("perf_evlist__new failed\n");
584 			goto out_put;
585 		}
586 
587 		perf_evlist__set_maps(evlist, cpus, threads);
588 
589 		if (excl_kernel)
590 			str = "cycles:u";
591 		else
592 			str = "cycles";
593 		pr_debug("Parsing event '%s'\n", str);
594 		ret = parse_events(evlist, str, NULL);
595 		if (ret < 0) {
596 			pr_debug("parse_events failed\n");
597 			goto out_put;
598 		}
599 
600 		perf_evlist__config(evlist, &opts, NULL);
601 
602 		evsel = perf_evlist__first(evlist);
603 
604 		evsel->attr.comm = 1;
605 		evsel->attr.disabled = 1;
606 		evsel->attr.enable_on_exec = 0;
607 
608 		ret = perf_evlist__open(evlist);
609 		if (ret < 0) {
610 			if (!excl_kernel) {
611 				excl_kernel = true;
612 				/*
613 				 * Both cpus and threads are now owned by evlist
614 				 * and will be freed by following perf_evlist__set_maps
615 				 * call. Getting refference to keep them alive.
616 				 */
617 				cpu_map__get(cpus);
618 				thread_map__get(threads);
619 				perf_evlist__set_maps(evlist, NULL, NULL);
620 				perf_evlist__delete(evlist);
621 				evlist = NULL;
622 				continue;
623 			}
624 
625 			if (verbose > 0) {
626 				char errbuf[512];
627 				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
628 				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
629 			}
630 
631 			goto out_put;
632 		}
633 		break;
634 	}
635 
636 	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
637 	if (ret < 0) {
638 		pr_debug("perf_evlist__mmap failed\n");
639 		goto out_put;
640 	}
641 
642 	perf_evlist__enable(evlist);
643 
644 	do_something();
645 
646 	perf_evlist__disable(evlist);
647 
648 	ret = process_events(machine, evlist, &state);
649 	if (ret < 0)
650 		goto out_put;
651 
652 	if (!have_vmlinux && !have_kcore && !try_kcore)
653 		err = TEST_CODE_READING_NO_KERNEL_OBJ;
654 	else if (!have_vmlinux && !try_kcore)
655 		err = TEST_CODE_READING_NO_VMLINUX;
656 	else if (excl_kernel)
657 		err = TEST_CODE_READING_NO_ACCESS;
658 	else
659 		err = TEST_CODE_READING_OK;
660 out_put:
661 	thread__put(thread);
662 out_err:
663 
664 	if (evlist) {
665 		perf_evlist__delete(evlist);
666 	} else {
667 		cpu_map__put(cpus);
668 		thread_map__put(threads);
669 	}
670 	machine__delete_threads(machine);
671 	machine__delete(machine);
672 
673 	return err;
674 }
675 
676 int test__code_reading(int subtest __maybe_unused)
677 {
678 	int ret;
679 
680 	ret = do_test_code_reading(false);
681 	if (!ret)
682 		ret = do_test_code_reading(true);
683 
684 	switch (ret) {
685 	case TEST_CODE_READING_OK:
686 		return 0;
687 	case TEST_CODE_READING_NO_VMLINUX:
688 		pr_debug("no vmlinux\n");
689 		return 0;
690 	case TEST_CODE_READING_NO_KCORE:
691 		pr_debug("no kcore\n");
692 		return 0;
693 	case TEST_CODE_READING_NO_ACCESS:
694 		pr_debug("no access\n");
695 		return 0;
696 	case TEST_CODE_READING_NO_KERNEL_OBJ:
697 		pr_debug("no kernel obj\n");
698 		return 0;
699 	default:
700 		return -1;
701 	};
702 }
703