1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-timechart.c - make an svg timechart of system activity 4 * 5 * (C) Copyright 2009 Intel Corporation 6 * 7 * Authors: 8 * Arjan van de Ven <arjan@linux.intel.com> 9 */ 10 11 #include <errno.h> 12 #include <inttypes.h> 13 14 #include "builtin.h" 15 #include "util/color.h" 16 #include <linux/list.h> 17 #include "util/evlist.h" // for struct evsel_str_handler 18 #include "util/evsel.h" 19 #include <linux/kernel.h> 20 #include <linux/rbtree.h> 21 #include <linux/time64.h> 22 #include <linux/zalloc.h> 23 #include "util/symbol.h" 24 #include "util/thread.h" 25 #include "util/callchain.h" 26 27 #include "perf.h" 28 #include "util/header.h" 29 #include <subcmd/pager.h> 30 #include <subcmd/parse-options.h> 31 #include "util/parse-events.h" 32 #include "util/event.h" 33 #include "util/session.h" 34 #include "util/svghelper.h" 35 #include "util/tool.h" 36 #include "util/data.h" 37 #include "util/debug.h" 38 39 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE 40 FILE *open_memstream(char **ptr, size_t *sizeloc); 41 #endif 42 43 #define SUPPORT_OLD_POWER_EVENTS 1 44 #define PWR_EVENT_EXIT -1 45 46 struct per_pid; 47 struct power_event; 48 struct wake_event; 49 50 struct timechart { 51 struct perf_tool tool; 52 struct per_pid *all_data; 53 struct power_event *power_events; 54 struct wake_event *wake_events; 55 int proc_num; 56 unsigned int numcpus; 57 u64 min_freq, /* Lowest CPU frequency seen */ 58 max_freq, /* Highest CPU frequency seen */ 59 turbo_frequency, 60 first_time, last_time; 61 bool power_only, 62 tasks_only, 63 with_backtrace, 64 topology; 65 bool force; 66 /* IO related settings */ 67 bool io_only, 68 skip_eagain; 69 u64 io_events; 70 u64 min_time, 71 merge_dist; 72 }; 73 74 struct per_pidcomm; 75 struct cpu_sample; 76 struct io_sample; 77 78 /* 79 * Datastructure layout: 80 * We keep an list of "pid"s, matching the kernels notion of a task struct. 81 * Each "pid" entry, has a list of "comm"s. 82 * this is because we want to track different programs different, while 83 * exec will reuse the original pid (by design). 84 * Each comm has a list of samples that will be used to draw 85 * final graph. 86 */ 87 88 struct per_pid { 89 struct per_pid *next; 90 91 int pid; 92 int ppid; 93 94 u64 start_time; 95 u64 end_time; 96 u64 total_time; 97 u64 total_bytes; 98 int display; 99 100 struct per_pidcomm *all; 101 struct per_pidcomm *current; 102 }; 103 104 105 struct per_pidcomm { 106 struct per_pidcomm *next; 107 108 u64 start_time; 109 u64 end_time; 110 u64 total_time; 111 u64 max_bytes; 112 u64 total_bytes; 113 114 int Y; 115 int display; 116 117 long state; 118 u64 state_since; 119 120 char *comm; 121 122 struct cpu_sample *samples; 123 struct io_sample *io_samples; 124 }; 125 126 struct sample_wrapper { 127 struct sample_wrapper *next; 128 129 u64 timestamp; 130 unsigned char data[0]; 131 }; 132 133 #define TYPE_NONE 0 134 #define TYPE_RUNNING 1 135 #define TYPE_WAITING 2 136 #define TYPE_BLOCKED 3 137 138 struct cpu_sample { 139 struct cpu_sample *next; 140 141 u64 start_time; 142 u64 end_time; 143 int type; 144 int cpu; 145 const char *backtrace; 146 }; 147 148 enum { 149 IOTYPE_READ, 150 IOTYPE_WRITE, 151 IOTYPE_SYNC, 152 IOTYPE_TX, 153 IOTYPE_RX, 154 IOTYPE_POLL, 155 }; 156 157 struct io_sample { 158 struct io_sample *next; 159 160 u64 start_time; 161 u64 end_time; 162 u64 bytes; 163 int type; 164 int fd; 165 int err; 166 int merges; 167 }; 168 169 #define CSTATE 1 170 #define PSTATE 2 171 172 struct power_event { 173 struct power_event *next; 174 int type; 175 int state; 176 u64 start_time; 177 u64 end_time; 178 int cpu; 179 }; 180 181 struct wake_event { 182 struct wake_event *next; 183 int waker; 184 int wakee; 185 u64 time; 186 const char *backtrace; 187 }; 188 189 struct process_filter { 190 char *name; 191 int pid; 192 struct process_filter *next; 193 }; 194 195 static struct process_filter *process_filter; 196 197 198 static struct per_pid *find_create_pid(struct timechart *tchart, int pid) 199 { 200 struct per_pid *cursor = tchart->all_data; 201 202 while (cursor) { 203 if (cursor->pid == pid) 204 return cursor; 205 cursor = cursor->next; 206 } 207 cursor = zalloc(sizeof(*cursor)); 208 assert(cursor != NULL); 209 cursor->pid = pid; 210 cursor->next = tchart->all_data; 211 tchart->all_data = cursor; 212 return cursor; 213 } 214 215 static void pid_set_comm(struct timechart *tchart, int pid, char *comm) 216 { 217 struct per_pid *p; 218 struct per_pidcomm *c; 219 p = find_create_pid(tchart, pid); 220 c = p->all; 221 while (c) { 222 if (c->comm && strcmp(c->comm, comm) == 0) { 223 p->current = c; 224 return; 225 } 226 if (!c->comm) { 227 c->comm = strdup(comm); 228 p->current = c; 229 return; 230 } 231 c = c->next; 232 } 233 c = zalloc(sizeof(*c)); 234 assert(c != NULL); 235 c->comm = strdup(comm); 236 p->current = c; 237 c->next = p->all; 238 p->all = c; 239 } 240 241 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp) 242 { 243 struct per_pid *p, *pp; 244 p = find_create_pid(tchart, pid); 245 pp = find_create_pid(tchart, ppid); 246 p->ppid = ppid; 247 if (pp->current && pp->current->comm && !p->current) 248 pid_set_comm(tchart, pid, pp->current->comm); 249 250 p->start_time = timestamp; 251 if (p->current && !p->current->start_time) { 252 p->current->start_time = timestamp; 253 p->current->state_since = timestamp; 254 } 255 } 256 257 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp) 258 { 259 struct per_pid *p; 260 p = find_create_pid(tchart, pid); 261 p->end_time = timestamp; 262 if (p->current) 263 p->current->end_time = timestamp; 264 } 265 266 static void pid_put_sample(struct timechart *tchart, int pid, int type, 267 unsigned int cpu, u64 start, u64 end, 268 const char *backtrace) 269 { 270 struct per_pid *p; 271 struct per_pidcomm *c; 272 struct cpu_sample *sample; 273 274 p = find_create_pid(tchart, pid); 275 c = p->current; 276 if (!c) { 277 c = zalloc(sizeof(*c)); 278 assert(c != NULL); 279 p->current = c; 280 c->next = p->all; 281 p->all = c; 282 } 283 284 sample = zalloc(sizeof(*sample)); 285 assert(sample != NULL); 286 sample->start_time = start; 287 sample->end_time = end; 288 sample->type = type; 289 sample->next = c->samples; 290 sample->cpu = cpu; 291 sample->backtrace = backtrace; 292 c->samples = sample; 293 294 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 295 c->total_time += (end-start); 296 p->total_time += (end-start); 297 } 298 299 if (c->start_time == 0 || c->start_time > start) 300 c->start_time = start; 301 if (p->start_time == 0 || p->start_time > start) 302 p->start_time = start; 303 } 304 305 #define MAX_CPUS 4096 306 307 static u64 cpus_cstate_start_times[MAX_CPUS]; 308 static int cpus_cstate_state[MAX_CPUS]; 309 static u64 cpus_pstate_start_times[MAX_CPUS]; 310 static u64 cpus_pstate_state[MAX_CPUS]; 311 312 static int process_comm_event(struct perf_tool *tool, 313 union perf_event *event, 314 struct perf_sample *sample __maybe_unused, 315 struct machine *machine __maybe_unused) 316 { 317 struct timechart *tchart = container_of(tool, struct timechart, tool); 318 pid_set_comm(tchart, event->comm.tid, event->comm.comm); 319 return 0; 320 } 321 322 static int process_fork_event(struct perf_tool *tool, 323 union perf_event *event, 324 struct perf_sample *sample __maybe_unused, 325 struct machine *machine __maybe_unused) 326 { 327 struct timechart *tchart = container_of(tool, struct timechart, tool); 328 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time); 329 return 0; 330 } 331 332 static int process_exit_event(struct perf_tool *tool, 333 union perf_event *event, 334 struct perf_sample *sample __maybe_unused, 335 struct machine *machine __maybe_unused) 336 { 337 struct timechart *tchart = container_of(tool, struct timechart, tool); 338 pid_exit(tchart, event->fork.pid, event->fork.time); 339 return 0; 340 } 341 342 #ifdef SUPPORT_OLD_POWER_EVENTS 343 static int use_old_power_events; 344 #endif 345 346 static void c_state_start(int cpu, u64 timestamp, int state) 347 { 348 cpus_cstate_start_times[cpu] = timestamp; 349 cpus_cstate_state[cpu] = state; 350 } 351 352 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp) 353 { 354 struct power_event *pwr = zalloc(sizeof(*pwr)); 355 356 if (!pwr) 357 return; 358 359 pwr->state = cpus_cstate_state[cpu]; 360 pwr->start_time = cpus_cstate_start_times[cpu]; 361 pwr->end_time = timestamp; 362 pwr->cpu = cpu; 363 pwr->type = CSTATE; 364 pwr->next = tchart->power_events; 365 366 tchart->power_events = pwr; 367 } 368 369 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq) 370 { 371 struct power_event *pwr; 372 373 if (new_freq > 8000000) /* detect invalid data */ 374 return; 375 376 pwr = zalloc(sizeof(*pwr)); 377 if (!pwr) 378 return; 379 380 pwr->state = cpus_pstate_state[cpu]; 381 pwr->start_time = cpus_pstate_start_times[cpu]; 382 pwr->end_time = timestamp; 383 pwr->cpu = cpu; 384 pwr->type = PSTATE; 385 pwr->next = tchart->power_events; 386 387 if (!pwr->start_time) 388 pwr->start_time = tchart->first_time; 389 390 tchart->power_events = pwr; 391 392 cpus_pstate_state[cpu] = new_freq; 393 cpus_pstate_start_times[cpu] = timestamp; 394 395 if ((u64)new_freq > tchart->max_freq) 396 tchart->max_freq = new_freq; 397 398 if (new_freq < tchart->min_freq || tchart->min_freq == 0) 399 tchart->min_freq = new_freq; 400 401 if (new_freq == tchart->max_freq - 1000) 402 tchart->turbo_frequency = tchart->max_freq; 403 } 404 405 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp, 406 int waker, int wakee, u8 flags, const char *backtrace) 407 { 408 struct per_pid *p; 409 struct wake_event *we = zalloc(sizeof(*we)); 410 411 if (!we) 412 return; 413 414 we->time = timestamp; 415 we->waker = waker; 416 we->backtrace = backtrace; 417 418 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ)) 419 we->waker = -1; 420 421 we->wakee = wakee; 422 we->next = tchart->wake_events; 423 tchart->wake_events = we; 424 p = find_create_pid(tchart, we->wakee); 425 426 if (p && p->current && p->current->state == TYPE_NONE) { 427 p->current->state_since = timestamp; 428 p->current->state = TYPE_WAITING; 429 } 430 if (p && p->current && p->current->state == TYPE_BLOCKED) { 431 pid_put_sample(tchart, p->pid, p->current->state, cpu, 432 p->current->state_since, timestamp, NULL); 433 p->current->state_since = timestamp; 434 p->current->state = TYPE_WAITING; 435 } 436 } 437 438 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp, 439 int prev_pid, int next_pid, u64 prev_state, 440 const char *backtrace) 441 { 442 struct per_pid *p = NULL, *prev_p; 443 444 prev_p = find_create_pid(tchart, prev_pid); 445 446 p = find_create_pid(tchart, next_pid); 447 448 if (prev_p->current && prev_p->current->state != TYPE_NONE) 449 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu, 450 prev_p->current->state_since, timestamp, 451 backtrace); 452 if (p && p->current) { 453 if (p->current->state != TYPE_NONE) 454 pid_put_sample(tchart, next_pid, p->current->state, cpu, 455 p->current->state_since, timestamp, 456 backtrace); 457 458 p->current->state_since = timestamp; 459 p->current->state = TYPE_RUNNING; 460 } 461 462 if (prev_p->current) { 463 prev_p->current->state = TYPE_NONE; 464 prev_p->current->state_since = timestamp; 465 if (prev_state & 2) 466 prev_p->current->state = TYPE_BLOCKED; 467 if (prev_state == 0) 468 prev_p->current->state = TYPE_WAITING; 469 } 470 } 471 472 static const char *cat_backtrace(union perf_event *event, 473 struct perf_sample *sample, 474 struct machine *machine) 475 { 476 struct addr_location al; 477 unsigned int i; 478 char *p = NULL; 479 size_t p_len; 480 u8 cpumode = PERF_RECORD_MISC_USER; 481 struct addr_location tal; 482 struct ip_callchain *chain = sample->callchain; 483 FILE *f = open_memstream(&p, &p_len); 484 485 if (!f) { 486 perror("open_memstream error"); 487 return NULL; 488 } 489 490 if (!chain) 491 goto exit; 492 493 if (machine__resolve(machine, &al, sample) < 0) { 494 fprintf(stderr, "problem processing %d event, skipping it.\n", 495 event->header.type); 496 goto exit; 497 } 498 499 for (i = 0; i < chain->nr; i++) { 500 u64 ip; 501 502 if (callchain_param.order == ORDER_CALLEE) 503 ip = chain->ips[i]; 504 else 505 ip = chain->ips[chain->nr - i - 1]; 506 507 if (ip >= PERF_CONTEXT_MAX) { 508 switch (ip) { 509 case PERF_CONTEXT_HV: 510 cpumode = PERF_RECORD_MISC_HYPERVISOR; 511 break; 512 case PERF_CONTEXT_KERNEL: 513 cpumode = PERF_RECORD_MISC_KERNEL; 514 break; 515 case PERF_CONTEXT_USER: 516 cpumode = PERF_RECORD_MISC_USER; 517 break; 518 default: 519 pr_debug("invalid callchain context: " 520 "%"PRId64"\n", (s64) ip); 521 522 /* 523 * It seems the callchain is corrupted. 524 * Discard all. 525 */ 526 zfree(&p); 527 goto exit_put; 528 } 529 continue; 530 } 531 532 tal.filtered = 0; 533 if (thread__find_symbol(al.thread, cpumode, ip, &tal)) 534 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name); 535 else 536 fprintf(f, "..... %016" PRIx64 "\n", ip); 537 } 538 exit_put: 539 addr_location__put(&al); 540 exit: 541 fclose(f); 542 543 return p; 544 } 545 546 typedef int (*tracepoint_handler)(struct timechart *tchart, 547 struct evsel *evsel, 548 struct perf_sample *sample, 549 const char *backtrace); 550 551 static int process_sample_event(struct perf_tool *tool, 552 union perf_event *event, 553 struct perf_sample *sample, 554 struct evsel *evsel, 555 struct machine *machine) 556 { 557 struct timechart *tchart = container_of(tool, struct timechart, tool); 558 559 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) { 560 if (!tchart->first_time || tchart->first_time > sample->time) 561 tchart->first_time = sample->time; 562 if (tchart->last_time < sample->time) 563 tchart->last_time = sample->time; 564 } 565 566 if (evsel->handler != NULL) { 567 tracepoint_handler f = evsel->handler; 568 return f(tchart, evsel, sample, 569 cat_backtrace(event, sample, machine)); 570 } 571 572 return 0; 573 } 574 575 static int 576 process_sample_cpu_idle(struct timechart *tchart __maybe_unused, 577 struct evsel *evsel, 578 struct perf_sample *sample, 579 const char *backtrace __maybe_unused) 580 { 581 u32 state = perf_evsel__intval(evsel, sample, "state"); 582 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 583 584 if (state == (u32)PWR_EVENT_EXIT) 585 c_state_end(tchart, cpu_id, sample->time); 586 else 587 c_state_start(cpu_id, sample->time, state); 588 return 0; 589 } 590 591 static int 592 process_sample_cpu_frequency(struct timechart *tchart, 593 struct evsel *evsel, 594 struct perf_sample *sample, 595 const char *backtrace __maybe_unused) 596 { 597 u32 state = perf_evsel__intval(evsel, sample, "state"); 598 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 599 600 p_state_change(tchart, cpu_id, sample->time, state); 601 return 0; 602 } 603 604 static int 605 process_sample_sched_wakeup(struct timechart *tchart, 606 struct evsel *evsel, 607 struct perf_sample *sample, 608 const char *backtrace) 609 { 610 u8 flags = perf_evsel__intval(evsel, sample, "common_flags"); 611 int waker = perf_evsel__intval(evsel, sample, "common_pid"); 612 int wakee = perf_evsel__intval(evsel, sample, "pid"); 613 614 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace); 615 return 0; 616 } 617 618 static int 619 process_sample_sched_switch(struct timechart *tchart, 620 struct evsel *evsel, 621 struct perf_sample *sample, 622 const char *backtrace) 623 { 624 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"); 625 int next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 626 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 627 628 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid, 629 prev_state, backtrace); 630 return 0; 631 } 632 633 #ifdef SUPPORT_OLD_POWER_EVENTS 634 static int 635 process_sample_power_start(struct timechart *tchart __maybe_unused, 636 struct evsel *evsel, 637 struct perf_sample *sample, 638 const char *backtrace __maybe_unused) 639 { 640 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 641 u64 value = perf_evsel__intval(evsel, sample, "value"); 642 643 c_state_start(cpu_id, sample->time, value); 644 return 0; 645 } 646 647 static int 648 process_sample_power_end(struct timechart *tchart, 649 struct evsel *evsel __maybe_unused, 650 struct perf_sample *sample, 651 const char *backtrace __maybe_unused) 652 { 653 c_state_end(tchart, sample->cpu, sample->time); 654 return 0; 655 } 656 657 static int 658 process_sample_power_frequency(struct timechart *tchart, 659 struct evsel *evsel, 660 struct perf_sample *sample, 661 const char *backtrace __maybe_unused) 662 { 663 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id"); 664 u64 value = perf_evsel__intval(evsel, sample, "value"); 665 666 p_state_change(tchart, cpu_id, sample->time, value); 667 return 0; 668 } 669 #endif /* SUPPORT_OLD_POWER_EVENTS */ 670 671 /* 672 * After the last sample we need to wrap up the current C/P state 673 * and close out each CPU for these. 674 */ 675 static void end_sample_processing(struct timechart *tchart) 676 { 677 u64 cpu; 678 struct power_event *pwr; 679 680 for (cpu = 0; cpu <= tchart->numcpus; cpu++) { 681 /* C state */ 682 #if 0 683 pwr = zalloc(sizeof(*pwr)); 684 if (!pwr) 685 return; 686 687 pwr->state = cpus_cstate_state[cpu]; 688 pwr->start_time = cpus_cstate_start_times[cpu]; 689 pwr->end_time = tchart->last_time; 690 pwr->cpu = cpu; 691 pwr->type = CSTATE; 692 pwr->next = tchart->power_events; 693 694 tchart->power_events = pwr; 695 #endif 696 /* P state */ 697 698 pwr = zalloc(sizeof(*pwr)); 699 if (!pwr) 700 return; 701 702 pwr->state = cpus_pstate_state[cpu]; 703 pwr->start_time = cpus_pstate_start_times[cpu]; 704 pwr->end_time = tchart->last_time; 705 pwr->cpu = cpu; 706 pwr->type = PSTATE; 707 pwr->next = tchart->power_events; 708 709 if (!pwr->start_time) 710 pwr->start_time = tchart->first_time; 711 if (!pwr->state) 712 pwr->state = tchart->min_freq; 713 tchart->power_events = pwr; 714 } 715 } 716 717 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type, 718 u64 start, int fd) 719 { 720 struct per_pid *p = find_create_pid(tchart, pid); 721 struct per_pidcomm *c = p->current; 722 struct io_sample *sample; 723 struct io_sample *prev; 724 725 if (!c) { 726 c = zalloc(sizeof(*c)); 727 if (!c) 728 return -ENOMEM; 729 p->current = c; 730 c->next = p->all; 731 p->all = c; 732 } 733 734 prev = c->io_samples; 735 736 if (prev && prev->start_time && !prev->end_time) { 737 pr_warning("Skip invalid start event: " 738 "previous event already started!\n"); 739 740 /* remove previous event that has been started, 741 * we are not sure we will ever get an end for it */ 742 c->io_samples = prev->next; 743 free(prev); 744 return 0; 745 } 746 747 sample = zalloc(sizeof(*sample)); 748 if (!sample) 749 return -ENOMEM; 750 sample->start_time = start; 751 sample->type = type; 752 sample->fd = fd; 753 sample->next = c->io_samples; 754 c->io_samples = sample; 755 756 if (c->start_time == 0 || c->start_time > start) 757 c->start_time = start; 758 759 return 0; 760 } 761 762 static int pid_end_io_sample(struct timechart *tchart, int pid, int type, 763 u64 end, long ret) 764 { 765 struct per_pid *p = find_create_pid(tchart, pid); 766 struct per_pidcomm *c = p->current; 767 struct io_sample *sample, *prev; 768 769 if (!c) { 770 pr_warning("Invalid pidcomm!\n"); 771 return -1; 772 } 773 774 sample = c->io_samples; 775 776 if (!sample) /* skip partially captured events */ 777 return 0; 778 779 if (sample->end_time) { 780 pr_warning("Skip invalid end event: " 781 "previous event already ended!\n"); 782 return 0; 783 } 784 785 if (sample->type != type) { 786 pr_warning("Skip invalid end event: invalid event type!\n"); 787 return 0; 788 } 789 790 sample->end_time = end; 791 prev = sample->next; 792 793 /* we want to be able to see small and fast transfers, so make them 794 * at least min_time long, but don't overlap them */ 795 if (sample->end_time - sample->start_time < tchart->min_time) 796 sample->end_time = sample->start_time + tchart->min_time; 797 if (prev && sample->start_time < prev->end_time) { 798 if (prev->err) /* try to make errors more visible */ 799 sample->start_time = prev->end_time; 800 else 801 prev->end_time = sample->start_time; 802 } 803 804 if (ret < 0) { 805 sample->err = ret; 806 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE || 807 type == IOTYPE_TX || type == IOTYPE_RX) { 808 809 if ((u64)ret > c->max_bytes) 810 c->max_bytes = ret; 811 812 c->total_bytes += ret; 813 p->total_bytes += ret; 814 sample->bytes = ret; 815 } 816 817 /* merge two requests to make svg smaller and render-friendly */ 818 if (prev && 819 prev->type == sample->type && 820 prev->err == sample->err && 821 prev->fd == sample->fd && 822 prev->end_time + tchart->merge_dist >= sample->start_time) { 823 824 sample->bytes += prev->bytes; 825 sample->merges += prev->merges + 1; 826 827 sample->start_time = prev->start_time; 828 sample->next = prev->next; 829 free(prev); 830 831 if (!sample->err && sample->bytes > c->max_bytes) 832 c->max_bytes = sample->bytes; 833 } 834 835 tchart->io_events++; 836 837 return 0; 838 } 839 840 static int 841 process_enter_read(struct timechart *tchart, 842 struct evsel *evsel, 843 struct perf_sample *sample) 844 { 845 long fd = perf_evsel__intval(evsel, sample, "fd"); 846 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ, 847 sample->time, fd); 848 } 849 850 static int 851 process_exit_read(struct timechart *tchart, 852 struct evsel *evsel, 853 struct perf_sample *sample) 854 { 855 long ret = perf_evsel__intval(evsel, sample, "ret"); 856 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ, 857 sample->time, ret); 858 } 859 860 static int 861 process_enter_write(struct timechart *tchart, 862 struct evsel *evsel, 863 struct perf_sample *sample) 864 { 865 long fd = perf_evsel__intval(evsel, sample, "fd"); 866 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE, 867 sample->time, fd); 868 } 869 870 static int 871 process_exit_write(struct timechart *tchart, 872 struct evsel *evsel, 873 struct perf_sample *sample) 874 { 875 long ret = perf_evsel__intval(evsel, sample, "ret"); 876 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE, 877 sample->time, ret); 878 } 879 880 static int 881 process_enter_sync(struct timechart *tchart, 882 struct evsel *evsel, 883 struct perf_sample *sample) 884 { 885 long fd = perf_evsel__intval(evsel, sample, "fd"); 886 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC, 887 sample->time, fd); 888 } 889 890 static int 891 process_exit_sync(struct timechart *tchart, 892 struct evsel *evsel, 893 struct perf_sample *sample) 894 { 895 long ret = perf_evsel__intval(evsel, sample, "ret"); 896 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC, 897 sample->time, ret); 898 } 899 900 static int 901 process_enter_tx(struct timechart *tchart, 902 struct evsel *evsel, 903 struct perf_sample *sample) 904 { 905 long fd = perf_evsel__intval(evsel, sample, "fd"); 906 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX, 907 sample->time, fd); 908 } 909 910 static int 911 process_exit_tx(struct timechart *tchart, 912 struct evsel *evsel, 913 struct perf_sample *sample) 914 { 915 long ret = perf_evsel__intval(evsel, sample, "ret"); 916 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX, 917 sample->time, ret); 918 } 919 920 static int 921 process_enter_rx(struct timechart *tchart, 922 struct evsel *evsel, 923 struct perf_sample *sample) 924 { 925 long fd = perf_evsel__intval(evsel, sample, "fd"); 926 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX, 927 sample->time, fd); 928 } 929 930 static int 931 process_exit_rx(struct timechart *tchart, 932 struct evsel *evsel, 933 struct perf_sample *sample) 934 { 935 long ret = perf_evsel__intval(evsel, sample, "ret"); 936 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX, 937 sample->time, ret); 938 } 939 940 static int 941 process_enter_poll(struct timechart *tchart, 942 struct evsel *evsel, 943 struct perf_sample *sample) 944 { 945 long fd = perf_evsel__intval(evsel, sample, "fd"); 946 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL, 947 sample->time, fd); 948 } 949 950 static int 951 process_exit_poll(struct timechart *tchart, 952 struct evsel *evsel, 953 struct perf_sample *sample) 954 { 955 long ret = perf_evsel__intval(evsel, sample, "ret"); 956 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL, 957 sample->time, ret); 958 } 959 960 /* 961 * Sort the pid datastructure 962 */ 963 static void sort_pids(struct timechart *tchart) 964 { 965 struct per_pid *new_list, *p, *cursor, *prev; 966 /* sort by ppid first, then by pid, lowest to highest */ 967 968 new_list = NULL; 969 970 while (tchart->all_data) { 971 p = tchart->all_data; 972 tchart->all_data = p->next; 973 p->next = NULL; 974 975 if (new_list == NULL) { 976 new_list = p; 977 p->next = NULL; 978 continue; 979 } 980 prev = NULL; 981 cursor = new_list; 982 while (cursor) { 983 if (cursor->ppid > p->ppid || 984 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 985 /* must insert before */ 986 if (prev) { 987 p->next = prev->next; 988 prev->next = p; 989 cursor = NULL; 990 continue; 991 } else { 992 p->next = new_list; 993 new_list = p; 994 cursor = NULL; 995 continue; 996 } 997 } 998 999 prev = cursor; 1000 cursor = cursor->next; 1001 if (!cursor) 1002 prev->next = p; 1003 } 1004 } 1005 tchart->all_data = new_list; 1006 } 1007 1008 1009 static void draw_c_p_states(struct timechart *tchart) 1010 { 1011 struct power_event *pwr; 1012 pwr = tchart->power_events; 1013 1014 /* 1015 * two pass drawing so that the P state bars are on top of the C state blocks 1016 */ 1017 while (pwr) { 1018 if (pwr->type == CSTATE) 1019 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1020 pwr = pwr->next; 1021 } 1022 1023 pwr = tchart->power_events; 1024 while (pwr) { 1025 if (pwr->type == PSTATE) { 1026 if (!pwr->state) 1027 pwr->state = tchart->min_freq; 1028 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 1029 } 1030 pwr = pwr->next; 1031 } 1032 } 1033 1034 static void draw_wakeups(struct timechart *tchart) 1035 { 1036 struct wake_event *we; 1037 struct per_pid *p; 1038 struct per_pidcomm *c; 1039 1040 we = tchart->wake_events; 1041 while (we) { 1042 int from = 0, to = 0; 1043 char *task_from = NULL, *task_to = NULL; 1044 1045 /* locate the column of the waker and wakee */ 1046 p = tchart->all_data; 1047 while (p) { 1048 if (p->pid == we->waker || p->pid == we->wakee) { 1049 c = p->all; 1050 while (c) { 1051 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 1052 if (p->pid == we->waker && !from) { 1053 from = c->Y; 1054 task_from = strdup(c->comm); 1055 } 1056 if (p->pid == we->wakee && !to) { 1057 to = c->Y; 1058 task_to = strdup(c->comm); 1059 } 1060 } 1061 c = c->next; 1062 } 1063 c = p->all; 1064 while (c) { 1065 if (p->pid == we->waker && !from) { 1066 from = c->Y; 1067 task_from = strdup(c->comm); 1068 } 1069 if (p->pid == we->wakee && !to) { 1070 to = c->Y; 1071 task_to = strdup(c->comm); 1072 } 1073 c = c->next; 1074 } 1075 } 1076 p = p->next; 1077 } 1078 1079 if (!task_from) { 1080 task_from = malloc(40); 1081 sprintf(task_from, "[%i]", we->waker); 1082 } 1083 if (!task_to) { 1084 task_to = malloc(40); 1085 sprintf(task_to, "[%i]", we->wakee); 1086 } 1087 1088 if (we->waker == -1) 1089 svg_interrupt(we->time, to, we->backtrace); 1090 else if (from && to && abs(from - to) == 1) 1091 svg_wakeline(we->time, from, to, we->backtrace); 1092 else 1093 svg_partial_wakeline(we->time, from, task_from, to, 1094 task_to, we->backtrace); 1095 we = we->next; 1096 1097 free(task_from); 1098 free(task_to); 1099 } 1100 } 1101 1102 static void draw_cpu_usage(struct timechart *tchart) 1103 { 1104 struct per_pid *p; 1105 struct per_pidcomm *c; 1106 struct cpu_sample *sample; 1107 p = tchart->all_data; 1108 while (p) { 1109 c = p->all; 1110 while (c) { 1111 sample = c->samples; 1112 while (sample) { 1113 if (sample->type == TYPE_RUNNING) { 1114 svg_process(sample->cpu, 1115 sample->start_time, 1116 sample->end_time, 1117 p->pid, 1118 c->comm, 1119 sample->backtrace); 1120 } 1121 1122 sample = sample->next; 1123 } 1124 c = c->next; 1125 } 1126 p = p->next; 1127 } 1128 } 1129 1130 static void draw_io_bars(struct timechart *tchart) 1131 { 1132 const char *suf; 1133 double bytes; 1134 char comm[256]; 1135 struct per_pid *p; 1136 struct per_pidcomm *c; 1137 struct io_sample *sample; 1138 int Y = 1; 1139 1140 p = tchart->all_data; 1141 while (p) { 1142 c = p->all; 1143 while (c) { 1144 if (!c->display) { 1145 c->Y = 0; 1146 c = c->next; 1147 continue; 1148 } 1149 1150 svg_box(Y, c->start_time, c->end_time, "process3"); 1151 sample = c->io_samples; 1152 for (sample = c->io_samples; sample; sample = sample->next) { 1153 double h = (double)sample->bytes / c->max_bytes; 1154 1155 if (tchart->skip_eagain && 1156 sample->err == -EAGAIN) 1157 continue; 1158 1159 if (sample->err) 1160 h = 1; 1161 1162 if (sample->type == IOTYPE_SYNC) 1163 svg_fbox(Y, 1164 sample->start_time, 1165 sample->end_time, 1166 1, 1167 sample->err ? "error" : "sync", 1168 sample->fd, 1169 sample->err, 1170 sample->merges); 1171 else if (sample->type == IOTYPE_POLL) 1172 svg_fbox(Y, 1173 sample->start_time, 1174 sample->end_time, 1175 1, 1176 sample->err ? "error" : "poll", 1177 sample->fd, 1178 sample->err, 1179 sample->merges); 1180 else if (sample->type == IOTYPE_READ) 1181 svg_ubox(Y, 1182 sample->start_time, 1183 sample->end_time, 1184 h, 1185 sample->err ? "error" : "disk", 1186 sample->fd, 1187 sample->err, 1188 sample->merges); 1189 else if (sample->type == IOTYPE_WRITE) 1190 svg_lbox(Y, 1191 sample->start_time, 1192 sample->end_time, 1193 h, 1194 sample->err ? "error" : "disk", 1195 sample->fd, 1196 sample->err, 1197 sample->merges); 1198 else if (sample->type == IOTYPE_RX) 1199 svg_ubox(Y, 1200 sample->start_time, 1201 sample->end_time, 1202 h, 1203 sample->err ? "error" : "net", 1204 sample->fd, 1205 sample->err, 1206 sample->merges); 1207 else if (sample->type == IOTYPE_TX) 1208 svg_lbox(Y, 1209 sample->start_time, 1210 sample->end_time, 1211 h, 1212 sample->err ? "error" : "net", 1213 sample->fd, 1214 sample->err, 1215 sample->merges); 1216 } 1217 1218 suf = ""; 1219 bytes = c->total_bytes; 1220 if (bytes > 1024) { 1221 bytes = bytes / 1024; 1222 suf = "K"; 1223 } 1224 if (bytes > 1024) { 1225 bytes = bytes / 1024; 1226 suf = "M"; 1227 } 1228 if (bytes > 1024) { 1229 bytes = bytes / 1024; 1230 suf = "G"; 1231 } 1232 1233 1234 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf); 1235 svg_text(Y, c->start_time, comm); 1236 1237 c->Y = Y; 1238 Y++; 1239 c = c->next; 1240 } 1241 p = p->next; 1242 } 1243 } 1244 1245 static void draw_process_bars(struct timechart *tchart) 1246 { 1247 struct per_pid *p; 1248 struct per_pidcomm *c; 1249 struct cpu_sample *sample; 1250 int Y = 0; 1251 1252 Y = 2 * tchart->numcpus + 2; 1253 1254 p = tchart->all_data; 1255 while (p) { 1256 c = p->all; 1257 while (c) { 1258 if (!c->display) { 1259 c->Y = 0; 1260 c = c->next; 1261 continue; 1262 } 1263 1264 svg_box(Y, c->start_time, c->end_time, "process"); 1265 sample = c->samples; 1266 while (sample) { 1267 if (sample->type == TYPE_RUNNING) 1268 svg_running(Y, sample->cpu, 1269 sample->start_time, 1270 sample->end_time, 1271 sample->backtrace); 1272 if (sample->type == TYPE_BLOCKED) 1273 svg_blocked(Y, sample->cpu, 1274 sample->start_time, 1275 sample->end_time, 1276 sample->backtrace); 1277 if (sample->type == TYPE_WAITING) 1278 svg_waiting(Y, sample->cpu, 1279 sample->start_time, 1280 sample->end_time, 1281 sample->backtrace); 1282 sample = sample->next; 1283 } 1284 1285 if (c->comm) { 1286 char comm[256]; 1287 if (c->total_time > 5000000000) /* 5 seconds */ 1288 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC); 1289 else 1290 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC); 1291 1292 svg_text(Y, c->start_time, comm); 1293 } 1294 c->Y = Y; 1295 Y++; 1296 c = c->next; 1297 } 1298 p = p->next; 1299 } 1300 } 1301 1302 static void add_process_filter(const char *string) 1303 { 1304 int pid = strtoull(string, NULL, 10); 1305 struct process_filter *filt = malloc(sizeof(*filt)); 1306 1307 if (!filt) 1308 return; 1309 1310 filt->name = strdup(string); 1311 filt->pid = pid; 1312 filt->next = process_filter; 1313 1314 process_filter = filt; 1315 } 1316 1317 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 1318 { 1319 struct process_filter *filt; 1320 if (!process_filter) 1321 return 1; 1322 1323 filt = process_filter; 1324 while (filt) { 1325 if (filt->pid && p->pid == filt->pid) 1326 return 1; 1327 if (strcmp(filt->name, c->comm) == 0) 1328 return 1; 1329 filt = filt->next; 1330 } 1331 return 0; 1332 } 1333 1334 static int determine_display_tasks_filtered(struct timechart *tchart) 1335 { 1336 struct per_pid *p; 1337 struct per_pidcomm *c; 1338 int count = 0; 1339 1340 p = tchart->all_data; 1341 while (p) { 1342 p->display = 0; 1343 if (p->start_time == 1) 1344 p->start_time = tchart->first_time; 1345 1346 /* no exit marker, task kept running to the end */ 1347 if (p->end_time == 0) 1348 p->end_time = tchart->last_time; 1349 1350 c = p->all; 1351 1352 while (c) { 1353 c->display = 0; 1354 1355 if (c->start_time == 1) 1356 c->start_time = tchart->first_time; 1357 1358 if (passes_filter(p, c)) { 1359 c->display = 1; 1360 p->display = 1; 1361 count++; 1362 } 1363 1364 if (c->end_time == 0) 1365 c->end_time = tchart->last_time; 1366 1367 c = c->next; 1368 } 1369 p = p->next; 1370 } 1371 return count; 1372 } 1373 1374 static int determine_display_tasks(struct timechart *tchart, u64 threshold) 1375 { 1376 struct per_pid *p; 1377 struct per_pidcomm *c; 1378 int count = 0; 1379 1380 p = tchart->all_data; 1381 while (p) { 1382 p->display = 0; 1383 if (p->start_time == 1) 1384 p->start_time = tchart->first_time; 1385 1386 /* no exit marker, task kept running to the end */ 1387 if (p->end_time == 0) 1388 p->end_time = tchart->last_time; 1389 if (p->total_time >= threshold) 1390 p->display = 1; 1391 1392 c = p->all; 1393 1394 while (c) { 1395 c->display = 0; 1396 1397 if (c->start_time == 1) 1398 c->start_time = tchart->first_time; 1399 1400 if (c->total_time >= threshold) { 1401 c->display = 1; 1402 count++; 1403 } 1404 1405 if (c->end_time == 0) 1406 c->end_time = tchart->last_time; 1407 1408 c = c->next; 1409 } 1410 p = p->next; 1411 } 1412 return count; 1413 } 1414 1415 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold) 1416 { 1417 struct per_pid *p; 1418 struct per_pidcomm *c; 1419 int count = 0; 1420 1421 p = timechart->all_data; 1422 while (p) { 1423 /* no exit marker, task kept running to the end */ 1424 if (p->end_time == 0) 1425 p->end_time = timechart->last_time; 1426 1427 c = p->all; 1428 1429 while (c) { 1430 c->display = 0; 1431 1432 if (c->total_bytes >= threshold) { 1433 c->display = 1; 1434 count++; 1435 } 1436 1437 if (c->end_time == 0) 1438 c->end_time = timechart->last_time; 1439 1440 c = c->next; 1441 } 1442 p = p->next; 1443 } 1444 return count; 1445 } 1446 1447 #define BYTES_THRESH (1 * 1024 * 1024) 1448 #define TIME_THRESH 10000000 1449 1450 static void write_svg_file(struct timechart *tchart, const char *filename) 1451 { 1452 u64 i; 1453 int count; 1454 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH; 1455 1456 if (tchart->power_only) 1457 tchart->proc_num = 0; 1458 1459 /* We'd like to show at least proc_num tasks; 1460 * be less picky if we have fewer */ 1461 do { 1462 if (process_filter) 1463 count = determine_display_tasks_filtered(tchart); 1464 else if (tchart->io_events) 1465 count = determine_display_io_tasks(tchart, thresh); 1466 else 1467 count = determine_display_tasks(tchart, thresh); 1468 thresh /= 10; 1469 } while (!process_filter && thresh && count < tchart->proc_num); 1470 1471 if (!tchart->proc_num) 1472 count = 0; 1473 1474 if (tchart->io_events) { 1475 open_svg(filename, 0, count, tchart->first_time, tchart->last_time); 1476 1477 svg_time_grid(0.5); 1478 svg_io_legenda(); 1479 1480 draw_io_bars(tchart); 1481 } else { 1482 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time); 1483 1484 svg_time_grid(0); 1485 1486 svg_legenda(); 1487 1488 for (i = 0; i < tchart->numcpus; i++) 1489 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency); 1490 1491 draw_cpu_usage(tchart); 1492 if (tchart->proc_num) 1493 draw_process_bars(tchart); 1494 if (!tchart->tasks_only) 1495 draw_c_p_states(tchart); 1496 if (tchart->proc_num) 1497 draw_wakeups(tchart); 1498 } 1499 1500 svg_close(); 1501 } 1502 1503 static int process_header(struct perf_file_section *section __maybe_unused, 1504 struct perf_header *ph, 1505 int feat, 1506 int fd __maybe_unused, 1507 void *data) 1508 { 1509 struct timechart *tchart = data; 1510 1511 switch (feat) { 1512 case HEADER_NRCPUS: 1513 tchart->numcpus = ph->env.nr_cpus_avail; 1514 break; 1515 1516 case HEADER_CPU_TOPOLOGY: 1517 if (!tchart->topology) 1518 break; 1519 1520 if (svg_build_topology_map(&ph->env)) 1521 fprintf(stderr, "problem building topology\n"); 1522 break; 1523 1524 default: 1525 break; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int __cmd_timechart(struct timechart *tchart, const char *output_name) 1532 { 1533 const struct evsel_str_handler power_tracepoints[] = { 1534 { "power:cpu_idle", process_sample_cpu_idle }, 1535 { "power:cpu_frequency", process_sample_cpu_frequency }, 1536 { "sched:sched_wakeup", process_sample_sched_wakeup }, 1537 { "sched:sched_switch", process_sample_sched_switch }, 1538 #ifdef SUPPORT_OLD_POWER_EVENTS 1539 { "power:power_start", process_sample_power_start }, 1540 { "power:power_end", process_sample_power_end }, 1541 { "power:power_frequency", process_sample_power_frequency }, 1542 #endif 1543 1544 { "syscalls:sys_enter_read", process_enter_read }, 1545 { "syscalls:sys_enter_pread64", process_enter_read }, 1546 { "syscalls:sys_enter_readv", process_enter_read }, 1547 { "syscalls:sys_enter_preadv", process_enter_read }, 1548 { "syscalls:sys_enter_write", process_enter_write }, 1549 { "syscalls:sys_enter_pwrite64", process_enter_write }, 1550 { "syscalls:sys_enter_writev", process_enter_write }, 1551 { "syscalls:sys_enter_pwritev", process_enter_write }, 1552 { "syscalls:sys_enter_sync", process_enter_sync }, 1553 { "syscalls:sys_enter_sync_file_range", process_enter_sync }, 1554 { "syscalls:sys_enter_fsync", process_enter_sync }, 1555 { "syscalls:sys_enter_msync", process_enter_sync }, 1556 { "syscalls:sys_enter_recvfrom", process_enter_rx }, 1557 { "syscalls:sys_enter_recvmmsg", process_enter_rx }, 1558 { "syscalls:sys_enter_recvmsg", process_enter_rx }, 1559 { "syscalls:sys_enter_sendto", process_enter_tx }, 1560 { "syscalls:sys_enter_sendmsg", process_enter_tx }, 1561 { "syscalls:sys_enter_sendmmsg", process_enter_tx }, 1562 { "syscalls:sys_enter_epoll_pwait", process_enter_poll }, 1563 { "syscalls:sys_enter_epoll_wait", process_enter_poll }, 1564 { "syscalls:sys_enter_poll", process_enter_poll }, 1565 { "syscalls:sys_enter_ppoll", process_enter_poll }, 1566 { "syscalls:sys_enter_pselect6", process_enter_poll }, 1567 { "syscalls:sys_enter_select", process_enter_poll }, 1568 1569 { "syscalls:sys_exit_read", process_exit_read }, 1570 { "syscalls:sys_exit_pread64", process_exit_read }, 1571 { "syscalls:sys_exit_readv", process_exit_read }, 1572 { "syscalls:sys_exit_preadv", process_exit_read }, 1573 { "syscalls:sys_exit_write", process_exit_write }, 1574 { "syscalls:sys_exit_pwrite64", process_exit_write }, 1575 { "syscalls:sys_exit_writev", process_exit_write }, 1576 { "syscalls:sys_exit_pwritev", process_exit_write }, 1577 { "syscalls:sys_exit_sync", process_exit_sync }, 1578 { "syscalls:sys_exit_sync_file_range", process_exit_sync }, 1579 { "syscalls:sys_exit_fsync", process_exit_sync }, 1580 { "syscalls:sys_exit_msync", process_exit_sync }, 1581 { "syscalls:sys_exit_recvfrom", process_exit_rx }, 1582 { "syscalls:sys_exit_recvmmsg", process_exit_rx }, 1583 { "syscalls:sys_exit_recvmsg", process_exit_rx }, 1584 { "syscalls:sys_exit_sendto", process_exit_tx }, 1585 { "syscalls:sys_exit_sendmsg", process_exit_tx }, 1586 { "syscalls:sys_exit_sendmmsg", process_exit_tx }, 1587 { "syscalls:sys_exit_epoll_pwait", process_exit_poll }, 1588 { "syscalls:sys_exit_epoll_wait", process_exit_poll }, 1589 { "syscalls:sys_exit_poll", process_exit_poll }, 1590 { "syscalls:sys_exit_ppoll", process_exit_poll }, 1591 { "syscalls:sys_exit_pselect6", process_exit_poll }, 1592 { "syscalls:sys_exit_select", process_exit_poll }, 1593 }; 1594 struct perf_data data = { 1595 .path = input_name, 1596 .mode = PERF_DATA_MODE_READ, 1597 .force = tchart->force, 1598 }; 1599 1600 struct perf_session *session = perf_session__new(&data, false, 1601 &tchart->tool); 1602 int ret = -EINVAL; 1603 1604 if (session == NULL) 1605 return -1; 1606 1607 symbol__init(&session->header.env); 1608 1609 (void)perf_header__process_sections(&session->header, 1610 perf_data__fd(session->data), 1611 tchart, 1612 process_header); 1613 1614 if (!perf_session__has_traces(session, "timechart record")) 1615 goto out_delete; 1616 1617 if (perf_session__set_tracepoints_handlers(session, 1618 power_tracepoints)) { 1619 pr_err("Initializing session tracepoint handlers failed\n"); 1620 goto out_delete; 1621 } 1622 1623 ret = perf_session__process_events(session); 1624 if (ret) 1625 goto out_delete; 1626 1627 end_sample_processing(tchart); 1628 1629 sort_pids(tchart); 1630 1631 write_svg_file(tchart, output_name); 1632 1633 pr_info("Written %2.1f seconds of trace to %s.\n", 1634 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name); 1635 out_delete: 1636 perf_session__delete(session); 1637 return ret; 1638 } 1639 1640 static int timechart__io_record(int argc, const char **argv) 1641 { 1642 unsigned int rec_argc, i; 1643 const char **rec_argv; 1644 const char **p; 1645 char *filter = NULL; 1646 1647 const char * const common_args[] = { 1648 "record", "-a", "-R", "-c", "1", 1649 }; 1650 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1651 1652 const char * const disk_events[] = { 1653 "syscalls:sys_enter_read", 1654 "syscalls:sys_enter_pread64", 1655 "syscalls:sys_enter_readv", 1656 "syscalls:sys_enter_preadv", 1657 "syscalls:sys_enter_write", 1658 "syscalls:sys_enter_pwrite64", 1659 "syscalls:sys_enter_writev", 1660 "syscalls:sys_enter_pwritev", 1661 "syscalls:sys_enter_sync", 1662 "syscalls:sys_enter_sync_file_range", 1663 "syscalls:sys_enter_fsync", 1664 "syscalls:sys_enter_msync", 1665 1666 "syscalls:sys_exit_read", 1667 "syscalls:sys_exit_pread64", 1668 "syscalls:sys_exit_readv", 1669 "syscalls:sys_exit_preadv", 1670 "syscalls:sys_exit_write", 1671 "syscalls:sys_exit_pwrite64", 1672 "syscalls:sys_exit_writev", 1673 "syscalls:sys_exit_pwritev", 1674 "syscalls:sys_exit_sync", 1675 "syscalls:sys_exit_sync_file_range", 1676 "syscalls:sys_exit_fsync", 1677 "syscalls:sys_exit_msync", 1678 }; 1679 unsigned int disk_events_nr = ARRAY_SIZE(disk_events); 1680 1681 const char * const net_events[] = { 1682 "syscalls:sys_enter_recvfrom", 1683 "syscalls:sys_enter_recvmmsg", 1684 "syscalls:sys_enter_recvmsg", 1685 "syscalls:sys_enter_sendto", 1686 "syscalls:sys_enter_sendmsg", 1687 "syscalls:sys_enter_sendmmsg", 1688 1689 "syscalls:sys_exit_recvfrom", 1690 "syscalls:sys_exit_recvmmsg", 1691 "syscalls:sys_exit_recvmsg", 1692 "syscalls:sys_exit_sendto", 1693 "syscalls:sys_exit_sendmsg", 1694 "syscalls:sys_exit_sendmmsg", 1695 }; 1696 unsigned int net_events_nr = ARRAY_SIZE(net_events); 1697 1698 const char * const poll_events[] = { 1699 "syscalls:sys_enter_epoll_pwait", 1700 "syscalls:sys_enter_epoll_wait", 1701 "syscalls:sys_enter_poll", 1702 "syscalls:sys_enter_ppoll", 1703 "syscalls:sys_enter_pselect6", 1704 "syscalls:sys_enter_select", 1705 1706 "syscalls:sys_exit_epoll_pwait", 1707 "syscalls:sys_exit_epoll_wait", 1708 "syscalls:sys_exit_poll", 1709 "syscalls:sys_exit_ppoll", 1710 "syscalls:sys_exit_pselect6", 1711 "syscalls:sys_exit_select", 1712 }; 1713 unsigned int poll_events_nr = ARRAY_SIZE(poll_events); 1714 1715 rec_argc = common_args_nr + 1716 disk_events_nr * 4 + 1717 net_events_nr * 4 + 1718 poll_events_nr * 4 + 1719 argc; 1720 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1721 1722 if (rec_argv == NULL) 1723 return -ENOMEM; 1724 1725 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) { 1726 free(rec_argv); 1727 return -ENOMEM; 1728 } 1729 1730 p = rec_argv; 1731 for (i = 0; i < common_args_nr; i++) 1732 *p++ = strdup(common_args[i]); 1733 1734 for (i = 0; i < disk_events_nr; i++) { 1735 if (!is_valid_tracepoint(disk_events[i])) { 1736 rec_argc -= 4; 1737 continue; 1738 } 1739 1740 *p++ = "-e"; 1741 *p++ = strdup(disk_events[i]); 1742 *p++ = "--filter"; 1743 *p++ = filter; 1744 } 1745 for (i = 0; i < net_events_nr; i++) { 1746 if (!is_valid_tracepoint(net_events[i])) { 1747 rec_argc -= 4; 1748 continue; 1749 } 1750 1751 *p++ = "-e"; 1752 *p++ = strdup(net_events[i]); 1753 *p++ = "--filter"; 1754 *p++ = filter; 1755 } 1756 for (i = 0; i < poll_events_nr; i++) { 1757 if (!is_valid_tracepoint(poll_events[i])) { 1758 rec_argc -= 4; 1759 continue; 1760 } 1761 1762 *p++ = "-e"; 1763 *p++ = strdup(poll_events[i]); 1764 *p++ = "--filter"; 1765 *p++ = filter; 1766 } 1767 1768 for (i = 0; i < (unsigned int)argc; i++) 1769 *p++ = argv[i]; 1770 1771 return cmd_record(rec_argc, rec_argv); 1772 } 1773 1774 1775 static int timechart__record(struct timechart *tchart, int argc, const char **argv) 1776 { 1777 unsigned int rec_argc, i, j; 1778 const char **rec_argv; 1779 const char **p; 1780 unsigned int record_elems; 1781 1782 const char * const common_args[] = { 1783 "record", "-a", "-R", "-c", "1", 1784 }; 1785 unsigned int common_args_nr = ARRAY_SIZE(common_args); 1786 1787 const char * const backtrace_args[] = { 1788 "-g", 1789 }; 1790 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args); 1791 1792 const char * const power_args[] = { 1793 "-e", "power:cpu_frequency", 1794 "-e", "power:cpu_idle", 1795 }; 1796 unsigned int power_args_nr = ARRAY_SIZE(power_args); 1797 1798 const char * const old_power_args[] = { 1799 #ifdef SUPPORT_OLD_POWER_EVENTS 1800 "-e", "power:power_start", 1801 "-e", "power:power_end", 1802 "-e", "power:power_frequency", 1803 #endif 1804 }; 1805 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args); 1806 1807 const char * const tasks_args[] = { 1808 "-e", "sched:sched_wakeup", 1809 "-e", "sched:sched_switch", 1810 }; 1811 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args); 1812 1813 #ifdef SUPPORT_OLD_POWER_EVENTS 1814 if (!is_valid_tracepoint("power:cpu_idle") && 1815 is_valid_tracepoint("power:power_start")) { 1816 use_old_power_events = 1; 1817 power_args_nr = 0; 1818 } else { 1819 old_power_args_nr = 0; 1820 } 1821 #endif 1822 1823 if (tchart->power_only) 1824 tasks_args_nr = 0; 1825 1826 if (tchart->tasks_only) { 1827 power_args_nr = 0; 1828 old_power_args_nr = 0; 1829 } 1830 1831 if (!tchart->with_backtrace) 1832 backtrace_args_no = 0; 1833 1834 record_elems = common_args_nr + tasks_args_nr + 1835 power_args_nr + old_power_args_nr + backtrace_args_no; 1836 1837 rec_argc = record_elems + argc; 1838 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1839 1840 if (rec_argv == NULL) 1841 return -ENOMEM; 1842 1843 p = rec_argv; 1844 for (i = 0; i < common_args_nr; i++) 1845 *p++ = strdup(common_args[i]); 1846 1847 for (i = 0; i < backtrace_args_no; i++) 1848 *p++ = strdup(backtrace_args[i]); 1849 1850 for (i = 0; i < tasks_args_nr; i++) 1851 *p++ = strdup(tasks_args[i]); 1852 1853 for (i = 0; i < power_args_nr; i++) 1854 *p++ = strdup(power_args[i]); 1855 1856 for (i = 0; i < old_power_args_nr; i++) 1857 *p++ = strdup(old_power_args[i]); 1858 1859 for (j = 0; j < (unsigned int)argc; j++) 1860 *p++ = argv[j]; 1861 1862 return cmd_record(rec_argc, rec_argv); 1863 } 1864 1865 static int 1866 parse_process(const struct option *opt __maybe_unused, const char *arg, 1867 int __maybe_unused unset) 1868 { 1869 if (arg) 1870 add_process_filter(arg); 1871 return 0; 1872 } 1873 1874 static int 1875 parse_highlight(const struct option *opt __maybe_unused, const char *arg, 1876 int __maybe_unused unset) 1877 { 1878 unsigned long duration = strtoul(arg, NULL, 0); 1879 1880 if (svg_highlight || svg_highlight_name) 1881 return -1; 1882 1883 if (duration) 1884 svg_highlight = duration; 1885 else 1886 svg_highlight_name = strdup(arg); 1887 1888 return 0; 1889 } 1890 1891 static int 1892 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset) 1893 { 1894 char unit = 'n'; 1895 u64 *value = opt->value; 1896 1897 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) { 1898 switch (unit) { 1899 case 'm': 1900 *value *= NSEC_PER_MSEC; 1901 break; 1902 case 'u': 1903 *value *= NSEC_PER_USEC; 1904 break; 1905 case 'n': 1906 break; 1907 default: 1908 return -1; 1909 } 1910 } 1911 1912 return 0; 1913 } 1914 1915 int cmd_timechart(int argc, const char **argv) 1916 { 1917 struct timechart tchart = { 1918 .tool = { 1919 .comm = process_comm_event, 1920 .fork = process_fork_event, 1921 .exit = process_exit_event, 1922 .sample = process_sample_event, 1923 .ordered_events = true, 1924 }, 1925 .proc_num = 15, 1926 .min_time = NSEC_PER_MSEC, 1927 .merge_dist = 1000, 1928 }; 1929 const char *output_name = "output.svg"; 1930 const struct option timechart_common_options[] = { 1931 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"), 1932 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"), 1933 OPT_END() 1934 }; 1935 const struct option timechart_options[] = { 1936 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1937 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name", 1940 "highlight tasks. Pass duration in ns or process name.", 1941 parse_highlight), 1942 OPT_CALLBACK('p', "process", NULL, "process", 1943 "process selector. Pass a pid or process name.", 1944 parse_process), 1945 OPT_CALLBACK(0, "symfs", NULL, "directory", 1946 "Look for files with symbols relative to this directory", 1947 symbol__config_symfs), 1948 OPT_INTEGER('n', "proc-num", &tchart.proc_num, 1949 "min. number of tasks to print"), 1950 OPT_BOOLEAN('t', "topology", &tchart.topology, 1951 "sort CPUs according to topology"), 1952 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain, 1953 "skip EAGAIN errors"), 1954 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time", 1955 "all IO faster than min-time will visually appear longer", 1956 parse_time), 1957 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time", 1958 "merge events that are merge-dist us apart", 1959 parse_time), 1960 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"), 1961 OPT_PARENT(timechart_common_options), 1962 }; 1963 const char * const timechart_subcommands[] = { "record", NULL }; 1964 const char *timechart_usage[] = { 1965 "perf timechart [<options>] {record}", 1966 NULL 1967 }; 1968 const struct option timechart_record_options[] = { 1969 OPT_BOOLEAN('I', "io-only", &tchart.io_only, 1970 "record only IO data"), 1971 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"), 1972 OPT_PARENT(timechart_common_options), 1973 }; 1974 const char * const timechart_record_usage[] = { 1975 "perf timechart record [<options>]", 1976 NULL 1977 }; 1978 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands, 1979 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); 1980 1981 if (tchart.power_only && tchart.tasks_only) { 1982 pr_err("-P and -T options cannot be used at the same time.\n"); 1983 return -1; 1984 } 1985 1986 if (argc && !strncmp(argv[0], "rec", 3)) { 1987 argc = parse_options(argc, argv, timechart_record_options, 1988 timechart_record_usage, 1989 PARSE_OPT_STOP_AT_NON_OPTION); 1990 1991 if (tchart.power_only && tchart.tasks_only) { 1992 pr_err("-P and -T options cannot be used at the same time.\n"); 1993 return -1; 1994 } 1995 1996 if (tchart.io_only) 1997 return timechart__io_record(argc, argv); 1998 else 1999 return timechart__record(&tchart, argc, argv); 2000 } else if (argc) 2001 usage_with_options(timechart_usage, timechart_options); 2002 2003 setup_pager(); 2004 2005 return __cmd_timechart(&tchart, output_name); 2006 } 2007