1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include "builtin.h"
16 
17 #include "util/util.h"
18 
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/string.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27 
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/svghelper.h"
33 
34 static char		const *input_name = "perf.data";
35 static char		const *output_name = "output.svg";
36 
37 
38 static unsigned long	page_size;
39 static unsigned long	mmap_window = 32;
40 static u64		sample_type;
41 
42 static unsigned int	numcpus;
43 static u64		min_freq;	/* Lowest CPU frequency seen */
44 static u64		max_freq;	/* Highest CPU frequency seen */
45 static u64		turbo_frequency;
46 
47 static u64		first_time, last_time;
48 
49 
50 static struct perf_header	*header;
51 
52 struct per_pid;
53 struct per_pidcomm;
54 
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58 
59 struct sample_wrapper;
60 
61 /*
62  * Datastructure layout:
63  * We keep an list of "pid"s, matching the kernels notion of a task struct.
64  * Each "pid" entry, has a list of "comm"s.
65  *	this is because we want to track different programs different, while
66  *	exec will reuse the original pid (by design).
67  * Each comm has a list of samples that will be used to draw
68  * final graph.
69  */
70 
71 struct per_pid {
72 	struct per_pid *next;
73 
74 	int		pid;
75 	int		ppid;
76 
77 	u64		start_time;
78 	u64		end_time;
79 	u64		total_time;
80 	int		display;
81 
82 	struct per_pidcomm *all;
83 	struct per_pidcomm *current;
84 
85 	int painted;
86 };
87 
88 
89 struct per_pidcomm {
90 	struct per_pidcomm *next;
91 
92 	u64		start_time;
93 	u64		end_time;
94 	u64		total_time;
95 
96 	int		Y;
97 	int		display;
98 
99 	long		state;
100 	u64		state_since;
101 
102 	char		*comm;
103 
104 	struct cpu_sample *samples;
105 };
106 
107 struct sample_wrapper {
108 	struct sample_wrapper *next;
109 
110 	u64		timestamp;
111 	unsigned char	data[0];
112 };
113 
114 #define TYPE_NONE	0
115 #define TYPE_RUNNING	1
116 #define TYPE_WAITING	2
117 #define TYPE_BLOCKED	3
118 
119 struct cpu_sample {
120 	struct cpu_sample *next;
121 
122 	u64 start_time;
123 	u64 end_time;
124 	int type;
125 	int cpu;
126 };
127 
128 static struct per_pid *all_data;
129 
130 #define CSTATE 1
131 #define PSTATE 2
132 
133 struct power_event {
134 	struct power_event *next;
135 	int type;
136 	int state;
137 	u64 start_time;
138 	u64 end_time;
139 	int cpu;
140 };
141 
142 struct wake_event {
143 	struct wake_event *next;
144 	int waker;
145 	int wakee;
146 	u64 time;
147 };
148 
149 static struct power_event    *power_events;
150 static struct wake_event     *wake_events;
151 
152 struct sample_wrapper *all_samples;
153 
154 static struct per_pid *find_create_pid(int pid)
155 {
156 	struct per_pid *cursor = all_data;
157 
158 	while (cursor) {
159 		if (cursor->pid == pid)
160 			return cursor;
161 		cursor = cursor->next;
162 	}
163 	cursor = malloc(sizeof(struct per_pid));
164 	assert(cursor != NULL);
165 	memset(cursor, 0, sizeof(struct per_pid));
166 	cursor->pid = pid;
167 	cursor->next = all_data;
168 	all_data = cursor;
169 	return cursor;
170 }
171 
172 static void pid_set_comm(int pid, char *comm)
173 {
174 	struct per_pid *p;
175 	struct per_pidcomm *c;
176 	p = find_create_pid(pid);
177 	c = p->all;
178 	while (c) {
179 		if (c->comm && strcmp(c->comm, comm) == 0) {
180 			p->current = c;
181 			return;
182 		}
183 		if (!c->comm) {
184 			c->comm = strdup(comm);
185 			p->current = c;
186 			return;
187 		}
188 		c = c->next;
189 	}
190 	c = malloc(sizeof(struct per_pidcomm));
191 	assert(c != NULL);
192 	memset(c, 0, sizeof(struct per_pidcomm));
193 	c->comm = strdup(comm);
194 	p->current = c;
195 	c->next = p->all;
196 	p->all = c;
197 }
198 
199 static void pid_fork(int pid, int ppid, u64 timestamp)
200 {
201 	struct per_pid *p, *pp;
202 	p = find_create_pid(pid);
203 	pp = find_create_pid(ppid);
204 	p->ppid = ppid;
205 	if (pp->current && pp->current->comm && !p->current)
206 		pid_set_comm(pid, pp->current->comm);
207 
208 	p->start_time = timestamp;
209 	if (p->current) {
210 		p->current->start_time = timestamp;
211 		p->current->state_since = timestamp;
212 	}
213 }
214 
215 static void pid_exit(int pid, u64 timestamp)
216 {
217 	struct per_pid *p;
218 	p = find_create_pid(pid);
219 	p->end_time = timestamp;
220 	if (p->current)
221 		p->current->end_time = timestamp;
222 }
223 
224 static void
225 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
226 {
227 	struct per_pid *p;
228 	struct per_pidcomm *c;
229 	struct cpu_sample *sample;
230 
231 	p = find_create_pid(pid);
232 	c = p->current;
233 	if (!c) {
234 		c = malloc(sizeof(struct per_pidcomm));
235 		assert(c != NULL);
236 		memset(c, 0, sizeof(struct per_pidcomm));
237 		p->current = c;
238 		c->next = p->all;
239 		p->all = c;
240 	}
241 
242 	sample = malloc(sizeof(struct cpu_sample));
243 	assert(sample != NULL);
244 	memset(sample, 0, sizeof(struct cpu_sample));
245 	sample->start_time = start;
246 	sample->end_time = end;
247 	sample->type = type;
248 	sample->next = c->samples;
249 	sample->cpu = cpu;
250 	c->samples = sample;
251 
252 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
253 		c->total_time += (end-start);
254 		p->total_time += (end-start);
255 	}
256 
257 	if (c->start_time == 0 || c->start_time > start)
258 		c->start_time = start;
259 	if (p->start_time == 0 || p->start_time > start)
260 		p->start_time = start;
261 
262 	if (cpu > numcpus)
263 		numcpus = cpu;
264 }
265 
266 #define MAX_CPUS 4096
267 
268 static u64 cpus_cstate_start_times[MAX_CPUS];
269 static int cpus_cstate_state[MAX_CPUS];
270 static u64 cpus_pstate_start_times[MAX_CPUS];
271 static u64 cpus_pstate_state[MAX_CPUS];
272 
273 static int
274 process_comm_event(event_t *event)
275 {
276 	pid_set_comm(event->comm.pid, event->comm.comm);
277 	return 0;
278 }
279 static int
280 process_fork_event(event_t *event)
281 {
282 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
283 	return 0;
284 }
285 
286 static int
287 process_exit_event(event_t *event)
288 {
289 	pid_exit(event->fork.pid, event->fork.time);
290 	return 0;
291 }
292 
293 struct trace_entry {
294 	u32			size;
295 	unsigned short		type;
296 	unsigned char		flags;
297 	unsigned char		preempt_count;
298 	int			pid;
299 	int			tgid;
300 };
301 
302 struct power_entry {
303 	struct trace_entry te;
304 	s64	type;
305 	s64	value;
306 };
307 
308 #define TASK_COMM_LEN 16
309 struct wakeup_entry {
310 	struct trace_entry te;
311 	char comm[TASK_COMM_LEN];
312 	int   pid;
313 	int   prio;
314 	int   success;
315 };
316 
317 /*
318  * trace_flag_type is an enumeration that holds different
319  * states when a trace occurs. These are:
320  *  IRQS_OFF            - interrupts were disabled
321  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
322  *  NEED_RESCED         - reschedule is requested
323  *  HARDIRQ             - inside an interrupt handler
324  *  SOFTIRQ             - inside a softirq handler
325  */
326 enum trace_flag_type {
327 	TRACE_FLAG_IRQS_OFF		= 0x01,
328 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
329 	TRACE_FLAG_NEED_RESCHED		= 0x04,
330 	TRACE_FLAG_HARDIRQ		= 0x08,
331 	TRACE_FLAG_SOFTIRQ		= 0x10,
332 };
333 
334 
335 
336 struct sched_switch {
337 	struct trace_entry te;
338 	char prev_comm[TASK_COMM_LEN];
339 	int  prev_pid;
340 	int  prev_prio;
341 	long prev_state; /* Arjan weeps. */
342 	char next_comm[TASK_COMM_LEN];
343 	int  next_pid;
344 	int  next_prio;
345 };
346 
347 static void c_state_start(int cpu, u64 timestamp, int state)
348 {
349 	cpus_cstate_start_times[cpu] = timestamp;
350 	cpus_cstate_state[cpu] = state;
351 }
352 
353 static void c_state_end(int cpu, u64 timestamp)
354 {
355 	struct power_event *pwr;
356 	pwr = malloc(sizeof(struct power_event));
357 	if (!pwr)
358 		return;
359 	memset(pwr, 0, sizeof(struct power_event));
360 
361 	pwr->state = cpus_cstate_state[cpu];
362 	pwr->start_time = cpus_cstate_start_times[cpu];
363 	pwr->end_time = timestamp;
364 	pwr->cpu = cpu;
365 	pwr->type = CSTATE;
366 	pwr->next = power_events;
367 
368 	power_events = pwr;
369 }
370 
371 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
372 {
373 	struct power_event *pwr;
374 	pwr = malloc(sizeof(struct power_event));
375 
376 	if (new_freq > 8000000) /* detect invalid data */
377 		return;
378 
379 	if (!pwr)
380 		return;
381 	memset(pwr, 0, sizeof(struct power_event));
382 
383 	pwr->state = cpus_pstate_state[cpu];
384 	pwr->start_time = cpus_pstate_start_times[cpu];
385 	pwr->end_time = timestamp;
386 	pwr->cpu = cpu;
387 	pwr->type = PSTATE;
388 	pwr->next = power_events;
389 
390 	if (!pwr->start_time)
391 		pwr->start_time = first_time;
392 
393 	power_events = pwr;
394 
395 	cpus_pstate_state[cpu] = new_freq;
396 	cpus_pstate_start_times[cpu] = timestamp;
397 
398 	if ((u64)new_freq > max_freq)
399 		max_freq = new_freq;
400 
401 	if (new_freq < min_freq || min_freq == 0)
402 		min_freq = new_freq;
403 
404 	if (new_freq == max_freq - 1000)
405 			turbo_frequency = max_freq;
406 }
407 
408 static void
409 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
410 {
411 	struct wake_event *we;
412 	struct per_pid *p;
413 	struct wakeup_entry *wake = (void *)te;
414 
415 	we = malloc(sizeof(struct wake_event));
416 	if (!we)
417 		return;
418 
419 	memset(we, 0, sizeof(struct wake_event));
420 	we->time = timestamp;
421 	we->waker = pid;
422 
423 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
424 		we->waker = -1;
425 
426 	we->wakee = wake->pid;
427 	we->next = wake_events;
428 	wake_events = we;
429 	p = find_create_pid(we->wakee);
430 
431 	if (p && p->current && p->current->state == TYPE_NONE) {
432 		p->current->state_since = timestamp;
433 		p->current->state = TYPE_WAITING;
434 	}
435 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
436 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
437 		p->current->state_since = timestamp;
438 		p->current->state = TYPE_WAITING;
439 	}
440 }
441 
442 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
443 {
444 	struct per_pid *p = NULL, *prev_p;
445 	struct sched_switch *sw = (void *)te;
446 
447 
448 	prev_p = find_create_pid(sw->prev_pid);
449 
450 	p = find_create_pid(sw->next_pid);
451 
452 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
453 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
454 	if (p && p->current) {
455 		if (p->current->state != TYPE_NONE)
456 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
457 
458 			p->current->state_since = timestamp;
459 			p->current->state = TYPE_RUNNING;
460 	}
461 
462 	if (prev_p->current) {
463 		prev_p->current->state = TYPE_NONE;
464 		prev_p->current->state_since = timestamp;
465 		if (sw->prev_state & 2)
466 			prev_p->current->state = TYPE_BLOCKED;
467 		if (sw->prev_state == 0)
468 			prev_p->current->state = TYPE_WAITING;
469 	}
470 }
471 
472 
473 static int
474 process_sample_event(event_t *event)
475 {
476 	int cursor = 0;
477 	u64 addr = 0;
478 	u64 stamp = 0;
479 	u32 cpu = 0;
480 	u32 pid = 0;
481 	struct trace_entry *te;
482 
483 	if (sample_type & PERF_SAMPLE_IP)
484 		cursor++;
485 
486 	if (sample_type & PERF_SAMPLE_TID) {
487 		pid = event->sample.array[cursor]>>32;
488 		cursor++;
489 	}
490 	if (sample_type & PERF_SAMPLE_TIME) {
491 		stamp = event->sample.array[cursor++];
492 
493 		if (!first_time || first_time > stamp)
494 			first_time = stamp;
495 		if (last_time < stamp)
496 			last_time = stamp;
497 
498 	}
499 	if (sample_type & PERF_SAMPLE_ADDR)
500 		addr = event->sample.array[cursor++];
501 	if (sample_type & PERF_SAMPLE_ID)
502 		cursor++;
503 	if (sample_type & PERF_SAMPLE_STREAM_ID)
504 		cursor++;
505 	if (sample_type & PERF_SAMPLE_CPU)
506 		cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
507 	if (sample_type & PERF_SAMPLE_PERIOD)
508 		cursor++;
509 
510 	te = (void *)&event->sample.array[cursor];
511 
512 	if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
513 		char *event_str;
514 		struct power_entry *pe;
515 
516 		pe = (void *)te;
517 
518 		event_str = perf_header__find_event(te->type);
519 
520 		if (!event_str)
521 			return 0;
522 
523 		if (strcmp(event_str, "power:power_start") == 0)
524 			c_state_start(cpu, stamp, pe->value);
525 
526 		if (strcmp(event_str, "power:power_end") == 0)
527 			c_state_end(cpu, stamp);
528 
529 		if (strcmp(event_str, "power:power_frequency") == 0)
530 			p_state_change(cpu, stamp, pe->value);
531 
532 		if (strcmp(event_str, "sched:sched_wakeup") == 0)
533 			sched_wakeup(cpu, stamp, pid, te);
534 
535 		if (strcmp(event_str, "sched:sched_switch") == 0)
536 			sched_switch(cpu, stamp, te);
537 	}
538 	return 0;
539 }
540 
541 /*
542  * After the last sample we need to wrap up the current C/P state
543  * and close out each CPU for these.
544  */
545 static void end_sample_processing(void)
546 {
547 	u64 cpu;
548 	struct power_event *pwr;
549 
550 	for (cpu = 0; cpu < numcpus; cpu++) {
551 		pwr = malloc(sizeof(struct power_event));
552 		if (!pwr)
553 			return;
554 		memset(pwr, 0, sizeof(struct power_event));
555 
556 		/* C state */
557 #if 0
558 		pwr->state = cpus_cstate_state[cpu];
559 		pwr->start_time = cpus_cstate_start_times[cpu];
560 		pwr->end_time = last_time;
561 		pwr->cpu = cpu;
562 		pwr->type = CSTATE;
563 		pwr->next = power_events;
564 
565 		power_events = pwr;
566 #endif
567 		/* P state */
568 
569 		pwr = malloc(sizeof(struct power_event));
570 		if (!pwr)
571 			return;
572 		memset(pwr, 0, sizeof(struct power_event));
573 
574 		pwr->state = cpus_pstate_state[cpu];
575 		pwr->start_time = cpus_pstate_start_times[cpu];
576 		pwr->end_time = last_time;
577 		pwr->cpu = cpu;
578 		pwr->type = PSTATE;
579 		pwr->next = power_events;
580 
581 		if (!pwr->start_time)
582 			pwr->start_time = first_time;
583 		if (!pwr->state)
584 			pwr->state = min_freq;
585 		power_events = pwr;
586 	}
587 }
588 
589 static u64 sample_time(event_t *event)
590 {
591 	int cursor;
592 
593 	cursor = 0;
594 	if (sample_type & PERF_SAMPLE_IP)
595 		cursor++;
596 	if (sample_type & PERF_SAMPLE_TID)
597 		cursor++;
598 	if (sample_type & PERF_SAMPLE_TIME)
599 		return event->sample.array[cursor];
600 	return 0;
601 }
602 
603 
604 /*
605  * We first queue all events, sorted backwards by insertion.
606  * The order will get flipped later.
607  */
608 static int
609 queue_sample_event(event_t *event)
610 {
611 	struct sample_wrapper *copy, *prev;
612 	int size;
613 
614 	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
615 
616 	copy = malloc(size);
617 	if (!copy)
618 		return 1;
619 
620 	memset(copy, 0, size);
621 
622 	copy->next = NULL;
623 	copy->timestamp = sample_time(event);
624 
625 	memcpy(&copy->data, event, event->sample.header.size);
626 
627 	/* insert in the right place in the list */
628 
629 	if (!all_samples) {
630 		/* first sample ever */
631 		all_samples = copy;
632 		return 0;
633 	}
634 
635 	if (all_samples->timestamp < copy->timestamp) {
636 		/* insert at the head of the list */
637 		copy->next = all_samples;
638 		all_samples = copy;
639 		return 0;
640 	}
641 
642 	prev = all_samples;
643 	while (prev->next) {
644 		if (prev->next->timestamp < copy->timestamp) {
645 			copy->next = prev->next;
646 			prev->next = copy;
647 			return 0;
648 		}
649 		prev = prev->next;
650 	}
651 	/* insert at the end of the list */
652 	prev->next = copy;
653 
654 	return 0;
655 }
656 
657 static void sort_queued_samples(void)
658 {
659 	struct sample_wrapper *cursor, *next;
660 
661 	cursor = all_samples;
662 	all_samples = NULL;
663 
664 	while (cursor) {
665 		next = cursor->next;
666 		cursor->next = all_samples;
667 		all_samples = cursor;
668 		cursor = next;
669 	}
670 }
671 
672 /*
673  * Sort the pid datastructure
674  */
675 static void sort_pids(void)
676 {
677 	struct per_pid *new_list, *p, *cursor, *prev;
678 	/* sort by ppid first, then by pid, lowest to highest */
679 
680 	new_list = NULL;
681 
682 	while (all_data) {
683 		p = all_data;
684 		all_data = p->next;
685 		p->next = NULL;
686 
687 		if (new_list == NULL) {
688 			new_list = p;
689 			p->next = NULL;
690 			continue;
691 		}
692 		prev = NULL;
693 		cursor = new_list;
694 		while (cursor) {
695 			if (cursor->ppid > p->ppid ||
696 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
697 				/* must insert before */
698 				if (prev) {
699 					p->next = prev->next;
700 					prev->next = p;
701 					cursor = NULL;
702 					continue;
703 				} else {
704 					p->next = new_list;
705 					new_list = p;
706 					cursor = NULL;
707 					continue;
708 				}
709 			}
710 
711 			prev = cursor;
712 			cursor = cursor->next;
713 			if (!cursor)
714 				prev->next = p;
715 		}
716 	}
717 	all_data = new_list;
718 }
719 
720 
721 static void draw_c_p_states(void)
722 {
723 	struct power_event *pwr;
724 	pwr = power_events;
725 
726 	/*
727 	 * two pass drawing so that the P state bars are on top of the C state blocks
728 	 */
729 	while (pwr) {
730 		if (pwr->type == CSTATE)
731 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
732 		pwr = pwr->next;
733 	}
734 
735 	pwr = power_events;
736 	while (pwr) {
737 		if (pwr->type == PSTATE) {
738 			if (!pwr->state)
739 				pwr->state = min_freq;
740 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
741 		}
742 		pwr = pwr->next;
743 	}
744 }
745 
746 static void draw_wakeups(void)
747 {
748 	struct wake_event *we;
749 	struct per_pid *p;
750 	struct per_pidcomm *c;
751 
752 	we = wake_events;
753 	while (we) {
754 		int from = 0, to = 0;
755 		char *task_from = NULL, *task_to = NULL;
756 
757 		/* locate the column of the waker and wakee */
758 		p = all_data;
759 		while (p) {
760 			if (p->pid == we->waker || p->pid == we->wakee) {
761 				c = p->all;
762 				while (c) {
763 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
764 						if (p->pid == we->waker) {
765 							from = c->Y;
766 							task_from = c->comm;
767 						}
768 						if (p->pid == we->wakee) {
769 							to = c->Y;
770 							task_to = c->comm;
771 						}
772 					}
773 					c = c->next;
774 				}
775 			}
776 			p = p->next;
777 		}
778 
779 		if (we->waker == -1)
780 			svg_interrupt(we->time, to);
781 		else if (from && to && abs(from - to) == 1)
782 			svg_wakeline(we->time, from, to);
783 		else
784 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
785 		we = we->next;
786 	}
787 }
788 
789 static void draw_cpu_usage(void)
790 {
791 	struct per_pid *p;
792 	struct per_pidcomm *c;
793 	struct cpu_sample *sample;
794 	p = all_data;
795 	while (p) {
796 		c = p->all;
797 		while (c) {
798 			sample = c->samples;
799 			while (sample) {
800 				if (sample->type == TYPE_RUNNING)
801 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
802 
803 				sample = sample->next;
804 			}
805 			c = c->next;
806 		}
807 		p = p->next;
808 	}
809 }
810 
811 static void draw_process_bars(void)
812 {
813 	struct per_pid *p;
814 	struct per_pidcomm *c;
815 	struct cpu_sample *sample;
816 	int Y = 0;
817 
818 	Y = 2 * numcpus + 2;
819 
820 	p = all_data;
821 	while (p) {
822 		c = p->all;
823 		while (c) {
824 			if (!c->display) {
825 				c->Y = 0;
826 				c = c->next;
827 				continue;
828 			}
829 
830 			svg_box(Y, c->start_time, c->end_time, "process");
831 			sample = c->samples;
832 			while (sample) {
833 				if (sample->type == TYPE_RUNNING)
834 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
835 				if (sample->type == TYPE_BLOCKED)
836 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
837 				if (sample->type == TYPE_WAITING)
838 					svg_waiting(Y, sample->start_time, sample->end_time);
839 				sample = sample->next;
840 			}
841 
842 			if (c->comm) {
843 				char comm[256];
844 				if (c->total_time > 5000000000) /* 5 seconds */
845 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
846 				else
847 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
848 
849 				svg_text(Y, c->start_time, comm);
850 			}
851 			c->Y = Y;
852 			Y++;
853 			c = c->next;
854 		}
855 		p = p->next;
856 	}
857 }
858 
859 static int determine_display_tasks(u64 threshold)
860 {
861 	struct per_pid *p;
862 	struct per_pidcomm *c;
863 	int count = 0;
864 
865 	p = all_data;
866 	while (p) {
867 		p->display = 0;
868 		if (p->start_time == 1)
869 			p->start_time = first_time;
870 
871 		/* no exit marker, task kept running to the end */
872 		if (p->end_time == 0)
873 			p->end_time = last_time;
874 		if (p->total_time >= threshold)
875 			p->display = 1;
876 
877 		c = p->all;
878 
879 		while (c) {
880 			c->display = 0;
881 
882 			if (c->start_time == 1)
883 				c->start_time = first_time;
884 
885 			if (c->total_time >= threshold) {
886 				c->display = 1;
887 				count++;
888 			}
889 
890 			if (c->end_time == 0)
891 				c->end_time = last_time;
892 
893 			c = c->next;
894 		}
895 		p = p->next;
896 	}
897 	return count;
898 }
899 
900 
901 
902 #define TIME_THRESH 10000000
903 
904 static void write_svg_file(const char *filename)
905 {
906 	u64 i;
907 	int count;
908 
909 	numcpus++;
910 
911 
912 	count = determine_display_tasks(TIME_THRESH);
913 
914 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
915 	if (count < 15)
916 		count = determine_display_tasks(TIME_THRESH / 10);
917 
918 	open_svg(filename, numcpus, count, first_time, last_time);
919 
920 	svg_time_grid();
921 	svg_legenda();
922 
923 	for (i = 0; i < numcpus; i++)
924 		svg_cpu_box(i, max_freq, turbo_frequency);
925 
926 	draw_cpu_usage();
927 	draw_process_bars();
928 	draw_c_p_states();
929 	draw_wakeups();
930 
931 	svg_close();
932 }
933 
934 static int
935 process_event(event_t *event)
936 {
937 
938 	switch (event->header.type) {
939 
940 	case PERF_RECORD_COMM:
941 		return process_comm_event(event);
942 	case PERF_RECORD_FORK:
943 		return process_fork_event(event);
944 	case PERF_RECORD_EXIT:
945 		return process_exit_event(event);
946 	case PERF_RECORD_SAMPLE:
947 		return queue_sample_event(event);
948 
949 	/*
950 	 * We dont process them right now but they are fine:
951 	 */
952 	case PERF_RECORD_MMAP:
953 	case PERF_RECORD_THROTTLE:
954 	case PERF_RECORD_UNTHROTTLE:
955 		return 0;
956 
957 	default:
958 		return -1;
959 	}
960 
961 	return 0;
962 }
963 
964 static void process_samples(void)
965 {
966 	struct sample_wrapper *cursor;
967 	event_t *event;
968 
969 	sort_queued_samples();
970 
971 	cursor = all_samples;
972 	while (cursor) {
973 		event = (void *)&cursor->data;
974 		cursor = cursor->next;
975 		process_sample_event(event);
976 	}
977 }
978 
979 
980 static int __cmd_timechart(void)
981 {
982 	int ret, rc = EXIT_FAILURE;
983 	unsigned long offset = 0;
984 	unsigned long head, shift;
985 	struct stat statbuf;
986 	event_t *event;
987 	uint32_t size;
988 	char *buf;
989 	int input;
990 
991 	input = open(input_name, O_RDONLY);
992 	if (input < 0) {
993 		fprintf(stderr, " failed to open file: %s", input_name);
994 		if (!strcmp(input_name, "perf.data"))
995 			fprintf(stderr, "  (try 'perf record' first)");
996 		fprintf(stderr, "\n");
997 		exit(-1);
998 	}
999 
1000 	ret = fstat(input, &statbuf);
1001 	if (ret < 0) {
1002 		perror("failed to stat file");
1003 		exit(-1);
1004 	}
1005 
1006 	if (!statbuf.st_size) {
1007 		fprintf(stderr, "zero-sized file, nothing to do!\n");
1008 		exit(0);
1009 	}
1010 
1011 	header = perf_header__read(input);
1012 	head = header->data_offset;
1013 
1014 	sample_type = perf_header__sample_type(header);
1015 
1016 	shift = page_size * (head / page_size);
1017 	offset += shift;
1018 	head -= shift;
1019 
1020 remap:
1021 	buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1022 			   MAP_SHARED, input, offset);
1023 	if (buf == MAP_FAILED) {
1024 		perror("failed to mmap file");
1025 		exit(-1);
1026 	}
1027 
1028 more:
1029 	event = (event_t *)(buf + head);
1030 
1031 	size = event->header.size;
1032 	if (!size)
1033 		size = 8;
1034 
1035 	if (head + event->header.size >= page_size * mmap_window) {
1036 		int ret2;
1037 
1038 		shift = page_size * (head / page_size);
1039 
1040 		ret2 = munmap(buf, page_size * mmap_window);
1041 		assert(ret2 == 0);
1042 
1043 		offset += shift;
1044 		head -= shift;
1045 		goto remap;
1046 	}
1047 
1048 	size = event->header.size;
1049 
1050 	if (!size || process_event(event) < 0) {
1051 
1052 		printf("%p [%p]: skipping unknown header type: %d\n",
1053 			(void *)(offset + head),
1054 			(void *)(long)(event->header.size),
1055 			event->header.type);
1056 
1057 		/*
1058 		 * assume we lost track of the stream, check alignment, and
1059 		 * increment a single u64 in the hope to catch on again 'soon'.
1060 		 */
1061 
1062 		if (unlikely(head & 7))
1063 			head &= ~7ULL;
1064 
1065 		size = 8;
1066 	}
1067 
1068 	head += size;
1069 
1070 	if (offset + head >= header->data_offset + header->data_size)
1071 		goto done;
1072 
1073 	if (offset + head < (unsigned long)statbuf.st_size)
1074 		goto more;
1075 
1076 done:
1077 	rc = EXIT_SUCCESS;
1078 	close(input);
1079 
1080 
1081 	process_samples();
1082 
1083 	end_sample_processing();
1084 
1085 	sort_pids();
1086 
1087 	write_svg_file(output_name);
1088 
1089 	printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
1090 
1091 	return rc;
1092 }
1093 
1094 static const char * const timechart_usage[] = {
1095 	"perf timechart [<options>] {record}",
1096 	NULL
1097 };
1098 
1099 static const char *record_args[] = {
1100 	"record",
1101 	"-a",
1102 	"-R",
1103 	"-M",
1104 	"-f",
1105 	"-c", "1",
1106 	"-e", "power:power_start",
1107 	"-e", "power:power_end",
1108 	"-e", "power:power_frequency",
1109 	"-e", "sched:sched_wakeup",
1110 	"-e", "sched:sched_switch",
1111 };
1112 
1113 static int __cmd_record(int argc, const char **argv)
1114 {
1115 	unsigned int rec_argc, i, j;
1116 	const char **rec_argv;
1117 
1118 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1119 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1120 
1121 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1122 		rec_argv[i] = strdup(record_args[i]);
1123 
1124 	for (j = 1; j < (unsigned int)argc; j++, i++)
1125 		rec_argv[i] = argv[j];
1126 
1127 	return cmd_record(i, rec_argv, NULL);
1128 }
1129 
1130 static const struct option options[] = {
1131 	OPT_STRING('i', "input", &input_name, "file",
1132 		    "input file name"),
1133 	OPT_STRING('o', "output", &output_name, "file",
1134 		    "output file name"),
1135 	OPT_INTEGER('w', "width", &svg_page_width,
1136 		    "page width"),
1137 	OPT_END()
1138 };
1139 
1140 
1141 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1142 {
1143 	symbol__init();
1144 
1145 	page_size = getpagesize();
1146 
1147 	argc = parse_options(argc, argv, options, timechart_usage,
1148 			PARSE_OPT_STOP_AT_NON_OPTION);
1149 
1150 	if (argc && !strncmp(argv[0], "rec", 3))
1151 		return __cmd_record(argc, argv);
1152 	else if (argc)
1153 		usage_with_options(timechart_usage, options);
1154 
1155 	setup_pager();
1156 
1157 	return __cmd_timechart();
1158 }
1159