1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-timechart.c - make an svg timechart of system activity 4 * 5 * (C) Copyright 2009 Intel Corporation 6 * 7 * Authors: 8 * Arjan van de Ven <arjan@linux.intel.com> 9 */ 10 11 #include <errno.h> 12 #include <inttypes.h> 13 14 #include "builtin.h" 15 #include "util/color.h" 16 #include <linux/list.h> 17 #include "util/evlist.h" // for struct evsel_str_handler 18 #include "util/evsel.h" 19 #include <linux/kernel.h> 20 #include <linux/rbtree.h> 21 #include <linux/time64.h> 22 #include <linux/zalloc.h> 23 #include "util/symbol.h" 24 #include "util/thread.h" 25 #include "util/callchain.h" 26 27 #include "perf.h" 28 #include "util/header.h" 29 #include <subcmd/pager.h> 30 #include <subcmd/parse-options.h> 31 #include "util/parse-events.h" 32 #include "util/event.h" 33 #include "util/session.h" 34 #include "util/svghelper.h" 35 #include "util/tool.h" 36 #include "util/data.h" 37 #include "util/debug.h" 38 #include <linux/err.h> 39 40 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE 41 FILE *open_memstream(char **ptr, size_t *sizeloc); 42 #endif 43 44 #define SUPPORT_OLD_POWER_EVENTS 1 45 #define PWR_EVENT_EXIT -1 46 47 struct per_pid; 48 struct power_event; 49 struct wake_event; 50 51 struct timechart { 52 struct perf_tool tool; 53 struct per_pid *all_data; 54 struct power_event *power_events; 55 struct wake_event *wake_events; 56 int proc_num; 57 unsigned int numcpus; 58 u64 min_freq, /* Lowest CPU frequency seen */ 59 max_freq, /* Highest CPU frequency seen */ 60 turbo_frequency, 61 first_time, last_time; 62 bool power_only, 63 tasks_only, 64 with_backtrace, 65 topology; 66 bool force; 67 /* IO related settings */ 68 bool io_only, 69 skip_eagain; 70 u64 io_events; 71 u64 min_time, 72 merge_dist; 73 }; 74 75 struct per_pidcomm; 76 struct cpu_sample; 77 struct io_sample; 78 79 /* 80 * Datastructure layout: 81 * We keep an list of "pid"s, matching the kernels notion of a task struct. 82 * Each "pid" entry, has a list of "comm"s. 83 * this is because we want to track different programs different, while 84 * exec will reuse the original pid (by design). 85 * Each comm has a list of samples that will be used to draw 86 * final graph. 87 */ 88 89 struct per_pid { 90 struct per_pid *next; 91 92 int pid; 93 int ppid; 94 95 u64 start_time; 96 u64 end_time; 97 u64 total_time; 98 u64 total_bytes; 99 int display; 100 101 struct per_pidcomm *all; 102 struct per_pidcomm *current; 103 }; 104 105 106 struct per_pidcomm { 107 struct per_pidcomm *next; 108 109 u64 start_time; 110 u64 end_time; 111 u64 total_time; 112 u64 max_bytes; 113 u64 total_bytes; 114 115 int Y; 116 int display; 117 118 long state; 119 u64 state_since; 120 121 char *comm; 122 123 struct cpu_sample *samples; 124 struct io_sample *io_samples; 125 }; 126 127 struct sample_wrapper { 128 struct sample_wrapper *next; 129 130 u64 timestamp; 131 unsigned char data[]; 132 }; 133 134 #define TYPE_NONE 0 135 #define TYPE_RUNNING 1 136 #define TYPE_WAITING 2 137 #define TYPE_BLOCKED 3 138 139 struct cpu_sample { 140 struct cpu_sample *next; 141 142 u64 start_time; 143 u64 end_time; 144 int type; 145 int cpu; 146 const char *backtrace; 147 }; 148 149 enum { 150 IOTYPE_READ, 151 IOTYPE_WRITE, 152 IOTYPE_SYNC, 153 IOTYPE_TX, 154 IOTYPE_RX, 155 IOTYPE_POLL, 156 }; 157 158 struct io_sample { 159 struct io_sample *next; 160 161 u64 start_time; 162 u64 end_time; 163 u64 bytes; 164 int type; 165 int fd; 166 int err; 167 int merges; 168 }; 169 170 #define CSTATE 1 171 #define PSTATE 2 172 173 struct power_event { 174 struct power_event *next; 175 int type; 176 int state; 177 u64 start_time; 178 u64 end_time; 179 int cpu; 180 }; 181 182 struct wake_event { 183 struct wake_event *next; 184 int waker; 185 int wakee; 186 u64 time; 187 const char *backtrace; 188 }; 189 190 struct process_filter { 191 char *name; 192 int pid; 193 struct process_filter *next; 194 }; 195 196 static struct process_filter *process_filter; 197 198 199 static struct per_pid *find_create_pid(struct timechart *tchart, int pid) 200 { 201 struct per_pid *cursor = tchart->all_data; 202 203 while (cursor) { 204 if (cursor->pid == pid) 205 return cursor; 206 cursor = cursor->next; 207 } 208 cursor = zalloc(sizeof(*cursor)); 209 assert(cursor != NULL); 210 cursor->pid = pid; 211 cursor->next = tchart->all_data; 212 tchart->all_data = cursor; 213 return cursor; 214 } 215 216 static void pid_set_comm(struct timechart *tchart, int pid, char *comm) 217 { 218 struct per_pid *p; 219 struct per_pidcomm *c; 220 p = find_create_pid(tchart, pid); 221 c = p->all; 222 while (c) { 223 if (c->comm && strcmp(c->comm, comm) == 0) { 224 p->current = c; 225 return; 226 } 227 if (!c->comm) { 228 c->comm = strdup(comm); 229 p->current = c; 230 return; 231 } 232 c = c->next; 233 } 234 c = zalloc(sizeof(*c)); 235 assert(c != NULL); 236 c->comm = strdup(comm); 237 p->current = c; 238 c->next = p->all; 239 p->all = c; 240 } 241 242 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) 243 { 244 struct per_pid *p, *pp; 245 p = find_create_pid(tchart, pid); 246 pp = find_create_pid(tchart, ppid); 247 p->ppid = ppid; 248 if (pp->current && pp->current->comm && !p->current) 249 pid_set_comm(tchart, pid, pp->current->comm); 250 251 p->start_time = timestamp; 252 if (p->current && !p->current->start_time) { 253 p->current->start_time = timestamp; 254 p->current->state_since = timestamp; 255 } 256 } 257 258 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) 259 { 260 struct per_pid *p; 261 p = find_create_pid(tchart, pid); 262 p->end_time = timestamp; 263 if (p->current) 264 p->current->end_time = timestamp; 265 } 266 267 static void pid_put_sample(struct timechart *tchart, int pid, int type, 268 unsigned int cpu, u64 start, u64 end, 269 const char *backtrace) 270 { 271 struct per_pid *p; 272 struct per_pidcomm *c; 273 struct cpu_sample *sample; 274 275 p = find_create_pid(tchart, pid); 276 c = p->current; 277 if (!c) { 278 c = zalloc(sizeof(*c)); 279 assert(c != NULL); 280 p->current = c; 281 c->next = p->all; 282 p->all = c; 283 } 284 285 sample = zalloc(sizeof(*sample)); 286 assert(sample != NULL); 287 sample->start_time = start; 288 sample->end_time = end; 289 sample->type = type; 290 sample->next = c->samples; 291 sample->cpu = cpu; 292 sample->backtrace = backtrace; 293 c->samples = sample; 294 295 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 296 c->total_time += (end-start); 297 p->total_time += (end-start); 298 } 299 300 if (c->start_time == 0 || c->start_time > start) 301 c->start_time = start; 302 if (p->start_time == 0 || p->start_time > start) 303 p->start_time = start; 304 } 305 306 #define MAX_CPUS 4096 307 308 static u64 cpus_cstate_start_times[MAX_CPUS]; 309 static int cpus_cstate_state[MAX_CPUS]; 310 static u64 cpus_pstate_start_times[MAX_CPUS]; 311 static u64 cpus_pstate_state[MAX_CPUS]; 312 313 static int process_comm_event(struct perf_tool *tool, 314 union perf_event *event, 315 struct perf_sample *sample __maybe_unused, 316 struct machine *machine __maybe_unused) 317 { 318 struct timechart *tchart = container_of(tool, struct timechart, tool); 319 pid_set_comm(tchart, event->comm.tid, event->comm.comm); 320 return 0; 321 } 322 323 static int process_fork_event(struct perf_tool *tool, 324 union perf_event *event, 325 struct perf_sample *sample __maybe_unused, 326 struct machine *machine __maybe_unused) 327 { 328 struct timechart *tchart = container_of(tool, struct timechart, tool); 329 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); 330 return 0; 331 } 332 333 static int process_exit_event(struct perf_tool *tool, 334 union perf_event *event, 335 struct perf_sample *sample __maybe_unused, 336 struct machine *machine __maybe_unused) 337 { 338 struct timechart *tchart = container_of(tool, struct timechart, tool); 339 pid_exit(tchart, event->fork.pid, event->fork.time); 340 return 0; 341 } 342 343 #ifdef SUPPORT_OLD_POWER_EVENTS 344 static int use_old_power_events; 345 #endif 346 347 static void c_state_start(int cpu, u64 timestamp, int state) 348 { 349 cpus_cstate_start_times[cpu] = timestamp; 350 cpus_cstate_state[cpu] = state; 351 } 352 353 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) 354 { 355 struct power_event *pwr = zalloc(sizeof(*pwr)); 356 357 if (!pwr) 358 return; 359 360 pwr->state = cpus_cstate_state[cpu]; 361 pwr->start_time = cpus_cstate_start_times[cpu]; 362 pwr->end_time = timestamp; 363 pwr->cpu = cpu; 364 pwr->type = CSTATE; 365 pwr->next = tchart->power_events; 366 367 tchart->power_events = pwr; 368 } 369 370 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) 371 { 372 struct power_event *pwr; 373 374 if (new_freq > 8000000) /* detect invalid data */ 375 return; 376 377 pwr = zalloc(sizeof(*pwr)); 378 if (!pwr) 379 return; 380 381 pwr->state = cpus_pstate_state[cpu]; 382 pwr->start_time = cpus_pstate_start_times[cpu]; 383 pwr->end_time = timestamp; 384 pwr->cpu = cpu; 385 pwr->type = PSTATE; 386 pwr->next = tchart->power_events; 387 388 if (!pwr->start_time) 389 pwr->start_time = tchart->first_time; 390 391 tchart->power_events = pwr; 392 393 cpus_pstate_state[cpu] = new_freq; 394 cpus_pstate_start_times[cpu] = timestamp; 395 396 if ((u64)new_freq > tchart->max_freq) 397 tchart->max_freq = new_freq; 398 399 if (new_freq < tchart->min_freq || tchart->min_freq == 0) 400 tchart->min_freq = new_freq; 401 402 if (new_freq == tchart->max_freq - 1000) 403 tchart->turbo_frequency = tchart->max_freq; 404 } 405 406 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, 407 int waker, int wakee, u8 flags, const char *backtrace) 408 { 409 struct per_pid *p; 410 struct wake_event *we = zalloc(sizeof(*we)); 411 412 if (!we) 413 return; 414 415 we->time = timestamp; 416 we->waker = waker; 417 we->backtrace = backtrace; 418 419 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) 420 we->waker = -1; 421 422 we->wakee = wakee; 423 we->next = tchart->wake_events; 424 tchart->wake_events = we; 425 p = find_create_pid(tchart, we->wakee); 426 427 if (p && p->current && p->current->state == TYPE_NONE) { 428 p->current->state_since = timestamp; 429 p->current->state = TYPE_WAITING; 430 } 431 if (p && p->current && p->current->state == TYPE_BLOCKED) { 432 pid_put_sample(tchart, p->pid, p->current->state, cpu, 433 p->current->state_since, timestamp, NULL); 434 p->current->state_since = timestamp; 435 p->current->state = TYPE_WAITING; 436 } 437 } 438 439 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, 440 int prev_pid, int next_pid, u64 prev_state, 441 const char *backtrace) 442 { 443 struct per_pid *p = NULL, *prev_p; 444 445 prev_p = find_create_pid(tchart, prev_pid); 446 447 p = find_create_pid(tchart, next_pid); 448 449 if (prev_p->current && prev_p->current->state != TYPE_NONE) 450 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, 451 prev_p->current->state_since, timestamp, 452 backtrace); 453 if (p && p->current) { 454 if (p->current->state != TYPE_NONE) 455 pid_put_sample(tchart, next_pid, p->current->state, cpu, 456 p->current->state_since, timestamp, 457 backtrace); 458 459 p->current->state_since = timestamp; 460 p->current->state = TYPE_RUNNING; 461 } 462 463 if (prev_p->current) { 464 prev_p->current->state = TYPE_NONE; 465 prev_p->current->state_since = timestamp; 466 if (prev_state & 2) 467 prev_p->current->state = TYPE_BLOCKED; 468 if (prev_state == 0) 469 prev_p->current->state = TYPE_WAITING; 470 } 471 } 472 473 static const char *cat_backtrace(union perf_event *event, 474 struct perf_sample *sample, 475 struct machine *machine) 476 { 477 struct addr_location al; 478 unsigned int i; 479 char *p = NULL; 480 size_t p_len; 481 u8 cpumode = PERF_RECORD_MISC_USER; 482 struct addr_location tal; 483 struct ip_callchain *chain = sample->callchain; 484 FILE *f = open_memstream(&p, &p_len); 485 486 if (!f) { 487 perror("open_memstream error"); 488 return NULL; 489 } 490 491 if (!chain) 492 goto exit; 493 494 if (machine__resolve(machine, &al, sample) < 0) { 495 fprintf(stderr, "problem processing %d event, skipping it.\n", 496 event->header.type); 497 goto exit; 498 } 499 500 for (i = 0; i < chain->nr; i++) { 501 u64 ip; 502 503 if (callchain_param.order == ORDER_CALLEE) 504 ip = chain->ips[i]; 505 else 506 ip = chain->ips[chain->nr - i - 1]; 507 508 if (ip >= PERF_CONTEXT_MAX) { 509 switch (ip) { 510 case PERF_CONTEXT_HV: 511 cpumode = PERF_RECORD_MISC_HYPERVISOR; 512 break; 513 case PERF_CONTEXT_KERNEL: 514 cpumode = PERF_RECORD_MISC_KERNEL; 515 break; 516 case PERF_CONTEXT_USER: 517 cpumode = PERF_RECORD_MISC_USER; 518 break; 519 default: 520 pr_debug("invalid callchain context: " 521 "%"PRId64"\n", (s64) ip); 522 523 /* 524 * It seems the callchain is corrupted. 525 * Discard all. 526 */ 527 zfree(&p); 528 goto exit_put; 529 } 530 continue; 531 } 532 533 tal.filtered = 0; 534 if (thread__find_symbol(al.thread, cpumode, ip, &tal)) 535 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name); 536 else 537 fprintf(f, "..... %016" PRIx64 "\n", ip); 538 } 539 exit_put: 540 addr_location__put(&al); 541 exit: 542 fclose(f); 543 544 return p; 545 } 546 547 typedef int (*tracepoint_handler)(struct timechart *tchart, 548 struct evsel *evsel, 549 struct perf_sample *sample, 550 const char *backtrace); 551 552 static int process_sample_event(struct perf_tool *tool, 553 union perf_event *event, 554 struct perf_sample *sample, 555 struct evsel *evsel, 556 struct machine *machine) 557 { 558 struct timechart *tchart = container_of(tool, struct timechart, tool); 559 560 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) { 561 if (!tchart->first_time || tchart->first_time > sample->time) 562 tchart->first_time = sample->time; 563 if (tchart->last_time < sample->time) 564 tchart->last_time = sample->time; 565 } 566 567 if (evsel->handler != NULL) { 568 tracepoint_handler f = evsel->handler; 569 return f(tchart, evsel, sample, 570 cat_backtrace(event, sample, machine)); 571 } 572 573 return 0; 574 } 575 576 static int 577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused, 578 struct evsel *evsel, 579 struct perf_sample *sample, 580 const char *backtrace __maybe_unused) 581 { 582 u32 state = evsel__intval(evsel, sample, "state"); 583 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 584 585 if (state == (u32)PWR_EVENT_EXIT) 586 c_state_end(tchart, cpu_id, sample->time); 587 else 588 c_state_start(cpu_id, sample->time, state); 589 return 0; 590 } 591 592 static int 593 process_sample_cpu_frequency(struct timechart *tchart, 594 struct evsel *evsel, 595 struct perf_sample *sample, 596 const char *backtrace __maybe_unused) 597 { 598 u32 state = evsel__intval(evsel, sample, "state"); 599 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 600 601 p_state_change(tchart, cpu_id, sample->time, state); 602 return 0; 603 } 604 605 static int 606 process_sample_sched_wakeup(struct timechart *tchart, 607 struct evsel *evsel, 608 struct perf_sample *sample, 609 const char *backtrace) 610 { 611 u8 flags = evsel__intval(evsel, sample, "common_flags"); 612 int waker = evsel__intval(evsel, sample, "common_pid"); 613 int wakee = evsel__intval(evsel, sample, "pid"); 614 615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); 616 return 0; 617 } 618 619 static int 620 process_sample_sched_switch(struct timechart *tchart, 621 struct evsel *evsel, 622 struct perf_sample *sample, 623 const char *backtrace) 624 { 625 int prev_pid = evsel__intval(evsel, sample, "prev_pid"); 626 int next_pid = evsel__intval(evsel, sample, "next_pid"); 627 u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 628 629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, 630 prev_state, backtrace); 631 return 0; 632 } 633 634 #ifdef SUPPORT_OLD_POWER_EVENTS 635 static int 636 process_sample_power_start(struct timechart *tchart __maybe_unused, 637 struct evsel *evsel, 638 struct perf_sample *sample, 639 const char *backtrace __maybe_unused) 640 { 641 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 642 u64 value = evsel__intval(evsel, sample, "value"); 643 644 c_state_start(cpu_id, sample->time, value); 645 return 0; 646 } 647 648 static int 649 process_sample_power_end(struct timechart *tchart, 650 struct evsel *evsel __maybe_unused, 651 struct perf_sample *sample, 652 const char *backtrace __maybe_unused) 653 { 654 c_state_end(tchart, sample->cpu, sample->time); 655 return 0; 656 } 657 658 static int 659 process_sample_power_frequency(struct timechart *tchart, 660 struct evsel *evsel, 661 struct perf_sample *sample, 662 const char *backtrace __maybe_unused) 663 { 664 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id"); 665 u64 value = evsel__intval(evsel, sample, "value"); 666 667 p_state_change(tchart, cpu_id, sample->time, value); 668 return 0; 669 } 670 #endif /* SUPPORT_OLD_POWER_EVENTS */ 671 672 /* 673 * After the last sample we need to wrap up the current C/P state 674 * and close out each CPU for these. 675 */ 676 static void end_sample_processing(struct timechart *tchart) 677 { 678 u64 cpu; 679 struct power_event *pwr; 680 681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) { 682 /* C state */ 683 #if 0 684 pwr = zalloc(sizeof(*pwr)); 685 if (!pwr) 686 return; 687 688 pwr->state = cpus_cstate_state[cpu]; 689 pwr->start_time = cpus_cstate_start_times[cpu]; 690 pwr->end_time = tchart->last_time; 691 pwr->cpu = cpu; 692 pwr->type = CSTATE; 693 pwr->next = tchart->power_events; 694 695 tchart->power_events = pwr; 696 #endif 697 /* P state */ 698 699 pwr = zalloc(sizeof(*pwr)); 700 if (!pwr) 701 return; 702 703 pwr->state = cpus_pstate_state[cpu]; 704 pwr->start_time = cpus_pstate_start_times[cpu]; 705 pwr->end_time = tchart->last_time; 706 pwr->cpu = cpu; 707 pwr->type = PSTATE; 708 pwr->next = tchart->power_events; 709 710 if (!pwr->start_time) 711 pwr->start_time = tchart->first_time; 712 if (!pwr->state) 713 pwr->state = tchart->min_freq; 714 tchart->power_events = pwr; 715 } 716 } 717 718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, 719 u64 start, int fd) 720 { 721 struct per_pid *p = find_create_pid(tchart, pid); 722 struct per_pidcomm *c = p->current; 723 struct io_sample *sample; 724 struct io_sample *prev; 725 726 if (!c) { 727 c = zalloc(sizeof(*c)); 728 if (!c) 729 return -ENOMEM; 730 p->current = c; 731 c->next = p->all; 732 p->all = c; 733 } 734 735 prev = c->io_samples; 736 737 if (prev && prev->start_time && !prev->end_time) { 738 pr_warning("Skip invalid start event: " 739 "previous event already started!\n"); 740 741 /* remove previous event that has been started, 742 * we are not sure we will ever get an end for it */ 743 c->io_samples = prev->next; 744 free(prev); 745 return 0; 746 } 747 748 sample = zalloc(sizeof(*sample)); 749 if (!sample) 750 return -ENOMEM; 751 sample->start_time = start; 752 sample->type = type; 753 sample->fd = fd; 754 sample->next = c->io_samples; 755 c->io_samples = sample; 756 757 if (c->start_time == 0 || c->start_time > start) 758 c->start_time = start; 759 760 return 0; 761 } 762 763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type, 764 u64 end, long ret) 765 { 766 struct per_pid *p = find_create_pid(tchart, pid); 767 struct per_pidcomm *c = p->current; 768 struct io_sample *sample, *prev; 769 770 if (!c) { 771 pr_warning("Invalid pidcomm!\n"); 772 return -1; 773 } 774 775 sample = c->io_samples; 776 777 if (!sample) /* skip partially captured events */ 778 return 0; 779 780 if (sample->end_time) { 781 pr_warning("Skip invalid end event: " 782 "previous event already ended!\n"); 783 return 0; 784 } 785 786 if (sample->type != type) { 787 pr_warning("Skip invalid end event: invalid event type!\n"); 788 return 0; 789 } 790 791 sample->end_time = end; 792 prev = sample->next; 793 794 /* we want to be able to see small and fast transfers, so make them 795 * at least min_time long, but don't overlap them */ 796 if (sample->end_time - sample->start_time < tchart->min_time) 797 sample->end_time = sample->start_time + tchart->min_time; 798 if (prev && sample->start_time < prev->end_time) { 799 if (prev->err) /* try to make errors more visible */ 800 sample->start_time = prev->end_time; 801 else 802 prev->end_time = sample->start_time; 803 } 804 805 if (ret < 0) { 806 sample->err = ret; 807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || 808 type == IOTYPE_TX || type == IOTYPE_RX) { 809 810 if ((u64)ret > c->max_bytes) 811 c->max_bytes = ret; 812 813 c->total_bytes += ret; 814 p->total_bytes += ret; 815 sample->bytes = ret; 816 } 817 818 /* merge two requests to make svg smaller and render-friendly */ 819 if (prev && 820 prev->type == sample->type && 821 prev->err == sample->err && 822 prev->fd == sample->fd && 823 prev->end_time + tchart->merge_dist >= sample->start_time) { 824 825 sample->bytes += prev->bytes; 826 sample->merges += prev->merges + 1; 827 828 sample->start_time = prev->start_time; 829 sample->next = prev->next; 830 free(prev); 831 832 if (!sample->err && sample->bytes > c->max_bytes) 833 c->max_bytes = sample->bytes; 834 } 835 836 tchart->io_events++; 837 838 return 0; 839 } 840 841 static int 842 process_enter_read(struct timechart *tchart, 843 struct evsel *evsel, 844 struct perf_sample *sample) 845 { 846 long fd = evsel__intval(evsel, sample, "fd"); 847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, 848 sample->time, fd); 849 } 850 851 static int 852 process_exit_read(struct timechart *tchart, 853 struct evsel *evsel, 854 struct perf_sample *sample) 855 { 856 long ret = evsel__intval(evsel, sample, "ret"); 857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, 858 sample->time, ret); 859 } 860 861 static int 862 process_enter_write(struct timechart *tchart, 863 struct evsel *evsel, 864 struct perf_sample *sample) 865 { 866 long fd = evsel__intval(evsel, sample, "fd"); 867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, 868 sample->time, fd); 869 } 870 871 static int 872 process_exit_write(struct timechart *tchart, 873 struct evsel *evsel, 874 struct perf_sample *sample) 875 { 876 long ret = evsel__intval(evsel, sample, "ret"); 877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, 878 sample->time, ret); 879 } 880 881 static int 882 process_enter_sync(struct timechart *tchart, 883 struct evsel *evsel, 884 struct perf_sample *sample) 885 { 886 long fd = evsel__intval(evsel, sample, "fd"); 887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, 888 sample->time, fd); 889 } 890 891 static int 892 process_exit_sync(struct timechart *tchart, 893 struct evsel *evsel, 894 struct perf_sample *sample) 895 { 896 long ret = evsel__intval(evsel, sample, "ret"); 897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, 898 sample->time, ret); 899 } 900 901 static int 902 process_enter_tx(struct timechart *tchart, 903 struct evsel *evsel, 904 struct perf_sample *sample) 905 { 906 long fd = evsel__intval(evsel, sample, "fd"); 907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, 908 sample->time, fd); 909 } 910 911 static int 912 process_exit_tx(struct timechart *tchart, 913 struct evsel *evsel, 914 struct perf_sample *sample) 915 { 916 long ret = evsel__intval(evsel, sample, "ret"); 917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, 918 sample->time, ret); 919 } 920 921 static int 922 process_enter_rx(struct timechart *tchart, 923 struct evsel *evsel, 924 struct perf_sample *sample) 925 { 926 long fd = evsel__intval(evsel, sample, "fd"); 927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, 928 sample->time, fd); 929 } 930 931 static int 932 process_exit_rx(struct timechart *tchart, 933 struct evsel *evsel, 934 struct perf_sample *sample) 935 { 936 long ret = evsel__intval(evsel, sample, "ret"); 937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, 938 sample->time, ret); 939 } 940 941 static int 942 process_enter_poll(struct timechart *tchart, 943 struct evsel *evsel, 944 struct perf_sample *sample) 945 { 946 long fd = evsel__intval(evsel, sample, "fd"); 947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, 948 sample->time, fd); 949 } 950 951 static int 952 process_exit_poll(struct timechart *tchart, 953 struct evsel *evsel, 954 struct perf_sample *sample) 955 { 956 long ret = evsel__intval(evsel, sample, "ret"); 957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, 958 sample->time, ret); 959 } 960 961 /* 962 * Sort the pid datastructure 963 */ 964 static void sort_pids(struct timechart *tchart) 965 { 966 struct per_pid *new_list, *p, *cursor, *prev; 967 /* sort by ppid first, then by pid, lowest to highest */ 968 969 new_list = NULL; 970 971 while (tchart->all_data) { 972 p = tchart->all_data; 973 tchart->all_data = p->next; 974 p->next = NULL; 975 976 if (new_list == NULL) { 977 new_list = p; 978 p->next = NULL; 979 continue; 980 } 981 prev = NULL; 982 cursor = new_list; 983 while (cursor) { 984 if (cursor->ppid > p->ppid || 985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 986 /* must insert before */ 987 if (prev) { 988 p->next = prev->next; 989 prev->next = p; 990 cursor = NULL; 991 continue; 992 } else { 993 p->next = new_list; 994 new_list = p; 995 cursor = NULL; 996 continue; 997 } 998 } 999 1000 prev = cursor; 1001 cursor = cursor->next; 1002 if (!cursor) 1003 prev->next = p; 1004 } 1005 } 1006 tchart->all_data = new_list; 1007 } 1008 1009 1010 static void draw_c_p_states(struct timechart *tchart) 1011 { 1012 struct power_event *pwr; 1013 pwr = tchart->power_events; 1014 1015 /* 1016 * two pass drawing so that the P state bars are on top of the C state blocks 1017 */ 1018 while (pwr) { 1019 if (pwr->type == CSTATE) 1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1021 pwr = pwr->next; 1022 } 1023 1024 pwr = tchart->power_events; 1025 while (pwr) { 1026 if (pwr->type == PSTATE) { 1027 if (!pwr->state) 1028 pwr->state = tchart->min_freq; 1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1030 } 1031 pwr = pwr->next; 1032 } 1033 } 1034 1035 static void draw_wakeups(struct timechart *tchart) 1036 { 1037 struct wake_event *we; 1038 struct per_pid *p; 1039 struct per_pidcomm *c; 1040 1041 we = tchart->wake_events; 1042 while (we) { 1043 int from = 0, to = 0; 1044 char *task_from = NULL, *task_to = NULL; 1045 1046 /* locate the column of the waker and wakee */ 1047 p = tchart->all_data; 1048 while (p) { 1049 if (p->pid == we->waker || p->pid == we->wakee) { 1050 c = p->all; 1051 while (c) { 1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 1053 if (p->pid == we->waker && !from) { 1054 from = c->Y; 1055 task_from = strdup(c->comm); 1056 } 1057 if (p->pid == we->wakee && !to) { 1058 to = c->Y; 1059 task_to = strdup(c->comm); 1060 } 1061 } 1062 c = c->next; 1063 } 1064 c = p->all; 1065 while (c) { 1066 if (p->pid == we->waker && !from) { 1067 from = c->Y; 1068 task_from = strdup(c->comm); 1069 } 1070 if (p->pid == we->wakee && !to) { 1071 to = c->Y; 1072 task_to = strdup(c->comm); 1073 } 1074 c = c->next; 1075 } 1076 } 1077 p = p->next; 1078 } 1079 1080 if (!task_from) { 1081 task_from = malloc(40); 1082 sprintf(task_from, "[%i]", we->waker); 1083 } 1084 if (!task_to) { 1085 task_to = malloc(40); 1086 sprintf(task_to, "[%i]", we->wakee); 1087 } 1088 1089 if (we->waker == -1) 1090 svg_interrupt(we->time, to, we->backtrace); 1091 else if (from && to && abs(from - to) == 1) 1092 svg_wakeline(we->time, from, to, we->backtrace); 1093 else 1094 svg_partial_wakeline(we->time, from, task_from, to, 1095 task_to, we->backtrace); 1096 we = we->next; 1097 1098 free(task_from); 1099 free(task_to); 1100 } 1101 } 1102 1103 static void draw_cpu_usage(struct timechart *tchart) 1104 { 1105 struct per_pid *p; 1106 struct per_pidcomm *c; 1107 struct cpu_sample *sample; 1108 p = tchart->all_data; 1109 while (p) { 1110 c = p->all; 1111 while (c) { 1112 sample = c->samples; 1113 while (sample) { 1114 if (sample->type == TYPE_RUNNING) { 1115 svg_process(sample->cpu, 1116 sample->start_time, 1117 sample->end_time, 1118 p->pid, 1119 c->comm, 1120 sample->backtrace); 1121 } 1122 1123 sample = sample->next; 1124 } 1125 c = c->next; 1126 } 1127 p = p->next; 1128 } 1129 } 1130 1131 static void draw_io_bars(struct timechart *tchart) 1132 { 1133 const char *suf; 1134 double bytes; 1135 char comm[256]; 1136 struct per_pid *p; 1137 struct per_pidcomm *c; 1138 struct io_sample *sample; 1139 int Y = 1; 1140 1141 p = tchart->all_data; 1142 while (p) { 1143 c = p->all; 1144 while (c) { 1145 if (!c->display) { 1146 c->Y = 0; 1147 c = c->next; 1148 continue; 1149 } 1150 1151 svg_box(Y, c->start_time, c->end_time, "process3"); 1152 sample = c->io_samples; 1153 for (sample = c->io_samples; sample; sample = sample->next) { 1154 double h = (double)sample->bytes / c->max_bytes; 1155 1156 if (tchart->skip_eagain && 1157 sample->err == -EAGAIN) 1158 continue; 1159 1160 if (sample->err) 1161 h = 1; 1162 1163 if (sample->type == IOTYPE_SYNC) 1164 svg_fbox(Y, 1165 sample->start_time, 1166 sample->end_time, 1167 1, 1168 sample->err ? "error" : "sync", 1169 sample->fd, 1170 sample->err, 1171 sample->merges); 1172 else if (sample->type == IOTYPE_POLL) 1173 svg_fbox(Y, 1174 sample->start_time, 1175 sample->end_time, 1176 1, 1177 sample->err ? "error" : "poll", 1178 sample->fd, 1179 sample->err, 1180 sample->merges); 1181 else if (sample->type == IOTYPE_READ) 1182 svg_ubox(Y, 1183 sample->start_time, 1184 sample->end_time, 1185 h, 1186 sample->err ? "error" : "disk", 1187 sample->fd, 1188 sample->err, 1189 sample->merges); 1190 else if (sample->type == IOTYPE_WRITE) 1191 svg_lbox(Y, 1192 sample->start_time, 1193 sample->end_time, 1194 h, 1195 sample->err ? "error" : "disk", 1196 sample->fd, 1197 sample->err, 1198 sample->merges); 1199 else if (sample->type == IOTYPE_RX) 1200 svg_ubox(Y, 1201 sample->start_time, 1202 sample->end_time, 1203 h, 1204 sample->err ? "error" : "net", 1205 sample->fd, 1206 sample->err, 1207 sample->merges); 1208 else if (sample->type == IOTYPE_TX) 1209 svg_lbox(Y, 1210 sample->start_time, 1211 sample->end_time, 1212 h, 1213 sample->err ? "error" : "net", 1214 sample->fd, 1215 sample->err, 1216 sample->merges); 1217 } 1218 1219 suf = ""; 1220 bytes = c->total_bytes; 1221 if (bytes > 1024) { 1222 bytes = bytes / 1024; 1223 suf = "K"; 1224 } 1225 if (bytes > 1024) { 1226 bytes = bytes / 1024; 1227 suf = "M"; 1228 } 1229 if (bytes > 1024) { 1230 bytes = bytes / 1024; 1231 suf = "G"; 1232 } 1233 1234 1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); 1236 svg_text(Y, c->start_time, comm); 1237 1238 c->Y = Y; 1239 Y++; 1240 c = c->next; 1241 } 1242 p = p->next; 1243 } 1244 } 1245 1246 static void draw_process_bars(struct timechart *tchart) 1247 { 1248 struct per_pid *p; 1249 struct per_pidcomm *c; 1250 struct cpu_sample *sample; 1251 int Y = 0; 1252 1253 Y = 2 * tchart->numcpus + 2; 1254 1255 p = tchart->all_data; 1256 while (p) { 1257 c = p->all; 1258 while (c) { 1259 if (!c->display) { 1260 c->Y = 0; 1261 c = c->next; 1262 continue; 1263 } 1264 1265 svg_box(Y, c->start_time, c->end_time, "process"); 1266 sample = c->samples; 1267 while (sample) { 1268 if (sample->type == TYPE_RUNNING) 1269 svg_running(Y, sample->cpu, 1270 sample->start_time, 1271 sample->end_time, 1272 sample->backtrace); 1273 if (sample->type == TYPE_BLOCKED) 1274 svg_blocked(Y, sample->cpu, 1275 sample->start_time, 1276 sample->end_time, 1277 sample->backtrace); 1278 if (sample->type == TYPE_WAITING) 1279 svg_waiting(Y, sample->cpu, 1280 sample->start_time, 1281 sample->end_time, 1282 sample->backtrace); 1283 sample = sample->next; 1284 } 1285 1286 if (c->comm) { 1287 char comm[256]; 1288 if (c->total_time > 5000000000) /* 5 seconds */ 1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC); 1290 else 1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC); 1292 1293 svg_text(Y, c->start_time, comm); 1294 } 1295 c->Y = Y; 1296 Y++; 1297 c = c->next; 1298 } 1299 p = p->next; 1300 } 1301 } 1302 1303 static void add_process_filter(const char *string) 1304 { 1305 int pid = strtoull(string, NULL, 10); 1306 struct process_filter *filt = malloc(sizeof(*filt)); 1307 1308 if (!filt) 1309 return; 1310 1311 filt->name = strdup(string); 1312 filt->pid = pid; 1313 filt->next = process_filter; 1314 1315 process_filter = filt; 1316 } 1317 1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 1319 { 1320 struct process_filter *filt; 1321 if (!process_filter) 1322 return 1; 1323 1324 filt = process_filter; 1325 while (filt) { 1326 if (filt->pid && p->pid == filt->pid) 1327 return 1; 1328 if (strcmp(filt->name, c->comm) == 0) 1329 return 1; 1330 filt = filt->next; 1331 } 1332 return 0; 1333 } 1334 1335 static int determine_display_tasks_filtered(struct timechart *tchart) 1336 { 1337 struct per_pid *p; 1338 struct per_pidcomm *c; 1339 int count = 0; 1340 1341 p = tchart->all_data; 1342 while (p) { 1343 p->display = 0; 1344 if (p->start_time == 1) 1345 p->start_time = tchart->first_time; 1346 1347 /* no exit marker, task kept running to the end */ 1348 if (p->end_time == 0) 1349 p->end_time = tchart->last_time; 1350 1351 c = p->all; 1352 1353 while (c) { 1354 c->display = 0; 1355 1356 if (c->start_time == 1) 1357 c->start_time = tchart->first_time; 1358 1359 if (passes_filter(p, c)) { 1360 c->display = 1; 1361 p->display = 1; 1362 count++; 1363 } 1364 1365 if (c->end_time == 0) 1366 c->end_time = tchart->last_time; 1367 1368 c = c->next; 1369 } 1370 p = p->next; 1371 } 1372 return count; 1373 } 1374 1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold) 1376 { 1377 struct per_pid *p; 1378 struct per_pidcomm *c; 1379 int count = 0; 1380 1381 p = tchart->all_data; 1382 while (p) { 1383 p->display = 0; 1384 if (p->start_time == 1) 1385 p->start_time = tchart->first_time; 1386 1387 /* no exit marker, task kept running to the end */ 1388 if (p->end_time == 0) 1389 p->end_time = tchart->last_time; 1390 if (p->total_time >= threshold) 1391 p->display = 1; 1392 1393 c = p->all; 1394 1395 while (c) { 1396 c->display = 0; 1397 1398 if (c->start_time == 1) 1399 c->start_time = tchart->first_time; 1400 1401 if (c->total_time >= threshold) { 1402 c->display = 1; 1403 count++; 1404 } 1405 1406 if (c->end_time == 0) 1407 c->end_time = tchart->last_time; 1408 1409 c = c->next; 1410 } 1411 p = p->next; 1412 } 1413 return count; 1414 } 1415 1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) 1417 { 1418 struct per_pid *p; 1419 struct per_pidcomm *c; 1420 int count = 0; 1421 1422 p = timechart->all_data; 1423 while (p) { 1424 /* no exit marker, task kept running to the end */ 1425 if (p->end_time == 0) 1426 p->end_time = timechart->last_time; 1427 1428 c = p->all; 1429 1430 while (c) { 1431 c->display = 0; 1432 1433 if (c->total_bytes >= threshold) { 1434 c->display = 1; 1435 count++; 1436 } 1437 1438 if (c->end_time == 0) 1439 c->end_time = timechart->last_time; 1440 1441 c = c->next; 1442 } 1443 p = p->next; 1444 } 1445 return count; 1446 } 1447 1448 #define BYTES_THRESH (1 * 1024 * 1024) 1449 #define TIME_THRESH 10000000 1450 1451 static void write_svg_file(struct timechart *tchart, const char *filename) 1452 { 1453 u64 i; 1454 int count; 1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; 1456 1457 if (tchart->power_only) 1458 tchart->proc_num = 0; 1459 1460 /* We'd like to show at least proc_num tasks; 1461 * be less picky if we have fewer */ 1462 do { 1463 if (process_filter) 1464 count = determine_display_tasks_filtered(tchart); 1465 else if (tchart->io_events) 1466 count = determine_display_io_tasks(tchart, thresh); 1467 else 1468 count = determine_display_tasks(tchart, thresh); 1469 thresh /= 10; 1470 } while (!process_filter && thresh && count < tchart->proc_num); 1471 1472 if (!tchart->proc_num) 1473 count = 0; 1474 1475 if (tchart->io_events) { 1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time); 1477 1478 svg_time_grid(0.5); 1479 svg_io_legenda(); 1480 1481 draw_io_bars(tchart); 1482 } else { 1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); 1484 1485 svg_time_grid(0); 1486 1487 svg_legenda(); 1488 1489 for (i = 0; i < tchart->numcpus; i++) 1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); 1491 1492 draw_cpu_usage(tchart); 1493 if (tchart->proc_num) 1494 draw_process_bars(tchart); 1495 if (!tchart->tasks_only) 1496 draw_c_p_states(tchart); 1497 if (tchart->proc_num) 1498 draw_wakeups(tchart); 1499 } 1500 1501 svg_close(); 1502 } 1503 1504 static int process_header(struct perf_file_section *section __maybe_unused, 1505 struct perf_header *ph, 1506 int feat, 1507 int fd __maybe_unused, 1508 void *data) 1509 { 1510 struct timechart *tchart = data; 1511 1512 switch (feat) { 1513 case HEADER_NRCPUS: 1514 tchart->numcpus = ph->env.nr_cpus_avail; 1515 break; 1516 1517 case HEADER_CPU_TOPOLOGY: 1518 if (!tchart->topology) 1519 break; 1520 1521 if (svg_build_topology_map(&ph->env)) 1522 fprintf(stderr, "problem building topology\n"); 1523 break; 1524 1525 default: 1526 break; 1527 } 1528 1529 return 0; 1530 } 1531 1532 static int __cmd_timechart(struct timechart *tchart, const char *output_name) 1533 { 1534 const struct evsel_str_handler power_tracepoints[] = { 1535 { "power:cpu_idle", process_sample_cpu_idle }, 1536 { "power:cpu_frequency", process_sample_cpu_frequency }, 1537 { "sched:sched_wakeup", process_sample_sched_wakeup }, 1538 { "sched:sched_switch", process_sample_sched_switch }, 1539 #ifdef SUPPORT_OLD_POWER_EVENTS 1540 { "power:power_start", process_sample_power_start }, 1541 { "power:power_end", process_sample_power_end }, 1542 { "power:power_frequency", process_sample_power_frequency }, 1543 #endif 1544 1545 { "syscalls:sys_enter_read", process_enter_read }, 1546 { "syscalls:sys_enter_pread64", process_enter_read }, 1547 { "syscalls:sys_enter_readv", process_enter_read }, 1548 { "syscalls:sys_enter_preadv", process_enter_read }, 1549 { "syscalls:sys_enter_write", process_enter_write }, 1550 { "syscalls:sys_enter_pwrite64", process_enter_write }, 1551 { "syscalls:sys_enter_writev", process_enter_write }, 1552 { "syscalls:sys_enter_pwritev", process_enter_write }, 1553 { "syscalls:sys_enter_sync", process_enter_sync }, 1554 { "syscalls:sys_enter_sync_file_range", process_enter_sync }, 1555 { "syscalls:sys_enter_fsync", process_enter_sync }, 1556 { "syscalls:sys_enter_msync", process_enter_sync }, 1557 { "syscalls:sys_enter_recvfrom", process_enter_rx }, 1558 { "syscalls:sys_enter_recvmmsg", process_enter_rx }, 1559 { "syscalls:sys_enter_recvmsg", process_enter_rx }, 1560 { "syscalls:sys_enter_sendto", process_enter_tx }, 1561 { "syscalls:sys_enter_sendmsg", process_enter_tx }, 1562 { "syscalls:sys_enter_sendmmsg", process_enter_tx }, 1563 { "syscalls:sys_enter_epoll_pwait", process_enter_poll }, 1564 { "syscalls:sys_enter_epoll_wait", process_enter_poll }, 1565 { "syscalls:sys_enter_poll", process_enter_poll }, 1566 { "syscalls:sys_enter_ppoll", process_enter_poll }, 1567 { "syscalls:sys_enter_pselect6", process_enter_poll }, 1568 { "syscalls:sys_enter_select", process_enter_poll }, 1569 1570 { "syscalls:sys_exit_read", process_exit_read }, 1571 { "syscalls:sys_exit_pread64", process_exit_read }, 1572 { "syscalls:sys_exit_readv", process_exit_read }, 1573 { "syscalls:sys_exit_preadv", process_exit_read }, 1574 { "syscalls:sys_exit_write", process_exit_write }, 1575 { "syscalls:sys_exit_pwrite64", process_exit_write }, 1576 { "syscalls:sys_exit_writev", process_exit_write }, 1577 { "syscalls:sys_exit_pwritev", process_exit_write }, 1578 { "syscalls:sys_exit_sync", process_exit_sync }, 1579 { "syscalls:sys_exit_sync_file_range", process_exit_sync }, 1580 { "syscalls:sys_exit_fsync", process_exit_sync }, 1581 { "syscalls:sys_exit_msync", process_exit_sync }, 1582 { "syscalls:sys_exit_recvfrom", process_exit_rx }, 1583 { "syscalls:sys_exit_recvmmsg", process_exit_rx }, 1584 { "syscalls:sys_exit_recvmsg", process_exit_rx }, 1585 { "syscalls:sys_exit_sendto", process_exit_tx }, 1586 { "syscalls:sys_exit_sendmsg", process_exit_tx }, 1587 { "syscalls:sys_exit_sendmmsg", process_exit_tx }, 1588 { "syscalls:sys_exit_epoll_pwait", process_exit_poll }, 1589 { "syscalls:sys_exit_epoll_wait", process_exit_poll }, 1590 { "syscalls:sys_exit_poll", process_exit_poll }, 1591 { "syscalls:sys_exit_ppoll", process_exit_poll }, 1592 { "syscalls:sys_exit_pselect6", process_exit_poll }, 1593 { "syscalls:sys_exit_select", process_exit_poll }, 1594 }; 1595 struct perf_data data = { 1596 .path = input_name, 1597 .mode = PERF_DATA_MODE_READ, 1598 .force = tchart->force, 1599 }; 1600 1601 struct perf_session *session = perf_session__new(&data, &tchart->tool); 1602 int ret = -EINVAL; 1603 1604 if (IS_ERR(session)) 1605 return PTR_ERR(session); 1606 1607 symbol__init(&session->header.env); 1608 1609 (void)perf_header__process_sections(&session->header, 1610 perf_data__fd(session->data), 1611 tchart, 1612 process_header); 1613 1614 if (!perf_session__has_traces(session, "timechart record")) 1615 goto out_delete; 1616 1617 if (perf_session__set_tracepoints_handlers(session, 1618 power_tracepoints)) { 1619 pr_err("Initializing session tracepoint handlers failed\n"); 1620 goto out_delete; 1621 } 1622 1623 ret = perf_session__process_events(session); 1624 if (ret) 1625 goto out_delete; 1626 1627 end_sample_processing(tchart); 1628 1629 sort_pids(tchart); 1630 1631 write_svg_file(tchart, output_name); 1632 1633 pr_info("Written %2.1f seconds of trace to %s.\n", 1634 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name); 1635 out_delete: 1636 perf_session__delete(session); 1637 return ret; 1638 } 1639 1640 static int timechart__io_record(int argc, const char **argv) 1641 { 1642 unsigned int rec_argc, i; 1643 const char **rec_argv; 1644 const char **p; 1645 char *filter = NULL; 1646 1647 const char * const common_args[] = { 1648 "record", "-a", "-R", "-c", "1", 1649 }; 1650 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1651 1652 const char * const disk_events[] = { 1653 "syscalls:sys_enter_read", 1654 "syscalls:sys_enter_pread64", 1655 "syscalls:sys_enter_readv", 1656 "syscalls:sys_enter_preadv", 1657 "syscalls:sys_enter_write", 1658 "syscalls:sys_enter_pwrite64", 1659 "syscalls:sys_enter_writev", 1660 "syscalls:sys_enter_pwritev", 1661 "syscalls:sys_enter_sync", 1662 "syscalls:sys_enter_sync_file_range", 1663 "syscalls:sys_enter_fsync", 1664 "syscalls:sys_enter_msync", 1665 1666 "syscalls:sys_exit_read", 1667 "syscalls:sys_exit_pread64", 1668 "syscalls:sys_exit_readv", 1669 "syscalls:sys_exit_preadv", 1670 "syscalls:sys_exit_write", 1671 "syscalls:sys_exit_pwrite64", 1672 "syscalls:sys_exit_writev", 1673 "syscalls:sys_exit_pwritev", 1674 "syscalls:sys_exit_sync", 1675 "syscalls:sys_exit_sync_file_range", 1676 "syscalls:sys_exit_fsync", 1677 "syscalls:sys_exit_msync", 1678 }; 1679 unsigned int disk_events_nr = ARRAY_SIZE(disk_events); 1680 1681 const char * const net_events[] = { 1682 "syscalls:sys_enter_recvfrom", 1683 "syscalls:sys_enter_recvmmsg", 1684 "syscalls:sys_enter_recvmsg", 1685 "syscalls:sys_enter_sendto", 1686 "syscalls:sys_enter_sendmsg", 1687 "syscalls:sys_enter_sendmmsg", 1688 1689 "syscalls:sys_exit_recvfrom", 1690 "syscalls:sys_exit_recvmmsg", 1691 "syscalls:sys_exit_recvmsg", 1692 "syscalls:sys_exit_sendto", 1693 "syscalls:sys_exit_sendmsg", 1694 "syscalls:sys_exit_sendmmsg", 1695 }; 1696 unsigned int net_events_nr = ARRAY_SIZE(net_events); 1697 1698 const char * const poll_events[] = { 1699 "syscalls:sys_enter_epoll_pwait", 1700 "syscalls:sys_enter_epoll_wait", 1701 "syscalls:sys_enter_poll", 1702 "syscalls:sys_enter_ppoll", 1703 "syscalls:sys_enter_pselect6", 1704 "syscalls:sys_enter_select", 1705 1706 "syscalls:sys_exit_epoll_pwait", 1707 "syscalls:sys_exit_epoll_wait", 1708 "syscalls:sys_exit_poll", 1709 "syscalls:sys_exit_ppoll", 1710 "syscalls:sys_exit_pselect6", 1711 "syscalls:sys_exit_select", 1712 }; 1713 unsigned int poll_events_nr = ARRAY_SIZE(poll_events); 1714 1715 rec_argc = common_args_nr + 1716 disk_events_nr * 4 + 1717 net_events_nr * 4 + 1718 poll_events_nr * 4 + 1719 argc; 1720 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1721 1722 if (rec_argv == NULL) 1723 return -ENOMEM; 1724 1725 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) { 1726 free(rec_argv); 1727 return -ENOMEM; 1728 } 1729 1730 p = rec_argv; 1731 for (i = 0; i < common_args_nr; i++) 1732 *p++ = strdup(common_args[i]); 1733 1734 for (i = 0; i < disk_events_nr; i++) { 1735 if (!is_valid_tracepoint(disk_events[i])) { 1736 rec_argc -= 4; 1737 continue; 1738 } 1739 1740 *p++ = "-e"; 1741 *p++ = strdup(disk_events[i]); 1742 *p++ = "--filter"; 1743 *p++ = filter; 1744 } 1745 for (i = 0; i < net_events_nr; i++) { 1746 if (!is_valid_tracepoint(net_events[i])) { 1747 rec_argc -= 4; 1748 continue; 1749 } 1750 1751 *p++ = "-e"; 1752 *p++ = strdup(net_events[i]); 1753 *p++ = "--filter"; 1754 *p++ = filter; 1755 } 1756 for (i = 0; i < poll_events_nr; i++) { 1757 if (!is_valid_tracepoint(poll_events[i])) { 1758 rec_argc -= 4; 1759 continue; 1760 } 1761 1762 *p++ = "-e"; 1763 *p++ = strdup(poll_events[i]); 1764 *p++ = "--filter"; 1765 *p++ = filter; 1766 } 1767 1768 for (i = 0; i < (unsigned int)argc; i++) 1769 *p++ = argv[i]; 1770 1771 return cmd_record(rec_argc, rec_argv); 1772 } 1773 1774 1775 static int timechart__record(struct timechart *tchart, int argc, const char **argv) 1776 { 1777 unsigned int rec_argc, i, j; 1778 const char **rec_argv; 1779 const char **p; 1780 unsigned int record_elems; 1781 1782 const char * const common_args[] = { 1783 "record", "-a", "-R", "-c", "1", 1784 }; 1785 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1786 1787 const char * const backtrace_args[] = { 1788 "-g", 1789 }; 1790 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); 1791 1792 const char * const power_args[] = { 1793 "-e", "power:cpu_frequency", 1794 "-e", "power:cpu_idle", 1795 }; 1796 unsigned int power_args_nr = ARRAY_SIZE(power_args); 1797 1798 const char * const old_power_args[] = { 1799 #ifdef SUPPORT_OLD_POWER_EVENTS 1800 "-e", "power:power_start", 1801 "-e", "power:power_end", 1802 "-e", "power:power_frequency", 1803 #endif 1804 }; 1805 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); 1806 1807 const char * const tasks_args[] = { 1808 "-e", "sched:sched_wakeup", 1809 "-e", "sched:sched_switch", 1810 }; 1811 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); 1812 1813 #ifdef SUPPORT_OLD_POWER_EVENTS 1814 if (!is_valid_tracepoint("power:cpu_idle") && 1815 is_valid_tracepoint("power:power_start")) { 1816 use_old_power_events = 1; 1817 power_args_nr = 0; 1818 } else { 1819 old_power_args_nr = 0; 1820 } 1821 #endif 1822 1823 if (tchart->power_only) 1824 tasks_args_nr = 0; 1825 1826 if (tchart->tasks_only) { 1827 power_args_nr = 0; 1828 old_power_args_nr = 0; 1829 } 1830 1831 if (!tchart->with_backtrace) 1832 backtrace_args_no = 0; 1833 1834 record_elems = common_args_nr + tasks_args_nr + 1835 power_args_nr + old_power_args_nr + backtrace_args_no; 1836 1837 rec_argc = record_elems + argc; 1838 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1839 1840 if (rec_argv == NULL) 1841 return -ENOMEM; 1842 1843 p = rec_argv; 1844 for (i = 0; i < common_args_nr; i++) 1845 *p++ = strdup(common_args[i]); 1846 1847 for (i = 0; i < backtrace_args_no; i++) 1848 *p++ = strdup(backtrace_args[i]); 1849 1850 for (i = 0; i < tasks_args_nr; i++) 1851 *p++ = strdup(tasks_args[i]); 1852 1853 for (i = 0; i < power_args_nr; i++) 1854 *p++ = strdup(power_args[i]); 1855 1856 for (i = 0; i < old_power_args_nr; i++) 1857 *p++ = strdup(old_power_args[i]); 1858 1859 for (j = 0; j < (unsigned int)argc; j++) 1860 *p++ = argv[j]; 1861 1862 return cmd_record(rec_argc, rec_argv); 1863 } 1864 1865 static int 1866 parse_process(const struct option *opt __maybe_unused, const char *arg, 1867 int __maybe_unused unset) 1868 { 1869 if (arg) 1870 add_process_filter(arg); 1871 return 0; 1872 } 1873 1874 static int 1875 parse_highlight(const struct option *opt __maybe_unused, const char *arg, 1876 int __maybe_unused unset) 1877 { 1878 unsigned long duration = strtoul(arg, NULL, 0); 1879 1880 if (svg_highlight || svg_highlight_name) 1881 return -1; 1882 1883 if (duration) 1884 svg_highlight = duration; 1885 else 1886 svg_highlight_name = strdup(arg); 1887 1888 return 0; 1889 } 1890 1891 static int 1892 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) 1893 { 1894 char unit = 'n'; 1895 u64 *value = opt->value; 1896 1897 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { 1898 switch (unit) { 1899 case 'm': 1900 *value *= NSEC_PER_MSEC; 1901 break; 1902 case 'u': 1903 *value *= NSEC_PER_USEC; 1904 break; 1905 case 'n': 1906 break; 1907 default: 1908 return -1; 1909 } 1910 } 1911 1912 return 0; 1913 } 1914 1915 int cmd_timechart(int argc, const char **argv) 1916 { 1917 struct timechart tchart = { 1918 .tool = { 1919 .comm = process_comm_event, 1920 .fork = process_fork_event, 1921 .exit = process_exit_event, 1922 .sample = process_sample_event, 1923 .ordered_events = true, 1924 }, 1925 .proc_num = 15, 1926 .min_time = NSEC_PER_MSEC, 1927 .merge_dist = 1000, 1928 }; 1929 const char *output_name = "output.svg"; 1930 const struct option timechart_common_options[] = { 1931 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1932 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"), 1933 OPT_END() 1934 }; 1935 const struct option timechart_options[] = { 1936 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1937 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name", 1940 "highlight tasks. Pass duration in ns or process name.", 1941 parse_highlight), 1942 OPT_CALLBACK('p', "process", NULL, "process", 1943 "process selector. Pass a pid or process name.", 1944 parse_process), 1945 OPT_CALLBACK(0, "symfs", NULL, "directory", 1946 "Look for files with symbols relative to this directory", 1947 symbol__config_symfs), 1948 OPT_INTEGER('n', "proc-num", &tchart.proc_num, 1949 "min. number of tasks to print"), 1950 OPT_BOOLEAN('t', "topology", &tchart.topology, 1951 "sort CPUs according to topology"), 1952 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, 1953 "skip EAGAIN errors"), 1954 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", 1955 "all IO faster than min-time will visually appear longer", 1956 parse_time), 1957 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", 1958 "merge events that are merge-dist us apart", 1959 parse_time), 1960 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"), 1961 OPT_PARENT(timechart_common_options), 1962 }; 1963 const char * const timechart_subcommands[] = { "record", NULL }; 1964 const char *timechart_usage[] = { 1965 "perf timechart [<options>] {record}", 1966 NULL 1967 }; 1968 const struct option timechart_record_options[] = { 1969 OPT_BOOLEAN('I', "io-only", &tchart.io_only, 1970 "record only IO data"), 1971 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), 1972 OPT_PARENT(timechart_common_options), 1973 }; 1974 const char * const timechart_record_usage[] = { 1975 "perf timechart record [<options>]", 1976 NULL 1977 }; 1978 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands, 1979 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); 1980 1981 if (tchart.power_only && tchart.tasks_only) { 1982 pr_err("-P and -T options cannot be used at the same time.\n"); 1983 return -1; 1984 } 1985 1986 if (argc && !strncmp(argv[0], "rec", 3)) { 1987 argc = parse_options(argc, argv, timechart_record_options, 1988 timechart_record_usage, 1989 PARSE_OPT_STOP_AT_NON_OPTION); 1990 1991 if (tchart.power_only && tchart.tasks_only) { 1992 pr_err("-P and -T options cannot be used at the same time.\n"); 1993 return -1; 1994 } 1995 1996 if (tchart.io_only) 1997 return timechart__io_record(argc, argv); 1998 else 1999 return timechart__record(&tchart, argc, argv); 2000 } else if (argc) 2001 usage_with_options(timechart_usage, timechart_options); 2002 2003 setup_pager(); 2004 2005 return __cmd_timechart(&tchart, output_name); 2006 } 2007