1 /* 2 * builtin-timechart.c - make an svg timechart of system activity 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * 6 * Authors: 7 * Arjan van de Ven <arjan@linux.intel.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; version 2 12 * of the License. 13 */ 14 15 #include <traceevent/event-parse.h> 16 17 #include "builtin.h" 18 19 #include "util/util.h" 20 21 #include "util/color.h" 22 #include <linux/list.h> 23 #include "util/cache.h" 24 #include "util/evlist.h" 25 #include "util/evsel.h" 26 #include <linux/rbtree.h> 27 #include "util/symbol.h" 28 #include "util/callchain.h" 29 #include "util/strlist.h" 30 31 #include "perf.h" 32 #include "util/header.h" 33 #include "util/parse-options.h" 34 #include "util/parse-events.h" 35 #include "util/event.h" 36 #include "util/session.h" 37 #include "util/svghelper.h" 38 #include "util/tool.h" 39 #include "util/data.h" 40 #include "util/debug.h" 41 42 #define SUPPORT_OLD_POWER_EVENTS 1 43 #define PWR_EVENT_EXIT -1 44 45 struct per_pid; 46 struct power_event; 47 struct wake_event; 48 49 struct timechart { 50 struct perf_tool tool; 51 struct per_pid *all_data; 52 struct power_event *power_events; 53 struct wake_event *wake_events; 54 int proc_num; 55 unsigned int numcpus; 56 u64 min_freq, /* Lowest CPU frequency seen */ 57 max_freq, /* Highest CPU frequency seen */ 58 turbo_frequency, 59 first_time, last_time; 60 bool power_only, 61 tasks_only, 62 with_backtrace, 63 topology; 64 /* IO related settings */ 65 u64 io_events; 66 bool io_only, 67 skip_eagain; 68 u64 min_time, 69 merge_dist; 70 }; 71 72 struct per_pidcomm; 73 struct cpu_sample; 74 struct io_sample; 75 76 /* 77 * Datastructure layout: 78 * We keep an list of "pid"s, matching the kernels notion of a task struct. 79 * Each "pid" entry, has a list of "comm"s. 80 * this is because we want to track different programs different, while 81 * exec will reuse the original pid (by design). 82 * Each comm has a list of samples that will be used to draw 83 * final graph. 84 */ 85 86 struct per_pid { 87 struct per_pid *next; 88 89 int pid; 90 int ppid; 91 92 u64 start_time; 93 u64 end_time; 94 u64 total_time; 95 u64 total_bytes; 96 int display; 97 98 struct per_pidcomm *all; 99 struct per_pidcomm *current; 100 }; 101 102 103 struct per_pidcomm { 104 struct per_pidcomm *next; 105 106 u64 start_time; 107 u64 end_time; 108 u64 total_time; 109 u64 max_bytes; 110 u64 total_bytes; 111 112 int Y; 113 int display; 114 115 long state; 116 u64 state_since; 117 118 char *comm; 119 120 struct cpu_sample *samples; 121 struct io_sample *io_samples; 122 }; 123 124 struct sample_wrapper { 125 struct sample_wrapper *next; 126 127 u64 timestamp; 128 unsigned char data[0]; 129 }; 130 131 #define TYPE_NONE 0 132 #define TYPE_RUNNING 1 133 #define TYPE_WAITING 2 134 #define TYPE_BLOCKED 3 135 136 struct cpu_sample { 137 struct cpu_sample *next; 138 139 u64 start_time; 140 u64 end_time; 141 int type; 142 int cpu; 143 const char *backtrace; 144 }; 145 146 enum { 147 IOTYPE_READ, 148 IOTYPE_WRITE, 149 IOTYPE_SYNC, 150 IOTYPE_TX, 151 IOTYPE_RX, 152 IOTYPE_POLL, 153 }; 154 155 struct io_sample { 156 struct io_sample *next; 157 158 u64 start_time; 159 u64 end_time; 160 u64 bytes; 161 int type; 162 int fd; 163 int err; 164 int merges; 165 }; 166 167 #define CSTATE 1 168 #define PSTATE 2 169 170 struct power_event { 171 struct power_event *next; 172 int type; 173 int state; 174 u64 start_time; 175 u64 end_time; 176 int cpu; 177 }; 178 179 struct wake_event { 180 struct wake_event *next; 181 int waker; 182 int wakee; 183 u64 time; 184 const char *backtrace; 185 }; 186 187 struct process_filter { 188 char *name; 189 int pid; 190 struct process_filter *next; 191 }; 192 193 static struct process_filter *process_filter; 194 195 196 static struct per_pid *find_create_pid(struct timechart *tchart, int pid) 197 { 198 struct per_pid *cursor = tchart->all_data; 199 200 while (cursor) { 201 if (cursor->pid == pid) 202 return cursor; 203 cursor = cursor->next; 204 } 205 cursor = zalloc(sizeof(*cursor)); 206 assert(cursor != NULL); 207 cursor->pid = pid; 208 cursor->next = tchart->all_data; 209 tchart->all_data = cursor; 210 return cursor; 211 } 212 213 static void pid_set_comm(struct timechart *tchart, int pid, char *comm) 214 { 215 struct per_pid *p; 216 struct per_pidcomm *c; 217 p = find_create_pid(tchart, pid); 218 c = p->all; 219 while (c) { 220 if (c->comm && strcmp(c->comm, comm) == 0) { 221 p->current = c; 222 return; 223 } 224 if (!c->comm) { 225 c->comm = strdup(comm); 226 p->current = c; 227 return; 228 } 229 c = c->next; 230 } 231 c = zalloc(sizeof(*c)); 232 assert(c != NULL); 233 c->comm = strdup(comm); 234 p->current = c; 235 c->next = p->all; 236 p->all = c; 237 } 238 239 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) 240 { 241 struct per_pid *p, *pp; 242 p = find_create_pid(tchart, pid); 243 pp = find_create_pid(tchart, ppid); 244 p->ppid = ppid; 245 if (pp->current && pp->current->comm && !p->current) 246 pid_set_comm(tchart, pid, pp->current->comm); 247 248 p->start_time = timestamp; 249 if (p->current && !p->current->start_time) { 250 p->current->start_time = timestamp; 251 p->current->state_since = timestamp; 252 } 253 } 254 255 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) 256 { 257 struct per_pid *p; 258 p = find_create_pid(tchart, pid); 259 p->end_time = timestamp; 260 if (p->current) 261 p->current->end_time = timestamp; 262 } 263 264 static void pid_put_sample(struct timechart *tchart, int pid, int type, 265 unsigned int cpu, u64 start, u64 end, 266 const char *backtrace) 267 { 268 struct per_pid *p; 269 struct per_pidcomm *c; 270 struct cpu_sample *sample; 271 272 p = find_create_pid(tchart, pid); 273 c = p->current; 274 if (!c) { 275 c = zalloc(sizeof(*c)); 276 assert(c != NULL); 277 p->current = c; 278 c->next = p->all; 279 p->all = c; 280 } 281 282 sample = zalloc(sizeof(*sample)); 283 assert(sample != NULL); 284 sample->start_time = start; 285 sample->end_time = end; 286 sample->type = type; 287 sample->next = c->samples; 288 sample->cpu = cpu; 289 sample->backtrace = backtrace; 290 c->samples = sample; 291 292 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 293 c->total_time += (end-start); 294 p->total_time += (end-start); 295 } 296 297 if (c->start_time == 0 || c->start_time > start) 298 c->start_time = start; 299 if (p->start_time == 0 || p->start_time > start) 300 p->start_time = start; 301 } 302 303 #define MAX_CPUS 4096 304 305 static u64 cpus_cstate_start_times[MAX_CPUS]; 306 static int cpus_cstate_state[MAX_CPUS]; 307 static u64 cpus_pstate_start_times[MAX_CPUS]; 308 static u64 cpus_pstate_state[MAX_CPUS]; 309 310 static int process_comm_event(struct perf_tool *tool, 311 union perf_event *event, 312 struct perf_sample *sample __maybe_unused, 313 struct machine *machine __maybe_unused) 314 { 315 struct timechart *tchart = container_of(tool, struct timechart, tool); 316 pid_set_comm(tchart, event->comm.tid, event->comm.comm); 317 return 0; 318 } 319 320 static int process_fork_event(struct perf_tool *tool, 321 union perf_event *event, 322 struct perf_sample *sample __maybe_unused, 323 struct machine *machine __maybe_unused) 324 { 325 struct timechart *tchart = container_of(tool, struct timechart, tool); 326 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); 327 return 0; 328 } 329 330 static int process_exit_event(struct perf_tool *tool, 331 union perf_event *event, 332 struct perf_sample *sample __maybe_unused, 333 struct machine *machine __maybe_unused) 334 { 335 struct timechart *tchart = container_of(tool, struct timechart, tool); 336 pid_exit(tchart, event->fork.pid, event->fork.time); 337 return 0; 338 } 339 340 #ifdef SUPPORT_OLD_POWER_EVENTS 341 static int use_old_power_events; 342 #endif 343 344 static void c_state_start(int cpu, u64 timestamp, int state) 345 { 346 cpus_cstate_start_times[cpu] = timestamp; 347 cpus_cstate_state[cpu] = state; 348 } 349 350 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) 351 { 352 struct power_event *pwr = zalloc(sizeof(*pwr)); 353 354 if (!pwr) 355 return; 356 357 pwr->state = cpus_cstate_state[cpu]; 358 pwr->start_time = cpus_cstate_start_times[cpu]; 359 pwr->end_time = timestamp; 360 pwr->cpu = cpu; 361 pwr->type = CSTATE; 362 pwr->next = tchart->power_events; 363 364 tchart->power_events = pwr; 365 } 366 367 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) 368 { 369 struct power_event *pwr; 370 371 if (new_freq > 8000000) /* detect invalid data */ 372 return; 373 374 pwr = zalloc(sizeof(*pwr)); 375 if (!pwr) 376 return; 377 378 pwr->state = cpus_pstate_state[cpu]; 379 pwr->start_time = cpus_pstate_start_times[cpu]; 380 pwr->end_time = timestamp; 381 pwr->cpu = cpu; 382 pwr->type = PSTATE; 383 pwr->next = tchart->power_events; 384 385 if (!pwr->start_time) 386 pwr->start_time = tchart->first_time; 387 388 tchart->power_events = pwr; 389 390 cpus_pstate_state[cpu] = new_freq; 391 cpus_pstate_start_times[cpu] = timestamp; 392 393 if ((u64)new_freq > tchart->max_freq) 394 tchart->max_freq = new_freq; 395 396 if (new_freq < tchart->min_freq || tchart->min_freq == 0) 397 tchart->min_freq = new_freq; 398 399 if (new_freq == tchart->max_freq - 1000) 400 tchart->turbo_frequency = tchart->max_freq; 401 } 402 403 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, 404 int waker, int wakee, u8 flags, const char *backtrace) 405 { 406 struct per_pid *p; 407 struct wake_event *we = zalloc(sizeof(*we)); 408 409 if (!we) 410 return; 411 412 we->time = timestamp; 413 we->waker = waker; 414 we->backtrace = backtrace; 415 416 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) 417 we->waker = -1; 418 419 we->wakee = wakee; 420 we->next = tchart->wake_events; 421 tchart->wake_events = we; 422 p = find_create_pid(tchart, we->wakee); 423 424 if (p && p->current && p->current->state == TYPE_NONE) { 425 p->current->state_since = timestamp; 426 p->current->state = TYPE_WAITING; 427 } 428 if (p && p->current && p->current->state == TYPE_BLOCKED) { 429 pid_put_sample(tchart, p->pid, p->current->state, cpu, 430 p->current->state_since, timestamp, NULL); 431 p->current->state_since = timestamp; 432 p->current->state = TYPE_WAITING; 433 } 434 } 435 436 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, 437 int prev_pid, int next_pid, u64 prev_state, 438 const char *backtrace) 439 { 440 struct per_pid *p = NULL, *prev_p; 441 442 prev_p = find_create_pid(tchart, prev_pid); 443 444 p = find_create_pid(tchart, next_pid); 445 446 if (prev_p->current && prev_p->current->state != TYPE_NONE) 447 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, 448 prev_p->current->state_since, timestamp, 449 backtrace); 450 if (p && p->current) { 451 if (p->current->state != TYPE_NONE) 452 pid_put_sample(tchart, next_pid, p->current->state, cpu, 453 p->current->state_since, timestamp, 454 backtrace); 455 456 p->current->state_since = timestamp; 457 p->current->state = TYPE_RUNNING; 458 } 459 460 if (prev_p->current) { 461 prev_p->current->state = TYPE_NONE; 462 prev_p->current->state_since = timestamp; 463 if (prev_state & 2) 464 prev_p->current->state = TYPE_BLOCKED; 465 if (prev_state == 0) 466 prev_p->current->state = TYPE_WAITING; 467 } 468 } 469 470 static const char *cat_backtrace(union perf_event *event, 471 struct perf_sample *sample, 472 struct machine *machine) 473 { 474 struct addr_location al; 475 unsigned int i; 476 char *p = NULL; 477 size_t p_len; 478 u8 cpumode = PERF_RECORD_MISC_USER; 479 struct addr_location tal; 480 struct ip_callchain *chain = sample->callchain; 481 FILE *f = open_memstream(&p, &p_len); 482 483 if (!f) { 484 perror("open_memstream error"); 485 return NULL; 486 } 487 488 if (!chain) 489 goto exit; 490 491 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) { 492 fprintf(stderr, "problem processing %d event, skipping it.\n", 493 event->header.type); 494 goto exit; 495 } 496 497 for (i = 0; i < chain->nr; i++) { 498 u64 ip; 499 500 if (callchain_param.order == ORDER_CALLEE) 501 ip = chain->ips[i]; 502 else 503 ip = chain->ips[chain->nr - i - 1]; 504 505 if (ip >= PERF_CONTEXT_MAX) { 506 switch (ip) { 507 case PERF_CONTEXT_HV: 508 cpumode = PERF_RECORD_MISC_HYPERVISOR; 509 break; 510 case PERF_CONTEXT_KERNEL: 511 cpumode = PERF_RECORD_MISC_KERNEL; 512 break; 513 case PERF_CONTEXT_USER: 514 cpumode = PERF_RECORD_MISC_USER; 515 break; 516 default: 517 pr_debug("invalid callchain context: " 518 "%"PRId64"\n", (s64) ip); 519 520 /* 521 * It seems the callchain is corrupted. 522 * Discard all. 523 */ 524 zfree(&p); 525 goto exit; 526 } 527 continue; 528 } 529 530 tal.filtered = 0; 531 thread__find_addr_location(al.thread, cpumode, 532 MAP__FUNCTION, ip, &tal); 533 534 if (tal.sym) 535 fprintf(f, "..... %016" PRIx64 " %s\n", ip, 536 tal.sym->name); 537 else 538 fprintf(f, "..... %016" PRIx64 "\n", ip); 539 } 540 541 exit: 542 fclose(f); 543 544 return p; 545 } 546 547 typedef int (*tracepoint_handler)(struct timechart *tchart, 548 struct perf_evsel *evsel, 549 struct perf_sample *sample, 550 const char *backtrace); 551 552 static int process_sample_event(struct perf_tool *tool, 553 union perf_event *event, 554 struct perf_sample *sample, 555 struct perf_evsel *evsel, 556 struct machine *machine) 557 { 558 struct timechart *tchart = container_of(tool, struct timechart, tool); 559 560 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { 561 if (!tchart->first_time || tchart->first_time > sample->time) 562 tchart->first_time = sample->time; 563 if (tchart->last_time < sample->time) 564 tchart->last_time = sample->time; 565 } 566 567 if (evsel->handler != NULL) { 568 tracepoint_handler f = evsel->handler; 569 return f(tchart, evsel, sample, 570 cat_backtrace(event, sample, machine)); 571 } 572 573 return 0; 574 } 575 576 static int 577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused, 578 struct perf_evsel *evsel, 579 struct perf_sample *sample, 580 const char *backtrace __maybe_unused) 581 { 582 u32 state = perf_evsel__intval(evsel, sample, "state"); 583 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 584 585 if (state == (u32)PWR_EVENT_EXIT) 586 c_state_end(tchart, cpu_id, sample->time); 587 else 588 c_state_start(cpu_id, sample->time, state); 589 return 0; 590 } 591 592 static int 593 process_sample_cpu_frequency(struct timechart *tchart, 594 struct perf_evsel *evsel, 595 struct perf_sample *sample, 596 const char *backtrace __maybe_unused) 597 { 598 u32 state = perf_evsel__intval(evsel, sample, "state"); 599 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 600 601 p_state_change(tchart, cpu_id, sample->time, state); 602 return 0; 603 } 604 605 static int 606 process_sample_sched_wakeup(struct timechart *tchart, 607 struct perf_evsel *evsel, 608 struct perf_sample *sample, 609 const char *backtrace) 610 { 611 u8 flags = perf_evsel__intval(evsel, sample, "common_flags"); 612 int waker = perf_evsel__intval(evsel, sample, "common_pid"); 613 int wakee = perf_evsel__intval(evsel, sample, "pid"); 614 615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); 616 return 0; 617 } 618 619 static int 620 process_sample_sched_switch(struct timechart *tchart, 621 struct perf_evsel *evsel, 622 struct perf_sample *sample, 623 const char *backtrace) 624 { 625 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"); 626 int next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 627 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 628 629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, 630 prev_state, backtrace); 631 return 0; 632 } 633 634 #ifdef SUPPORT_OLD_POWER_EVENTS 635 static int 636 process_sample_power_start(struct timechart *tchart __maybe_unused, 637 struct perf_evsel *evsel, 638 struct perf_sample *sample, 639 const char *backtrace __maybe_unused) 640 { 641 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 642 u64 value = perf_evsel__intval(evsel, sample, "value"); 643 644 c_state_start(cpu_id, sample->time, value); 645 return 0; 646 } 647 648 static int 649 process_sample_power_end(struct timechart *tchart, 650 struct perf_evsel *evsel __maybe_unused, 651 struct perf_sample *sample, 652 const char *backtrace __maybe_unused) 653 { 654 c_state_end(tchart, sample->cpu, sample->time); 655 return 0; 656 } 657 658 static int 659 process_sample_power_frequency(struct timechart *tchart, 660 struct perf_evsel *evsel, 661 struct perf_sample *sample, 662 const char *backtrace __maybe_unused) 663 { 664 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 665 u64 value = perf_evsel__intval(evsel, sample, "value"); 666 667 p_state_change(tchart, cpu_id, sample->time, value); 668 return 0; 669 } 670 #endif /* SUPPORT_OLD_POWER_EVENTS */ 671 672 /* 673 * After the last sample we need to wrap up the current C/P state 674 * and close out each CPU for these. 675 */ 676 static void end_sample_processing(struct timechart *tchart) 677 { 678 u64 cpu; 679 struct power_event *pwr; 680 681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) { 682 /* C state */ 683 #if 0 684 pwr = zalloc(sizeof(*pwr)); 685 if (!pwr) 686 return; 687 688 pwr->state = cpus_cstate_state[cpu]; 689 pwr->start_time = cpus_cstate_start_times[cpu]; 690 pwr->end_time = tchart->last_time; 691 pwr->cpu = cpu; 692 pwr->type = CSTATE; 693 pwr->next = tchart->power_events; 694 695 tchart->power_events = pwr; 696 #endif 697 /* P state */ 698 699 pwr = zalloc(sizeof(*pwr)); 700 if (!pwr) 701 return; 702 703 pwr->state = cpus_pstate_state[cpu]; 704 pwr->start_time = cpus_pstate_start_times[cpu]; 705 pwr->end_time = tchart->last_time; 706 pwr->cpu = cpu; 707 pwr->type = PSTATE; 708 pwr->next = tchart->power_events; 709 710 if (!pwr->start_time) 711 pwr->start_time = tchart->first_time; 712 if (!pwr->state) 713 pwr->state = tchart->min_freq; 714 tchart->power_events = pwr; 715 } 716 } 717 718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, 719 u64 start, int fd) 720 { 721 struct per_pid *p = find_create_pid(tchart, pid); 722 struct per_pidcomm *c = p->current; 723 struct io_sample *sample; 724 struct io_sample *prev; 725 726 if (!c) { 727 c = zalloc(sizeof(*c)); 728 if (!c) 729 return -ENOMEM; 730 p->current = c; 731 c->next = p->all; 732 p->all = c; 733 } 734 735 prev = c->io_samples; 736 737 if (prev && prev->start_time && !prev->end_time) { 738 pr_warning("Skip invalid start event: " 739 "previous event already started!\n"); 740 741 /* remove previous event that has been started, 742 * we are not sure we will ever get an end for it */ 743 c->io_samples = prev->next; 744 free(prev); 745 return 0; 746 } 747 748 sample = zalloc(sizeof(*sample)); 749 if (!sample) 750 return -ENOMEM; 751 sample->start_time = start; 752 sample->type = type; 753 sample->fd = fd; 754 sample->next = c->io_samples; 755 c->io_samples = sample; 756 757 if (c->start_time == 0 || c->start_time > start) 758 c->start_time = start; 759 760 return 0; 761 } 762 763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type, 764 u64 end, long ret) 765 { 766 struct per_pid *p = find_create_pid(tchart, pid); 767 struct per_pidcomm *c = p->current; 768 struct io_sample *sample, *prev; 769 770 if (!c) { 771 pr_warning("Invalid pidcomm!\n"); 772 return -1; 773 } 774 775 sample = c->io_samples; 776 777 if (!sample) /* skip partially captured events */ 778 return 0; 779 780 if (sample->end_time) { 781 pr_warning("Skip invalid end event: " 782 "previous event already ended!\n"); 783 return 0; 784 } 785 786 if (sample->type != type) { 787 pr_warning("Skip invalid end event: invalid event type!\n"); 788 return 0; 789 } 790 791 sample->end_time = end; 792 prev = sample->next; 793 794 /* we want to be able to see small and fast transfers, so make them 795 * at least min_time long, but don't overlap them */ 796 if (sample->end_time - sample->start_time < tchart->min_time) 797 sample->end_time = sample->start_time + tchart->min_time; 798 if (prev && sample->start_time < prev->end_time) { 799 if (prev->err) /* try to make errors more visible */ 800 sample->start_time = prev->end_time; 801 else 802 prev->end_time = sample->start_time; 803 } 804 805 if (ret < 0) { 806 sample->err = ret; 807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || 808 type == IOTYPE_TX || type == IOTYPE_RX) { 809 810 if ((u64)ret > c->max_bytes) 811 c->max_bytes = ret; 812 813 c->total_bytes += ret; 814 p->total_bytes += ret; 815 sample->bytes = ret; 816 } 817 818 /* merge two requests to make svg smaller and render-friendly */ 819 if (prev && 820 prev->type == sample->type && 821 prev->err == sample->err && 822 prev->fd == sample->fd && 823 prev->end_time + tchart->merge_dist >= sample->start_time) { 824 825 sample->bytes += prev->bytes; 826 sample->merges += prev->merges + 1; 827 828 sample->start_time = prev->start_time; 829 sample->next = prev->next; 830 free(prev); 831 832 if (!sample->err && sample->bytes > c->max_bytes) 833 c->max_bytes = sample->bytes; 834 } 835 836 tchart->io_events++; 837 838 return 0; 839 } 840 841 static int 842 process_enter_read(struct timechart *tchart, 843 struct perf_evsel *evsel, 844 struct perf_sample *sample) 845 { 846 long fd = perf_evsel__intval(evsel, sample, "fd"); 847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, 848 sample->time, fd); 849 } 850 851 static int 852 process_exit_read(struct timechart *tchart, 853 struct perf_evsel *evsel, 854 struct perf_sample *sample) 855 { 856 long ret = perf_evsel__intval(evsel, sample, "ret"); 857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, 858 sample->time, ret); 859 } 860 861 static int 862 process_enter_write(struct timechart *tchart, 863 struct perf_evsel *evsel, 864 struct perf_sample *sample) 865 { 866 long fd = perf_evsel__intval(evsel, sample, "fd"); 867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, 868 sample->time, fd); 869 } 870 871 static int 872 process_exit_write(struct timechart *tchart, 873 struct perf_evsel *evsel, 874 struct perf_sample *sample) 875 { 876 long ret = perf_evsel__intval(evsel, sample, "ret"); 877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, 878 sample->time, ret); 879 } 880 881 static int 882 process_enter_sync(struct timechart *tchart, 883 struct perf_evsel *evsel, 884 struct perf_sample *sample) 885 { 886 long fd = perf_evsel__intval(evsel, sample, "fd"); 887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, 888 sample->time, fd); 889 } 890 891 static int 892 process_exit_sync(struct timechart *tchart, 893 struct perf_evsel *evsel, 894 struct perf_sample *sample) 895 { 896 long ret = perf_evsel__intval(evsel, sample, "ret"); 897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, 898 sample->time, ret); 899 } 900 901 static int 902 process_enter_tx(struct timechart *tchart, 903 struct perf_evsel *evsel, 904 struct perf_sample *sample) 905 { 906 long fd = perf_evsel__intval(evsel, sample, "fd"); 907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, 908 sample->time, fd); 909 } 910 911 static int 912 process_exit_tx(struct timechart *tchart, 913 struct perf_evsel *evsel, 914 struct perf_sample *sample) 915 { 916 long ret = perf_evsel__intval(evsel, sample, "ret"); 917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, 918 sample->time, ret); 919 } 920 921 static int 922 process_enter_rx(struct timechart *tchart, 923 struct perf_evsel *evsel, 924 struct perf_sample *sample) 925 { 926 long fd = perf_evsel__intval(evsel, sample, "fd"); 927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, 928 sample->time, fd); 929 } 930 931 static int 932 process_exit_rx(struct timechart *tchart, 933 struct perf_evsel *evsel, 934 struct perf_sample *sample) 935 { 936 long ret = perf_evsel__intval(evsel, sample, "ret"); 937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, 938 sample->time, ret); 939 } 940 941 static int 942 process_enter_poll(struct timechart *tchart, 943 struct perf_evsel *evsel, 944 struct perf_sample *sample) 945 { 946 long fd = perf_evsel__intval(evsel, sample, "fd"); 947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, 948 sample->time, fd); 949 } 950 951 static int 952 process_exit_poll(struct timechart *tchart, 953 struct perf_evsel *evsel, 954 struct perf_sample *sample) 955 { 956 long ret = perf_evsel__intval(evsel, sample, "ret"); 957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, 958 sample->time, ret); 959 } 960 961 /* 962 * Sort the pid datastructure 963 */ 964 static void sort_pids(struct timechart *tchart) 965 { 966 struct per_pid *new_list, *p, *cursor, *prev; 967 /* sort by ppid first, then by pid, lowest to highest */ 968 969 new_list = NULL; 970 971 while (tchart->all_data) { 972 p = tchart->all_data; 973 tchart->all_data = p->next; 974 p->next = NULL; 975 976 if (new_list == NULL) { 977 new_list = p; 978 p->next = NULL; 979 continue; 980 } 981 prev = NULL; 982 cursor = new_list; 983 while (cursor) { 984 if (cursor->ppid > p->ppid || 985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 986 /* must insert before */ 987 if (prev) { 988 p->next = prev->next; 989 prev->next = p; 990 cursor = NULL; 991 continue; 992 } else { 993 p->next = new_list; 994 new_list = p; 995 cursor = NULL; 996 continue; 997 } 998 } 999 1000 prev = cursor; 1001 cursor = cursor->next; 1002 if (!cursor) 1003 prev->next = p; 1004 } 1005 } 1006 tchart->all_data = new_list; 1007 } 1008 1009 1010 static void draw_c_p_states(struct timechart *tchart) 1011 { 1012 struct power_event *pwr; 1013 pwr = tchart->power_events; 1014 1015 /* 1016 * two pass drawing so that the P state bars are on top of the C state blocks 1017 */ 1018 while (pwr) { 1019 if (pwr->type == CSTATE) 1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1021 pwr = pwr->next; 1022 } 1023 1024 pwr = tchart->power_events; 1025 while (pwr) { 1026 if (pwr->type == PSTATE) { 1027 if (!pwr->state) 1028 pwr->state = tchart->min_freq; 1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1030 } 1031 pwr = pwr->next; 1032 } 1033 } 1034 1035 static void draw_wakeups(struct timechart *tchart) 1036 { 1037 struct wake_event *we; 1038 struct per_pid *p; 1039 struct per_pidcomm *c; 1040 1041 we = tchart->wake_events; 1042 while (we) { 1043 int from = 0, to = 0; 1044 char *task_from = NULL, *task_to = NULL; 1045 1046 /* locate the column of the waker and wakee */ 1047 p = tchart->all_data; 1048 while (p) { 1049 if (p->pid == we->waker || p->pid == we->wakee) { 1050 c = p->all; 1051 while (c) { 1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 1053 if (p->pid == we->waker && !from) { 1054 from = c->Y; 1055 task_from = strdup(c->comm); 1056 } 1057 if (p->pid == we->wakee && !to) { 1058 to = c->Y; 1059 task_to = strdup(c->comm); 1060 } 1061 } 1062 c = c->next; 1063 } 1064 c = p->all; 1065 while (c) { 1066 if (p->pid == we->waker && !from) { 1067 from = c->Y; 1068 task_from = strdup(c->comm); 1069 } 1070 if (p->pid == we->wakee && !to) { 1071 to = c->Y; 1072 task_to = strdup(c->comm); 1073 } 1074 c = c->next; 1075 } 1076 } 1077 p = p->next; 1078 } 1079 1080 if (!task_from) { 1081 task_from = malloc(40); 1082 sprintf(task_from, "[%i]", we->waker); 1083 } 1084 if (!task_to) { 1085 task_to = malloc(40); 1086 sprintf(task_to, "[%i]", we->wakee); 1087 } 1088 1089 if (we->waker == -1) 1090 svg_interrupt(we->time, to, we->backtrace); 1091 else if (from && to && abs(from - to) == 1) 1092 svg_wakeline(we->time, from, to, we->backtrace); 1093 else 1094 svg_partial_wakeline(we->time, from, task_from, to, 1095 task_to, we->backtrace); 1096 we = we->next; 1097 1098 free(task_from); 1099 free(task_to); 1100 } 1101 } 1102 1103 static void draw_cpu_usage(struct timechart *tchart) 1104 { 1105 struct per_pid *p; 1106 struct per_pidcomm *c; 1107 struct cpu_sample *sample; 1108 p = tchart->all_data; 1109 while (p) { 1110 c = p->all; 1111 while (c) { 1112 sample = c->samples; 1113 while (sample) { 1114 if (sample->type == TYPE_RUNNING) { 1115 svg_process(sample->cpu, 1116 sample->start_time, 1117 sample->end_time, 1118 p->pid, 1119 c->comm, 1120 sample->backtrace); 1121 } 1122 1123 sample = sample->next; 1124 } 1125 c = c->next; 1126 } 1127 p = p->next; 1128 } 1129 } 1130 1131 static void draw_io_bars(struct timechart *tchart) 1132 { 1133 const char *suf; 1134 double bytes; 1135 char comm[256]; 1136 struct per_pid *p; 1137 struct per_pidcomm *c; 1138 struct io_sample *sample; 1139 int Y = 1; 1140 1141 p = tchart->all_data; 1142 while (p) { 1143 c = p->all; 1144 while (c) { 1145 if (!c->display) { 1146 c->Y = 0; 1147 c = c->next; 1148 continue; 1149 } 1150 1151 svg_box(Y, c->start_time, c->end_time, "process3"); 1152 sample = c->io_samples; 1153 for (sample = c->io_samples; sample; sample = sample->next) { 1154 double h = (double)sample->bytes / c->max_bytes; 1155 1156 if (tchart->skip_eagain && 1157 sample->err == -EAGAIN) 1158 continue; 1159 1160 if (sample->err) 1161 h = 1; 1162 1163 if (sample->type == IOTYPE_SYNC) 1164 svg_fbox(Y, 1165 sample->start_time, 1166 sample->end_time, 1167 1, 1168 sample->err ? "error" : "sync", 1169 sample->fd, 1170 sample->err, 1171 sample->merges); 1172 else if (sample->type == IOTYPE_POLL) 1173 svg_fbox(Y, 1174 sample->start_time, 1175 sample->end_time, 1176 1, 1177 sample->err ? "error" : "poll", 1178 sample->fd, 1179 sample->err, 1180 sample->merges); 1181 else if (sample->type == IOTYPE_READ) 1182 svg_ubox(Y, 1183 sample->start_time, 1184 sample->end_time, 1185 h, 1186 sample->err ? "error" : "disk", 1187 sample->fd, 1188 sample->err, 1189 sample->merges); 1190 else if (sample->type == IOTYPE_WRITE) 1191 svg_lbox(Y, 1192 sample->start_time, 1193 sample->end_time, 1194 h, 1195 sample->err ? "error" : "disk", 1196 sample->fd, 1197 sample->err, 1198 sample->merges); 1199 else if (sample->type == IOTYPE_RX) 1200 svg_ubox(Y, 1201 sample->start_time, 1202 sample->end_time, 1203 h, 1204 sample->err ? "error" : "net", 1205 sample->fd, 1206 sample->err, 1207 sample->merges); 1208 else if (sample->type == IOTYPE_TX) 1209 svg_lbox(Y, 1210 sample->start_time, 1211 sample->end_time, 1212 h, 1213 sample->err ? "error" : "net", 1214 sample->fd, 1215 sample->err, 1216 sample->merges); 1217 } 1218 1219 suf = ""; 1220 bytes = c->total_bytes; 1221 if (bytes > 1024) { 1222 bytes = bytes / 1024; 1223 suf = "K"; 1224 } 1225 if (bytes > 1024) { 1226 bytes = bytes / 1024; 1227 suf = "M"; 1228 } 1229 if (bytes > 1024) { 1230 bytes = bytes / 1024; 1231 suf = "G"; 1232 } 1233 1234 1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); 1236 svg_text(Y, c->start_time, comm); 1237 1238 c->Y = Y; 1239 Y++; 1240 c = c->next; 1241 } 1242 p = p->next; 1243 } 1244 } 1245 1246 static void draw_process_bars(struct timechart *tchart) 1247 { 1248 struct per_pid *p; 1249 struct per_pidcomm *c; 1250 struct cpu_sample *sample; 1251 int Y = 0; 1252 1253 Y = 2 * tchart->numcpus + 2; 1254 1255 p = tchart->all_data; 1256 while (p) { 1257 c = p->all; 1258 while (c) { 1259 if (!c->display) { 1260 c->Y = 0; 1261 c = c->next; 1262 continue; 1263 } 1264 1265 svg_box(Y, c->start_time, c->end_time, "process"); 1266 sample = c->samples; 1267 while (sample) { 1268 if (sample->type == TYPE_RUNNING) 1269 svg_running(Y, sample->cpu, 1270 sample->start_time, 1271 sample->end_time, 1272 sample->backtrace); 1273 if (sample->type == TYPE_BLOCKED) 1274 svg_blocked(Y, sample->cpu, 1275 sample->start_time, 1276 sample->end_time, 1277 sample->backtrace); 1278 if (sample->type == TYPE_WAITING) 1279 svg_waiting(Y, sample->cpu, 1280 sample->start_time, 1281 sample->end_time, 1282 sample->backtrace); 1283 sample = sample->next; 1284 } 1285 1286 if (c->comm) { 1287 char comm[256]; 1288 if (c->total_time > 5000000000) /* 5 seconds */ 1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); 1290 else 1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); 1292 1293 svg_text(Y, c->start_time, comm); 1294 } 1295 c->Y = Y; 1296 Y++; 1297 c = c->next; 1298 } 1299 p = p->next; 1300 } 1301 } 1302 1303 static void add_process_filter(const char *string) 1304 { 1305 int pid = strtoull(string, NULL, 10); 1306 struct process_filter *filt = malloc(sizeof(*filt)); 1307 1308 if (!filt) 1309 return; 1310 1311 filt->name = strdup(string); 1312 filt->pid = pid; 1313 filt->next = process_filter; 1314 1315 process_filter = filt; 1316 } 1317 1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 1319 { 1320 struct process_filter *filt; 1321 if (!process_filter) 1322 return 1; 1323 1324 filt = process_filter; 1325 while (filt) { 1326 if (filt->pid && p->pid == filt->pid) 1327 return 1; 1328 if (strcmp(filt->name, c->comm) == 0) 1329 return 1; 1330 filt = filt->next; 1331 } 1332 return 0; 1333 } 1334 1335 static int determine_display_tasks_filtered(struct timechart *tchart) 1336 { 1337 struct per_pid *p; 1338 struct per_pidcomm *c; 1339 int count = 0; 1340 1341 p = tchart->all_data; 1342 while (p) { 1343 p->display = 0; 1344 if (p->start_time == 1) 1345 p->start_time = tchart->first_time; 1346 1347 /* no exit marker, task kept running to the end */ 1348 if (p->end_time == 0) 1349 p->end_time = tchart->last_time; 1350 1351 c = p->all; 1352 1353 while (c) { 1354 c->display = 0; 1355 1356 if (c->start_time == 1) 1357 c->start_time = tchart->first_time; 1358 1359 if (passes_filter(p, c)) { 1360 c->display = 1; 1361 p->display = 1; 1362 count++; 1363 } 1364 1365 if (c->end_time == 0) 1366 c->end_time = tchart->last_time; 1367 1368 c = c->next; 1369 } 1370 p = p->next; 1371 } 1372 return count; 1373 } 1374 1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold) 1376 { 1377 struct per_pid *p; 1378 struct per_pidcomm *c; 1379 int count = 0; 1380 1381 p = tchart->all_data; 1382 while (p) { 1383 p->display = 0; 1384 if (p->start_time == 1) 1385 p->start_time = tchart->first_time; 1386 1387 /* no exit marker, task kept running to the end */ 1388 if (p->end_time == 0) 1389 p->end_time = tchart->last_time; 1390 if (p->total_time >= threshold) 1391 p->display = 1; 1392 1393 c = p->all; 1394 1395 while (c) { 1396 c->display = 0; 1397 1398 if (c->start_time == 1) 1399 c->start_time = tchart->first_time; 1400 1401 if (c->total_time >= threshold) { 1402 c->display = 1; 1403 count++; 1404 } 1405 1406 if (c->end_time == 0) 1407 c->end_time = tchart->last_time; 1408 1409 c = c->next; 1410 } 1411 p = p->next; 1412 } 1413 return count; 1414 } 1415 1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) 1417 { 1418 struct per_pid *p; 1419 struct per_pidcomm *c; 1420 int count = 0; 1421 1422 p = timechart->all_data; 1423 while (p) { 1424 /* no exit marker, task kept running to the end */ 1425 if (p->end_time == 0) 1426 p->end_time = timechart->last_time; 1427 1428 c = p->all; 1429 1430 while (c) { 1431 c->display = 0; 1432 1433 if (c->total_bytes >= threshold) { 1434 c->display = 1; 1435 count++; 1436 } 1437 1438 if (c->end_time == 0) 1439 c->end_time = timechart->last_time; 1440 1441 c = c->next; 1442 } 1443 p = p->next; 1444 } 1445 return count; 1446 } 1447 1448 #define BYTES_THRESH (1 * 1024 * 1024) 1449 #define TIME_THRESH 10000000 1450 1451 static void write_svg_file(struct timechart *tchart, const char *filename) 1452 { 1453 u64 i; 1454 int count; 1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; 1456 1457 if (tchart->power_only) 1458 tchart->proc_num = 0; 1459 1460 /* We'd like to show at least proc_num tasks; 1461 * be less picky if we have fewer */ 1462 do { 1463 if (process_filter) 1464 count = determine_display_tasks_filtered(tchart); 1465 else if (tchart->io_events) 1466 count = determine_display_io_tasks(tchart, thresh); 1467 else 1468 count = determine_display_tasks(tchart, thresh); 1469 thresh /= 10; 1470 } while (!process_filter && thresh && count < tchart->proc_num); 1471 1472 if (!tchart->proc_num) 1473 count = 0; 1474 1475 if (tchart->io_events) { 1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time); 1477 1478 svg_time_grid(0.5); 1479 svg_io_legenda(); 1480 1481 draw_io_bars(tchart); 1482 } else { 1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); 1484 1485 svg_time_grid(0); 1486 1487 svg_legenda(); 1488 1489 for (i = 0; i < tchart->numcpus; i++) 1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); 1491 1492 draw_cpu_usage(tchart); 1493 if (tchart->proc_num) 1494 draw_process_bars(tchart); 1495 if (!tchart->tasks_only) 1496 draw_c_p_states(tchart); 1497 if (tchart->proc_num) 1498 draw_wakeups(tchart); 1499 } 1500 1501 svg_close(); 1502 } 1503 1504 static int process_header(struct perf_file_section *section __maybe_unused, 1505 struct perf_header *ph, 1506 int feat, 1507 int fd __maybe_unused, 1508 void *data) 1509 { 1510 struct timechart *tchart = data; 1511 1512 switch (feat) { 1513 case HEADER_NRCPUS: 1514 tchart->numcpus = ph->env.nr_cpus_avail; 1515 break; 1516 1517 case HEADER_CPU_TOPOLOGY: 1518 if (!tchart->topology) 1519 break; 1520 1521 if (svg_build_topology_map(ph->env.sibling_cores, 1522 ph->env.nr_sibling_cores, 1523 ph->env.sibling_threads, 1524 ph->env.nr_sibling_threads)) 1525 fprintf(stderr, "problem building topology\n"); 1526 break; 1527 1528 default: 1529 break; 1530 } 1531 1532 return 0; 1533 } 1534 1535 static int __cmd_timechart(struct timechart *tchart, const char *output_name) 1536 { 1537 const struct perf_evsel_str_handler power_tracepoints[] = { 1538 { "power:cpu_idle", process_sample_cpu_idle }, 1539 { "power:cpu_frequency", process_sample_cpu_frequency }, 1540 { "sched:sched_wakeup", process_sample_sched_wakeup }, 1541 { "sched:sched_switch", process_sample_sched_switch }, 1542 #ifdef SUPPORT_OLD_POWER_EVENTS 1543 { "power:power_start", process_sample_power_start }, 1544 { "power:power_end", process_sample_power_end }, 1545 { "power:power_frequency", process_sample_power_frequency }, 1546 #endif 1547 1548 { "syscalls:sys_enter_read", process_enter_read }, 1549 { "syscalls:sys_enter_pread64", process_enter_read }, 1550 { "syscalls:sys_enter_readv", process_enter_read }, 1551 { "syscalls:sys_enter_preadv", process_enter_read }, 1552 { "syscalls:sys_enter_write", process_enter_write }, 1553 { "syscalls:sys_enter_pwrite64", process_enter_write }, 1554 { "syscalls:sys_enter_writev", process_enter_write }, 1555 { "syscalls:sys_enter_pwritev", process_enter_write }, 1556 { "syscalls:sys_enter_sync", process_enter_sync }, 1557 { "syscalls:sys_enter_sync_file_range", process_enter_sync }, 1558 { "syscalls:sys_enter_fsync", process_enter_sync }, 1559 { "syscalls:sys_enter_msync", process_enter_sync }, 1560 { "syscalls:sys_enter_recvfrom", process_enter_rx }, 1561 { "syscalls:sys_enter_recvmmsg", process_enter_rx }, 1562 { "syscalls:sys_enter_recvmsg", process_enter_rx }, 1563 { "syscalls:sys_enter_sendto", process_enter_tx }, 1564 { "syscalls:sys_enter_sendmsg", process_enter_tx }, 1565 { "syscalls:sys_enter_sendmmsg", process_enter_tx }, 1566 { "syscalls:sys_enter_epoll_pwait", process_enter_poll }, 1567 { "syscalls:sys_enter_epoll_wait", process_enter_poll }, 1568 { "syscalls:sys_enter_poll", process_enter_poll }, 1569 { "syscalls:sys_enter_ppoll", process_enter_poll }, 1570 { "syscalls:sys_enter_pselect6", process_enter_poll }, 1571 { "syscalls:sys_enter_select", process_enter_poll }, 1572 1573 { "syscalls:sys_exit_read", process_exit_read }, 1574 { "syscalls:sys_exit_pread64", process_exit_read }, 1575 { "syscalls:sys_exit_readv", process_exit_read }, 1576 { "syscalls:sys_exit_preadv", process_exit_read }, 1577 { "syscalls:sys_exit_write", process_exit_write }, 1578 { "syscalls:sys_exit_pwrite64", process_exit_write }, 1579 { "syscalls:sys_exit_writev", process_exit_write }, 1580 { "syscalls:sys_exit_pwritev", process_exit_write }, 1581 { "syscalls:sys_exit_sync", process_exit_sync }, 1582 { "syscalls:sys_exit_sync_file_range", process_exit_sync }, 1583 { "syscalls:sys_exit_fsync", process_exit_sync }, 1584 { "syscalls:sys_exit_msync", process_exit_sync }, 1585 { "syscalls:sys_exit_recvfrom", process_exit_rx }, 1586 { "syscalls:sys_exit_recvmmsg", process_exit_rx }, 1587 { "syscalls:sys_exit_recvmsg", process_exit_rx }, 1588 { "syscalls:sys_exit_sendto", process_exit_tx }, 1589 { "syscalls:sys_exit_sendmsg", process_exit_tx }, 1590 { "syscalls:sys_exit_sendmmsg", process_exit_tx }, 1591 { "syscalls:sys_exit_epoll_pwait", process_exit_poll }, 1592 { "syscalls:sys_exit_epoll_wait", process_exit_poll }, 1593 { "syscalls:sys_exit_poll", process_exit_poll }, 1594 { "syscalls:sys_exit_ppoll", process_exit_poll }, 1595 { "syscalls:sys_exit_pselect6", process_exit_poll }, 1596 { "syscalls:sys_exit_select", process_exit_poll }, 1597 }; 1598 struct perf_data_file file = { 1599 .path = input_name, 1600 .mode = PERF_DATA_MODE_READ, 1601 }; 1602 1603 struct perf_session *session = perf_session__new(&file, false, 1604 &tchart->tool); 1605 int ret = -EINVAL; 1606 1607 if (session == NULL) 1608 return -1; 1609 1610 symbol__init(&session->header.env); 1611 1612 (void)perf_header__process_sections(&session->header, 1613 perf_data_file__fd(session->file), 1614 tchart, 1615 process_header); 1616 1617 if (!perf_session__has_traces(session, "timechart record")) 1618 goto out_delete; 1619 1620 if (perf_session__set_tracepoints_handlers(session, 1621 power_tracepoints)) { 1622 pr_err("Initializing session tracepoint handlers failed\n"); 1623 goto out_delete; 1624 } 1625 1626 ret = perf_session__process_events(session, &tchart->tool); 1627 if (ret) 1628 goto out_delete; 1629 1630 end_sample_processing(tchart); 1631 1632 sort_pids(tchart); 1633 1634 write_svg_file(tchart, output_name); 1635 1636 pr_info("Written %2.1f seconds of trace to %s.\n", 1637 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name); 1638 out_delete: 1639 perf_session__delete(session); 1640 return ret; 1641 } 1642 1643 static int timechart__io_record(int argc, const char **argv) 1644 { 1645 unsigned int rec_argc, i; 1646 const char **rec_argv; 1647 const char **p; 1648 char *filter = NULL; 1649 1650 const char * const common_args[] = { 1651 "record", "-a", "-R", "-c", "1", 1652 }; 1653 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1654 1655 const char * const disk_events[] = { 1656 "syscalls:sys_enter_read", 1657 "syscalls:sys_enter_pread64", 1658 "syscalls:sys_enter_readv", 1659 "syscalls:sys_enter_preadv", 1660 "syscalls:sys_enter_write", 1661 "syscalls:sys_enter_pwrite64", 1662 "syscalls:sys_enter_writev", 1663 "syscalls:sys_enter_pwritev", 1664 "syscalls:sys_enter_sync", 1665 "syscalls:sys_enter_sync_file_range", 1666 "syscalls:sys_enter_fsync", 1667 "syscalls:sys_enter_msync", 1668 1669 "syscalls:sys_exit_read", 1670 "syscalls:sys_exit_pread64", 1671 "syscalls:sys_exit_readv", 1672 "syscalls:sys_exit_preadv", 1673 "syscalls:sys_exit_write", 1674 "syscalls:sys_exit_pwrite64", 1675 "syscalls:sys_exit_writev", 1676 "syscalls:sys_exit_pwritev", 1677 "syscalls:sys_exit_sync", 1678 "syscalls:sys_exit_sync_file_range", 1679 "syscalls:sys_exit_fsync", 1680 "syscalls:sys_exit_msync", 1681 }; 1682 unsigned int disk_events_nr = ARRAY_SIZE(disk_events); 1683 1684 const char * const net_events[] = { 1685 "syscalls:sys_enter_recvfrom", 1686 "syscalls:sys_enter_recvmmsg", 1687 "syscalls:sys_enter_recvmsg", 1688 "syscalls:sys_enter_sendto", 1689 "syscalls:sys_enter_sendmsg", 1690 "syscalls:sys_enter_sendmmsg", 1691 1692 "syscalls:sys_exit_recvfrom", 1693 "syscalls:sys_exit_recvmmsg", 1694 "syscalls:sys_exit_recvmsg", 1695 "syscalls:sys_exit_sendto", 1696 "syscalls:sys_exit_sendmsg", 1697 "syscalls:sys_exit_sendmmsg", 1698 }; 1699 unsigned int net_events_nr = ARRAY_SIZE(net_events); 1700 1701 const char * const poll_events[] = { 1702 "syscalls:sys_enter_epoll_pwait", 1703 "syscalls:sys_enter_epoll_wait", 1704 "syscalls:sys_enter_poll", 1705 "syscalls:sys_enter_ppoll", 1706 "syscalls:sys_enter_pselect6", 1707 "syscalls:sys_enter_select", 1708 1709 "syscalls:sys_exit_epoll_pwait", 1710 "syscalls:sys_exit_epoll_wait", 1711 "syscalls:sys_exit_poll", 1712 "syscalls:sys_exit_ppoll", 1713 "syscalls:sys_exit_pselect6", 1714 "syscalls:sys_exit_select", 1715 }; 1716 unsigned int poll_events_nr = ARRAY_SIZE(poll_events); 1717 1718 rec_argc = common_args_nr + 1719 disk_events_nr * 4 + 1720 net_events_nr * 4 + 1721 poll_events_nr * 4 + 1722 argc; 1723 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1724 1725 if (rec_argv == NULL) 1726 return -ENOMEM; 1727 1728 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) 1729 return -ENOMEM; 1730 1731 p = rec_argv; 1732 for (i = 0; i < common_args_nr; i++) 1733 *p++ = strdup(common_args[i]); 1734 1735 for (i = 0; i < disk_events_nr; i++) { 1736 if (!is_valid_tracepoint(disk_events[i])) { 1737 rec_argc -= 4; 1738 continue; 1739 } 1740 1741 *p++ = "-e"; 1742 *p++ = strdup(disk_events[i]); 1743 *p++ = "--filter"; 1744 *p++ = filter; 1745 } 1746 for (i = 0; i < net_events_nr; i++) { 1747 if (!is_valid_tracepoint(net_events[i])) { 1748 rec_argc -= 4; 1749 continue; 1750 } 1751 1752 *p++ = "-e"; 1753 *p++ = strdup(net_events[i]); 1754 *p++ = "--filter"; 1755 *p++ = filter; 1756 } 1757 for (i = 0; i < poll_events_nr; i++) { 1758 if (!is_valid_tracepoint(poll_events[i])) { 1759 rec_argc -= 4; 1760 continue; 1761 } 1762 1763 *p++ = "-e"; 1764 *p++ = strdup(poll_events[i]); 1765 *p++ = "--filter"; 1766 *p++ = filter; 1767 } 1768 1769 for (i = 0; i < (unsigned int)argc; i++) 1770 *p++ = argv[i]; 1771 1772 return cmd_record(rec_argc, rec_argv, NULL); 1773 } 1774 1775 1776 static int timechart__record(struct timechart *tchart, int argc, const char **argv) 1777 { 1778 unsigned int rec_argc, i, j; 1779 const char **rec_argv; 1780 const char **p; 1781 unsigned int record_elems; 1782 1783 const char * const common_args[] = { 1784 "record", "-a", "-R", "-c", "1", 1785 }; 1786 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1787 1788 const char * const backtrace_args[] = { 1789 "-g", 1790 }; 1791 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); 1792 1793 const char * const power_args[] = { 1794 "-e", "power:cpu_frequency", 1795 "-e", "power:cpu_idle", 1796 }; 1797 unsigned int power_args_nr = ARRAY_SIZE(power_args); 1798 1799 const char * const old_power_args[] = { 1800 #ifdef SUPPORT_OLD_POWER_EVENTS 1801 "-e", "power:power_start", 1802 "-e", "power:power_end", 1803 "-e", "power:power_frequency", 1804 #endif 1805 }; 1806 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); 1807 1808 const char * const tasks_args[] = { 1809 "-e", "sched:sched_wakeup", 1810 "-e", "sched:sched_switch", 1811 }; 1812 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); 1813 1814 #ifdef SUPPORT_OLD_POWER_EVENTS 1815 if (!is_valid_tracepoint("power:cpu_idle") && 1816 is_valid_tracepoint("power:power_start")) { 1817 use_old_power_events = 1; 1818 power_args_nr = 0; 1819 } else { 1820 old_power_args_nr = 0; 1821 } 1822 #endif 1823 1824 if (tchart->power_only) 1825 tasks_args_nr = 0; 1826 1827 if (tchart->tasks_only) { 1828 power_args_nr = 0; 1829 old_power_args_nr = 0; 1830 } 1831 1832 if (!tchart->with_backtrace) 1833 backtrace_args_no = 0; 1834 1835 record_elems = common_args_nr + tasks_args_nr + 1836 power_args_nr + old_power_args_nr + backtrace_args_no; 1837 1838 rec_argc = record_elems + argc; 1839 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1840 1841 if (rec_argv == NULL) 1842 return -ENOMEM; 1843 1844 p = rec_argv; 1845 for (i = 0; i < common_args_nr; i++) 1846 *p++ = strdup(common_args[i]); 1847 1848 for (i = 0; i < backtrace_args_no; i++) 1849 *p++ = strdup(backtrace_args[i]); 1850 1851 for (i = 0; i < tasks_args_nr; i++) 1852 *p++ = strdup(tasks_args[i]); 1853 1854 for (i = 0; i < power_args_nr; i++) 1855 *p++ = strdup(power_args[i]); 1856 1857 for (i = 0; i < old_power_args_nr; i++) 1858 *p++ = strdup(old_power_args[i]); 1859 1860 for (j = 0; j < (unsigned int)argc; j++) 1861 *p++ = argv[j]; 1862 1863 return cmd_record(rec_argc, rec_argv, NULL); 1864 } 1865 1866 static int 1867 parse_process(const struct option *opt __maybe_unused, const char *arg, 1868 int __maybe_unused unset) 1869 { 1870 if (arg) 1871 add_process_filter(arg); 1872 return 0; 1873 } 1874 1875 static int 1876 parse_highlight(const struct option *opt __maybe_unused, const char *arg, 1877 int __maybe_unused unset) 1878 { 1879 unsigned long duration = strtoul(arg, NULL, 0); 1880 1881 if (svg_highlight || svg_highlight_name) 1882 return -1; 1883 1884 if (duration) 1885 svg_highlight = duration; 1886 else 1887 svg_highlight_name = strdup(arg); 1888 1889 return 0; 1890 } 1891 1892 static int 1893 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) 1894 { 1895 char unit = 'n'; 1896 u64 *value = opt->value; 1897 1898 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { 1899 switch (unit) { 1900 case 'm': 1901 *value *= 1000000; 1902 break; 1903 case 'u': 1904 *value *= 1000; 1905 break; 1906 case 'n': 1907 break; 1908 default: 1909 return -1; 1910 } 1911 } 1912 1913 return 0; 1914 } 1915 1916 int cmd_timechart(int argc, const char **argv, 1917 const char *prefix __maybe_unused) 1918 { 1919 struct timechart tchart = { 1920 .tool = { 1921 .comm = process_comm_event, 1922 .fork = process_fork_event, 1923 .exit = process_exit_event, 1924 .sample = process_sample_event, 1925 .ordered_events = true, 1926 }, 1927 .proc_num = 15, 1928 .min_time = 1000000, 1929 .merge_dist = 1000, 1930 }; 1931 const char *output_name = "output.svg"; 1932 const struct option timechart_options[] = { 1933 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1934 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1935 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1936 OPT_CALLBACK(0, "highlight", NULL, "duration or task name", 1937 "highlight tasks. Pass duration in ns or process name.", 1938 parse_highlight), 1939 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1940 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, 1941 "output processes data only"), 1942 OPT_CALLBACK('p', "process", NULL, "process", 1943 "process selector. Pass a pid or process name.", 1944 parse_process), 1945 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 1946 "Look for files with symbols relative to this directory"), 1947 OPT_INTEGER('n', "proc-num", &tchart.proc_num, 1948 "min. number of tasks to print"), 1949 OPT_BOOLEAN('t', "topology", &tchart.topology, 1950 "sort CPUs according to topology"), 1951 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, 1952 "skip EAGAIN errors"), 1953 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", 1954 "all IO faster than min-time will visually appear longer", 1955 parse_time), 1956 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", 1957 "merge events that are merge-dist us apart", 1958 parse_time), 1959 OPT_END() 1960 }; 1961 const char * const timechart_usage[] = { 1962 "perf timechart [<options>] {record}", 1963 NULL 1964 }; 1965 1966 const struct option timechart_record_options[] = { 1967 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1968 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, 1969 "output processes data only"), 1970 OPT_BOOLEAN('I', "io-only", &tchart.io_only, 1971 "record only IO data"), 1972 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), 1973 OPT_END() 1974 }; 1975 const char * const timechart_record_usage[] = { 1976 "perf timechart record [<options>]", 1977 NULL 1978 }; 1979 argc = parse_options(argc, argv, timechart_options, timechart_usage, 1980 PARSE_OPT_STOP_AT_NON_OPTION); 1981 1982 if (tchart.power_only && tchart.tasks_only) { 1983 pr_err("-P and -T options cannot be used at the same time.\n"); 1984 return -1; 1985 } 1986 1987 if (argc && !strncmp(argv[0], "rec", 3)) { 1988 argc = parse_options(argc, argv, timechart_record_options, 1989 timechart_record_usage, 1990 PARSE_OPT_STOP_AT_NON_OPTION); 1991 1992 if (tchart.power_only && tchart.tasks_only) { 1993 pr_err("-P and -T options cannot be used at the same time.\n"); 1994 return -1; 1995 } 1996 1997 if (tchart.io_only) 1998 return timechart__io_record(argc, argv); 1999 else 2000 return timechart__record(&tchart, argc, argv); 2001 } else if (argc) 2002 usage_with_options(timechart_usage, timechart_options); 2003 2004 setup_pager(); 2005 2006 return __cmd_timechart(&tchart, output_name); 2007 } 2008