1 /* 2 * builtin-timechart.c - make an svg timechart of system activity 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * 6 * Authors: 7 * Arjan van de Ven <arjan@linux.intel.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; version 2 12 * of the License. 13 */ 14 15 #include <traceevent/event-parse.h> 16 17 #include "builtin.h" 18 19 #include "util/util.h" 20 21 #include "util/color.h" 22 #include <linux/list.h> 23 #include "util/cache.h" 24 #include "util/evlist.h" 25 #include "util/evsel.h" 26 #include <linux/rbtree.h> 27 #include "util/symbol.h" 28 #include "util/callchain.h" 29 #include "util/strlist.h" 30 31 #include "perf.h" 32 #include "util/header.h" 33 #include "util/parse-options.h" 34 #include "util/parse-events.h" 35 #include "util/event.h" 36 #include "util/session.h" 37 #include "util/svghelper.h" 38 #include "util/tool.h" 39 #include "util/data.h" 40 41 #define SUPPORT_OLD_POWER_EVENTS 1 42 #define PWR_EVENT_EXIT -1 43 44 struct per_pid; 45 struct power_event; 46 struct wake_event; 47 48 struct timechart { 49 struct perf_tool tool; 50 struct per_pid *all_data; 51 struct power_event *power_events; 52 struct wake_event *wake_events; 53 int proc_num; 54 unsigned int numcpus; 55 u64 min_freq, /* Lowest CPU frequency seen */ 56 max_freq, /* Highest CPU frequency seen */ 57 turbo_frequency, 58 first_time, last_time; 59 bool power_only, 60 tasks_only, 61 with_backtrace, 62 topology; 63 }; 64 65 struct per_pidcomm; 66 struct cpu_sample; 67 68 /* 69 * Datastructure layout: 70 * We keep an list of "pid"s, matching the kernels notion of a task struct. 71 * Each "pid" entry, has a list of "comm"s. 72 * this is because we want to track different programs different, while 73 * exec will reuse the original pid (by design). 74 * Each comm has a list of samples that will be used to draw 75 * final graph. 76 */ 77 78 struct per_pid { 79 struct per_pid *next; 80 81 int pid; 82 int ppid; 83 84 u64 start_time; 85 u64 end_time; 86 u64 total_time; 87 int display; 88 89 struct per_pidcomm *all; 90 struct per_pidcomm *current; 91 }; 92 93 94 struct per_pidcomm { 95 struct per_pidcomm *next; 96 97 u64 start_time; 98 u64 end_time; 99 u64 total_time; 100 101 int Y; 102 int display; 103 104 long state; 105 u64 state_since; 106 107 char *comm; 108 109 struct cpu_sample *samples; 110 }; 111 112 struct sample_wrapper { 113 struct sample_wrapper *next; 114 115 u64 timestamp; 116 unsigned char data[0]; 117 }; 118 119 #define TYPE_NONE 0 120 #define TYPE_RUNNING 1 121 #define TYPE_WAITING 2 122 #define TYPE_BLOCKED 3 123 124 struct cpu_sample { 125 struct cpu_sample *next; 126 127 u64 start_time; 128 u64 end_time; 129 int type; 130 int cpu; 131 const char *backtrace; 132 }; 133 134 #define CSTATE 1 135 #define PSTATE 2 136 137 struct power_event { 138 struct power_event *next; 139 int type; 140 int state; 141 u64 start_time; 142 u64 end_time; 143 int cpu; 144 }; 145 146 struct wake_event { 147 struct wake_event *next; 148 int waker; 149 int wakee; 150 u64 time; 151 const char *backtrace; 152 }; 153 154 struct process_filter { 155 char *name; 156 int pid; 157 struct process_filter *next; 158 }; 159 160 static struct process_filter *process_filter; 161 162 163 static struct per_pid *find_create_pid(struct timechart *tchart, int pid) 164 { 165 struct per_pid *cursor = tchart->all_data; 166 167 while (cursor) { 168 if (cursor->pid == pid) 169 return cursor; 170 cursor = cursor->next; 171 } 172 cursor = zalloc(sizeof(*cursor)); 173 assert(cursor != NULL); 174 cursor->pid = pid; 175 cursor->next = tchart->all_data; 176 tchart->all_data = cursor; 177 return cursor; 178 } 179 180 static void pid_set_comm(struct timechart *tchart, int pid, char *comm) 181 { 182 struct per_pid *p; 183 struct per_pidcomm *c; 184 p = find_create_pid(tchart, pid); 185 c = p->all; 186 while (c) { 187 if (c->comm && strcmp(c->comm, comm) == 0) { 188 p->current = c; 189 return; 190 } 191 if (!c->comm) { 192 c->comm = strdup(comm); 193 p->current = c; 194 return; 195 } 196 c = c->next; 197 } 198 c = zalloc(sizeof(*c)); 199 assert(c != NULL); 200 c->comm = strdup(comm); 201 p->current = c; 202 c->next = p->all; 203 p->all = c; 204 } 205 206 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) 207 { 208 struct per_pid *p, *pp; 209 p = find_create_pid(tchart, pid); 210 pp = find_create_pid(tchart, ppid); 211 p->ppid = ppid; 212 if (pp->current && pp->current->comm && !p->current) 213 pid_set_comm(tchart, pid, pp->current->comm); 214 215 p->start_time = timestamp; 216 if (p->current) { 217 p->current->start_time = timestamp; 218 p->current->state_since = timestamp; 219 } 220 } 221 222 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) 223 { 224 struct per_pid *p; 225 p = find_create_pid(tchart, pid); 226 p->end_time = timestamp; 227 if (p->current) 228 p->current->end_time = timestamp; 229 } 230 231 static void pid_put_sample(struct timechart *tchart, int pid, int type, 232 unsigned int cpu, u64 start, u64 end, 233 const char *backtrace) 234 { 235 struct per_pid *p; 236 struct per_pidcomm *c; 237 struct cpu_sample *sample; 238 239 p = find_create_pid(tchart, pid); 240 c = p->current; 241 if (!c) { 242 c = zalloc(sizeof(*c)); 243 assert(c != NULL); 244 p->current = c; 245 c->next = p->all; 246 p->all = c; 247 } 248 249 sample = zalloc(sizeof(*sample)); 250 assert(sample != NULL); 251 sample->start_time = start; 252 sample->end_time = end; 253 sample->type = type; 254 sample->next = c->samples; 255 sample->cpu = cpu; 256 sample->backtrace = backtrace; 257 c->samples = sample; 258 259 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 260 c->total_time += (end-start); 261 p->total_time += (end-start); 262 } 263 264 if (c->start_time == 0 || c->start_time > start) 265 c->start_time = start; 266 if (p->start_time == 0 || p->start_time > start) 267 p->start_time = start; 268 } 269 270 #define MAX_CPUS 4096 271 272 static u64 cpus_cstate_start_times[MAX_CPUS]; 273 static int cpus_cstate_state[MAX_CPUS]; 274 static u64 cpus_pstate_start_times[MAX_CPUS]; 275 static u64 cpus_pstate_state[MAX_CPUS]; 276 277 static int process_comm_event(struct perf_tool *tool, 278 union perf_event *event, 279 struct perf_sample *sample __maybe_unused, 280 struct machine *machine __maybe_unused) 281 { 282 struct timechart *tchart = container_of(tool, struct timechart, tool); 283 pid_set_comm(tchart, event->comm.tid, event->comm.comm); 284 return 0; 285 } 286 287 static int process_fork_event(struct perf_tool *tool, 288 union perf_event *event, 289 struct perf_sample *sample __maybe_unused, 290 struct machine *machine __maybe_unused) 291 { 292 struct timechart *tchart = container_of(tool, struct timechart, tool); 293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); 294 return 0; 295 } 296 297 static int process_exit_event(struct perf_tool *tool, 298 union perf_event *event, 299 struct perf_sample *sample __maybe_unused, 300 struct machine *machine __maybe_unused) 301 { 302 struct timechart *tchart = container_of(tool, struct timechart, tool); 303 pid_exit(tchart, event->fork.pid, event->fork.time); 304 return 0; 305 } 306 307 #ifdef SUPPORT_OLD_POWER_EVENTS 308 static int use_old_power_events; 309 #endif 310 311 static void c_state_start(int cpu, u64 timestamp, int state) 312 { 313 cpus_cstate_start_times[cpu] = timestamp; 314 cpus_cstate_state[cpu] = state; 315 } 316 317 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) 318 { 319 struct power_event *pwr = zalloc(sizeof(*pwr)); 320 321 if (!pwr) 322 return; 323 324 pwr->state = cpus_cstate_state[cpu]; 325 pwr->start_time = cpus_cstate_start_times[cpu]; 326 pwr->end_time = timestamp; 327 pwr->cpu = cpu; 328 pwr->type = CSTATE; 329 pwr->next = tchart->power_events; 330 331 tchart->power_events = pwr; 332 } 333 334 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) 335 { 336 struct power_event *pwr; 337 338 if (new_freq > 8000000) /* detect invalid data */ 339 return; 340 341 pwr = zalloc(sizeof(*pwr)); 342 if (!pwr) 343 return; 344 345 pwr->state = cpus_pstate_state[cpu]; 346 pwr->start_time = cpus_pstate_start_times[cpu]; 347 pwr->end_time = timestamp; 348 pwr->cpu = cpu; 349 pwr->type = PSTATE; 350 pwr->next = tchart->power_events; 351 352 if (!pwr->start_time) 353 pwr->start_time = tchart->first_time; 354 355 tchart->power_events = pwr; 356 357 cpus_pstate_state[cpu] = new_freq; 358 cpus_pstate_start_times[cpu] = timestamp; 359 360 if ((u64)new_freq > tchart->max_freq) 361 tchart->max_freq = new_freq; 362 363 if (new_freq < tchart->min_freq || tchart->min_freq == 0) 364 tchart->min_freq = new_freq; 365 366 if (new_freq == tchart->max_freq - 1000) 367 tchart->turbo_frequency = tchart->max_freq; 368 } 369 370 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, 371 int waker, int wakee, u8 flags, const char *backtrace) 372 { 373 struct per_pid *p; 374 struct wake_event *we = zalloc(sizeof(*we)); 375 376 if (!we) 377 return; 378 379 we->time = timestamp; 380 we->waker = waker; 381 we->backtrace = backtrace; 382 383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) 384 we->waker = -1; 385 386 we->wakee = wakee; 387 we->next = tchart->wake_events; 388 tchart->wake_events = we; 389 p = find_create_pid(tchart, we->wakee); 390 391 if (p && p->current && p->current->state == TYPE_NONE) { 392 p->current->state_since = timestamp; 393 p->current->state = TYPE_WAITING; 394 } 395 if (p && p->current && p->current->state == TYPE_BLOCKED) { 396 pid_put_sample(tchart, p->pid, p->current->state, cpu, 397 p->current->state_since, timestamp, NULL); 398 p->current->state_since = timestamp; 399 p->current->state = TYPE_WAITING; 400 } 401 } 402 403 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, 404 int prev_pid, int next_pid, u64 prev_state, 405 const char *backtrace) 406 { 407 struct per_pid *p = NULL, *prev_p; 408 409 prev_p = find_create_pid(tchart, prev_pid); 410 411 p = find_create_pid(tchart, next_pid); 412 413 if (prev_p->current && prev_p->current->state != TYPE_NONE) 414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, 415 prev_p->current->state_since, timestamp, 416 backtrace); 417 if (p && p->current) { 418 if (p->current->state != TYPE_NONE) 419 pid_put_sample(tchart, next_pid, p->current->state, cpu, 420 p->current->state_since, timestamp, 421 backtrace); 422 423 p->current->state_since = timestamp; 424 p->current->state = TYPE_RUNNING; 425 } 426 427 if (prev_p->current) { 428 prev_p->current->state = TYPE_NONE; 429 prev_p->current->state_since = timestamp; 430 if (prev_state & 2) 431 prev_p->current->state = TYPE_BLOCKED; 432 if (prev_state == 0) 433 prev_p->current->state = TYPE_WAITING; 434 } 435 } 436 437 static const char *cat_backtrace(union perf_event *event, 438 struct perf_sample *sample, 439 struct machine *machine) 440 { 441 struct addr_location al; 442 unsigned int i; 443 char *p = NULL; 444 size_t p_len; 445 u8 cpumode = PERF_RECORD_MISC_USER; 446 struct addr_location tal; 447 struct ip_callchain *chain = sample->callchain; 448 FILE *f = open_memstream(&p, &p_len); 449 450 if (!f) { 451 perror("open_memstream error"); 452 return NULL; 453 } 454 455 if (!chain) 456 goto exit; 457 458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) { 459 fprintf(stderr, "problem processing %d event, skipping it.\n", 460 event->header.type); 461 goto exit; 462 } 463 464 for (i = 0; i < chain->nr; i++) { 465 u64 ip; 466 467 if (callchain_param.order == ORDER_CALLEE) 468 ip = chain->ips[i]; 469 else 470 ip = chain->ips[chain->nr - i - 1]; 471 472 if (ip >= PERF_CONTEXT_MAX) { 473 switch (ip) { 474 case PERF_CONTEXT_HV: 475 cpumode = PERF_RECORD_MISC_HYPERVISOR; 476 break; 477 case PERF_CONTEXT_KERNEL: 478 cpumode = PERF_RECORD_MISC_KERNEL; 479 break; 480 case PERF_CONTEXT_USER: 481 cpumode = PERF_RECORD_MISC_USER; 482 break; 483 default: 484 pr_debug("invalid callchain context: " 485 "%"PRId64"\n", (s64) ip); 486 487 /* 488 * It seems the callchain is corrupted. 489 * Discard all. 490 */ 491 zfree(&p); 492 goto exit; 493 } 494 continue; 495 } 496 497 tal.filtered = 0; 498 thread__find_addr_location(al.thread, machine, cpumode, 499 MAP__FUNCTION, ip, &tal); 500 501 if (tal.sym) 502 fprintf(f, "..... %016" PRIx64 " %s\n", ip, 503 tal.sym->name); 504 else 505 fprintf(f, "..... %016" PRIx64 "\n", ip); 506 } 507 508 exit: 509 fclose(f); 510 511 return p; 512 } 513 514 typedef int (*tracepoint_handler)(struct timechart *tchart, 515 struct perf_evsel *evsel, 516 struct perf_sample *sample, 517 const char *backtrace); 518 519 static int process_sample_event(struct perf_tool *tool, 520 union perf_event *event, 521 struct perf_sample *sample, 522 struct perf_evsel *evsel, 523 struct machine *machine) 524 { 525 struct timechart *tchart = container_of(tool, struct timechart, tool); 526 527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { 528 if (!tchart->first_time || tchart->first_time > sample->time) 529 tchart->first_time = sample->time; 530 if (tchart->last_time < sample->time) 531 tchart->last_time = sample->time; 532 } 533 534 if (evsel->handler != NULL) { 535 tracepoint_handler f = evsel->handler; 536 return f(tchart, evsel, sample, 537 cat_backtrace(event, sample, machine)); 538 } 539 540 return 0; 541 } 542 543 static int 544 process_sample_cpu_idle(struct timechart *tchart __maybe_unused, 545 struct perf_evsel *evsel, 546 struct perf_sample *sample, 547 const char *backtrace __maybe_unused) 548 { 549 u32 state = perf_evsel__intval(evsel, sample, "state"); 550 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 551 552 if (state == (u32)PWR_EVENT_EXIT) 553 c_state_end(tchart, cpu_id, sample->time); 554 else 555 c_state_start(cpu_id, sample->time, state); 556 return 0; 557 } 558 559 static int 560 process_sample_cpu_frequency(struct timechart *tchart, 561 struct perf_evsel *evsel, 562 struct perf_sample *sample, 563 const char *backtrace __maybe_unused) 564 { 565 u32 state = perf_evsel__intval(evsel, sample, "state"); 566 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 567 568 p_state_change(tchart, cpu_id, sample->time, state); 569 return 0; 570 } 571 572 static int 573 process_sample_sched_wakeup(struct timechart *tchart, 574 struct perf_evsel *evsel, 575 struct perf_sample *sample, 576 const char *backtrace) 577 { 578 u8 flags = perf_evsel__intval(evsel, sample, "common_flags"); 579 int waker = perf_evsel__intval(evsel, sample, "common_pid"); 580 int wakee = perf_evsel__intval(evsel, sample, "pid"); 581 582 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); 583 return 0; 584 } 585 586 static int 587 process_sample_sched_switch(struct timechart *tchart, 588 struct perf_evsel *evsel, 589 struct perf_sample *sample, 590 const char *backtrace) 591 { 592 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"); 593 int next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 594 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 595 596 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, 597 prev_state, backtrace); 598 return 0; 599 } 600 601 #ifdef SUPPORT_OLD_POWER_EVENTS 602 static int 603 process_sample_power_start(struct timechart *tchart __maybe_unused, 604 struct perf_evsel *evsel, 605 struct perf_sample *sample, 606 const char *backtrace __maybe_unused) 607 { 608 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 609 u64 value = perf_evsel__intval(evsel, sample, "value"); 610 611 c_state_start(cpu_id, sample->time, value); 612 return 0; 613 } 614 615 static int 616 process_sample_power_end(struct timechart *tchart, 617 struct perf_evsel *evsel __maybe_unused, 618 struct perf_sample *sample, 619 const char *backtrace __maybe_unused) 620 { 621 c_state_end(tchart, sample->cpu, sample->time); 622 return 0; 623 } 624 625 static int 626 process_sample_power_frequency(struct timechart *tchart, 627 struct perf_evsel *evsel, 628 struct perf_sample *sample, 629 const char *backtrace __maybe_unused) 630 { 631 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 632 u64 value = perf_evsel__intval(evsel, sample, "value"); 633 634 p_state_change(tchart, cpu_id, sample->time, value); 635 return 0; 636 } 637 #endif /* SUPPORT_OLD_POWER_EVENTS */ 638 639 /* 640 * After the last sample we need to wrap up the current C/P state 641 * and close out each CPU for these. 642 */ 643 static void end_sample_processing(struct timechart *tchart) 644 { 645 u64 cpu; 646 struct power_event *pwr; 647 648 for (cpu = 0; cpu <= tchart->numcpus; cpu++) { 649 /* C state */ 650 #if 0 651 pwr = zalloc(sizeof(*pwr)); 652 if (!pwr) 653 return; 654 655 pwr->state = cpus_cstate_state[cpu]; 656 pwr->start_time = cpus_cstate_start_times[cpu]; 657 pwr->end_time = tchart->last_time; 658 pwr->cpu = cpu; 659 pwr->type = CSTATE; 660 pwr->next = tchart->power_events; 661 662 tchart->power_events = pwr; 663 #endif 664 /* P state */ 665 666 pwr = zalloc(sizeof(*pwr)); 667 if (!pwr) 668 return; 669 670 pwr->state = cpus_pstate_state[cpu]; 671 pwr->start_time = cpus_pstate_start_times[cpu]; 672 pwr->end_time = tchart->last_time; 673 pwr->cpu = cpu; 674 pwr->type = PSTATE; 675 pwr->next = tchart->power_events; 676 677 if (!pwr->start_time) 678 pwr->start_time = tchart->first_time; 679 if (!pwr->state) 680 pwr->state = tchart->min_freq; 681 tchart->power_events = pwr; 682 } 683 } 684 685 /* 686 * Sort the pid datastructure 687 */ 688 static void sort_pids(struct timechart *tchart) 689 { 690 struct per_pid *new_list, *p, *cursor, *prev; 691 /* sort by ppid first, then by pid, lowest to highest */ 692 693 new_list = NULL; 694 695 while (tchart->all_data) { 696 p = tchart->all_data; 697 tchart->all_data = p->next; 698 p->next = NULL; 699 700 if (new_list == NULL) { 701 new_list = p; 702 p->next = NULL; 703 continue; 704 } 705 prev = NULL; 706 cursor = new_list; 707 while (cursor) { 708 if (cursor->ppid > p->ppid || 709 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 710 /* must insert before */ 711 if (prev) { 712 p->next = prev->next; 713 prev->next = p; 714 cursor = NULL; 715 continue; 716 } else { 717 p->next = new_list; 718 new_list = p; 719 cursor = NULL; 720 continue; 721 } 722 } 723 724 prev = cursor; 725 cursor = cursor->next; 726 if (!cursor) 727 prev->next = p; 728 } 729 } 730 tchart->all_data = new_list; 731 } 732 733 734 static void draw_c_p_states(struct timechart *tchart) 735 { 736 struct power_event *pwr; 737 pwr = tchart->power_events; 738 739 /* 740 * two pass drawing so that the P state bars are on top of the C state blocks 741 */ 742 while (pwr) { 743 if (pwr->type == CSTATE) 744 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 745 pwr = pwr->next; 746 } 747 748 pwr = tchart->power_events; 749 while (pwr) { 750 if (pwr->type == PSTATE) { 751 if (!pwr->state) 752 pwr->state = tchart->min_freq; 753 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 754 } 755 pwr = pwr->next; 756 } 757 } 758 759 static void draw_wakeups(struct timechart *tchart) 760 { 761 struct wake_event *we; 762 struct per_pid *p; 763 struct per_pidcomm *c; 764 765 we = tchart->wake_events; 766 while (we) { 767 int from = 0, to = 0; 768 char *task_from = NULL, *task_to = NULL; 769 770 /* locate the column of the waker and wakee */ 771 p = tchart->all_data; 772 while (p) { 773 if (p->pid == we->waker || p->pid == we->wakee) { 774 c = p->all; 775 while (c) { 776 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 777 if (p->pid == we->waker && !from) { 778 from = c->Y; 779 task_from = strdup(c->comm); 780 } 781 if (p->pid == we->wakee && !to) { 782 to = c->Y; 783 task_to = strdup(c->comm); 784 } 785 } 786 c = c->next; 787 } 788 c = p->all; 789 while (c) { 790 if (p->pid == we->waker && !from) { 791 from = c->Y; 792 task_from = strdup(c->comm); 793 } 794 if (p->pid == we->wakee && !to) { 795 to = c->Y; 796 task_to = strdup(c->comm); 797 } 798 c = c->next; 799 } 800 } 801 p = p->next; 802 } 803 804 if (!task_from) { 805 task_from = malloc(40); 806 sprintf(task_from, "[%i]", we->waker); 807 } 808 if (!task_to) { 809 task_to = malloc(40); 810 sprintf(task_to, "[%i]", we->wakee); 811 } 812 813 if (we->waker == -1) 814 svg_interrupt(we->time, to, we->backtrace); 815 else if (from && to && abs(from - to) == 1) 816 svg_wakeline(we->time, from, to, we->backtrace); 817 else 818 svg_partial_wakeline(we->time, from, task_from, to, 819 task_to, we->backtrace); 820 we = we->next; 821 822 free(task_from); 823 free(task_to); 824 } 825 } 826 827 static void draw_cpu_usage(struct timechart *tchart) 828 { 829 struct per_pid *p; 830 struct per_pidcomm *c; 831 struct cpu_sample *sample; 832 p = tchart->all_data; 833 while (p) { 834 c = p->all; 835 while (c) { 836 sample = c->samples; 837 while (sample) { 838 if (sample->type == TYPE_RUNNING) { 839 svg_process(sample->cpu, 840 sample->start_time, 841 sample->end_time, 842 p->pid, 843 c->comm, 844 sample->backtrace); 845 } 846 847 sample = sample->next; 848 } 849 c = c->next; 850 } 851 p = p->next; 852 } 853 } 854 855 static void draw_process_bars(struct timechart *tchart) 856 { 857 struct per_pid *p; 858 struct per_pidcomm *c; 859 struct cpu_sample *sample; 860 int Y = 0; 861 862 Y = 2 * tchart->numcpus + 2; 863 864 p = tchart->all_data; 865 while (p) { 866 c = p->all; 867 while (c) { 868 if (!c->display) { 869 c->Y = 0; 870 c = c->next; 871 continue; 872 } 873 874 svg_box(Y, c->start_time, c->end_time, "process"); 875 sample = c->samples; 876 while (sample) { 877 if (sample->type == TYPE_RUNNING) 878 svg_running(Y, sample->cpu, 879 sample->start_time, 880 sample->end_time, 881 sample->backtrace); 882 if (sample->type == TYPE_BLOCKED) 883 svg_blocked(Y, sample->cpu, 884 sample->start_time, 885 sample->end_time, 886 sample->backtrace); 887 if (sample->type == TYPE_WAITING) 888 svg_waiting(Y, sample->cpu, 889 sample->start_time, 890 sample->end_time, 891 sample->backtrace); 892 sample = sample->next; 893 } 894 895 if (c->comm) { 896 char comm[256]; 897 if (c->total_time > 5000000000) /* 5 seconds */ 898 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); 899 else 900 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); 901 902 svg_text(Y, c->start_time, comm); 903 } 904 c->Y = Y; 905 Y++; 906 c = c->next; 907 } 908 p = p->next; 909 } 910 } 911 912 static void add_process_filter(const char *string) 913 { 914 int pid = strtoull(string, NULL, 10); 915 struct process_filter *filt = malloc(sizeof(*filt)); 916 917 if (!filt) 918 return; 919 920 filt->name = strdup(string); 921 filt->pid = pid; 922 filt->next = process_filter; 923 924 process_filter = filt; 925 } 926 927 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 928 { 929 struct process_filter *filt; 930 if (!process_filter) 931 return 1; 932 933 filt = process_filter; 934 while (filt) { 935 if (filt->pid && p->pid == filt->pid) 936 return 1; 937 if (strcmp(filt->name, c->comm) == 0) 938 return 1; 939 filt = filt->next; 940 } 941 return 0; 942 } 943 944 static int determine_display_tasks_filtered(struct timechart *tchart) 945 { 946 struct per_pid *p; 947 struct per_pidcomm *c; 948 int count = 0; 949 950 p = tchart->all_data; 951 while (p) { 952 p->display = 0; 953 if (p->start_time == 1) 954 p->start_time = tchart->first_time; 955 956 /* no exit marker, task kept running to the end */ 957 if (p->end_time == 0) 958 p->end_time = tchart->last_time; 959 960 c = p->all; 961 962 while (c) { 963 c->display = 0; 964 965 if (c->start_time == 1) 966 c->start_time = tchart->first_time; 967 968 if (passes_filter(p, c)) { 969 c->display = 1; 970 p->display = 1; 971 count++; 972 } 973 974 if (c->end_time == 0) 975 c->end_time = tchart->last_time; 976 977 c = c->next; 978 } 979 p = p->next; 980 } 981 return count; 982 } 983 984 static int determine_display_tasks(struct timechart *tchart, u64 threshold) 985 { 986 struct per_pid *p; 987 struct per_pidcomm *c; 988 int count = 0; 989 990 if (process_filter) 991 return determine_display_tasks_filtered(tchart); 992 993 p = tchart->all_data; 994 while (p) { 995 p->display = 0; 996 if (p->start_time == 1) 997 p->start_time = tchart->first_time; 998 999 /* no exit marker, task kept running to the end */ 1000 if (p->end_time == 0) 1001 p->end_time = tchart->last_time; 1002 if (p->total_time >= threshold) 1003 p->display = 1; 1004 1005 c = p->all; 1006 1007 while (c) { 1008 c->display = 0; 1009 1010 if (c->start_time == 1) 1011 c->start_time = tchart->first_time; 1012 1013 if (c->total_time >= threshold) { 1014 c->display = 1; 1015 count++; 1016 } 1017 1018 if (c->end_time == 0) 1019 c->end_time = tchart->last_time; 1020 1021 c = c->next; 1022 } 1023 p = p->next; 1024 } 1025 return count; 1026 } 1027 1028 1029 1030 #define TIME_THRESH 10000000 1031 1032 static void write_svg_file(struct timechart *tchart, const char *filename) 1033 { 1034 u64 i; 1035 int count; 1036 int thresh = TIME_THRESH; 1037 1038 if (tchart->power_only) 1039 tchart->proc_num = 0; 1040 1041 /* We'd like to show at least proc_num tasks; 1042 * be less picky if we have fewer */ 1043 do { 1044 count = determine_display_tasks(tchart, thresh); 1045 thresh /= 10; 1046 } while (!process_filter && thresh && count < tchart->proc_num); 1047 1048 if (!tchart->proc_num) 1049 count = 0; 1050 1051 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); 1052 1053 svg_time_grid(); 1054 svg_legenda(); 1055 1056 for (i = 0; i < tchart->numcpus; i++) 1057 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); 1058 1059 draw_cpu_usage(tchart); 1060 if (tchart->proc_num) 1061 draw_process_bars(tchart); 1062 if (!tchart->tasks_only) 1063 draw_c_p_states(tchart); 1064 if (tchart->proc_num) 1065 draw_wakeups(tchart); 1066 1067 svg_close(); 1068 } 1069 1070 static int process_header(struct perf_file_section *section __maybe_unused, 1071 struct perf_header *ph, 1072 int feat, 1073 int fd __maybe_unused, 1074 void *data) 1075 { 1076 struct timechart *tchart = data; 1077 1078 switch (feat) { 1079 case HEADER_NRCPUS: 1080 tchart->numcpus = ph->env.nr_cpus_avail; 1081 break; 1082 1083 case HEADER_CPU_TOPOLOGY: 1084 if (!tchart->topology) 1085 break; 1086 1087 if (svg_build_topology_map(ph->env.sibling_cores, 1088 ph->env.nr_sibling_cores, 1089 ph->env.sibling_threads, 1090 ph->env.nr_sibling_threads)) 1091 fprintf(stderr, "problem building topology\n"); 1092 break; 1093 1094 default: 1095 break; 1096 } 1097 1098 return 0; 1099 } 1100 1101 static int __cmd_timechart(struct timechart *tchart, const char *output_name) 1102 { 1103 const struct perf_evsel_str_handler power_tracepoints[] = { 1104 { "power:cpu_idle", process_sample_cpu_idle }, 1105 { "power:cpu_frequency", process_sample_cpu_frequency }, 1106 { "sched:sched_wakeup", process_sample_sched_wakeup }, 1107 { "sched:sched_switch", process_sample_sched_switch }, 1108 #ifdef SUPPORT_OLD_POWER_EVENTS 1109 { "power:power_start", process_sample_power_start }, 1110 { "power:power_end", process_sample_power_end }, 1111 { "power:power_frequency", process_sample_power_frequency }, 1112 #endif 1113 }; 1114 struct perf_data_file file = { 1115 .path = input_name, 1116 .mode = PERF_DATA_MODE_READ, 1117 }; 1118 1119 struct perf_session *session = perf_session__new(&file, false, 1120 &tchart->tool); 1121 int ret = -EINVAL; 1122 1123 if (session == NULL) 1124 return -ENOMEM; 1125 1126 (void)perf_header__process_sections(&session->header, 1127 perf_data_file__fd(session->file), 1128 tchart, 1129 process_header); 1130 1131 if (!perf_session__has_traces(session, "timechart record")) 1132 goto out_delete; 1133 1134 if (perf_session__set_tracepoints_handlers(session, 1135 power_tracepoints)) { 1136 pr_err("Initializing session tracepoint handlers failed\n"); 1137 goto out_delete; 1138 } 1139 1140 ret = perf_session__process_events(session, &tchart->tool); 1141 if (ret) 1142 goto out_delete; 1143 1144 end_sample_processing(tchart); 1145 1146 sort_pids(tchart); 1147 1148 write_svg_file(tchart, output_name); 1149 1150 pr_info("Written %2.1f seconds of trace to %s.\n", 1151 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name); 1152 out_delete: 1153 perf_session__delete(session); 1154 return ret; 1155 } 1156 1157 static int timechart__record(struct timechart *tchart, int argc, const char **argv) 1158 { 1159 unsigned int rec_argc, i, j; 1160 const char **rec_argv; 1161 const char **p; 1162 unsigned int record_elems; 1163 1164 const char * const common_args[] = { 1165 "record", "-a", "-R", "-c", "1", 1166 }; 1167 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1168 1169 const char * const backtrace_args[] = { 1170 "-g", 1171 }; 1172 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); 1173 1174 const char * const power_args[] = { 1175 "-e", "power:cpu_frequency", 1176 "-e", "power:cpu_idle", 1177 }; 1178 unsigned int power_args_nr = ARRAY_SIZE(power_args); 1179 1180 const char * const old_power_args[] = { 1181 #ifdef SUPPORT_OLD_POWER_EVENTS 1182 "-e", "power:power_start", 1183 "-e", "power:power_end", 1184 "-e", "power:power_frequency", 1185 #endif 1186 }; 1187 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); 1188 1189 const char * const tasks_args[] = { 1190 "-e", "sched:sched_wakeup", 1191 "-e", "sched:sched_switch", 1192 }; 1193 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); 1194 1195 #ifdef SUPPORT_OLD_POWER_EVENTS 1196 if (!is_valid_tracepoint("power:cpu_idle") && 1197 is_valid_tracepoint("power:power_start")) { 1198 use_old_power_events = 1; 1199 power_args_nr = 0; 1200 } else { 1201 old_power_args_nr = 0; 1202 } 1203 #endif 1204 1205 if (tchart->power_only) 1206 tasks_args_nr = 0; 1207 1208 if (tchart->tasks_only) { 1209 power_args_nr = 0; 1210 old_power_args_nr = 0; 1211 } 1212 1213 if (!tchart->with_backtrace) 1214 backtrace_args_no = 0; 1215 1216 record_elems = common_args_nr + tasks_args_nr + 1217 power_args_nr + old_power_args_nr + backtrace_args_no; 1218 1219 rec_argc = record_elems + argc; 1220 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1221 1222 if (rec_argv == NULL) 1223 return -ENOMEM; 1224 1225 p = rec_argv; 1226 for (i = 0; i < common_args_nr; i++) 1227 *p++ = strdup(common_args[i]); 1228 1229 for (i = 0; i < backtrace_args_no; i++) 1230 *p++ = strdup(backtrace_args[i]); 1231 1232 for (i = 0; i < tasks_args_nr; i++) 1233 *p++ = strdup(tasks_args[i]); 1234 1235 for (i = 0; i < power_args_nr; i++) 1236 *p++ = strdup(power_args[i]); 1237 1238 for (i = 0; i < old_power_args_nr; i++) 1239 *p++ = strdup(old_power_args[i]); 1240 1241 for (j = 0; j < (unsigned int)argc; j++) 1242 *p++ = argv[j]; 1243 1244 return cmd_record(rec_argc, rec_argv, NULL); 1245 } 1246 1247 static int 1248 parse_process(const struct option *opt __maybe_unused, const char *arg, 1249 int __maybe_unused unset) 1250 { 1251 if (arg) 1252 add_process_filter(arg); 1253 return 0; 1254 } 1255 1256 static int 1257 parse_highlight(const struct option *opt __maybe_unused, const char *arg, 1258 int __maybe_unused unset) 1259 { 1260 unsigned long duration = strtoul(arg, NULL, 0); 1261 1262 if (svg_highlight || svg_highlight_name) 1263 return -1; 1264 1265 if (duration) 1266 svg_highlight = duration; 1267 else 1268 svg_highlight_name = strdup(arg); 1269 1270 return 0; 1271 } 1272 1273 int cmd_timechart(int argc, const char **argv, 1274 const char *prefix __maybe_unused) 1275 { 1276 struct timechart tchart = { 1277 .tool = { 1278 .comm = process_comm_event, 1279 .fork = process_fork_event, 1280 .exit = process_exit_event, 1281 .sample = process_sample_event, 1282 .ordered_samples = true, 1283 }, 1284 .proc_num = 15, 1285 }; 1286 const char *output_name = "output.svg"; 1287 const struct option timechart_options[] = { 1288 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1289 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1290 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1291 OPT_CALLBACK(0, "highlight", NULL, "duration or task name", 1292 "highlight tasks. Pass duration in ns or process name.", 1293 parse_highlight), 1294 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1295 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, 1296 "output processes data only"), 1297 OPT_CALLBACK('p', "process", NULL, "process", 1298 "process selector. Pass a pid or process name.", 1299 parse_process), 1300 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 1301 "Look for files with symbols relative to this directory"), 1302 OPT_INTEGER('n', "proc-num", &tchart.proc_num, 1303 "min. number of tasks to print"), 1304 OPT_BOOLEAN('t', "topology", &tchart.topology, 1305 "sort CPUs according to topology"), 1306 OPT_END() 1307 }; 1308 const char * const timechart_usage[] = { 1309 "perf timechart [<options>] {record}", 1310 NULL 1311 }; 1312 1313 const struct option record_options[] = { 1314 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1315 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, 1316 "output processes data only"), 1317 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), 1318 OPT_END() 1319 }; 1320 const char * const record_usage[] = { 1321 "perf timechart record [<options>]", 1322 NULL 1323 }; 1324 argc = parse_options(argc, argv, timechart_options, timechart_usage, 1325 PARSE_OPT_STOP_AT_NON_OPTION); 1326 1327 if (tchart.power_only && tchart.tasks_only) { 1328 pr_err("-P and -T options cannot be used at the same time.\n"); 1329 return -1; 1330 } 1331 1332 symbol__init(); 1333 1334 if (argc && !strncmp(argv[0], "rec", 3)) { 1335 argc = parse_options(argc, argv, record_options, record_usage, 1336 PARSE_OPT_STOP_AT_NON_OPTION); 1337 1338 if (tchart.power_only && tchart.tasks_only) { 1339 pr_err("-P and -T options cannot be used at the same time.\n"); 1340 return -1; 1341 } 1342 1343 return timechart__record(&tchart, argc, argv); 1344 } else if (argc) 1345 usage_with_options(timechart_usage, timechart_options); 1346 1347 setup_pager(); 1348 1349 return __cmd_timechart(&tchart, output_name); 1350 } 1351