1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include "builtin.h"
16 
17 #include "util/util.h"
18 
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include "util/evsel.h"
23 #include <linux/rbtree.h>
24 #include "util/symbol.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27 
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 
37 #define SUPPORT_OLD_POWER_EVENTS 1
38 #define PWR_EVENT_EXIT -1
39 
40 
41 static const char	*input_name;
42 static const char	*output_name = "output.svg";
43 
44 static unsigned int	numcpus;
45 static u64		min_freq;	/* Lowest CPU frequency seen */
46 static u64		max_freq;	/* Highest CPU frequency seen */
47 static u64		turbo_frequency;
48 
49 static u64		first_time, last_time;
50 
51 static bool		power_only;
52 
53 
54 struct per_pid;
55 struct per_pidcomm;
56 
57 struct cpu_sample;
58 struct power_event;
59 struct wake_event;
60 
61 struct sample_wrapper;
62 
63 /*
64  * Datastructure layout:
65  * We keep an list of "pid"s, matching the kernels notion of a task struct.
66  * Each "pid" entry, has a list of "comm"s.
67  *	this is because we want to track different programs different, while
68  *	exec will reuse the original pid (by design).
69  * Each comm has a list of samples that will be used to draw
70  * final graph.
71  */
72 
73 struct per_pid {
74 	struct per_pid *next;
75 
76 	int		pid;
77 	int		ppid;
78 
79 	u64		start_time;
80 	u64		end_time;
81 	u64		total_time;
82 	int		display;
83 
84 	struct per_pidcomm *all;
85 	struct per_pidcomm *current;
86 };
87 
88 
89 struct per_pidcomm {
90 	struct per_pidcomm *next;
91 
92 	u64		start_time;
93 	u64		end_time;
94 	u64		total_time;
95 
96 	int		Y;
97 	int		display;
98 
99 	long		state;
100 	u64		state_since;
101 
102 	char		*comm;
103 
104 	struct cpu_sample *samples;
105 };
106 
107 struct sample_wrapper {
108 	struct sample_wrapper *next;
109 
110 	u64		timestamp;
111 	unsigned char	data[0];
112 };
113 
114 #define TYPE_NONE	0
115 #define TYPE_RUNNING	1
116 #define TYPE_WAITING	2
117 #define TYPE_BLOCKED	3
118 
119 struct cpu_sample {
120 	struct cpu_sample *next;
121 
122 	u64 start_time;
123 	u64 end_time;
124 	int type;
125 	int cpu;
126 };
127 
128 static struct per_pid *all_data;
129 
130 #define CSTATE 1
131 #define PSTATE 2
132 
133 struct power_event {
134 	struct power_event *next;
135 	int type;
136 	int state;
137 	u64 start_time;
138 	u64 end_time;
139 	int cpu;
140 };
141 
142 struct wake_event {
143 	struct wake_event *next;
144 	int waker;
145 	int wakee;
146 	u64 time;
147 };
148 
149 static struct power_event    *power_events;
150 static struct wake_event     *wake_events;
151 
152 struct process_filter;
153 struct process_filter {
154 	char			*name;
155 	int			pid;
156 	struct process_filter	*next;
157 };
158 
159 static struct process_filter *process_filter;
160 
161 
162 static struct per_pid *find_create_pid(int pid)
163 {
164 	struct per_pid *cursor = all_data;
165 
166 	while (cursor) {
167 		if (cursor->pid == pid)
168 			return cursor;
169 		cursor = cursor->next;
170 	}
171 	cursor = malloc(sizeof(struct per_pid));
172 	assert(cursor != NULL);
173 	memset(cursor, 0, sizeof(struct per_pid));
174 	cursor->pid = pid;
175 	cursor->next = all_data;
176 	all_data = cursor;
177 	return cursor;
178 }
179 
180 static void pid_set_comm(int pid, char *comm)
181 {
182 	struct per_pid *p;
183 	struct per_pidcomm *c;
184 	p = find_create_pid(pid);
185 	c = p->all;
186 	while (c) {
187 		if (c->comm && strcmp(c->comm, comm) == 0) {
188 			p->current = c;
189 			return;
190 		}
191 		if (!c->comm) {
192 			c->comm = strdup(comm);
193 			p->current = c;
194 			return;
195 		}
196 		c = c->next;
197 	}
198 	c = malloc(sizeof(struct per_pidcomm));
199 	assert(c != NULL);
200 	memset(c, 0, sizeof(struct per_pidcomm));
201 	c->comm = strdup(comm);
202 	p->current = c;
203 	c->next = p->all;
204 	p->all = c;
205 }
206 
207 static void pid_fork(int pid, int ppid, u64 timestamp)
208 {
209 	struct per_pid *p, *pp;
210 	p = find_create_pid(pid);
211 	pp = find_create_pid(ppid);
212 	p->ppid = ppid;
213 	if (pp->current && pp->current->comm && !p->current)
214 		pid_set_comm(pid, pp->current->comm);
215 
216 	p->start_time = timestamp;
217 	if (p->current) {
218 		p->current->start_time = timestamp;
219 		p->current->state_since = timestamp;
220 	}
221 }
222 
223 static void pid_exit(int pid, u64 timestamp)
224 {
225 	struct per_pid *p;
226 	p = find_create_pid(pid);
227 	p->end_time = timestamp;
228 	if (p->current)
229 		p->current->end_time = timestamp;
230 }
231 
232 static void
233 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234 {
235 	struct per_pid *p;
236 	struct per_pidcomm *c;
237 	struct cpu_sample *sample;
238 
239 	p = find_create_pid(pid);
240 	c = p->current;
241 	if (!c) {
242 		c = malloc(sizeof(struct per_pidcomm));
243 		assert(c != NULL);
244 		memset(c, 0, sizeof(struct per_pidcomm));
245 		p->current = c;
246 		c->next = p->all;
247 		p->all = c;
248 	}
249 
250 	sample = malloc(sizeof(struct cpu_sample));
251 	assert(sample != NULL);
252 	memset(sample, 0, sizeof(struct cpu_sample));
253 	sample->start_time = start;
254 	sample->end_time = end;
255 	sample->type = type;
256 	sample->next = c->samples;
257 	sample->cpu = cpu;
258 	c->samples = sample;
259 
260 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 		c->total_time += (end-start);
262 		p->total_time += (end-start);
263 	}
264 
265 	if (c->start_time == 0 || c->start_time > start)
266 		c->start_time = start;
267 	if (p->start_time == 0 || p->start_time > start)
268 		p->start_time = start;
269 }
270 
271 #define MAX_CPUS 4096
272 
273 static u64 cpus_cstate_start_times[MAX_CPUS];
274 static int cpus_cstate_state[MAX_CPUS];
275 static u64 cpus_pstate_start_times[MAX_CPUS];
276 static u64 cpus_pstate_state[MAX_CPUS];
277 
278 static int process_comm_event(struct perf_tool *tool __used,
279 			      union perf_event *event,
280 			      struct perf_sample *sample __used,
281 			      struct machine *machine __used)
282 {
283 	pid_set_comm(event->comm.tid, event->comm.comm);
284 	return 0;
285 }
286 
287 static int process_fork_event(struct perf_tool *tool __used,
288 			      union perf_event *event,
289 			      struct perf_sample *sample __used,
290 			      struct machine *machine __used)
291 {
292 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293 	return 0;
294 }
295 
296 static int process_exit_event(struct perf_tool *tool __used,
297 			      union perf_event *event,
298 			      struct perf_sample *sample __used,
299 			      struct machine *machine __used)
300 {
301 	pid_exit(event->fork.pid, event->fork.time);
302 	return 0;
303 }
304 
305 struct trace_entry {
306 	unsigned short		type;
307 	unsigned char		flags;
308 	unsigned char		preempt_count;
309 	int			pid;
310 	int			lock_depth;
311 };
312 
313 #ifdef SUPPORT_OLD_POWER_EVENTS
314 static int use_old_power_events;
315 struct power_entry_old {
316 	struct trace_entry te;
317 	u64	type;
318 	u64	value;
319 	u64	cpu_id;
320 };
321 #endif
322 
323 struct power_processor_entry {
324 	struct trace_entry te;
325 	u32	state;
326 	u32	cpu_id;
327 };
328 
329 #define TASK_COMM_LEN 16
330 struct wakeup_entry {
331 	struct trace_entry te;
332 	char comm[TASK_COMM_LEN];
333 	int   pid;
334 	int   prio;
335 	int   success;
336 };
337 
338 /*
339  * trace_flag_type is an enumeration that holds different
340  * states when a trace occurs. These are:
341  *  IRQS_OFF            - interrupts were disabled
342  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
343  *  NEED_RESCED         - reschedule is requested
344  *  HARDIRQ             - inside an interrupt handler
345  *  SOFTIRQ             - inside a softirq handler
346  */
347 enum trace_flag_type {
348 	TRACE_FLAG_IRQS_OFF		= 0x01,
349 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
350 	TRACE_FLAG_NEED_RESCHED		= 0x04,
351 	TRACE_FLAG_HARDIRQ		= 0x08,
352 	TRACE_FLAG_SOFTIRQ		= 0x10,
353 };
354 
355 
356 
357 struct sched_switch {
358 	struct trace_entry te;
359 	char prev_comm[TASK_COMM_LEN];
360 	int  prev_pid;
361 	int  prev_prio;
362 	long prev_state; /* Arjan weeps. */
363 	char next_comm[TASK_COMM_LEN];
364 	int  next_pid;
365 	int  next_prio;
366 };
367 
368 static void c_state_start(int cpu, u64 timestamp, int state)
369 {
370 	cpus_cstate_start_times[cpu] = timestamp;
371 	cpus_cstate_state[cpu] = state;
372 }
373 
374 static void c_state_end(int cpu, u64 timestamp)
375 {
376 	struct power_event *pwr;
377 	pwr = malloc(sizeof(struct power_event));
378 	if (!pwr)
379 		return;
380 	memset(pwr, 0, sizeof(struct power_event));
381 
382 	pwr->state = cpus_cstate_state[cpu];
383 	pwr->start_time = cpus_cstate_start_times[cpu];
384 	pwr->end_time = timestamp;
385 	pwr->cpu = cpu;
386 	pwr->type = CSTATE;
387 	pwr->next = power_events;
388 
389 	power_events = pwr;
390 }
391 
392 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
393 {
394 	struct power_event *pwr;
395 	pwr = malloc(sizeof(struct power_event));
396 
397 	if (new_freq > 8000000) /* detect invalid data */
398 		return;
399 
400 	if (!pwr)
401 		return;
402 	memset(pwr, 0, sizeof(struct power_event));
403 
404 	pwr->state = cpus_pstate_state[cpu];
405 	pwr->start_time = cpus_pstate_start_times[cpu];
406 	pwr->end_time = timestamp;
407 	pwr->cpu = cpu;
408 	pwr->type = PSTATE;
409 	pwr->next = power_events;
410 
411 	if (!pwr->start_time)
412 		pwr->start_time = first_time;
413 
414 	power_events = pwr;
415 
416 	cpus_pstate_state[cpu] = new_freq;
417 	cpus_pstate_start_times[cpu] = timestamp;
418 
419 	if ((u64)new_freq > max_freq)
420 		max_freq = new_freq;
421 
422 	if (new_freq < min_freq || min_freq == 0)
423 		min_freq = new_freq;
424 
425 	if (new_freq == max_freq - 1000)
426 			turbo_frequency = max_freq;
427 }
428 
429 static void
430 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
431 {
432 	struct wake_event *we;
433 	struct per_pid *p;
434 	struct wakeup_entry *wake = (void *)te;
435 
436 	we = malloc(sizeof(struct wake_event));
437 	if (!we)
438 		return;
439 
440 	memset(we, 0, sizeof(struct wake_event));
441 	we->time = timestamp;
442 	we->waker = pid;
443 
444 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
445 		we->waker = -1;
446 
447 	we->wakee = wake->pid;
448 	we->next = wake_events;
449 	wake_events = we;
450 	p = find_create_pid(we->wakee);
451 
452 	if (p && p->current && p->current->state == TYPE_NONE) {
453 		p->current->state_since = timestamp;
454 		p->current->state = TYPE_WAITING;
455 	}
456 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
457 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
458 		p->current->state_since = timestamp;
459 		p->current->state = TYPE_WAITING;
460 	}
461 }
462 
463 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
464 {
465 	struct per_pid *p = NULL, *prev_p;
466 	struct sched_switch *sw = (void *)te;
467 
468 
469 	prev_p = find_create_pid(sw->prev_pid);
470 
471 	p = find_create_pid(sw->next_pid);
472 
473 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
474 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
475 	if (p && p->current) {
476 		if (p->current->state != TYPE_NONE)
477 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
478 
479 		p->current->state_since = timestamp;
480 		p->current->state = TYPE_RUNNING;
481 	}
482 
483 	if (prev_p->current) {
484 		prev_p->current->state = TYPE_NONE;
485 		prev_p->current->state_since = timestamp;
486 		if (sw->prev_state & 2)
487 			prev_p->current->state = TYPE_BLOCKED;
488 		if (sw->prev_state == 0)
489 			prev_p->current->state = TYPE_WAITING;
490 	}
491 }
492 
493 
494 static int process_sample_event(struct perf_tool *tool __used,
495 				union perf_event *event __used,
496 				struct perf_sample *sample,
497 				struct perf_evsel *evsel,
498 				struct machine *machine __used)
499 {
500 	struct trace_entry *te;
501 
502 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
503 		if (!first_time || first_time > sample->time)
504 			first_time = sample->time;
505 		if (last_time < sample->time)
506 			last_time = sample->time;
507 	}
508 
509 	te = (void *)sample->raw_data;
510 	if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
511 		char *event_str;
512 #ifdef SUPPORT_OLD_POWER_EVENTS
513 		struct power_entry_old *peo;
514 		peo = (void *)te;
515 #endif
516 		/*
517 		 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 		 * remove perf_header__find_event infrastructure bits.
519 		 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 		 * ID and then just comparing against evsel->attr.config.
521 		 *
522 		 * e.g.:
523 		 *
524 		 * if (evsel->attr.config == power_cpu_idle_id)
525 		 */
526 		event_str = perf_header__find_event(te->type);
527 
528 		if (!event_str)
529 			return 0;
530 
531 		if (sample->cpu > numcpus)
532 			numcpus = sample->cpu;
533 
534 		if (strcmp(event_str, "power:cpu_idle") == 0) {
535 			struct power_processor_entry *ppe = (void *)te;
536 			if (ppe->state == (u32)PWR_EVENT_EXIT)
537 				c_state_end(ppe->cpu_id, sample->time);
538 			else
539 				c_state_start(ppe->cpu_id, sample->time,
540 					      ppe->state);
541 		}
542 		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
543 			struct power_processor_entry *ppe = (void *)te;
544 			p_state_change(ppe->cpu_id, sample->time, ppe->state);
545 		}
546 
547 		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
548 			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
549 
550 		else if (strcmp(event_str, "sched:sched_switch") == 0)
551 			sched_switch(sample->cpu, sample->time, te);
552 
553 #ifdef SUPPORT_OLD_POWER_EVENTS
554 		if (use_old_power_events) {
555 			if (strcmp(event_str, "power:power_start") == 0)
556 				c_state_start(peo->cpu_id, sample->time,
557 					      peo->value);
558 
559 			else if (strcmp(event_str, "power:power_end") == 0)
560 				c_state_end(sample->cpu, sample->time);
561 
562 			else if (strcmp(event_str,
563 					"power:power_frequency") == 0)
564 				p_state_change(peo->cpu_id, sample->time,
565 					       peo->value);
566 		}
567 #endif
568 	}
569 	return 0;
570 }
571 
572 /*
573  * After the last sample we need to wrap up the current C/P state
574  * and close out each CPU for these.
575  */
576 static void end_sample_processing(void)
577 {
578 	u64 cpu;
579 	struct power_event *pwr;
580 
581 	for (cpu = 0; cpu <= numcpus; cpu++) {
582 		pwr = malloc(sizeof(struct power_event));
583 		if (!pwr)
584 			return;
585 		memset(pwr, 0, sizeof(struct power_event));
586 
587 		/* C state */
588 #if 0
589 		pwr->state = cpus_cstate_state[cpu];
590 		pwr->start_time = cpus_cstate_start_times[cpu];
591 		pwr->end_time = last_time;
592 		pwr->cpu = cpu;
593 		pwr->type = CSTATE;
594 		pwr->next = power_events;
595 
596 		power_events = pwr;
597 #endif
598 		/* P state */
599 
600 		pwr = malloc(sizeof(struct power_event));
601 		if (!pwr)
602 			return;
603 		memset(pwr, 0, sizeof(struct power_event));
604 
605 		pwr->state = cpus_pstate_state[cpu];
606 		pwr->start_time = cpus_pstate_start_times[cpu];
607 		pwr->end_time = last_time;
608 		pwr->cpu = cpu;
609 		pwr->type = PSTATE;
610 		pwr->next = power_events;
611 
612 		if (!pwr->start_time)
613 			pwr->start_time = first_time;
614 		if (!pwr->state)
615 			pwr->state = min_freq;
616 		power_events = pwr;
617 	}
618 }
619 
620 /*
621  * Sort the pid datastructure
622  */
623 static void sort_pids(void)
624 {
625 	struct per_pid *new_list, *p, *cursor, *prev;
626 	/* sort by ppid first, then by pid, lowest to highest */
627 
628 	new_list = NULL;
629 
630 	while (all_data) {
631 		p = all_data;
632 		all_data = p->next;
633 		p->next = NULL;
634 
635 		if (new_list == NULL) {
636 			new_list = p;
637 			p->next = NULL;
638 			continue;
639 		}
640 		prev = NULL;
641 		cursor = new_list;
642 		while (cursor) {
643 			if (cursor->ppid > p->ppid ||
644 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
645 				/* must insert before */
646 				if (prev) {
647 					p->next = prev->next;
648 					prev->next = p;
649 					cursor = NULL;
650 					continue;
651 				} else {
652 					p->next = new_list;
653 					new_list = p;
654 					cursor = NULL;
655 					continue;
656 				}
657 			}
658 
659 			prev = cursor;
660 			cursor = cursor->next;
661 			if (!cursor)
662 				prev->next = p;
663 		}
664 	}
665 	all_data = new_list;
666 }
667 
668 
669 static void draw_c_p_states(void)
670 {
671 	struct power_event *pwr;
672 	pwr = power_events;
673 
674 	/*
675 	 * two pass drawing so that the P state bars are on top of the C state blocks
676 	 */
677 	while (pwr) {
678 		if (pwr->type == CSTATE)
679 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
680 		pwr = pwr->next;
681 	}
682 
683 	pwr = power_events;
684 	while (pwr) {
685 		if (pwr->type == PSTATE) {
686 			if (!pwr->state)
687 				pwr->state = min_freq;
688 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
689 		}
690 		pwr = pwr->next;
691 	}
692 }
693 
694 static void draw_wakeups(void)
695 {
696 	struct wake_event *we;
697 	struct per_pid *p;
698 	struct per_pidcomm *c;
699 
700 	we = wake_events;
701 	while (we) {
702 		int from = 0, to = 0;
703 		char *task_from = NULL, *task_to = NULL;
704 
705 		/* locate the column of the waker and wakee */
706 		p = all_data;
707 		while (p) {
708 			if (p->pid == we->waker || p->pid == we->wakee) {
709 				c = p->all;
710 				while (c) {
711 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
712 						if (p->pid == we->waker && !from) {
713 							from = c->Y;
714 							task_from = strdup(c->comm);
715 						}
716 						if (p->pid == we->wakee && !to) {
717 							to = c->Y;
718 							task_to = strdup(c->comm);
719 						}
720 					}
721 					c = c->next;
722 				}
723 				c = p->all;
724 				while (c) {
725 					if (p->pid == we->waker && !from) {
726 						from = c->Y;
727 						task_from = strdup(c->comm);
728 					}
729 					if (p->pid == we->wakee && !to) {
730 						to = c->Y;
731 						task_to = strdup(c->comm);
732 					}
733 					c = c->next;
734 				}
735 			}
736 			p = p->next;
737 		}
738 
739 		if (!task_from) {
740 			task_from = malloc(40);
741 			sprintf(task_from, "[%i]", we->waker);
742 		}
743 		if (!task_to) {
744 			task_to = malloc(40);
745 			sprintf(task_to, "[%i]", we->wakee);
746 		}
747 
748 		if (we->waker == -1)
749 			svg_interrupt(we->time, to);
750 		else if (from && to && abs(from - to) == 1)
751 			svg_wakeline(we->time, from, to);
752 		else
753 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
754 		we = we->next;
755 
756 		free(task_from);
757 		free(task_to);
758 	}
759 }
760 
761 static void draw_cpu_usage(void)
762 {
763 	struct per_pid *p;
764 	struct per_pidcomm *c;
765 	struct cpu_sample *sample;
766 	p = all_data;
767 	while (p) {
768 		c = p->all;
769 		while (c) {
770 			sample = c->samples;
771 			while (sample) {
772 				if (sample->type == TYPE_RUNNING)
773 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
774 
775 				sample = sample->next;
776 			}
777 			c = c->next;
778 		}
779 		p = p->next;
780 	}
781 }
782 
783 static void draw_process_bars(void)
784 {
785 	struct per_pid *p;
786 	struct per_pidcomm *c;
787 	struct cpu_sample *sample;
788 	int Y = 0;
789 
790 	Y = 2 * numcpus + 2;
791 
792 	p = all_data;
793 	while (p) {
794 		c = p->all;
795 		while (c) {
796 			if (!c->display) {
797 				c->Y = 0;
798 				c = c->next;
799 				continue;
800 			}
801 
802 			svg_box(Y, c->start_time, c->end_time, "process");
803 			sample = c->samples;
804 			while (sample) {
805 				if (sample->type == TYPE_RUNNING)
806 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
807 				if (sample->type == TYPE_BLOCKED)
808 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
809 				if (sample->type == TYPE_WAITING)
810 					svg_waiting(Y, sample->start_time, sample->end_time);
811 				sample = sample->next;
812 			}
813 
814 			if (c->comm) {
815 				char comm[256];
816 				if (c->total_time > 5000000000) /* 5 seconds */
817 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
818 				else
819 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
820 
821 				svg_text(Y, c->start_time, comm);
822 			}
823 			c->Y = Y;
824 			Y++;
825 			c = c->next;
826 		}
827 		p = p->next;
828 	}
829 }
830 
831 static void add_process_filter(const char *string)
832 {
833 	struct process_filter *filt;
834 	int pid;
835 
836 	pid = strtoull(string, NULL, 10);
837 	filt = malloc(sizeof(struct process_filter));
838 	if (!filt)
839 		return;
840 
841 	filt->name = strdup(string);
842 	filt->pid  = pid;
843 	filt->next = process_filter;
844 
845 	process_filter = filt;
846 }
847 
848 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
849 {
850 	struct process_filter *filt;
851 	if (!process_filter)
852 		return 1;
853 
854 	filt = process_filter;
855 	while (filt) {
856 		if (filt->pid && p->pid == filt->pid)
857 			return 1;
858 		if (strcmp(filt->name, c->comm) == 0)
859 			return 1;
860 		filt = filt->next;
861 	}
862 	return 0;
863 }
864 
865 static int determine_display_tasks_filtered(void)
866 {
867 	struct per_pid *p;
868 	struct per_pidcomm *c;
869 	int count = 0;
870 
871 	p = all_data;
872 	while (p) {
873 		p->display = 0;
874 		if (p->start_time == 1)
875 			p->start_time = first_time;
876 
877 		/* no exit marker, task kept running to the end */
878 		if (p->end_time == 0)
879 			p->end_time = last_time;
880 
881 		c = p->all;
882 
883 		while (c) {
884 			c->display = 0;
885 
886 			if (c->start_time == 1)
887 				c->start_time = first_time;
888 
889 			if (passes_filter(p, c)) {
890 				c->display = 1;
891 				p->display = 1;
892 				count++;
893 			}
894 
895 			if (c->end_time == 0)
896 				c->end_time = last_time;
897 
898 			c = c->next;
899 		}
900 		p = p->next;
901 	}
902 	return count;
903 }
904 
905 static int determine_display_tasks(u64 threshold)
906 {
907 	struct per_pid *p;
908 	struct per_pidcomm *c;
909 	int count = 0;
910 
911 	if (process_filter)
912 		return determine_display_tasks_filtered();
913 
914 	p = all_data;
915 	while (p) {
916 		p->display = 0;
917 		if (p->start_time == 1)
918 			p->start_time = first_time;
919 
920 		/* no exit marker, task kept running to the end */
921 		if (p->end_time == 0)
922 			p->end_time = last_time;
923 		if (p->total_time >= threshold && !power_only)
924 			p->display = 1;
925 
926 		c = p->all;
927 
928 		while (c) {
929 			c->display = 0;
930 
931 			if (c->start_time == 1)
932 				c->start_time = first_time;
933 
934 			if (c->total_time >= threshold && !power_only) {
935 				c->display = 1;
936 				count++;
937 			}
938 
939 			if (c->end_time == 0)
940 				c->end_time = last_time;
941 
942 			c = c->next;
943 		}
944 		p = p->next;
945 	}
946 	return count;
947 }
948 
949 
950 
951 #define TIME_THRESH 10000000
952 
953 static void write_svg_file(const char *filename)
954 {
955 	u64 i;
956 	int count;
957 
958 	numcpus++;
959 
960 
961 	count = determine_display_tasks(TIME_THRESH);
962 
963 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
964 	if (count < 15)
965 		count = determine_display_tasks(TIME_THRESH / 10);
966 
967 	open_svg(filename, numcpus, count, first_time, last_time);
968 
969 	svg_time_grid();
970 	svg_legenda();
971 
972 	for (i = 0; i < numcpus; i++)
973 		svg_cpu_box(i, max_freq, turbo_frequency);
974 
975 	draw_cpu_usage();
976 	draw_process_bars();
977 	draw_c_p_states();
978 	draw_wakeups();
979 
980 	svg_close();
981 }
982 
983 static struct perf_tool perf_timechart = {
984 	.comm			= process_comm_event,
985 	.fork			= process_fork_event,
986 	.exit			= process_exit_event,
987 	.sample			= process_sample_event,
988 	.ordered_samples	= true,
989 };
990 
991 static int __cmd_timechart(void)
992 {
993 	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 							 0, false, &perf_timechart);
995 	int ret = -EINVAL;
996 
997 	if (session == NULL)
998 		return -ENOMEM;
999 
1000 	if (!perf_session__has_traces(session, "timechart record"))
1001 		goto out_delete;
1002 
1003 	ret = perf_session__process_events(session, &perf_timechart);
1004 	if (ret)
1005 		goto out_delete;
1006 
1007 	end_sample_processing();
1008 
1009 	sort_pids();
1010 
1011 	write_svg_file(output_name);
1012 
1013 	pr_info("Written %2.1f seconds of trace to %s.\n",
1014 		(last_time - first_time) / 1000000000.0, output_name);
1015 out_delete:
1016 	perf_session__delete(session);
1017 	return ret;
1018 }
1019 
1020 static const char * const timechart_usage[] = {
1021 	"perf timechart [<options>] {record}",
1022 	NULL
1023 };
1024 
1025 #ifdef SUPPORT_OLD_POWER_EVENTS
1026 static const char * const record_old_args[] = {
1027 	"record",
1028 	"-a",
1029 	"-R",
1030 	"-f",
1031 	"-c", "1",
1032 	"-e", "power:power_start",
1033 	"-e", "power:power_end",
1034 	"-e", "power:power_frequency",
1035 	"-e", "sched:sched_wakeup",
1036 	"-e", "sched:sched_switch",
1037 };
1038 #endif
1039 
1040 static const char * const record_new_args[] = {
1041 	"record",
1042 	"-a",
1043 	"-R",
1044 	"-f",
1045 	"-c", "1",
1046 	"-e", "power:cpu_frequency",
1047 	"-e", "power:cpu_idle",
1048 	"-e", "sched:sched_wakeup",
1049 	"-e", "sched:sched_switch",
1050 };
1051 
1052 static int __cmd_record(int argc, const char **argv)
1053 {
1054 	unsigned int rec_argc, i, j;
1055 	const char **rec_argv;
1056 	const char * const *record_args = record_new_args;
1057 	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058 
1059 #ifdef SUPPORT_OLD_POWER_EVENTS
1060 	if (!is_valid_tracepoint("power:cpu_idle") &&
1061 	    is_valid_tracepoint("power:power_start")) {
1062 		use_old_power_events = 1;
1063 		record_args = record_old_args;
1064 		record_elems = ARRAY_SIZE(record_old_args);
1065 	}
1066 #endif
1067 
1068 	rec_argc = record_elems + argc - 1;
1069 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070 
1071 	if (rec_argv == NULL)
1072 		return -ENOMEM;
1073 
1074 	for (i = 0; i < record_elems; i++)
1075 		rec_argv[i] = strdup(record_args[i]);
1076 
1077 	for (j = 1; j < (unsigned int)argc; j++, i++)
1078 		rec_argv[i] = argv[j];
1079 
1080 	return cmd_record(i, rec_argv, NULL);
1081 }
1082 
1083 static int
1084 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085 {
1086 	if (arg)
1087 		add_process_filter(arg);
1088 	return 0;
1089 }
1090 
1091 static const struct option options[] = {
1092 	OPT_STRING('i', "input", &input_name, "file",
1093 		    "input file name"),
1094 	OPT_STRING('o', "output", &output_name, "file",
1095 		    "output file name"),
1096 	OPT_INTEGER('w', "width", &svg_page_width,
1097 		    "page width"),
1098 	OPT_BOOLEAN('P', "power-only", &power_only,
1099 		    "output power data only"),
1100 	OPT_CALLBACK('p', "process", NULL, "process",
1101 		      "process selector. Pass a pid or process name.",
1102 		       parse_process),
1103 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104 		    "Look for files with symbols relative to this directory"),
1105 	OPT_END()
1106 };
1107 
1108 
1109 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110 {
1111 	argc = parse_options(argc, argv, options, timechart_usage,
1112 			PARSE_OPT_STOP_AT_NON_OPTION);
1113 
1114 	symbol__init();
1115 
1116 	if (argc && !strncmp(argv[0], "rec", 3))
1117 		return __cmd_record(argc, argv);
1118 	else if (argc)
1119 		usage_with_options(timechart_usage, options);
1120 
1121 	setup_pager();
1122 
1123 	return __cmd_timechart();
1124 }
1125