1 /* 2 * builtin-timechart.c - make an svg timechart of system activity 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * 6 * Authors: 7 * Arjan van de Ven <arjan@linux.intel.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; version 2 12 * of the License. 13 */ 14 15 #include <traceevent/event-parse.h> 16 17 #include "builtin.h" 18 19 #include "util/util.h" 20 21 #include "util/color.h" 22 #include <linux/list.h> 23 #include "util/cache.h" 24 #include "util/evlist.h" 25 #include "util/evsel.h" 26 #include <linux/rbtree.h> 27 #include "util/symbol.h" 28 #include "util/callchain.h" 29 #include "util/strlist.h" 30 31 #include "perf.h" 32 #include "util/header.h" 33 #include <subcmd/parse-options.h> 34 #include "util/parse-events.h" 35 #include "util/event.h" 36 #include "util/session.h" 37 #include "util/svghelper.h" 38 #include "util/tool.h" 39 #include "util/data.h" 40 #include "util/debug.h" 41 42 #define SUPPORT_OLD_POWER_EVENTS 1 43 #define PWR_EVENT_EXIT -1 44 45 struct per_pid; 46 struct power_event; 47 struct wake_event; 48 49 struct timechart { 50 struct perf_tool tool; 51 struct per_pid *all_data; 52 struct power_event *power_events; 53 struct wake_event *wake_events; 54 int proc_num; 55 unsigned int numcpus; 56 u64 min_freq, /* Lowest CPU frequency seen */ 57 max_freq, /* Highest CPU frequency seen */ 58 turbo_frequency, 59 first_time, last_time; 60 bool power_only, 61 tasks_only, 62 with_backtrace, 63 topology; 64 bool force; 65 /* IO related settings */ 66 bool io_only, 67 skip_eagain; 68 u64 io_events; 69 u64 min_time, 70 merge_dist; 71 }; 72 73 struct per_pidcomm; 74 struct cpu_sample; 75 struct io_sample; 76 77 /* 78 * Datastructure layout: 79 * We keep an list of "pid"s, matching the kernels notion of a task struct. 80 * Each "pid" entry, has a list of "comm"s. 81 * this is because we want to track different programs different, while 82 * exec will reuse the original pid (by design). 83 * Each comm has a list of samples that will be used to draw 84 * final graph. 85 */ 86 87 struct per_pid { 88 struct per_pid *next; 89 90 int pid; 91 int ppid; 92 93 u64 start_time; 94 u64 end_time; 95 u64 total_time; 96 u64 total_bytes; 97 int display; 98 99 struct per_pidcomm *all; 100 struct per_pidcomm *current; 101 }; 102 103 104 struct per_pidcomm { 105 struct per_pidcomm *next; 106 107 u64 start_time; 108 u64 end_time; 109 u64 total_time; 110 u64 max_bytes; 111 u64 total_bytes; 112 113 int Y; 114 int display; 115 116 long state; 117 u64 state_since; 118 119 char *comm; 120 121 struct cpu_sample *samples; 122 struct io_sample *io_samples; 123 }; 124 125 struct sample_wrapper { 126 struct sample_wrapper *next; 127 128 u64 timestamp; 129 unsigned char data[0]; 130 }; 131 132 #define TYPE_NONE 0 133 #define TYPE_RUNNING 1 134 #define TYPE_WAITING 2 135 #define TYPE_BLOCKED 3 136 137 struct cpu_sample { 138 struct cpu_sample *next; 139 140 u64 start_time; 141 u64 end_time; 142 int type; 143 int cpu; 144 const char *backtrace; 145 }; 146 147 enum { 148 IOTYPE_READ, 149 IOTYPE_WRITE, 150 IOTYPE_SYNC, 151 IOTYPE_TX, 152 IOTYPE_RX, 153 IOTYPE_POLL, 154 }; 155 156 struct io_sample { 157 struct io_sample *next; 158 159 u64 start_time; 160 u64 end_time; 161 u64 bytes; 162 int type; 163 int fd; 164 int err; 165 int merges; 166 }; 167 168 #define CSTATE 1 169 #define PSTATE 2 170 171 struct power_event { 172 struct power_event *next; 173 int type; 174 int state; 175 u64 start_time; 176 u64 end_time; 177 int cpu; 178 }; 179 180 struct wake_event { 181 struct wake_event *next; 182 int waker; 183 int wakee; 184 u64 time; 185 const char *backtrace; 186 }; 187 188 struct process_filter { 189 char *name; 190 int pid; 191 struct process_filter *next; 192 }; 193 194 static struct process_filter *process_filter; 195 196 197 static struct per_pid *find_create_pid(struct timechart *tchart, int pid) 198 { 199 struct per_pid *cursor = tchart->all_data; 200 201 while (cursor) { 202 if (cursor->pid == pid) 203 return cursor; 204 cursor = cursor->next; 205 } 206 cursor = zalloc(sizeof(*cursor)); 207 assert(cursor != NULL); 208 cursor->pid = pid; 209 cursor->next = tchart->all_data; 210 tchart->all_data = cursor; 211 return cursor; 212 } 213 214 static void pid_set_comm(struct timechart *tchart, int pid, char *comm) 215 { 216 struct per_pid *p; 217 struct per_pidcomm *c; 218 p = find_create_pid(tchart, pid); 219 c = p->all; 220 while (c) { 221 if (c->comm && strcmp(c->comm, comm) == 0) { 222 p->current = c; 223 return; 224 } 225 if (!c->comm) { 226 c->comm = strdup(comm); 227 p->current = c; 228 return; 229 } 230 c = c->next; 231 } 232 c = zalloc(sizeof(*c)); 233 assert(c != NULL); 234 c->comm = strdup(comm); 235 p->current = c; 236 c->next = p->all; 237 p->all = c; 238 } 239 240 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) 241 { 242 struct per_pid *p, *pp; 243 p = find_create_pid(tchart, pid); 244 pp = find_create_pid(tchart, ppid); 245 p->ppid = ppid; 246 if (pp->current && pp->current->comm && !p->current) 247 pid_set_comm(tchart, pid, pp->current->comm); 248 249 p->start_time = timestamp; 250 if (p->current && !p->current->start_time) { 251 p->current->start_time = timestamp; 252 p->current->state_since = timestamp; 253 } 254 } 255 256 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) 257 { 258 struct per_pid *p; 259 p = find_create_pid(tchart, pid); 260 p->end_time = timestamp; 261 if (p->current) 262 p->current->end_time = timestamp; 263 } 264 265 static void pid_put_sample(struct timechart *tchart, int pid, int type, 266 unsigned int cpu, u64 start, u64 end, 267 const char *backtrace) 268 { 269 struct per_pid *p; 270 struct per_pidcomm *c; 271 struct cpu_sample *sample; 272 273 p = find_create_pid(tchart, pid); 274 c = p->current; 275 if (!c) { 276 c = zalloc(sizeof(*c)); 277 assert(c != NULL); 278 p->current = c; 279 c->next = p->all; 280 p->all = c; 281 } 282 283 sample = zalloc(sizeof(*sample)); 284 assert(sample != NULL); 285 sample->start_time = start; 286 sample->end_time = end; 287 sample->type = type; 288 sample->next = c->samples; 289 sample->cpu = cpu; 290 sample->backtrace = backtrace; 291 c->samples = sample; 292 293 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 294 c->total_time += (end-start); 295 p->total_time += (end-start); 296 } 297 298 if (c->start_time == 0 || c->start_time > start) 299 c->start_time = start; 300 if (p->start_time == 0 || p->start_time > start) 301 p->start_time = start; 302 } 303 304 #define MAX_CPUS 4096 305 306 static u64 cpus_cstate_start_times[MAX_CPUS]; 307 static int cpus_cstate_state[MAX_CPUS]; 308 static u64 cpus_pstate_start_times[MAX_CPUS]; 309 static u64 cpus_pstate_state[MAX_CPUS]; 310 311 static int process_comm_event(struct perf_tool *tool, 312 union perf_event *event, 313 struct perf_sample *sample __maybe_unused, 314 struct machine *machine __maybe_unused) 315 { 316 struct timechart *tchart = container_of(tool, struct timechart, tool); 317 pid_set_comm(tchart, event->comm.tid, event->comm.comm); 318 return 0; 319 } 320 321 static int process_fork_event(struct perf_tool *tool, 322 union perf_event *event, 323 struct perf_sample *sample __maybe_unused, 324 struct machine *machine __maybe_unused) 325 { 326 struct timechart *tchart = container_of(tool, struct timechart, tool); 327 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); 328 return 0; 329 } 330 331 static int process_exit_event(struct perf_tool *tool, 332 union perf_event *event, 333 struct perf_sample *sample __maybe_unused, 334 struct machine *machine __maybe_unused) 335 { 336 struct timechart *tchart = container_of(tool, struct timechart, tool); 337 pid_exit(tchart, event->fork.pid, event->fork.time); 338 return 0; 339 } 340 341 #ifdef SUPPORT_OLD_POWER_EVENTS 342 static int use_old_power_events; 343 #endif 344 345 static void c_state_start(int cpu, u64 timestamp, int state) 346 { 347 cpus_cstate_start_times[cpu] = timestamp; 348 cpus_cstate_state[cpu] = state; 349 } 350 351 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) 352 { 353 struct power_event *pwr = zalloc(sizeof(*pwr)); 354 355 if (!pwr) 356 return; 357 358 pwr->state = cpus_cstate_state[cpu]; 359 pwr->start_time = cpus_cstate_start_times[cpu]; 360 pwr->end_time = timestamp; 361 pwr->cpu = cpu; 362 pwr->type = CSTATE; 363 pwr->next = tchart->power_events; 364 365 tchart->power_events = pwr; 366 } 367 368 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) 369 { 370 struct power_event *pwr; 371 372 if (new_freq > 8000000) /* detect invalid data */ 373 return; 374 375 pwr = zalloc(sizeof(*pwr)); 376 if (!pwr) 377 return; 378 379 pwr->state = cpus_pstate_state[cpu]; 380 pwr->start_time = cpus_pstate_start_times[cpu]; 381 pwr->end_time = timestamp; 382 pwr->cpu = cpu; 383 pwr->type = PSTATE; 384 pwr->next = tchart->power_events; 385 386 if (!pwr->start_time) 387 pwr->start_time = tchart->first_time; 388 389 tchart->power_events = pwr; 390 391 cpus_pstate_state[cpu] = new_freq; 392 cpus_pstate_start_times[cpu] = timestamp; 393 394 if ((u64)new_freq > tchart->max_freq) 395 tchart->max_freq = new_freq; 396 397 if (new_freq < tchart->min_freq || tchart->min_freq == 0) 398 tchart->min_freq = new_freq; 399 400 if (new_freq == tchart->max_freq - 1000) 401 tchart->turbo_frequency = tchart->max_freq; 402 } 403 404 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, 405 int waker, int wakee, u8 flags, const char *backtrace) 406 { 407 struct per_pid *p; 408 struct wake_event *we = zalloc(sizeof(*we)); 409 410 if (!we) 411 return; 412 413 we->time = timestamp; 414 we->waker = waker; 415 we->backtrace = backtrace; 416 417 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) 418 we->waker = -1; 419 420 we->wakee = wakee; 421 we->next = tchart->wake_events; 422 tchart->wake_events = we; 423 p = find_create_pid(tchart, we->wakee); 424 425 if (p && p->current && p->current->state == TYPE_NONE) { 426 p->current->state_since = timestamp; 427 p->current->state = TYPE_WAITING; 428 } 429 if (p && p->current && p->current->state == TYPE_BLOCKED) { 430 pid_put_sample(tchart, p->pid, p->current->state, cpu, 431 p->current->state_since, timestamp, NULL); 432 p->current->state_since = timestamp; 433 p->current->state = TYPE_WAITING; 434 } 435 } 436 437 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, 438 int prev_pid, int next_pid, u64 prev_state, 439 const char *backtrace) 440 { 441 struct per_pid *p = NULL, *prev_p; 442 443 prev_p = find_create_pid(tchart, prev_pid); 444 445 p = find_create_pid(tchart, next_pid); 446 447 if (prev_p->current && prev_p->current->state != TYPE_NONE) 448 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, 449 prev_p->current->state_since, timestamp, 450 backtrace); 451 if (p && p->current) { 452 if (p->current->state != TYPE_NONE) 453 pid_put_sample(tchart, next_pid, p->current->state, cpu, 454 p->current->state_since, timestamp, 455 backtrace); 456 457 p->current->state_since = timestamp; 458 p->current->state = TYPE_RUNNING; 459 } 460 461 if (prev_p->current) { 462 prev_p->current->state = TYPE_NONE; 463 prev_p->current->state_since = timestamp; 464 if (prev_state & 2) 465 prev_p->current->state = TYPE_BLOCKED; 466 if (prev_state == 0) 467 prev_p->current->state = TYPE_WAITING; 468 } 469 } 470 471 static const char *cat_backtrace(union perf_event *event, 472 struct perf_sample *sample, 473 struct machine *machine) 474 { 475 struct addr_location al; 476 unsigned int i; 477 char *p = NULL; 478 size_t p_len; 479 u8 cpumode = PERF_RECORD_MISC_USER; 480 struct addr_location tal; 481 struct ip_callchain *chain = sample->callchain; 482 FILE *f = open_memstream(&p, &p_len); 483 484 if (!f) { 485 perror("open_memstream error"); 486 return NULL; 487 } 488 489 if (!chain) 490 goto exit; 491 492 if (machine__resolve(machine, &al, sample) < 0) { 493 fprintf(stderr, "problem processing %d event, skipping it.\n", 494 event->header.type); 495 goto exit; 496 } 497 498 for (i = 0; i < chain->nr; i++) { 499 u64 ip; 500 501 if (callchain_param.order == ORDER_CALLEE) 502 ip = chain->ips[i]; 503 else 504 ip = chain->ips[chain->nr - i - 1]; 505 506 if (ip >= PERF_CONTEXT_MAX) { 507 switch (ip) { 508 case PERF_CONTEXT_HV: 509 cpumode = PERF_RECORD_MISC_HYPERVISOR; 510 break; 511 case PERF_CONTEXT_KERNEL: 512 cpumode = PERF_RECORD_MISC_KERNEL; 513 break; 514 case PERF_CONTEXT_USER: 515 cpumode = PERF_RECORD_MISC_USER; 516 break; 517 default: 518 pr_debug("invalid callchain context: " 519 "%"PRId64"\n", (s64) ip); 520 521 /* 522 * It seems the callchain is corrupted. 523 * Discard all. 524 */ 525 zfree(&p); 526 goto exit_put; 527 } 528 continue; 529 } 530 531 tal.filtered = 0; 532 thread__find_addr_location(al.thread, cpumode, 533 MAP__FUNCTION, ip, &tal); 534 535 if (tal.sym) 536 fprintf(f, "..... %016" PRIx64 " %s\n", ip, 537 tal.sym->name); 538 else 539 fprintf(f, "..... %016" PRIx64 "\n", ip); 540 } 541 exit_put: 542 addr_location__put(&al); 543 exit: 544 fclose(f); 545 546 return p; 547 } 548 549 typedef int (*tracepoint_handler)(struct timechart *tchart, 550 struct perf_evsel *evsel, 551 struct perf_sample *sample, 552 const char *backtrace); 553 554 static int process_sample_event(struct perf_tool *tool, 555 union perf_event *event, 556 struct perf_sample *sample, 557 struct perf_evsel *evsel, 558 struct machine *machine) 559 { 560 struct timechart *tchart = container_of(tool, struct timechart, tool); 561 562 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { 563 if (!tchart->first_time || tchart->first_time > sample->time) 564 tchart->first_time = sample->time; 565 if (tchart->last_time < sample->time) 566 tchart->last_time = sample->time; 567 } 568 569 if (evsel->handler != NULL) { 570 tracepoint_handler f = evsel->handler; 571 return f(tchart, evsel, sample, 572 cat_backtrace(event, sample, machine)); 573 } 574 575 return 0; 576 } 577 578 static int 579 process_sample_cpu_idle(struct timechart *tchart __maybe_unused, 580 struct perf_evsel *evsel, 581 struct perf_sample *sample, 582 const char *backtrace __maybe_unused) 583 { 584 u32 state = perf_evsel__intval(evsel, sample, "state"); 585 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 586 587 if (state == (u32)PWR_EVENT_EXIT) 588 c_state_end(tchart, cpu_id, sample->time); 589 else 590 c_state_start(cpu_id, sample->time, state); 591 return 0; 592 } 593 594 static int 595 process_sample_cpu_frequency(struct timechart *tchart, 596 struct perf_evsel *evsel, 597 struct perf_sample *sample, 598 const char *backtrace __maybe_unused) 599 { 600 u32 state = perf_evsel__intval(evsel, sample, "state"); 601 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 602 603 p_state_change(tchart, cpu_id, sample->time, state); 604 return 0; 605 } 606 607 static int 608 process_sample_sched_wakeup(struct timechart *tchart, 609 struct perf_evsel *evsel, 610 struct perf_sample *sample, 611 const char *backtrace) 612 { 613 u8 flags = perf_evsel__intval(evsel, sample, "common_flags"); 614 int waker = perf_evsel__intval(evsel, sample, "common_pid"); 615 int wakee = perf_evsel__intval(evsel, sample, "pid"); 616 617 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); 618 return 0; 619 } 620 621 static int 622 process_sample_sched_switch(struct timechart *tchart, 623 struct perf_evsel *evsel, 624 struct perf_sample *sample, 625 const char *backtrace) 626 { 627 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"); 628 int next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 629 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 630 631 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, 632 prev_state, backtrace); 633 return 0; 634 } 635 636 #ifdef SUPPORT_OLD_POWER_EVENTS 637 static int 638 process_sample_power_start(struct timechart *tchart __maybe_unused, 639 struct perf_evsel *evsel, 640 struct perf_sample *sample, 641 const char *backtrace __maybe_unused) 642 { 643 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 644 u64 value = perf_evsel__intval(evsel, sample, "value"); 645 646 c_state_start(cpu_id, sample->time, value); 647 return 0; 648 } 649 650 static int 651 process_sample_power_end(struct timechart *tchart, 652 struct perf_evsel *evsel __maybe_unused, 653 struct perf_sample *sample, 654 const char *backtrace __maybe_unused) 655 { 656 c_state_end(tchart, sample->cpu, sample->time); 657 return 0; 658 } 659 660 static int 661 process_sample_power_frequency(struct timechart *tchart, 662 struct perf_evsel *evsel, 663 struct perf_sample *sample, 664 const char *backtrace __maybe_unused) 665 { 666 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 667 u64 value = perf_evsel__intval(evsel, sample, "value"); 668 669 p_state_change(tchart, cpu_id, sample->time, value); 670 return 0; 671 } 672 #endif /* SUPPORT_OLD_POWER_EVENTS */ 673 674 /* 675 * After the last sample we need to wrap up the current C/P state 676 * and close out each CPU for these. 677 */ 678 static void end_sample_processing(struct timechart *tchart) 679 { 680 u64 cpu; 681 struct power_event *pwr; 682 683 for (cpu = 0; cpu <= tchart->numcpus; cpu++) { 684 /* C state */ 685 #if 0 686 pwr = zalloc(sizeof(*pwr)); 687 if (!pwr) 688 return; 689 690 pwr->state = cpus_cstate_state[cpu]; 691 pwr->start_time = cpus_cstate_start_times[cpu]; 692 pwr->end_time = tchart->last_time; 693 pwr->cpu = cpu; 694 pwr->type = CSTATE; 695 pwr->next = tchart->power_events; 696 697 tchart->power_events = pwr; 698 #endif 699 /* P state */ 700 701 pwr = zalloc(sizeof(*pwr)); 702 if (!pwr) 703 return; 704 705 pwr->state = cpus_pstate_state[cpu]; 706 pwr->start_time = cpus_pstate_start_times[cpu]; 707 pwr->end_time = tchart->last_time; 708 pwr->cpu = cpu; 709 pwr->type = PSTATE; 710 pwr->next = tchart->power_events; 711 712 if (!pwr->start_time) 713 pwr->start_time = tchart->first_time; 714 if (!pwr->state) 715 pwr->state = tchart->min_freq; 716 tchart->power_events = pwr; 717 } 718 } 719 720 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, 721 u64 start, int fd) 722 { 723 struct per_pid *p = find_create_pid(tchart, pid); 724 struct per_pidcomm *c = p->current; 725 struct io_sample *sample; 726 struct io_sample *prev; 727 728 if (!c) { 729 c = zalloc(sizeof(*c)); 730 if (!c) 731 return -ENOMEM; 732 p->current = c; 733 c->next = p->all; 734 p->all = c; 735 } 736 737 prev = c->io_samples; 738 739 if (prev && prev->start_time && !prev->end_time) { 740 pr_warning("Skip invalid start event: " 741 "previous event already started!\n"); 742 743 /* remove previous event that has been started, 744 * we are not sure we will ever get an end for it */ 745 c->io_samples = prev->next; 746 free(prev); 747 return 0; 748 } 749 750 sample = zalloc(sizeof(*sample)); 751 if (!sample) 752 return -ENOMEM; 753 sample->start_time = start; 754 sample->type = type; 755 sample->fd = fd; 756 sample->next = c->io_samples; 757 c->io_samples = sample; 758 759 if (c->start_time == 0 || c->start_time > start) 760 c->start_time = start; 761 762 return 0; 763 } 764 765 static int pid_end_io_sample(struct timechart *tchart, int pid, int type, 766 u64 end, long ret) 767 { 768 struct per_pid *p = find_create_pid(tchart, pid); 769 struct per_pidcomm *c = p->current; 770 struct io_sample *sample, *prev; 771 772 if (!c) { 773 pr_warning("Invalid pidcomm!\n"); 774 return -1; 775 } 776 777 sample = c->io_samples; 778 779 if (!sample) /* skip partially captured events */ 780 return 0; 781 782 if (sample->end_time) { 783 pr_warning("Skip invalid end event: " 784 "previous event already ended!\n"); 785 return 0; 786 } 787 788 if (sample->type != type) { 789 pr_warning("Skip invalid end event: invalid event type!\n"); 790 return 0; 791 } 792 793 sample->end_time = end; 794 prev = sample->next; 795 796 /* we want to be able to see small and fast transfers, so make them 797 * at least min_time long, but don't overlap them */ 798 if (sample->end_time - sample->start_time < tchart->min_time) 799 sample->end_time = sample->start_time + tchart->min_time; 800 if (prev && sample->start_time < prev->end_time) { 801 if (prev->err) /* try to make errors more visible */ 802 sample->start_time = prev->end_time; 803 else 804 prev->end_time = sample->start_time; 805 } 806 807 if (ret < 0) { 808 sample->err = ret; 809 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || 810 type == IOTYPE_TX || type == IOTYPE_RX) { 811 812 if ((u64)ret > c->max_bytes) 813 c->max_bytes = ret; 814 815 c->total_bytes += ret; 816 p->total_bytes += ret; 817 sample->bytes = ret; 818 } 819 820 /* merge two requests to make svg smaller and render-friendly */ 821 if (prev && 822 prev->type == sample->type && 823 prev->err == sample->err && 824 prev->fd == sample->fd && 825 prev->end_time + tchart->merge_dist >= sample->start_time) { 826 827 sample->bytes += prev->bytes; 828 sample->merges += prev->merges + 1; 829 830 sample->start_time = prev->start_time; 831 sample->next = prev->next; 832 free(prev); 833 834 if (!sample->err && sample->bytes > c->max_bytes) 835 c->max_bytes = sample->bytes; 836 } 837 838 tchart->io_events++; 839 840 return 0; 841 } 842 843 static int 844 process_enter_read(struct timechart *tchart, 845 struct perf_evsel *evsel, 846 struct perf_sample *sample) 847 { 848 long fd = perf_evsel__intval(evsel, sample, "fd"); 849 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, 850 sample->time, fd); 851 } 852 853 static int 854 process_exit_read(struct timechart *tchart, 855 struct perf_evsel *evsel, 856 struct perf_sample *sample) 857 { 858 long ret = perf_evsel__intval(evsel, sample, "ret"); 859 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, 860 sample->time, ret); 861 } 862 863 static int 864 process_enter_write(struct timechart *tchart, 865 struct perf_evsel *evsel, 866 struct perf_sample *sample) 867 { 868 long fd = perf_evsel__intval(evsel, sample, "fd"); 869 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, 870 sample->time, fd); 871 } 872 873 static int 874 process_exit_write(struct timechart *tchart, 875 struct perf_evsel *evsel, 876 struct perf_sample *sample) 877 { 878 long ret = perf_evsel__intval(evsel, sample, "ret"); 879 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, 880 sample->time, ret); 881 } 882 883 static int 884 process_enter_sync(struct timechart *tchart, 885 struct perf_evsel *evsel, 886 struct perf_sample *sample) 887 { 888 long fd = perf_evsel__intval(evsel, sample, "fd"); 889 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, 890 sample->time, fd); 891 } 892 893 static int 894 process_exit_sync(struct timechart *tchart, 895 struct perf_evsel *evsel, 896 struct perf_sample *sample) 897 { 898 long ret = perf_evsel__intval(evsel, sample, "ret"); 899 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, 900 sample->time, ret); 901 } 902 903 static int 904 process_enter_tx(struct timechart *tchart, 905 struct perf_evsel *evsel, 906 struct perf_sample *sample) 907 { 908 long fd = perf_evsel__intval(evsel, sample, "fd"); 909 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, 910 sample->time, fd); 911 } 912 913 static int 914 process_exit_tx(struct timechart *tchart, 915 struct perf_evsel *evsel, 916 struct perf_sample *sample) 917 { 918 long ret = perf_evsel__intval(evsel, sample, "ret"); 919 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, 920 sample->time, ret); 921 } 922 923 static int 924 process_enter_rx(struct timechart *tchart, 925 struct perf_evsel *evsel, 926 struct perf_sample *sample) 927 { 928 long fd = perf_evsel__intval(evsel, sample, "fd"); 929 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, 930 sample->time, fd); 931 } 932 933 static int 934 process_exit_rx(struct timechart *tchart, 935 struct perf_evsel *evsel, 936 struct perf_sample *sample) 937 { 938 long ret = perf_evsel__intval(evsel, sample, "ret"); 939 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, 940 sample->time, ret); 941 } 942 943 static int 944 process_enter_poll(struct timechart *tchart, 945 struct perf_evsel *evsel, 946 struct perf_sample *sample) 947 { 948 long fd = perf_evsel__intval(evsel, sample, "fd"); 949 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, 950 sample->time, fd); 951 } 952 953 static int 954 process_exit_poll(struct timechart *tchart, 955 struct perf_evsel *evsel, 956 struct perf_sample *sample) 957 { 958 long ret = perf_evsel__intval(evsel, sample, "ret"); 959 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, 960 sample->time, ret); 961 } 962 963 /* 964 * Sort the pid datastructure 965 */ 966 static void sort_pids(struct timechart *tchart) 967 { 968 struct per_pid *new_list, *p, *cursor, *prev; 969 /* sort by ppid first, then by pid, lowest to highest */ 970 971 new_list = NULL; 972 973 while (tchart->all_data) { 974 p = tchart->all_data; 975 tchart->all_data = p->next; 976 p->next = NULL; 977 978 if (new_list == NULL) { 979 new_list = p; 980 p->next = NULL; 981 continue; 982 } 983 prev = NULL; 984 cursor = new_list; 985 while (cursor) { 986 if (cursor->ppid > p->ppid || 987 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 988 /* must insert before */ 989 if (prev) { 990 p->next = prev->next; 991 prev->next = p; 992 cursor = NULL; 993 continue; 994 } else { 995 p->next = new_list; 996 new_list = p; 997 cursor = NULL; 998 continue; 999 } 1000 } 1001 1002 prev = cursor; 1003 cursor = cursor->next; 1004 if (!cursor) 1005 prev->next = p; 1006 } 1007 } 1008 tchart->all_data = new_list; 1009 } 1010 1011 1012 static void draw_c_p_states(struct timechart *tchart) 1013 { 1014 struct power_event *pwr; 1015 pwr = tchart->power_events; 1016 1017 /* 1018 * two pass drawing so that the P state bars are on top of the C state blocks 1019 */ 1020 while (pwr) { 1021 if (pwr->type == CSTATE) 1022 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1023 pwr = pwr->next; 1024 } 1025 1026 pwr = tchart->power_events; 1027 while (pwr) { 1028 if (pwr->type == PSTATE) { 1029 if (!pwr->state) 1030 pwr->state = tchart->min_freq; 1031 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1032 } 1033 pwr = pwr->next; 1034 } 1035 } 1036 1037 static void draw_wakeups(struct timechart *tchart) 1038 { 1039 struct wake_event *we; 1040 struct per_pid *p; 1041 struct per_pidcomm *c; 1042 1043 we = tchart->wake_events; 1044 while (we) { 1045 int from = 0, to = 0; 1046 char *task_from = NULL, *task_to = NULL; 1047 1048 /* locate the column of the waker and wakee */ 1049 p = tchart->all_data; 1050 while (p) { 1051 if (p->pid == we->waker || p->pid == we->wakee) { 1052 c = p->all; 1053 while (c) { 1054 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 1055 if (p->pid == we->waker && !from) { 1056 from = c->Y; 1057 task_from = strdup(c->comm); 1058 } 1059 if (p->pid == we->wakee && !to) { 1060 to = c->Y; 1061 task_to = strdup(c->comm); 1062 } 1063 } 1064 c = c->next; 1065 } 1066 c = p->all; 1067 while (c) { 1068 if (p->pid == we->waker && !from) { 1069 from = c->Y; 1070 task_from = strdup(c->comm); 1071 } 1072 if (p->pid == we->wakee && !to) { 1073 to = c->Y; 1074 task_to = strdup(c->comm); 1075 } 1076 c = c->next; 1077 } 1078 } 1079 p = p->next; 1080 } 1081 1082 if (!task_from) { 1083 task_from = malloc(40); 1084 sprintf(task_from, "[%i]", we->waker); 1085 } 1086 if (!task_to) { 1087 task_to = malloc(40); 1088 sprintf(task_to, "[%i]", we->wakee); 1089 } 1090 1091 if (we->waker == -1) 1092 svg_interrupt(we->time, to, we->backtrace); 1093 else if (from && to && abs(from - to) == 1) 1094 svg_wakeline(we->time, from, to, we->backtrace); 1095 else 1096 svg_partial_wakeline(we->time, from, task_from, to, 1097 task_to, we->backtrace); 1098 we = we->next; 1099 1100 free(task_from); 1101 free(task_to); 1102 } 1103 } 1104 1105 static void draw_cpu_usage(struct timechart *tchart) 1106 { 1107 struct per_pid *p; 1108 struct per_pidcomm *c; 1109 struct cpu_sample *sample; 1110 p = tchart->all_data; 1111 while (p) { 1112 c = p->all; 1113 while (c) { 1114 sample = c->samples; 1115 while (sample) { 1116 if (sample->type == TYPE_RUNNING) { 1117 svg_process(sample->cpu, 1118 sample->start_time, 1119 sample->end_time, 1120 p->pid, 1121 c->comm, 1122 sample->backtrace); 1123 } 1124 1125 sample = sample->next; 1126 } 1127 c = c->next; 1128 } 1129 p = p->next; 1130 } 1131 } 1132 1133 static void draw_io_bars(struct timechart *tchart) 1134 { 1135 const char *suf; 1136 double bytes; 1137 char comm[256]; 1138 struct per_pid *p; 1139 struct per_pidcomm *c; 1140 struct io_sample *sample; 1141 int Y = 1; 1142 1143 p = tchart->all_data; 1144 while (p) { 1145 c = p->all; 1146 while (c) { 1147 if (!c->display) { 1148 c->Y = 0; 1149 c = c->next; 1150 continue; 1151 } 1152 1153 svg_box(Y, c->start_time, c->end_time, "process3"); 1154 sample = c->io_samples; 1155 for (sample = c->io_samples; sample; sample = sample->next) { 1156 double h = (double)sample->bytes / c->max_bytes; 1157 1158 if (tchart->skip_eagain && 1159 sample->err == -EAGAIN) 1160 continue; 1161 1162 if (sample->err) 1163 h = 1; 1164 1165 if (sample->type == IOTYPE_SYNC) 1166 svg_fbox(Y, 1167 sample->start_time, 1168 sample->end_time, 1169 1, 1170 sample->err ? "error" : "sync", 1171 sample->fd, 1172 sample->err, 1173 sample->merges); 1174 else if (sample->type == IOTYPE_POLL) 1175 svg_fbox(Y, 1176 sample->start_time, 1177 sample->end_time, 1178 1, 1179 sample->err ? "error" : "poll", 1180 sample->fd, 1181 sample->err, 1182 sample->merges); 1183 else if (sample->type == IOTYPE_READ) 1184 svg_ubox(Y, 1185 sample->start_time, 1186 sample->end_time, 1187 h, 1188 sample->err ? "error" : "disk", 1189 sample->fd, 1190 sample->err, 1191 sample->merges); 1192 else if (sample->type == IOTYPE_WRITE) 1193 svg_lbox(Y, 1194 sample->start_time, 1195 sample->end_time, 1196 h, 1197 sample->err ? "error" : "disk", 1198 sample->fd, 1199 sample->err, 1200 sample->merges); 1201 else if (sample->type == IOTYPE_RX) 1202 svg_ubox(Y, 1203 sample->start_time, 1204 sample->end_time, 1205 h, 1206 sample->err ? "error" : "net", 1207 sample->fd, 1208 sample->err, 1209 sample->merges); 1210 else if (sample->type == IOTYPE_TX) 1211 svg_lbox(Y, 1212 sample->start_time, 1213 sample->end_time, 1214 h, 1215 sample->err ? "error" : "net", 1216 sample->fd, 1217 sample->err, 1218 sample->merges); 1219 } 1220 1221 suf = ""; 1222 bytes = c->total_bytes; 1223 if (bytes > 1024) { 1224 bytes = bytes / 1024; 1225 suf = "K"; 1226 } 1227 if (bytes > 1024) { 1228 bytes = bytes / 1024; 1229 suf = "M"; 1230 } 1231 if (bytes > 1024) { 1232 bytes = bytes / 1024; 1233 suf = "G"; 1234 } 1235 1236 1237 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); 1238 svg_text(Y, c->start_time, comm); 1239 1240 c->Y = Y; 1241 Y++; 1242 c = c->next; 1243 } 1244 p = p->next; 1245 } 1246 } 1247 1248 static void draw_process_bars(struct timechart *tchart) 1249 { 1250 struct per_pid *p; 1251 struct per_pidcomm *c; 1252 struct cpu_sample *sample; 1253 int Y = 0; 1254 1255 Y = 2 * tchart->numcpus + 2; 1256 1257 p = tchart->all_data; 1258 while (p) { 1259 c = p->all; 1260 while (c) { 1261 if (!c->display) { 1262 c->Y = 0; 1263 c = c->next; 1264 continue; 1265 } 1266 1267 svg_box(Y, c->start_time, c->end_time, "process"); 1268 sample = c->samples; 1269 while (sample) { 1270 if (sample->type == TYPE_RUNNING) 1271 svg_running(Y, sample->cpu, 1272 sample->start_time, 1273 sample->end_time, 1274 sample->backtrace); 1275 if (sample->type == TYPE_BLOCKED) 1276 svg_blocked(Y, sample->cpu, 1277 sample->start_time, 1278 sample->end_time, 1279 sample->backtrace); 1280 if (sample->type == TYPE_WAITING) 1281 svg_waiting(Y, sample->cpu, 1282 sample->start_time, 1283 sample->end_time, 1284 sample->backtrace); 1285 sample = sample->next; 1286 } 1287 1288 if (c->comm) { 1289 char comm[256]; 1290 if (c->total_time > 5000000000) /* 5 seconds */ 1291 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); 1292 else 1293 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); 1294 1295 svg_text(Y, c->start_time, comm); 1296 } 1297 c->Y = Y; 1298 Y++; 1299 c = c->next; 1300 } 1301 p = p->next; 1302 } 1303 } 1304 1305 static void add_process_filter(const char *string) 1306 { 1307 int pid = strtoull(string, NULL, 10); 1308 struct process_filter *filt = malloc(sizeof(*filt)); 1309 1310 if (!filt) 1311 return; 1312 1313 filt->name = strdup(string); 1314 filt->pid = pid; 1315 filt->next = process_filter; 1316 1317 process_filter = filt; 1318 } 1319 1320 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 1321 { 1322 struct process_filter *filt; 1323 if (!process_filter) 1324 return 1; 1325 1326 filt = process_filter; 1327 while (filt) { 1328 if (filt->pid && p->pid == filt->pid) 1329 return 1; 1330 if (strcmp(filt->name, c->comm) == 0) 1331 return 1; 1332 filt = filt->next; 1333 } 1334 return 0; 1335 } 1336 1337 static int determine_display_tasks_filtered(struct timechart *tchart) 1338 { 1339 struct per_pid *p; 1340 struct per_pidcomm *c; 1341 int count = 0; 1342 1343 p = tchart->all_data; 1344 while (p) { 1345 p->display = 0; 1346 if (p->start_time == 1) 1347 p->start_time = tchart->first_time; 1348 1349 /* no exit marker, task kept running to the end */ 1350 if (p->end_time == 0) 1351 p->end_time = tchart->last_time; 1352 1353 c = p->all; 1354 1355 while (c) { 1356 c->display = 0; 1357 1358 if (c->start_time == 1) 1359 c->start_time = tchart->first_time; 1360 1361 if (passes_filter(p, c)) { 1362 c->display = 1; 1363 p->display = 1; 1364 count++; 1365 } 1366 1367 if (c->end_time == 0) 1368 c->end_time = tchart->last_time; 1369 1370 c = c->next; 1371 } 1372 p = p->next; 1373 } 1374 return count; 1375 } 1376 1377 static int determine_display_tasks(struct timechart *tchart, u64 threshold) 1378 { 1379 struct per_pid *p; 1380 struct per_pidcomm *c; 1381 int count = 0; 1382 1383 p = tchart->all_data; 1384 while (p) { 1385 p->display = 0; 1386 if (p->start_time == 1) 1387 p->start_time = tchart->first_time; 1388 1389 /* no exit marker, task kept running to the end */ 1390 if (p->end_time == 0) 1391 p->end_time = tchart->last_time; 1392 if (p->total_time >= threshold) 1393 p->display = 1; 1394 1395 c = p->all; 1396 1397 while (c) { 1398 c->display = 0; 1399 1400 if (c->start_time == 1) 1401 c->start_time = tchart->first_time; 1402 1403 if (c->total_time >= threshold) { 1404 c->display = 1; 1405 count++; 1406 } 1407 1408 if (c->end_time == 0) 1409 c->end_time = tchart->last_time; 1410 1411 c = c->next; 1412 } 1413 p = p->next; 1414 } 1415 return count; 1416 } 1417 1418 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) 1419 { 1420 struct per_pid *p; 1421 struct per_pidcomm *c; 1422 int count = 0; 1423 1424 p = timechart->all_data; 1425 while (p) { 1426 /* no exit marker, task kept running to the end */ 1427 if (p->end_time == 0) 1428 p->end_time = timechart->last_time; 1429 1430 c = p->all; 1431 1432 while (c) { 1433 c->display = 0; 1434 1435 if (c->total_bytes >= threshold) { 1436 c->display = 1; 1437 count++; 1438 } 1439 1440 if (c->end_time == 0) 1441 c->end_time = timechart->last_time; 1442 1443 c = c->next; 1444 } 1445 p = p->next; 1446 } 1447 return count; 1448 } 1449 1450 #define BYTES_THRESH (1 * 1024 * 1024) 1451 #define TIME_THRESH 10000000 1452 1453 static void write_svg_file(struct timechart *tchart, const char *filename) 1454 { 1455 u64 i; 1456 int count; 1457 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; 1458 1459 if (tchart->power_only) 1460 tchart->proc_num = 0; 1461 1462 /* We'd like to show at least proc_num tasks; 1463 * be less picky if we have fewer */ 1464 do { 1465 if (process_filter) 1466 count = determine_display_tasks_filtered(tchart); 1467 else if (tchart->io_events) 1468 count = determine_display_io_tasks(tchart, thresh); 1469 else 1470 count = determine_display_tasks(tchart, thresh); 1471 thresh /= 10; 1472 } while (!process_filter && thresh && count < tchart->proc_num); 1473 1474 if (!tchart->proc_num) 1475 count = 0; 1476 1477 if (tchart->io_events) { 1478 open_svg(filename, 0, count, tchart->first_time, tchart->last_time); 1479 1480 svg_time_grid(0.5); 1481 svg_io_legenda(); 1482 1483 draw_io_bars(tchart); 1484 } else { 1485 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); 1486 1487 svg_time_grid(0); 1488 1489 svg_legenda(); 1490 1491 for (i = 0; i < tchart->numcpus; i++) 1492 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); 1493 1494 draw_cpu_usage(tchart); 1495 if (tchart->proc_num) 1496 draw_process_bars(tchart); 1497 if (!tchart->tasks_only) 1498 draw_c_p_states(tchart); 1499 if (tchart->proc_num) 1500 draw_wakeups(tchart); 1501 } 1502 1503 svg_close(); 1504 } 1505 1506 static int process_header(struct perf_file_section *section __maybe_unused, 1507 struct perf_header *ph, 1508 int feat, 1509 int fd __maybe_unused, 1510 void *data) 1511 { 1512 struct timechart *tchart = data; 1513 1514 switch (feat) { 1515 case HEADER_NRCPUS: 1516 tchart->numcpus = ph->env.nr_cpus_avail; 1517 break; 1518 1519 case HEADER_CPU_TOPOLOGY: 1520 if (!tchart->topology) 1521 break; 1522 1523 if (svg_build_topology_map(ph->env.sibling_cores, 1524 ph->env.nr_sibling_cores, 1525 ph->env.sibling_threads, 1526 ph->env.nr_sibling_threads)) 1527 fprintf(stderr, "problem building topology\n"); 1528 break; 1529 1530 default: 1531 break; 1532 } 1533 1534 return 0; 1535 } 1536 1537 static int __cmd_timechart(struct timechart *tchart, const char *output_name) 1538 { 1539 const struct perf_evsel_str_handler power_tracepoints[] = { 1540 { "power:cpu_idle", process_sample_cpu_idle }, 1541 { "power:cpu_frequency", process_sample_cpu_frequency }, 1542 { "sched:sched_wakeup", process_sample_sched_wakeup }, 1543 { "sched:sched_switch", process_sample_sched_switch }, 1544 #ifdef SUPPORT_OLD_POWER_EVENTS 1545 { "power:power_start", process_sample_power_start }, 1546 { "power:power_end", process_sample_power_end }, 1547 { "power:power_frequency", process_sample_power_frequency }, 1548 #endif 1549 1550 { "syscalls:sys_enter_read", process_enter_read }, 1551 { "syscalls:sys_enter_pread64", process_enter_read }, 1552 { "syscalls:sys_enter_readv", process_enter_read }, 1553 { "syscalls:sys_enter_preadv", process_enter_read }, 1554 { "syscalls:sys_enter_write", process_enter_write }, 1555 { "syscalls:sys_enter_pwrite64", process_enter_write }, 1556 { "syscalls:sys_enter_writev", process_enter_write }, 1557 { "syscalls:sys_enter_pwritev", process_enter_write }, 1558 { "syscalls:sys_enter_sync", process_enter_sync }, 1559 { "syscalls:sys_enter_sync_file_range", process_enter_sync }, 1560 { "syscalls:sys_enter_fsync", process_enter_sync }, 1561 { "syscalls:sys_enter_msync", process_enter_sync }, 1562 { "syscalls:sys_enter_recvfrom", process_enter_rx }, 1563 { "syscalls:sys_enter_recvmmsg", process_enter_rx }, 1564 { "syscalls:sys_enter_recvmsg", process_enter_rx }, 1565 { "syscalls:sys_enter_sendto", process_enter_tx }, 1566 { "syscalls:sys_enter_sendmsg", process_enter_tx }, 1567 { "syscalls:sys_enter_sendmmsg", process_enter_tx }, 1568 { "syscalls:sys_enter_epoll_pwait", process_enter_poll }, 1569 { "syscalls:sys_enter_epoll_wait", process_enter_poll }, 1570 { "syscalls:sys_enter_poll", process_enter_poll }, 1571 { "syscalls:sys_enter_ppoll", process_enter_poll }, 1572 { "syscalls:sys_enter_pselect6", process_enter_poll }, 1573 { "syscalls:sys_enter_select", process_enter_poll }, 1574 1575 { "syscalls:sys_exit_read", process_exit_read }, 1576 { "syscalls:sys_exit_pread64", process_exit_read }, 1577 { "syscalls:sys_exit_readv", process_exit_read }, 1578 { "syscalls:sys_exit_preadv", process_exit_read }, 1579 { "syscalls:sys_exit_write", process_exit_write }, 1580 { "syscalls:sys_exit_pwrite64", process_exit_write }, 1581 { "syscalls:sys_exit_writev", process_exit_write }, 1582 { "syscalls:sys_exit_pwritev", process_exit_write }, 1583 { "syscalls:sys_exit_sync", process_exit_sync }, 1584 { "syscalls:sys_exit_sync_file_range", process_exit_sync }, 1585 { "syscalls:sys_exit_fsync", process_exit_sync }, 1586 { "syscalls:sys_exit_msync", process_exit_sync }, 1587 { "syscalls:sys_exit_recvfrom", process_exit_rx }, 1588 { "syscalls:sys_exit_recvmmsg", process_exit_rx }, 1589 { "syscalls:sys_exit_recvmsg", process_exit_rx }, 1590 { "syscalls:sys_exit_sendto", process_exit_tx }, 1591 { "syscalls:sys_exit_sendmsg", process_exit_tx }, 1592 { "syscalls:sys_exit_sendmmsg", process_exit_tx }, 1593 { "syscalls:sys_exit_epoll_pwait", process_exit_poll }, 1594 { "syscalls:sys_exit_epoll_wait", process_exit_poll }, 1595 { "syscalls:sys_exit_poll", process_exit_poll }, 1596 { "syscalls:sys_exit_ppoll", process_exit_poll }, 1597 { "syscalls:sys_exit_pselect6", process_exit_poll }, 1598 { "syscalls:sys_exit_select", process_exit_poll }, 1599 }; 1600 struct perf_data_file file = { 1601 .path = input_name, 1602 .mode = PERF_DATA_MODE_READ, 1603 .force = tchart->force, 1604 }; 1605 1606 struct perf_session *session = perf_session__new(&file, false, 1607 &tchart->tool); 1608 int ret = -EINVAL; 1609 1610 if (session == NULL) 1611 return -1; 1612 1613 symbol__init(&session->header.env); 1614 1615 (void)perf_header__process_sections(&session->header, 1616 perf_data_file__fd(session->file), 1617 tchart, 1618 process_header); 1619 1620 if (!perf_session__has_traces(session, "timechart record")) 1621 goto out_delete; 1622 1623 if (perf_session__set_tracepoints_handlers(session, 1624 power_tracepoints)) { 1625 pr_err("Initializing session tracepoint handlers failed\n"); 1626 goto out_delete; 1627 } 1628 1629 ret = perf_session__process_events(session); 1630 if (ret) 1631 goto out_delete; 1632 1633 end_sample_processing(tchart); 1634 1635 sort_pids(tchart); 1636 1637 write_svg_file(tchart, output_name); 1638 1639 pr_info("Written %2.1f seconds of trace to %s.\n", 1640 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name); 1641 out_delete: 1642 perf_session__delete(session); 1643 return ret; 1644 } 1645 1646 static int timechart__io_record(int argc, const char **argv) 1647 { 1648 unsigned int rec_argc, i; 1649 const char **rec_argv; 1650 const char **p; 1651 char *filter = NULL; 1652 1653 const char * const common_args[] = { 1654 "record", "-a", "-R", "-c", "1", 1655 }; 1656 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1657 1658 const char * const disk_events[] = { 1659 "syscalls:sys_enter_read", 1660 "syscalls:sys_enter_pread64", 1661 "syscalls:sys_enter_readv", 1662 "syscalls:sys_enter_preadv", 1663 "syscalls:sys_enter_write", 1664 "syscalls:sys_enter_pwrite64", 1665 "syscalls:sys_enter_writev", 1666 "syscalls:sys_enter_pwritev", 1667 "syscalls:sys_enter_sync", 1668 "syscalls:sys_enter_sync_file_range", 1669 "syscalls:sys_enter_fsync", 1670 "syscalls:sys_enter_msync", 1671 1672 "syscalls:sys_exit_read", 1673 "syscalls:sys_exit_pread64", 1674 "syscalls:sys_exit_readv", 1675 "syscalls:sys_exit_preadv", 1676 "syscalls:sys_exit_write", 1677 "syscalls:sys_exit_pwrite64", 1678 "syscalls:sys_exit_writev", 1679 "syscalls:sys_exit_pwritev", 1680 "syscalls:sys_exit_sync", 1681 "syscalls:sys_exit_sync_file_range", 1682 "syscalls:sys_exit_fsync", 1683 "syscalls:sys_exit_msync", 1684 }; 1685 unsigned int disk_events_nr = ARRAY_SIZE(disk_events); 1686 1687 const char * const net_events[] = { 1688 "syscalls:sys_enter_recvfrom", 1689 "syscalls:sys_enter_recvmmsg", 1690 "syscalls:sys_enter_recvmsg", 1691 "syscalls:sys_enter_sendto", 1692 "syscalls:sys_enter_sendmsg", 1693 "syscalls:sys_enter_sendmmsg", 1694 1695 "syscalls:sys_exit_recvfrom", 1696 "syscalls:sys_exit_recvmmsg", 1697 "syscalls:sys_exit_recvmsg", 1698 "syscalls:sys_exit_sendto", 1699 "syscalls:sys_exit_sendmsg", 1700 "syscalls:sys_exit_sendmmsg", 1701 }; 1702 unsigned int net_events_nr = ARRAY_SIZE(net_events); 1703 1704 const char * const poll_events[] = { 1705 "syscalls:sys_enter_epoll_pwait", 1706 "syscalls:sys_enter_epoll_wait", 1707 "syscalls:sys_enter_poll", 1708 "syscalls:sys_enter_ppoll", 1709 "syscalls:sys_enter_pselect6", 1710 "syscalls:sys_enter_select", 1711 1712 "syscalls:sys_exit_epoll_pwait", 1713 "syscalls:sys_exit_epoll_wait", 1714 "syscalls:sys_exit_poll", 1715 "syscalls:sys_exit_ppoll", 1716 "syscalls:sys_exit_pselect6", 1717 "syscalls:sys_exit_select", 1718 }; 1719 unsigned int poll_events_nr = ARRAY_SIZE(poll_events); 1720 1721 rec_argc = common_args_nr + 1722 disk_events_nr * 4 + 1723 net_events_nr * 4 + 1724 poll_events_nr * 4 + 1725 argc; 1726 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1727 1728 if (rec_argv == NULL) 1729 return -ENOMEM; 1730 1731 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) 1732 return -ENOMEM; 1733 1734 p = rec_argv; 1735 for (i = 0; i < common_args_nr; i++) 1736 *p++ = strdup(common_args[i]); 1737 1738 for (i = 0; i < disk_events_nr; i++) { 1739 if (!is_valid_tracepoint(disk_events[i])) { 1740 rec_argc -= 4; 1741 continue; 1742 } 1743 1744 *p++ = "-e"; 1745 *p++ = strdup(disk_events[i]); 1746 *p++ = "--filter"; 1747 *p++ = filter; 1748 } 1749 for (i = 0; i < net_events_nr; i++) { 1750 if (!is_valid_tracepoint(net_events[i])) { 1751 rec_argc -= 4; 1752 continue; 1753 } 1754 1755 *p++ = "-e"; 1756 *p++ = strdup(net_events[i]); 1757 *p++ = "--filter"; 1758 *p++ = filter; 1759 } 1760 for (i = 0; i < poll_events_nr; i++) { 1761 if (!is_valid_tracepoint(poll_events[i])) { 1762 rec_argc -= 4; 1763 continue; 1764 } 1765 1766 *p++ = "-e"; 1767 *p++ = strdup(poll_events[i]); 1768 *p++ = "--filter"; 1769 *p++ = filter; 1770 } 1771 1772 for (i = 0; i < (unsigned int)argc; i++) 1773 *p++ = argv[i]; 1774 1775 return cmd_record(rec_argc, rec_argv, NULL); 1776 } 1777 1778 1779 static int timechart__record(struct timechart *tchart, int argc, const char **argv) 1780 { 1781 unsigned int rec_argc, i, j; 1782 const char **rec_argv; 1783 const char **p; 1784 unsigned int record_elems; 1785 1786 const char * const common_args[] = { 1787 "record", "-a", "-R", "-c", "1", 1788 }; 1789 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1790 1791 const char * const backtrace_args[] = { 1792 "-g", 1793 }; 1794 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); 1795 1796 const char * const power_args[] = { 1797 "-e", "power:cpu_frequency", 1798 "-e", "power:cpu_idle", 1799 }; 1800 unsigned int power_args_nr = ARRAY_SIZE(power_args); 1801 1802 const char * const old_power_args[] = { 1803 #ifdef SUPPORT_OLD_POWER_EVENTS 1804 "-e", "power:power_start", 1805 "-e", "power:power_end", 1806 "-e", "power:power_frequency", 1807 #endif 1808 }; 1809 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); 1810 1811 const char * const tasks_args[] = { 1812 "-e", "sched:sched_wakeup", 1813 "-e", "sched:sched_switch", 1814 }; 1815 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); 1816 1817 #ifdef SUPPORT_OLD_POWER_EVENTS 1818 if (!is_valid_tracepoint("power:cpu_idle") && 1819 is_valid_tracepoint("power:power_start")) { 1820 use_old_power_events = 1; 1821 power_args_nr = 0; 1822 } else { 1823 old_power_args_nr = 0; 1824 } 1825 #endif 1826 1827 if (tchart->power_only) 1828 tasks_args_nr = 0; 1829 1830 if (tchart->tasks_only) { 1831 power_args_nr = 0; 1832 old_power_args_nr = 0; 1833 } 1834 1835 if (!tchart->with_backtrace) 1836 backtrace_args_no = 0; 1837 1838 record_elems = common_args_nr + tasks_args_nr + 1839 power_args_nr + old_power_args_nr + backtrace_args_no; 1840 1841 rec_argc = record_elems + argc; 1842 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1843 1844 if (rec_argv == NULL) 1845 return -ENOMEM; 1846 1847 p = rec_argv; 1848 for (i = 0; i < common_args_nr; i++) 1849 *p++ = strdup(common_args[i]); 1850 1851 for (i = 0; i < backtrace_args_no; i++) 1852 *p++ = strdup(backtrace_args[i]); 1853 1854 for (i = 0; i < tasks_args_nr; i++) 1855 *p++ = strdup(tasks_args[i]); 1856 1857 for (i = 0; i < power_args_nr; i++) 1858 *p++ = strdup(power_args[i]); 1859 1860 for (i = 0; i < old_power_args_nr; i++) 1861 *p++ = strdup(old_power_args[i]); 1862 1863 for (j = 0; j < (unsigned int)argc; j++) 1864 *p++ = argv[j]; 1865 1866 return cmd_record(rec_argc, rec_argv, NULL); 1867 } 1868 1869 static int 1870 parse_process(const struct option *opt __maybe_unused, const char *arg, 1871 int __maybe_unused unset) 1872 { 1873 if (arg) 1874 add_process_filter(arg); 1875 return 0; 1876 } 1877 1878 static int 1879 parse_highlight(const struct option *opt __maybe_unused, const char *arg, 1880 int __maybe_unused unset) 1881 { 1882 unsigned long duration = strtoul(arg, NULL, 0); 1883 1884 if (svg_highlight || svg_highlight_name) 1885 return -1; 1886 1887 if (duration) 1888 svg_highlight = duration; 1889 else 1890 svg_highlight_name = strdup(arg); 1891 1892 return 0; 1893 } 1894 1895 static int 1896 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) 1897 { 1898 char unit = 'n'; 1899 u64 *value = opt->value; 1900 1901 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { 1902 switch (unit) { 1903 case 'm': 1904 *value *= 1000000; 1905 break; 1906 case 'u': 1907 *value *= 1000; 1908 break; 1909 case 'n': 1910 break; 1911 default: 1912 return -1; 1913 } 1914 } 1915 1916 return 0; 1917 } 1918 1919 int cmd_timechart(int argc, const char **argv, 1920 const char *prefix __maybe_unused) 1921 { 1922 struct timechart tchart = { 1923 .tool = { 1924 .comm = process_comm_event, 1925 .fork = process_fork_event, 1926 .exit = process_exit_event, 1927 .sample = process_sample_event, 1928 .ordered_events = true, 1929 }, 1930 .proc_num = 15, 1931 .min_time = 1000000, 1932 .merge_dist = 1000, 1933 }; 1934 const char *output_name = "output.svg"; 1935 const struct option timechart_options[] = { 1936 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1937 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name", 1940 "highlight tasks. Pass duration in ns or process name.", 1941 parse_highlight), 1942 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1943 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, 1944 "output processes data only"), 1945 OPT_CALLBACK('p', "process", NULL, "process", 1946 "process selector. Pass a pid or process name.", 1947 parse_process), 1948 OPT_CALLBACK(0, "symfs", NULL, "directory", 1949 "Look for files with symbols relative to this directory", 1950 symbol__config_symfs), 1951 OPT_INTEGER('n', "proc-num", &tchart.proc_num, 1952 "min. number of tasks to print"), 1953 OPT_BOOLEAN('t', "topology", &tchart.topology, 1954 "sort CPUs according to topology"), 1955 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, 1956 "skip EAGAIN errors"), 1957 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", 1958 "all IO faster than min-time will visually appear longer", 1959 parse_time), 1960 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", 1961 "merge events that are merge-dist us apart", 1962 parse_time), 1963 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"), 1964 OPT_END() 1965 }; 1966 const char * const timechart_subcommands[] = { "record", NULL }; 1967 const char *timechart_usage[] = { 1968 "perf timechart [<options>] {record}", 1969 NULL 1970 }; 1971 1972 const struct option timechart_record_options[] = { 1973 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1974 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, 1975 "output processes data only"), 1976 OPT_BOOLEAN('I', "io-only", &tchart.io_only, 1977 "record only IO data"), 1978 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), 1979 OPT_END() 1980 }; 1981 const char * const timechart_record_usage[] = { 1982 "perf timechart record [<options>]", 1983 NULL 1984 }; 1985 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands, 1986 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); 1987 1988 if (tchart.power_only && tchart.tasks_only) { 1989 pr_err("-P and -T options cannot be used at the same time.\n"); 1990 return -1; 1991 } 1992 1993 if (argc && !strncmp(argv[0], "rec", 3)) { 1994 argc = parse_options(argc, argv, timechart_record_options, 1995 timechart_record_usage, 1996 PARSE_OPT_STOP_AT_NON_OPTION); 1997 1998 if (tchart.power_only && tchart.tasks_only) { 1999 pr_err("-P and -T options cannot be used at the same time.\n"); 2000 return -1; 2001 } 2002 2003 if (tchart.io_only) 2004 return timechart__io_record(argc, argv); 2005 else 2006 return timechart__record(&tchart, argc, argv); 2007 } else if (argc) 2008 usage_with_options(timechart_usage, timechart_options); 2009 2010 setup_pager(); 2011 2012 return __cmd_timechart(&tchart, output_name); 2013 } 2014