1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include <traceevent/event-parse.h>
16 
17 #include "builtin.h"
18 
19 #include "util/util.h"
20 
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30 
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 
40 #define SUPPORT_OLD_POWER_EVENTS 1
41 #define PWR_EVENT_EXIT -1
42 
43 
44 static unsigned int	numcpus;
45 static u64		min_freq;	/* Lowest CPU frequency seen */
46 static u64		max_freq;	/* Highest CPU frequency seen */
47 static u64		turbo_frequency;
48 
49 static u64		first_time, last_time;
50 
51 static bool		power_only;
52 
53 
54 struct per_pid;
55 struct per_pidcomm;
56 
57 struct cpu_sample;
58 struct power_event;
59 struct wake_event;
60 
61 struct sample_wrapper;
62 
63 /*
64  * Datastructure layout:
65  * We keep an list of "pid"s, matching the kernels notion of a task struct.
66  * Each "pid" entry, has a list of "comm"s.
67  *	this is because we want to track different programs different, while
68  *	exec will reuse the original pid (by design).
69  * Each comm has a list of samples that will be used to draw
70  * final graph.
71  */
72 
73 struct per_pid {
74 	struct per_pid *next;
75 
76 	int		pid;
77 	int		ppid;
78 
79 	u64		start_time;
80 	u64		end_time;
81 	u64		total_time;
82 	int		display;
83 
84 	struct per_pidcomm *all;
85 	struct per_pidcomm *current;
86 };
87 
88 
89 struct per_pidcomm {
90 	struct per_pidcomm *next;
91 
92 	u64		start_time;
93 	u64		end_time;
94 	u64		total_time;
95 
96 	int		Y;
97 	int		display;
98 
99 	long		state;
100 	u64		state_since;
101 
102 	char		*comm;
103 
104 	struct cpu_sample *samples;
105 };
106 
107 struct sample_wrapper {
108 	struct sample_wrapper *next;
109 
110 	u64		timestamp;
111 	unsigned char	data[0];
112 };
113 
114 #define TYPE_NONE	0
115 #define TYPE_RUNNING	1
116 #define TYPE_WAITING	2
117 #define TYPE_BLOCKED	3
118 
119 struct cpu_sample {
120 	struct cpu_sample *next;
121 
122 	u64 start_time;
123 	u64 end_time;
124 	int type;
125 	int cpu;
126 };
127 
128 static struct per_pid *all_data;
129 
130 #define CSTATE 1
131 #define PSTATE 2
132 
133 struct power_event {
134 	struct power_event *next;
135 	int type;
136 	int state;
137 	u64 start_time;
138 	u64 end_time;
139 	int cpu;
140 };
141 
142 struct wake_event {
143 	struct wake_event *next;
144 	int waker;
145 	int wakee;
146 	u64 time;
147 };
148 
149 static struct power_event    *power_events;
150 static struct wake_event     *wake_events;
151 
152 struct process_filter;
153 struct process_filter {
154 	char			*name;
155 	int			pid;
156 	struct process_filter	*next;
157 };
158 
159 static struct process_filter *process_filter;
160 
161 
162 static struct per_pid *find_create_pid(int pid)
163 {
164 	struct per_pid *cursor = all_data;
165 
166 	while (cursor) {
167 		if (cursor->pid == pid)
168 			return cursor;
169 		cursor = cursor->next;
170 	}
171 	cursor = zalloc(sizeof(*cursor));
172 	assert(cursor != NULL);
173 	cursor->pid = pid;
174 	cursor->next = all_data;
175 	all_data = cursor;
176 	return cursor;
177 }
178 
179 static void pid_set_comm(int pid, char *comm)
180 {
181 	struct per_pid *p;
182 	struct per_pidcomm *c;
183 	p = find_create_pid(pid);
184 	c = p->all;
185 	while (c) {
186 		if (c->comm && strcmp(c->comm, comm) == 0) {
187 			p->current = c;
188 			return;
189 		}
190 		if (!c->comm) {
191 			c->comm = strdup(comm);
192 			p->current = c;
193 			return;
194 		}
195 		c = c->next;
196 	}
197 	c = zalloc(sizeof(*c));
198 	assert(c != NULL);
199 	c->comm = strdup(comm);
200 	p->current = c;
201 	c->next = p->all;
202 	p->all = c;
203 }
204 
205 static void pid_fork(int pid, int ppid, u64 timestamp)
206 {
207 	struct per_pid *p, *pp;
208 	p = find_create_pid(pid);
209 	pp = find_create_pid(ppid);
210 	p->ppid = ppid;
211 	if (pp->current && pp->current->comm && !p->current)
212 		pid_set_comm(pid, pp->current->comm);
213 
214 	p->start_time = timestamp;
215 	if (p->current) {
216 		p->current->start_time = timestamp;
217 		p->current->state_since = timestamp;
218 	}
219 }
220 
221 static void pid_exit(int pid, u64 timestamp)
222 {
223 	struct per_pid *p;
224 	p = find_create_pid(pid);
225 	p->end_time = timestamp;
226 	if (p->current)
227 		p->current->end_time = timestamp;
228 }
229 
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232 {
233 	struct per_pid *p;
234 	struct per_pidcomm *c;
235 	struct cpu_sample *sample;
236 
237 	p = find_create_pid(pid);
238 	c = p->current;
239 	if (!c) {
240 		c = zalloc(sizeof(*c));
241 		assert(c != NULL);
242 		p->current = c;
243 		c->next = p->all;
244 		p->all = c;
245 	}
246 
247 	sample = zalloc(sizeof(*sample));
248 	assert(sample != NULL);
249 	sample->start_time = start;
250 	sample->end_time = end;
251 	sample->type = type;
252 	sample->next = c->samples;
253 	sample->cpu = cpu;
254 	c->samples = sample;
255 
256 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
257 		c->total_time += (end-start);
258 		p->total_time += (end-start);
259 	}
260 
261 	if (c->start_time == 0 || c->start_time > start)
262 		c->start_time = start;
263 	if (p->start_time == 0 || p->start_time > start)
264 		p->start_time = start;
265 }
266 
267 #define MAX_CPUS 4096
268 
269 static u64 cpus_cstate_start_times[MAX_CPUS];
270 static int cpus_cstate_state[MAX_CPUS];
271 static u64 cpus_pstate_start_times[MAX_CPUS];
272 static u64 cpus_pstate_state[MAX_CPUS];
273 
274 static int process_comm_event(struct perf_tool *tool __maybe_unused,
275 			      union perf_event *event,
276 			      struct perf_sample *sample __maybe_unused,
277 			      struct machine *machine __maybe_unused)
278 {
279 	pid_set_comm(event->comm.tid, event->comm.comm);
280 	return 0;
281 }
282 
283 static int process_fork_event(struct perf_tool *tool __maybe_unused,
284 			      union perf_event *event,
285 			      struct perf_sample *sample __maybe_unused,
286 			      struct machine *machine __maybe_unused)
287 {
288 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289 	return 0;
290 }
291 
292 static int process_exit_event(struct perf_tool *tool __maybe_unused,
293 			      union perf_event *event,
294 			      struct perf_sample *sample __maybe_unused,
295 			      struct machine *machine __maybe_unused)
296 {
297 	pid_exit(event->fork.pid, event->fork.time);
298 	return 0;
299 }
300 
301 struct trace_entry {
302 	unsigned short		type;
303 	unsigned char		flags;
304 	unsigned char		preempt_count;
305 	int			pid;
306 	int			lock_depth;
307 };
308 
309 #ifdef SUPPORT_OLD_POWER_EVENTS
310 static int use_old_power_events;
311 struct power_entry_old {
312 	struct trace_entry te;
313 	u64	type;
314 	u64	value;
315 	u64	cpu_id;
316 };
317 #endif
318 
319 struct power_processor_entry {
320 	struct trace_entry te;
321 	u32	state;
322 	u32	cpu_id;
323 };
324 
325 #define TASK_COMM_LEN 16
326 struct wakeup_entry {
327 	struct trace_entry te;
328 	char comm[TASK_COMM_LEN];
329 	int   pid;
330 	int   prio;
331 	int   success;
332 };
333 
334 struct sched_switch {
335 	struct trace_entry te;
336 	char prev_comm[TASK_COMM_LEN];
337 	int  prev_pid;
338 	int  prev_prio;
339 	long prev_state; /* Arjan weeps. */
340 	char next_comm[TASK_COMM_LEN];
341 	int  next_pid;
342 	int  next_prio;
343 };
344 
345 static void c_state_start(int cpu, u64 timestamp, int state)
346 {
347 	cpus_cstate_start_times[cpu] = timestamp;
348 	cpus_cstate_state[cpu] = state;
349 }
350 
351 static void c_state_end(int cpu, u64 timestamp)
352 {
353 	struct power_event *pwr = zalloc(sizeof(*pwr));
354 
355 	if (!pwr)
356 		return;
357 
358 	pwr->state = cpus_cstate_state[cpu];
359 	pwr->start_time = cpus_cstate_start_times[cpu];
360 	pwr->end_time = timestamp;
361 	pwr->cpu = cpu;
362 	pwr->type = CSTATE;
363 	pwr->next = power_events;
364 
365 	power_events = pwr;
366 }
367 
368 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
369 {
370 	struct power_event *pwr;
371 
372 	if (new_freq > 8000000) /* detect invalid data */
373 		return;
374 
375 	pwr = zalloc(sizeof(*pwr));
376 	if (!pwr)
377 		return;
378 
379 	pwr->state = cpus_pstate_state[cpu];
380 	pwr->start_time = cpus_pstate_start_times[cpu];
381 	pwr->end_time = timestamp;
382 	pwr->cpu = cpu;
383 	pwr->type = PSTATE;
384 	pwr->next = power_events;
385 
386 	if (!pwr->start_time)
387 		pwr->start_time = first_time;
388 
389 	power_events = pwr;
390 
391 	cpus_pstate_state[cpu] = new_freq;
392 	cpus_pstate_start_times[cpu] = timestamp;
393 
394 	if ((u64)new_freq > max_freq)
395 		max_freq = new_freq;
396 
397 	if (new_freq < min_freq || min_freq == 0)
398 		min_freq = new_freq;
399 
400 	if (new_freq == max_freq - 1000)
401 			turbo_frequency = max_freq;
402 }
403 
404 static void
405 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
406 {
407 	struct per_pid *p;
408 	struct wakeup_entry *wake = (void *)te;
409 	struct wake_event *we = zalloc(sizeof(*we));
410 
411 	if (!we)
412 		return;
413 
414 	we->time = timestamp;
415 	we->waker = pid;
416 
417 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
418 		we->waker = -1;
419 
420 	we->wakee = wake->pid;
421 	we->next = wake_events;
422 	wake_events = we;
423 	p = find_create_pid(we->wakee);
424 
425 	if (p && p->current && p->current->state == TYPE_NONE) {
426 		p->current->state_since = timestamp;
427 		p->current->state = TYPE_WAITING;
428 	}
429 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
430 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
431 		p->current->state_since = timestamp;
432 		p->current->state = TYPE_WAITING;
433 	}
434 }
435 
436 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
437 {
438 	struct per_pid *p = NULL, *prev_p;
439 	struct sched_switch *sw = (void *)te;
440 
441 
442 	prev_p = find_create_pid(sw->prev_pid);
443 
444 	p = find_create_pid(sw->next_pid);
445 
446 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
447 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
448 	if (p && p->current) {
449 		if (p->current->state != TYPE_NONE)
450 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
451 
452 		p->current->state_since = timestamp;
453 		p->current->state = TYPE_RUNNING;
454 	}
455 
456 	if (prev_p->current) {
457 		prev_p->current->state = TYPE_NONE;
458 		prev_p->current->state_since = timestamp;
459 		if (sw->prev_state & 2)
460 			prev_p->current->state = TYPE_BLOCKED;
461 		if (sw->prev_state == 0)
462 			prev_p->current->state = TYPE_WAITING;
463 	}
464 }
465 
466 typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
467 				  struct perf_sample *sample);
468 
469 static int process_sample_event(struct perf_tool *tool __maybe_unused,
470 				union perf_event *event __maybe_unused,
471 				struct perf_sample *sample,
472 				struct perf_evsel *evsel,
473 				struct machine *machine __maybe_unused)
474 {
475 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
476 		if (!first_time || first_time > sample->time)
477 			first_time = sample->time;
478 		if (last_time < sample->time)
479 			last_time = sample->time;
480 	}
481 
482 	if (sample->cpu > numcpus)
483 		numcpus = sample->cpu;
484 
485 	if (evsel->handler.func != NULL) {
486 		tracepoint_handler f = evsel->handler.func;
487 		return f(evsel, sample);
488 	}
489 
490 	return 0;
491 }
492 
493 static int
494 process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
495 			struct perf_sample *sample)
496 {
497 	struct power_processor_entry *ppe = sample->raw_data;
498 
499 	if (ppe->state == (u32) PWR_EVENT_EXIT)
500 		c_state_end(ppe->cpu_id, sample->time);
501 	else
502 		c_state_start(ppe->cpu_id, sample->time, ppe->state);
503 	return 0;
504 }
505 
506 static int
507 process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
508 			     struct perf_sample *sample)
509 {
510 	struct power_processor_entry *ppe = sample->raw_data;
511 
512 	p_state_change(ppe->cpu_id, sample->time, ppe->state);
513 	return 0;
514 }
515 
516 static int
517 process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
518 			    struct perf_sample *sample)
519 {
520 	struct trace_entry *te = sample->raw_data;
521 
522 	sched_wakeup(sample->cpu, sample->time, sample->pid, te);
523 	return 0;
524 }
525 
526 static int
527 process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
528 			    struct perf_sample *sample)
529 {
530 	struct trace_entry *te = sample->raw_data;
531 
532 	sched_switch(sample->cpu, sample->time, te);
533 	return 0;
534 }
535 
536 #ifdef SUPPORT_OLD_POWER_EVENTS
537 static int
538 process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
539 			   struct perf_sample *sample)
540 {
541 	struct power_entry_old *peo = sample->raw_data;
542 
543 	c_state_start(peo->cpu_id, sample->time, peo->value);
544 	return 0;
545 }
546 
547 static int
548 process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
549 			 struct perf_sample *sample)
550 {
551 	c_state_end(sample->cpu, sample->time);
552 	return 0;
553 }
554 
555 static int
556 process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
557 			       struct perf_sample *sample)
558 {
559 	struct power_entry_old *peo = sample->raw_data;
560 
561 	p_state_change(peo->cpu_id, sample->time, peo->value);
562 	return 0;
563 }
564 #endif /* SUPPORT_OLD_POWER_EVENTS */
565 
566 /*
567  * After the last sample we need to wrap up the current C/P state
568  * and close out each CPU for these.
569  */
570 static void end_sample_processing(void)
571 {
572 	u64 cpu;
573 	struct power_event *pwr;
574 
575 	for (cpu = 0; cpu <= numcpus; cpu++) {
576 		/* C state */
577 #if 0
578 		pwr = zalloc(sizeof(*pwr));
579 		if (!pwr)
580 			return;
581 
582 		pwr->state = cpus_cstate_state[cpu];
583 		pwr->start_time = cpus_cstate_start_times[cpu];
584 		pwr->end_time = last_time;
585 		pwr->cpu = cpu;
586 		pwr->type = CSTATE;
587 		pwr->next = power_events;
588 
589 		power_events = pwr;
590 #endif
591 		/* P state */
592 
593 		pwr = zalloc(sizeof(*pwr));
594 		if (!pwr)
595 			return;
596 
597 		pwr->state = cpus_pstate_state[cpu];
598 		pwr->start_time = cpus_pstate_start_times[cpu];
599 		pwr->end_time = last_time;
600 		pwr->cpu = cpu;
601 		pwr->type = PSTATE;
602 		pwr->next = power_events;
603 
604 		if (!pwr->start_time)
605 			pwr->start_time = first_time;
606 		if (!pwr->state)
607 			pwr->state = min_freq;
608 		power_events = pwr;
609 	}
610 }
611 
612 /*
613  * Sort the pid datastructure
614  */
615 static void sort_pids(void)
616 {
617 	struct per_pid *new_list, *p, *cursor, *prev;
618 	/* sort by ppid first, then by pid, lowest to highest */
619 
620 	new_list = NULL;
621 
622 	while (all_data) {
623 		p = all_data;
624 		all_data = p->next;
625 		p->next = NULL;
626 
627 		if (new_list == NULL) {
628 			new_list = p;
629 			p->next = NULL;
630 			continue;
631 		}
632 		prev = NULL;
633 		cursor = new_list;
634 		while (cursor) {
635 			if (cursor->ppid > p->ppid ||
636 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
637 				/* must insert before */
638 				if (prev) {
639 					p->next = prev->next;
640 					prev->next = p;
641 					cursor = NULL;
642 					continue;
643 				} else {
644 					p->next = new_list;
645 					new_list = p;
646 					cursor = NULL;
647 					continue;
648 				}
649 			}
650 
651 			prev = cursor;
652 			cursor = cursor->next;
653 			if (!cursor)
654 				prev->next = p;
655 		}
656 	}
657 	all_data = new_list;
658 }
659 
660 
661 static void draw_c_p_states(void)
662 {
663 	struct power_event *pwr;
664 	pwr = power_events;
665 
666 	/*
667 	 * two pass drawing so that the P state bars are on top of the C state blocks
668 	 */
669 	while (pwr) {
670 		if (pwr->type == CSTATE)
671 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
672 		pwr = pwr->next;
673 	}
674 
675 	pwr = power_events;
676 	while (pwr) {
677 		if (pwr->type == PSTATE) {
678 			if (!pwr->state)
679 				pwr->state = min_freq;
680 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
681 		}
682 		pwr = pwr->next;
683 	}
684 }
685 
686 static void draw_wakeups(void)
687 {
688 	struct wake_event *we;
689 	struct per_pid *p;
690 	struct per_pidcomm *c;
691 
692 	we = wake_events;
693 	while (we) {
694 		int from = 0, to = 0;
695 		char *task_from = NULL, *task_to = NULL;
696 
697 		/* locate the column of the waker and wakee */
698 		p = all_data;
699 		while (p) {
700 			if (p->pid == we->waker || p->pid == we->wakee) {
701 				c = p->all;
702 				while (c) {
703 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
704 						if (p->pid == we->waker && !from) {
705 							from = c->Y;
706 							task_from = strdup(c->comm);
707 						}
708 						if (p->pid == we->wakee && !to) {
709 							to = c->Y;
710 							task_to = strdup(c->comm);
711 						}
712 					}
713 					c = c->next;
714 				}
715 				c = p->all;
716 				while (c) {
717 					if (p->pid == we->waker && !from) {
718 						from = c->Y;
719 						task_from = strdup(c->comm);
720 					}
721 					if (p->pid == we->wakee && !to) {
722 						to = c->Y;
723 						task_to = strdup(c->comm);
724 					}
725 					c = c->next;
726 				}
727 			}
728 			p = p->next;
729 		}
730 
731 		if (!task_from) {
732 			task_from = malloc(40);
733 			sprintf(task_from, "[%i]", we->waker);
734 		}
735 		if (!task_to) {
736 			task_to = malloc(40);
737 			sprintf(task_to, "[%i]", we->wakee);
738 		}
739 
740 		if (we->waker == -1)
741 			svg_interrupt(we->time, to);
742 		else if (from && to && abs(from - to) == 1)
743 			svg_wakeline(we->time, from, to);
744 		else
745 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
746 		we = we->next;
747 
748 		free(task_from);
749 		free(task_to);
750 	}
751 }
752 
753 static void draw_cpu_usage(void)
754 {
755 	struct per_pid *p;
756 	struct per_pidcomm *c;
757 	struct cpu_sample *sample;
758 	p = all_data;
759 	while (p) {
760 		c = p->all;
761 		while (c) {
762 			sample = c->samples;
763 			while (sample) {
764 				if (sample->type == TYPE_RUNNING)
765 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
766 
767 				sample = sample->next;
768 			}
769 			c = c->next;
770 		}
771 		p = p->next;
772 	}
773 }
774 
775 static void draw_process_bars(void)
776 {
777 	struct per_pid *p;
778 	struct per_pidcomm *c;
779 	struct cpu_sample *sample;
780 	int Y = 0;
781 
782 	Y = 2 * numcpus + 2;
783 
784 	p = all_data;
785 	while (p) {
786 		c = p->all;
787 		while (c) {
788 			if (!c->display) {
789 				c->Y = 0;
790 				c = c->next;
791 				continue;
792 			}
793 
794 			svg_box(Y, c->start_time, c->end_time, "process");
795 			sample = c->samples;
796 			while (sample) {
797 				if (sample->type == TYPE_RUNNING)
798 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
799 				if (sample->type == TYPE_BLOCKED)
800 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
801 				if (sample->type == TYPE_WAITING)
802 					svg_waiting(Y, sample->start_time, sample->end_time);
803 				sample = sample->next;
804 			}
805 
806 			if (c->comm) {
807 				char comm[256];
808 				if (c->total_time > 5000000000) /* 5 seconds */
809 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
810 				else
811 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
812 
813 				svg_text(Y, c->start_time, comm);
814 			}
815 			c->Y = Y;
816 			Y++;
817 			c = c->next;
818 		}
819 		p = p->next;
820 	}
821 }
822 
823 static void add_process_filter(const char *string)
824 {
825 	int pid = strtoull(string, NULL, 10);
826 	struct process_filter *filt = malloc(sizeof(*filt));
827 
828 	if (!filt)
829 		return;
830 
831 	filt->name = strdup(string);
832 	filt->pid  = pid;
833 	filt->next = process_filter;
834 
835 	process_filter = filt;
836 }
837 
838 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
839 {
840 	struct process_filter *filt;
841 	if (!process_filter)
842 		return 1;
843 
844 	filt = process_filter;
845 	while (filt) {
846 		if (filt->pid && p->pid == filt->pid)
847 			return 1;
848 		if (strcmp(filt->name, c->comm) == 0)
849 			return 1;
850 		filt = filt->next;
851 	}
852 	return 0;
853 }
854 
855 static int determine_display_tasks_filtered(void)
856 {
857 	struct per_pid *p;
858 	struct per_pidcomm *c;
859 	int count = 0;
860 
861 	p = all_data;
862 	while (p) {
863 		p->display = 0;
864 		if (p->start_time == 1)
865 			p->start_time = first_time;
866 
867 		/* no exit marker, task kept running to the end */
868 		if (p->end_time == 0)
869 			p->end_time = last_time;
870 
871 		c = p->all;
872 
873 		while (c) {
874 			c->display = 0;
875 
876 			if (c->start_time == 1)
877 				c->start_time = first_time;
878 
879 			if (passes_filter(p, c)) {
880 				c->display = 1;
881 				p->display = 1;
882 				count++;
883 			}
884 
885 			if (c->end_time == 0)
886 				c->end_time = last_time;
887 
888 			c = c->next;
889 		}
890 		p = p->next;
891 	}
892 	return count;
893 }
894 
895 static int determine_display_tasks(u64 threshold)
896 {
897 	struct per_pid *p;
898 	struct per_pidcomm *c;
899 	int count = 0;
900 
901 	if (process_filter)
902 		return determine_display_tasks_filtered();
903 
904 	p = all_data;
905 	while (p) {
906 		p->display = 0;
907 		if (p->start_time == 1)
908 			p->start_time = first_time;
909 
910 		/* no exit marker, task kept running to the end */
911 		if (p->end_time == 0)
912 			p->end_time = last_time;
913 		if (p->total_time >= threshold && !power_only)
914 			p->display = 1;
915 
916 		c = p->all;
917 
918 		while (c) {
919 			c->display = 0;
920 
921 			if (c->start_time == 1)
922 				c->start_time = first_time;
923 
924 			if (c->total_time >= threshold && !power_only) {
925 				c->display = 1;
926 				count++;
927 			}
928 
929 			if (c->end_time == 0)
930 				c->end_time = last_time;
931 
932 			c = c->next;
933 		}
934 		p = p->next;
935 	}
936 	return count;
937 }
938 
939 
940 
941 #define TIME_THRESH 10000000
942 
943 static void write_svg_file(const char *filename)
944 {
945 	u64 i;
946 	int count;
947 
948 	numcpus++;
949 
950 
951 	count = determine_display_tasks(TIME_THRESH);
952 
953 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
954 	if (count < 15)
955 		count = determine_display_tasks(TIME_THRESH / 10);
956 
957 	open_svg(filename, numcpus, count, first_time, last_time);
958 
959 	svg_time_grid();
960 	svg_legenda();
961 
962 	for (i = 0; i < numcpus; i++)
963 		svg_cpu_box(i, max_freq, turbo_frequency);
964 
965 	draw_cpu_usage();
966 	draw_process_bars();
967 	draw_c_p_states();
968 	draw_wakeups();
969 
970 	svg_close();
971 }
972 
973 static int __cmd_timechart(const char *output_name)
974 {
975 	struct perf_tool perf_timechart = {
976 		.comm		 = process_comm_event,
977 		.fork		 = process_fork_event,
978 		.exit		 = process_exit_event,
979 		.sample		 = process_sample_event,
980 		.ordered_samples = true,
981 	};
982 	const struct perf_evsel_str_handler power_tracepoints[] = {
983 		{ "power:cpu_idle",		process_sample_cpu_idle },
984 		{ "power:cpu_frequency",	process_sample_cpu_frequency },
985 		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
986 		{ "sched:sched_switch",		process_sample_sched_switch },
987 #ifdef SUPPORT_OLD_POWER_EVENTS
988 		{ "power:power_start",		process_sample_power_start },
989 		{ "power:power_end",		process_sample_power_end },
990 		{ "power:power_frequency",	process_sample_power_frequency },
991 #endif
992 	};
993 	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 							 0, false, &perf_timechart);
995 	int ret = -EINVAL;
996 
997 	if (session == NULL)
998 		return -ENOMEM;
999 
1000 	if (!perf_session__has_traces(session, "timechart record"))
1001 		goto out_delete;
1002 
1003 	if (perf_session__set_tracepoints_handlers(session,
1004 						   power_tracepoints)) {
1005 		pr_err("Initializing session tracepoint handlers failed\n");
1006 		goto out_delete;
1007 	}
1008 
1009 	ret = perf_session__process_events(session, &perf_timechart);
1010 	if (ret)
1011 		goto out_delete;
1012 
1013 	end_sample_processing();
1014 
1015 	sort_pids();
1016 
1017 	write_svg_file(output_name);
1018 
1019 	pr_info("Written %2.1f seconds of trace to %s.\n",
1020 		(last_time - first_time) / 1000000000.0, output_name);
1021 out_delete:
1022 	perf_session__delete(session);
1023 	return ret;
1024 }
1025 
1026 static int __cmd_record(int argc, const char **argv)
1027 {
1028 #ifdef SUPPORT_OLD_POWER_EVENTS
1029 	const char * const record_old_args[] = {
1030 		"record", "-a", "-R", "-c", "1",
1031 		"-e", "power:power_start",
1032 		"-e", "power:power_end",
1033 		"-e", "power:power_frequency",
1034 		"-e", "sched:sched_wakeup",
1035 		"-e", "sched:sched_switch",
1036 	};
1037 #endif
1038 	const char * const record_new_args[] = {
1039 		"record", "-a", "-R", "-c", "1",
1040 		"-e", "power:cpu_frequency",
1041 		"-e", "power:cpu_idle",
1042 		"-e", "sched:sched_wakeup",
1043 		"-e", "sched:sched_switch",
1044 	};
1045 	unsigned int rec_argc, i, j;
1046 	const char **rec_argv;
1047 	const char * const *record_args = record_new_args;
1048 	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1049 
1050 #ifdef SUPPORT_OLD_POWER_EVENTS
1051 	if (!is_valid_tracepoint("power:cpu_idle") &&
1052 	    is_valid_tracepoint("power:power_start")) {
1053 		use_old_power_events = 1;
1054 		record_args = record_old_args;
1055 		record_elems = ARRAY_SIZE(record_old_args);
1056 	}
1057 #endif
1058 
1059 	rec_argc = record_elems + argc - 1;
1060 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1061 
1062 	if (rec_argv == NULL)
1063 		return -ENOMEM;
1064 
1065 	for (i = 0; i < record_elems; i++)
1066 		rec_argv[i] = strdup(record_args[i]);
1067 
1068 	for (j = 1; j < (unsigned int)argc; j++, i++)
1069 		rec_argv[i] = argv[j];
1070 
1071 	return cmd_record(i, rec_argv, NULL);
1072 }
1073 
1074 static int
1075 parse_process(const struct option *opt __maybe_unused, const char *arg,
1076 	      int __maybe_unused unset)
1077 {
1078 	if (arg)
1079 		add_process_filter(arg);
1080 	return 0;
1081 }
1082 
1083 int cmd_timechart(int argc, const char **argv,
1084 		  const char *prefix __maybe_unused)
1085 {
1086 	const char *output_name = "output.svg";
1087 	const struct option options[] = {
1088 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1089 	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1090 	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1091 	OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1092 	OPT_CALLBACK('p', "process", NULL, "process",
1093 		      "process selector. Pass a pid or process name.",
1094 		       parse_process),
1095 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1096 		    "Look for files with symbols relative to this directory"),
1097 	OPT_END()
1098 	};
1099 	const char * const timechart_usage[] = {
1100 		"perf timechart [<options>] {record}",
1101 		NULL
1102 	};
1103 
1104 	argc = parse_options(argc, argv, options, timechart_usage,
1105 			PARSE_OPT_STOP_AT_NON_OPTION);
1106 
1107 	symbol__init();
1108 
1109 	if (argc && !strncmp(argv[0], "rec", 3))
1110 		return __cmd_record(argc, argv);
1111 	else if (argc)
1112 		usage_with_options(timechart_usage, options);
1113 
1114 	setup_pager();
1115 
1116 	return __cmd_timechart(output_name);
1117 }
1118