1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include <traceevent/event-parse.h>
16 
17 #include "builtin.h"
18 
19 #include "util/util.h"
20 
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include <linux/time64.h>
28 #include "util/symbol.h"
29 #include "util/callchain.h"
30 #include "util/strlist.h"
31 
32 #include "perf.h"
33 #include "util/header.h"
34 #include <subcmd/parse-options.h>
35 #include "util/parse-events.h"
36 #include "util/event.h"
37 #include "util/session.h"
38 #include "util/svghelper.h"
39 #include "util/tool.h"
40 #include "util/data.h"
41 #include "util/debug.h"
42 
43 #define SUPPORT_OLD_POWER_EVENTS 1
44 #define PWR_EVENT_EXIT -1
45 
46 struct per_pid;
47 struct power_event;
48 struct wake_event;
49 
50 struct timechart {
51 	struct perf_tool	tool;
52 	struct per_pid		*all_data;
53 	struct power_event	*power_events;
54 	struct wake_event	*wake_events;
55 	int			proc_num;
56 	unsigned int		numcpus;
57 	u64			min_freq,	/* Lowest CPU frequency seen */
58 				max_freq,	/* Highest CPU frequency seen */
59 				turbo_frequency,
60 				first_time, last_time;
61 	bool			power_only,
62 				tasks_only,
63 				with_backtrace,
64 				topology;
65 	bool			force;
66 	/* IO related settings */
67 	bool			io_only,
68 				skip_eagain;
69 	u64			io_events;
70 	u64			min_time,
71 				merge_dist;
72 };
73 
74 struct per_pidcomm;
75 struct cpu_sample;
76 struct io_sample;
77 
78 /*
79  * Datastructure layout:
80  * We keep an list of "pid"s, matching the kernels notion of a task struct.
81  * Each "pid" entry, has a list of "comm"s.
82  *	this is because we want to track different programs different, while
83  *	exec will reuse the original pid (by design).
84  * Each comm has a list of samples that will be used to draw
85  * final graph.
86  */
87 
88 struct per_pid {
89 	struct per_pid *next;
90 
91 	int		pid;
92 	int		ppid;
93 
94 	u64		start_time;
95 	u64		end_time;
96 	u64		total_time;
97 	u64		total_bytes;
98 	int		display;
99 
100 	struct per_pidcomm *all;
101 	struct per_pidcomm *current;
102 };
103 
104 
105 struct per_pidcomm {
106 	struct per_pidcomm *next;
107 
108 	u64		start_time;
109 	u64		end_time;
110 	u64		total_time;
111 	u64		max_bytes;
112 	u64		total_bytes;
113 
114 	int		Y;
115 	int		display;
116 
117 	long		state;
118 	u64		state_since;
119 
120 	char		*comm;
121 
122 	struct cpu_sample *samples;
123 	struct io_sample  *io_samples;
124 };
125 
126 struct sample_wrapper {
127 	struct sample_wrapper *next;
128 
129 	u64		timestamp;
130 	unsigned char	data[0];
131 };
132 
133 #define TYPE_NONE	0
134 #define TYPE_RUNNING	1
135 #define TYPE_WAITING	2
136 #define TYPE_BLOCKED	3
137 
138 struct cpu_sample {
139 	struct cpu_sample *next;
140 
141 	u64 start_time;
142 	u64 end_time;
143 	int type;
144 	int cpu;
145 	const char *backtrace;
146 };
147 
148 enum {
149 	IOTYPE_READ,
150 	IOTYPE_WRITE,
151 	IOTYPE_SYNC,
152 	IOTYPE_TX,
153 	IOTYPE_RX,
154 	IOTYPE_POLL,
155 };
156 
157 struct io_sample {
158 	struct io_sample *next;
159 
160 	u64 start_time;
161 	u64 end_time;
162 	u64 bytes;
163 	int type;
164 	int fd;
165 	int err;
166 	int merges;
167 };
168 
169 #define CSTATE 1
170 #define PSTATE 2
171 
172 struct power_event {
173 	struct power_event *next;
174 	int type;
175 	int state;
176 	u64 start_time;
177 	u64 end_time;
178 	int cpu;
179 };
180 
181 struct wake_event {
182 	struct wake_event *next;
183 	int waker;
184 	int wakee;
185 	u64 time;
186 	const char *backtrace;
187 };
188 
189 struct process_filter {
190 	char			*name;
191 	int			pid;
192 	struct process_filter	*next;
193 };
194 
195 static struct process_filter *process_filter;
196 
197 
198 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
199 {
200 	struct per_pid *cursor = tchart->all_data;
201 
202 	while (cursor) {
203 		if (cursor->pid == pid)
204 			return cursor;
205 		cursor = cursor->next;
206 	}
207 	cursor = zalloc(sizeof(*cursor));
208 	assert(cursor != NULL);
209 	cursor->pid = pid;
210 	cursor->next = tchart->all_data;
211 	tchart->all_data = cursor;
212 	return cursor;
213 }
214 
215 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
216 {
217 	struct per_pid *p;
218 	struct per_pidcomm *c;
219 	p = find_create_pid(tchart, pid);
220 	c = p->all;
221 	while (c) {
222 		if (c->comm && strcmp(c->comm, comm) == 0) {
223 			p->current = c;
224 			return;
225 		}
226 		if (!c->comm) {
227 			c->comm = strdup(comm);
228 			p->current = c;
229 			return;
230 		}
231 		c = c->next;
232 	}
233 	c = zalloc(sizeof(*c));
234 	assert(c != NULL);
235 	c->comm = strdup(comm);
236 	p->current = c;
237 	c->next = p->all;
238 	p->all = c;
239 }
240 
241 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
242 {
243 	struct per_pid *p, *pp;
244 	p = find_create_pid(tchart, pid);
245 	pp = find_create_pid(tchart, ppid);
246 	p->ppid = ppid;
247 	if (pp->current && pp->current->comm && !p->current)
248 		pid_set_comm(tchart, pid, pp->current->comm);
249 
250 	p->start_time = timestamp;
251 	if (p->current && !p->current->start_time) {
252 		p->current->start_time = timestamp;
253 		p->current->state_since = timestamp;
254 	}
255 }
256 
257 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
258 {
259 	struct per_pid *p;
260 	p = find_create_pid(tchart, pid);
261 	p->end_time = timestamp;
262 	if (p->current)
263 		p->current->end_time = timestamp;
264 }
265 
266 static void pid_put_sample(struct timechart *tchart, int pid, int type,
267 			   unsigned int cpu, u64 start, u64 end,
268 			   const char *backtrace)
269 {
270 	struct per_pid *p;
271 	struct per_pidcomm *c;
272 	struct cpu_sample *sample;
273 
274 	p = find_create_pid(tchart, pid);
275 	c = p->current;
276 	if (!c) {
277 		c = zalloc(sizeof(*c));
278 		assert(c != NULL);
279 		p->current = c;
280 		c->next = p->all;
281 		p->all = c;
282 	}
283 
284 	sample = zalloc(sizeof(*sample));
285 	assert(sample != NULL);
286 	sample->start_time = start;
287 	sample->end_time = end;
288 	sample->type = type;
289 	sample->next = c->samples;
290 	sample->cpu = cpu;
291 	sample->backtrace = backtrace;
292 	c->samples = sample;
293 
294 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
295 		c->total_time += (end-start);
296 		p->total_time += (end-start);
297 	}
298 
299 	if (c->start_time == 0 || c->start_time > start)
300 		c->start_time = start;
301 	if (p->start_time == 0 || p->start_time > start)
302 		p->start_time = start;
303 }
304 
305 #define MAX_CPUS 4096
306 
307 static u64 cpus_cstate_start_times[MAX_CPUS];
308 static int cpus_cstate_state[MAX_CPUS];
309 static u64 cpus_pstate_start_times[MAX_CPUS];
310 static u64 cpus_pstate_state[MAX_CPUS];
311 
312 static int process_comm_event(struct perf_tool *tool,
313 			      union perf_event *event,
314 			      struct perf_sample *sample __maybe_unused,
315 			      struct machine *machine __maybe_unused)
316 {
317 	struct timechart *tchart = container_of(tool, struct timechart, tool);
318 	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
319 	return 0;
320 }
321 
322 static int process_fork_event(struct perf_tool *tool,
323 			      union perf_event *event,
324 			      struct perf_sample *sample __maybe_unused,
325 			      struct machine *machine __maybe_unused)
326 {
327 	struct timechart *tchart = container_of(tool, struct timechart, tool);
328 	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
329 	return 0;
330 }
331 
332 static int process_exit_event(struct perf_tool *tool,
333 			      union perf_event *event,
334 			      struct perf_sample *sample __maybe_unused,
335 			      struct machine *machine __maybe_unused)
336 {
337 	struct timechart *tchart = container_of(tool, struct timechart, tool);
338 	pid_exit(tchart, event->fork.pid, event->fork.time);
339 	return 0;
340 }
341 
342 #ifdef SUPPORT_OLD_POWER_EVENTS
343 static int use_old_power_events;
344 #endif
345 
346 static void c_state_start(int cpu, u64 timestamp, int state)
347 {
348 	cpus_cstate_start_times[cpu] = timestamp;
349 	cpus_cstate_state[cpu] = state;
350 }
351 
352 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
353 {
354 	struct power_event *pwr = zalloc(sizeof(*pwr));
355 
356 	if (!pwr)
357 		return;
358 
359 	pwr->state = cpus_cstate_state[cpu];
360 	pwr->start_time = cpus_cstate_start_times[cpu];
361 	pwr->end_time = timestamp;
362 	pwr->cpu = cpu;
363 	pwr->type = CSTATE;
364 	pwr->next = tchart->power_events;
365 
366 	tchart->power_events = pwr;
367 }
368 
369 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
370 {
371 	struct power_event *pwr;
372 
373 	if (new_freq > 8000000) /* detect invalid data */
374 		return;
375 
376 	pwr = zalloc(sizeof(*pwr));
377 	if (!pwr)
378 		return;
379 
380 	pwr->state = cpus_pstate_state[cpu];
381 	pwr->start_time = cpus_pstate_start_times[cpu];
382 	pwr->end_time = timestamp;
383 	pwr->cpu = cpu;
384 	pwr->type = PSTATE;
385 	pwr->next = tchart->power_events;
386 
387 	if (!pwr->start_time)
388 		pwr->start_time = tchart->first_time;
389 
390 	tchart->power_events = pwr;
391 
392 	cpus_pstate_state[cpu] = new_freq;
393 	cpus_pstate_start_times[cpu] = timestamp;
394 
395 	if ((u64)new_freq > tchart->max_freq)
396 		tchart->max_freq = new_freq;
397 
398 	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
399 		tchart->min_freq = new_freq;
400 
401 	if (new_freq == tchart->max_freq - 1000)
402 		tchart->turbo_frequency = tchart->max_freq;
403 }
404 
405 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
406 			 int waker, int wakee, u8 flags, const char *backtrace)
407 {
408 	struct per_pid *p;
409 	struct wake_event *we = zalloc(sizeof(*we));
410 
411 	if (!we)
412 		return;
413 
414 	we->time = timestamp;
415 	we->waker = waker;
416 	we->backtrace = backtrace;
417 
418 	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
419 		we->waker = -1;
420 
421 	we->wakee = wakee;
422 	we->next = tchart->wake_events;
423 	tchart->wake_events = we;
424 	p = find_create_pid(tchart, we->wakee);
425 
426 	if (p && p->current && p->current->state == TYPE_NONE) {
427 		p->current->state_since = timestamp;
428 		p->current->state = TYPE_WAITING;
429 	}
430 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
431 		pid_put_sample(tchart, p->pid, p->current->state, cpu,
432 			       p->current->state_since, timestamp, NULL);
433 		p->current->state_since = timestamp;
434 		p->current->state = TYPE_WAITING;
435 	}
436 }
437 
438 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
439 			 int prev_pid, int next_pid, u64 prev_state,
440 			 const char *backtrace)
441 {
442 	struct per_pid *p = NULL, *prev_p;
443 
444 	prev_p = find_create_pid(tchart, prev_pid);
445 
446 	p = find_create_pid(tchart, next_pid);
447 
448 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
449 		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
450 			       prev_p->current->state_since, timestamp,
451 			       backtrace);
452 	if (p && p->current) {
453 		if (p->current->state != TYPE_NONE)
454 			pid_put_sample(tchart, next_pid, p->current->state, cpu,
455 				       p->current->state_since, timestamp,
456 				       backtrace);
457 
458 		p->current->state_since = timestamp;
459 		p->current->state = TYPE_RUNNING;
460 	}
461 
462 	if (prev_p->current) {
463 		prev_p->current->state = TYPE_NONE;
464 		prev_p->current->state_since = timestamp;
465 		if (prev_state & 2)
466 			prev_p->current->state = TYPE_BLOCKED;
467 		if (prev_state == 0)
468 			prev_p->current->state = TYPE_WAITING;
469 	}
470 }
471 
472 static const char *cat_backtrace(union perf_event *event,
473 				 struct perf_sample *sample,
474 				 struct machine *machine)
475 {
476 	struct addr_location al;
477 	unsigned int i;
478 	char *p = NULL;
479 	size_t p_len;
480 	u8 cpumode = PERF_RECORD_MISC_USER;
481 	struct addr_location tal;
482 	struct ip_callchain *chain = sample->callchain;
483 	FILE *f = open_memstream(&p, &p_len);
484 
485 	if (!f) {
486 		perror("open_memstream error");
487 		return NULL;
488 	}
489 
490 	if (!chain)
491 		goto exit;
492 
493 	if (machine__resolve(machine, &al, sample) < 0) {
494 		fprintf(stderr, "problem processing %d event, skipping it.\n",
495 			event->header.type);
496 		goto exit;
497 	}
498 
499 	for (i = 0; i < chain->nr; i++) {
500 		u64 ip;
501 
502 		if (callchain_param.order == ORDER_CALLEE)
503 			ip = chain->ips[i];
504 		else
505 			ip = chain->ips[chain->nr - i - 1];
506 
507 		if (ip >= PERF_CONTEXT_MAX) {
508 			switch (ip) {
509 			case PERF_CONTEXT_HV:
510 				cpumode = PERF_RECORD_MISC_HYPERVISOR;
511 				break;
512 			case PERF_CONTEXT_KERNEL:
513 				cpumode = PERF_RECORD_MISC_KERNEL;
514 				break;
515 			case PERF_CONTEXT_USER:
516 				cpumode = PERF_RECORD_MISC_USER;
517 				break;
518 			default:
519 				pr_debug("invalid callchain context: "
520 					 "%"PRId64"\n", (s64) ip);
521 
522 				/*
523 				 * It seems the callchain is corrupted.
524 				 * Discard all.
525 				 */
526 				zfree(&p);
527 				goto exit_put;
528 			}
529 			continue;
530 		}
531 
532 		tal.filtered = 0;
533 		thread__find_addr_location(al.thread, cpumode,
534 					   MAP__FUNCTION, ip, &tal);
535 
536 		if (tal.sym)
537 			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
538 				tal.sym->name);
539 		else
540 			fprintf(f, "..... %016" PRIx64 "\n", ip);
541 	}
542 exit_put:
543 	addr_location__put(&al);
544 exit:
545 	fclose(f);
546 
547 	return p;
548 }
549 
550 typedef int (*tracepoint_handler)(struct timechart *tchart,
551 				  struct perf_evsel *evsel,
552 				  struct perf_sample *sample,
553 				  const char *backtrace);
554 
555 static int process_sample_event(struct perf_tool *tool,
556 				union perf_event *event,
557 				struct perf_sample *sample,
558 				struct perf_evsel *evsel,
559 				struct machine *machine)
560 {
561 	struct timechart *tchart = container_of(tool, struct timechart, tool);
562 
563 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
564 		if (!tchart->first_time || tchart->first_time > sample->time)
565 			tchart->first_time = sample->time;
566 		if (tchart->last_time < sample->time)
567 			tchart->last_time = sample->time;
568 	}
569 
570 	if (evsel->handler != NULL) {
571 		tracepoint_handler f = evsel->handler;
572 		return f(tchart, evsel, sample,
573 			 cat_backtrace(event, sample, machine));
574 	}
575 
576 	return 0;
577 }
578 
579 static int
580 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
581 			struct perf_evsel *evsel,
582 			struct perf_sample *sample,
583 			const char *backtrace __maybe_unused)
584 {
585 	u32 state = perf_evsel__intval(evsel, sample, "state");
586 	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
587 
588 	if (state == (u32)PWR_EVENT_EXIT)
589 		c_state_end(tchart, cpu_id, sample->time);
590 	else
591 		c_state_start(cpu_id, sample->time, state);
592 	return 0;
593 }
594 
595 static int
596 process_sample_cpu_frequency(struct timechart *tchart,
597 			     struct perf_evsel *evsel,
598 			     struct perf_sample *sample,
599 			     const char *backtrace __maybe_unused)
600 {
601 	u32 state = perf_evsel__intval(evsel, sample, "state");
602 	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
603 
604 	p_state_change(tchart, cpu_id, sample->time, state);
605 	return 0;
606 }
607 
608 static int
609 process_sample_sched_wakeup(struct timechart *tchart,
610 			    struct perf_evsel *evsel,
611 			    struct perf_sample *sample,
612 			    const char *backtrace)
613 {
614 	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
615 	int waker = perf_evsel__intval(evsel, sample, "common_pid");
616 	int wakee = perf_evsel__intval(evsel, sample, "pid");
617 
618 	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
619 	return 0;
620 }
621 
622 static int
623 process_sample_sched_switch(struct timechart *tchart,
624 			    struct perf_evsel *evsel,
625 			    struct perf_sample *sample,
626 			    const char *backtrace)
627 {
628 	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
629 	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
630 	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
631 
632 	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
633 		     prev_state, backtrace);
634 	return 0;
635 }
636 
637 #ifdef SUPPORT_OLD_POWER_EVENTS
638 static int
639 process_sample_power_start(struct timechart *tchart __maybe_unused,
640 			   struct perf_evsel *evsel,
641 			   struct perf_sample *sample,
642 			   const char *backtrace __maybe_unused)
643 {
644 	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
645 	u64 value = perf_evsel__intval(evsel, sample, "value");
646 
647 	c_state_start(cpu_id, sample->time, value);
648 	return 0;
649 }
650 
651 static int
652 process_sample_power_end(struct timechart *tchart,
653 			 struct perf_evsel *evsel __maybe_unused,
654 			 struct perf_sample *sample,
655 			 const char *backtrace __maybe_unused)
656 {
657 	c_state_end(tchart, sample->cpu, sample->time);
658 	return 0;
659 }
660 
661 static int
662 process_sample_power_frequency(struct timechart *tchart,
663 			       struct perf_evsel *evsel,
664 			       struct perf_sample *sample,
665 			       const char *backtrace __maybe_unused)
666 {
667 	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
668 	u64 value = perf_evsel__intval(evsel, sample, "value");
669 
670 	p_state_change(tchart, cpu_id, sample->time, value);
671 	return 0;
672 }
673 #endif /* SUPPORT_OLD_POWER_EVENTS */
674 
675 /*
676  * After the last sample we need to wrap up the current C/P state
677  * and close out each CPU for these.
678  */
679 static void end_sample_processing(struct timechart *tchart)
680 {
681 	u64 cpu;
682 	struct power_event *pwr;
683 
684 	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
685 		/* C state */
686 #if 0
687 		pwr = zalloc(sizeof(*pwr));
688 		if (!pwr)
689 			return;
690 
691 		pwr->state = cpus_cstate_state[cpu];
692 		pwr->start_time = cpus_cstate_start_times[cpu];
693 		pwr->end_time = tchart->last_time;
694 		pwr->cpu = cpu;
695 		pwr->type = CSTATE;
696 		pwr->next = tchart->power_events;
697 
698 		tchart->power_events = pwr;
699 #endif
700 		/* P state */
701 
702 		pwr = zalloc(sizeof(*pwr));
703 		if (!pwr)
704 			return;
705 
706 		pwr->state = cpus_pstate_state[cpu];
707 		pwr->start_time = cpus_pstate_start_times[cpu];
708 		pwr->end_time = tchart->last_time;
709 		pwr->cpu = cpu;
710 		pwr->type = PSTATE;
711 		pwr->next = tchart->power_events;
712 
713 		if (!pwr->start_time)
714 			pwr->start_time = tchart->first_time;
715 		if (!pwr->state)
716 			pwr->state = tchart->min_freq;
717 		tchart->power_events = pwr;
718 	}
719 }
720 
721 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
722 			       u64 start, int fd)
723 {
724 	struct per_pid *p = find_create_pid(tchart, pid);
725 	struct per_pidcomm *c = p->current;
726 	struct io_sample *sample;
727 	struct io_sample *prev;
728 
729 	if (!c) {
730 		c = zalloc(sizeof(*c));
731 		if (!c)
732 			return -ENOMEM;
733 		p->current = c;
734 		c->next = p->all;
735 		p->all = c;
736 	}
737 
738 	prev = c->io_samples;
739 
740 	if (prev && prev->start_time && !prev->end_time) {
741 		pr_warning("Skip invalid start event: "
742 			   "previous event already started!\n");
743 
744 		/* remove previous event that has been started,
745 		 * we are not sure we will ever get an end for it */
746 		c->io_samples = prev->next;
747 		free(prev);
748 		return 0;
749 	}
750 
751 	sample = zalloc(sizeof(*sample));
752 	if (!sample)
753 		return -ENOMEM;
754 	sample->start_time = start;
755 	sample->type = type;
756 	sample->fd = fd;
757 	sample->next = c->io_samples;
758 	c->io_samples = sample;
759 
760 	if (c->start_time == 0 || c->start_time > start)
761 		c->start_time = start;
762 
763 	return 0;
764 }
765 
766 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
767 			     u64 end, long ret)
768 {
769 	struct per_pid *p = find_create_pid(tchart, pid);
770 	struct per_pidcomm *c = p->current;
771 	struct io_sample *sample, *prev;
772 
773 	if (!c) {
774 		pr_warning("Invalid pidcomm!\n");
775 		return -1;
776 	}
777 
778 	sample = c->io_samples;
779 
780 	if (!sample) /* skip partially captured events */
781 		return 0;
782 
783 	if (sample->end_time) {
784 		pr_warning("Skip invalid end event: "
785 			   "previous event already ended!\n");
786 		return 0;
787 	}
788 
789 	if (sample->type != type) {
790 		pr_warning("Skip invalid end event: invalid event type!\n");
791 		return 0;
792 	}
793 
794 	sample->end_time = end;
795 	prev = sample->next;
796 
797 	/* we want to be able to see small and fast transfers, so make them
798 	 * at least min_time long, but don't overlap them */
799 	if (sample->end_time - sample->start_time < tchart->min_time)
800 		sample->end_time = sample->start_time + tchart->min_time;
801 	if (prev && sample->start_time < prev->end_time) {
802 		if (prev->err) /* try to make errors more visible */
803 			sample->start_time = prev->end_time;
804 		else
805 			prev->end_time = sample->start_time;
806 	}
807 
808 	if (ret < 0) {
809 		sample->err = ret;
810 	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
811 		   type == IOTYPE_TX || type == IOTYPE_RX) {
812 
813 		if ((u64)ret > c->max_bytes)
814 			c->max_bytes = ret;
815 
816 		c->total_bytes += ret;
817 		p->total_bytes += ret;
818 		sample->bytes = ret;
819 	}
820 
821 	/* merge two requests to make svg smaller and render-friendly */
822 	if (prev &&
823 	    prev->type == sample->type &&
824 	    prev->err == sample->err &&
825 	    prev->fd == sample->fd &&
826 	    prev->end_time + tchart->merge_dist >= sample->start_time) {
827 
828 		sample->bytes += prev->bytes;
829 		sample->merges += prev->merges + 1;
830 
831 		sample->start_time = prev->start_time;
832 		sample->next = prev->next;
833 		free(prev);
834 
835 		if (!sample->err && sample->bytes > c->max_bytes)
836 			c->max_bytes = sample->bytes;
837 	}
838 
839 	tchart->io_events++;
840 
841 	return 0;
842 }
843 
844 static int
845 process_enter_read(struct timechart *tchart,
846 		   struct perf_evsel *evsel,
847 		   struct perf_sample *sample)
848 {
849 	long fd = perf_evsel__intval(evsel, sample, "fd");
850 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
851 				   sample->time, fd);
852 }
853 
854 static int
855 process_exit_read(struct timechart *tchart,
856 		  struct perf_evsel *evsel,
857 		  struct perf_sample *sample)
858 {
859 	long ret = perf_evsel__intval(evsel, sample, "ret");
860 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
861 				 sample->time, ret);
862 }
863 
864 static int
865 process_enter_write(struct timechart *tchart,
866 		    struct perf_evsel *evsel,
867 		    struct perf_sample *sample)
868 {
869 	long fd = perf_evsel__intval(evsel, sample, "fd");
870 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
871 				   sample->time, fd);
872 }
873 
874 static int
875 process_exit_write(struct timechart *tchart,
876 		   struct perf_evsel *evsel,
877 		   struct perf_sample *sample)
878 {
879 	long ret = perf_evsel__intval(evsel, sample, "ret");
880 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
881 				 sample->time, ret);
882 }
883 
884 static int
885 process_enter_sync(struct timechart *tchart,
886 		   struct perf_evsel *evsel,
887 		   struct perf_sample *sample)
888 {
889 	long fd = perf_evsel__intval(evsel, sample, "fd");
890 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
891 				   sample->time, fd);
892 }
893 
894 static int
895 process_exit_sync(struct timechart *tchart,
896 		  struct perf_evsel *evsel,
897 		  struct perf_sample *sample)
898 {
899 	long ret = perf_evsel__intval(evsel, sample, "ret");
900 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
901 				 sample->time, ret);
902 }
903 
904 static int
905 process_enter_tx(struct timechart *tchart,
906 		 struct perf_evsel *evsel,
907 		 struct perf_sample *sample)
908 {
909 	long fd = perf_evsel__intval(evsel, sample, "fd");
910 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
911 				   sample->time, fd);
912 }
913 
914 static int
915 process_exit_tx(struct timechart *tchart,
916 		struct perf_evsel *evsel,
917 		struct perf_sample *sample)
918 {
919 	long ret = perf_evsel__intval(evsel, sample, "ret");
920 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
921 				 sample->time, ret);
922 }
923 
924 static int
925 process_enter_rx(struct timechart *tchart,
926 		 struct perf_evsel *evsel,
927 		 struct perf_sample *sample)
928 {
929 	long fd = perf_evsel__intval(evsel, sample, "fd");
930 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
931 				   sample->time, fd);
932 }
933 
934 static int
935 process_exit_rx(struct timechart *tchart,
936 		struct perf_evsel *evsel,
937 		struct perf_sample *sample)
938 {
939 	long ret = perf_evsel__intval(evsel, sample, "ret");
940 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
941 				 sample->time, ret);
942 }
943 
944 static int
945 process_enter_poll(struct timechart *tchart,
946 		   struct perf_evsel *evsel,
947 		   struct perf_sample *sample)
948 {
949 	long fd = perf_evsel__intval(evsel, sample, "fd");
950 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
951 				   sample->time, fd);
952 }
953 
954 static int
955 process_exit_poll(struct timechart *tchart,
956 		  struct perf_evsel *evsel,
957 		  struct perf_sample *sample)
958 {
959 	long ret = perf_evsel__intval(evsel, sample, "ret");
960 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
961 				 sample->time, ret);
962 }
963 
964 /*
965  * Sort the pid datastructure
966  */
967 static void sort_pids(struct timechart *tchart)
968 {
969 	struct per_pid *new_list, *p, *cursor, *prev;
970 	/* sort by ppid first, then by pid, lowest to highest */
971 
972 	new_list = NULL;
973 
974 	while (tchart->all_data) {
975 		p = tchart->all_data;
976 		tchart->all_data = p->next;
977 		p->next = NULL;
978 
979 		if (new_list == NULL) {
980 			new_list = p;
981 			p->next = NULL;
982 			continue;
983 		}
984 		prev = NULL;
985 		cursor = new_list;
986 		while (cursor) {
987 			if (cursor->ppid > p->ppid ||
988 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
989 				/* must insert before */
990 				if (prev) {
991 					p->next = prev->next;
992 					prev->next = p;
993 					cursor = NULL;
994 					continue;
995 				} else {
996 					p->next = new_list;
997 					new_list = p;
998 					cursor = NULL;
999 					continue;
1000 				}
1001 			}
1002 
1003 			prev = cursor;
1004 			cursor = cursor->next;
1005 			if (!cursor)
1006 				prev->next = p;
1007 		}
1008 	}
1009 	tchart->all_data = new_list;
1010 }
1011 
1012 
1013 static void draw_c_p_states(struct timechart *tchart)
1014 {
1015 	struct power_event *pwr;
1016 	pwr = tchart->power_events;
1017 
1018 	/*
1019 	 * two pass drawing so that the P state bars are on top of the C state blocks
1020 	 */
1021 	while (pwr) {
1022 		if (pwr->type == CSTATE)
1023 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1024 		pwr = pwr->next;
1025 	}
1026 
1027 	pwr = tchart->power_events;
1028 	while (pwr) {
1029 		if (pwr->type == PSTATE) {
1030 			if (!pwr->state)
1031 				pwr->state = tchart->min_freq;
1032 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1033 		}
1034 		pwr = pwr->next;
1035 	}
1036 }
1037 
1038 static void draw_wakeups(struct timechart *tchart)
1039 {
1040 	struct wake_event *we;
1041 	struct per_pid *p;
1042 	struct per_pidcomm *c;
1043 
1044 	we = tchart->wake_events;
1045 	while (we) {
1046 		int from = 0, to = 0;
1047 		char *task_from = NULL, *task_to = NULL;
1048 
1049 		/* locate the column of the waker and wakee */
1050 		p = tchart->all_data;
1051 		while (p) {
1052 			if (p->pid == we->waker || p->pid == we->wakee) {
1053 				c = p->all;
1054 				while (c) {
1055 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1056 						if (p->pid == we->waker && !from) {
1057 							from = c->Y;
1058 							task_from = strdup(c->comm);
1059 						}
1060 						if (p->pid == we->wakee && !to) {
1061 							to = c->Y;
1062 							task_to = strdup(c->comm);
1063 						}
1064 					}
1065 					c = c->next;
1066 				}
1067 				c = p->all;
1068 				while (c) {
1069 					if (p->pid == we->waker && !from) {
1070 						from = c->Y;
1071 						task_from = strdup(c->comm);
1072 					}
1073 					if (p->pid == we->wakee && !to) {
1074 						to = c->Y;
1075 						task_to = strdup(c->comm);
1076 					}
1077 					c = c->next;
1078 				}
1079 			}
1080 			p = p->next;
1081 		}
1082 
1083 		if (!task_from) {
1084 			task_from = malloc(40);
1085 			sprintf(task_from, "[%i]", we->waker);
1086 		}
1087 		if (!task_to) {
1088 			task_to = malloc(40);
1089 			sprintf(task_to, "[%i]", we->wakee);
1090 		}
1091 
1092 		if (we->waker == -1)
1093 			svg_interrupt(we->time, to, we->backtrace);
1094 		else if (from && to && abs(from - to) == 1)
1095 			svg_wakeline(we->time, from, to, we->backtrace);
1096 		else
1097 			svg_partial_wakeline(we->time, from, task_from, to,
1098 					     task_to, we->backtrace);
1099 		we = we->next;
1100 
1101 		free(task_from);
1102 		free(task_to);
1103 	}
1104 }
1105 
1106 static void draw_cpu_usage(struct timechart *tchart)
1107 {
1108 	struct per_pid *p;
1109 	struct per_pidcomm *c;
1110 	struct cpu_sample *sample;
1111 	p = tchart->all_data;
1112 	while (p) {
1113 		c = p->all;
1114 		while (c) {
1115 			sample = c->samples;
1116 			while (sample) {
1117 				if (sample->type == TYPE_RUNNING) {
1118 					svg_process(sample->cpu,
1119 						    sample->start_time,
1120 						    sample->end_time,
1121 						    p->pid,
1122 						    c->comm,
1123 						    sample->backtrace);
1124 				}
1125 
1126 				sample = sample->next;
1127 			}
1128 			c = c->next;
1129 		}
1130 		p = p->next;
1131 	}
1132 }
1133 
1134 static void draw_io_bars(struct timechart *tchart)
1135 {
1136 	const char *suf;
1137 	double bytes;
1138 	char comm[256];
1139 	struct per_pid *p;
1140 	struct per_pidcomm *c;
1141 	struct io_sample *sample;
1142 	int Y = 1;
1143 
1144 	p = tchart->all_data;
1145 	while (p) {
1146 		c = p->all;
1147 		while (c) {
1148 			if (!c->display) {
1149 				c->Y = 0;
1150 				c = c->next;
1151 				continue;
1152 			}
1153 
1154 			svg_box(Y, c->start_time, c->end_time, "process3");
1155 			sample = c->io_samples;
1156 			for (sample = c->io_samples; sample; sample = sample->next) {
1157 				double h = (double)sample->bytes / c->max_bytes;
1158 
1159 				if (tchart->skip_eagain &&
1160 				    sample->err == -EAGAIN)
1161 					continue;
1162 
1163 				if (sample->err)
1164 					h = 1;
1165 
1166 				if (sample->type == IOTYPE_SYNC)
1167 					svg_fbox(Y,
1168 						sample->start_time,
1169 						sample->end_time,
1170 						1,
1171 						sample->err ? "error" : "sync",
1172 						sample->fd,
1173 						sample->err,
1174 						sample->merges);
1175 				else if (sample->type == IOTYPE_POLL)
1176 					svg_fbox(Y,
1177 						sample->start_time,
1178 						sample->end_time,
1179 						1,
1180 						sample->err ? "error" : "poll",
1181 						sample->fd,
1182 						sample->err,
1183 						sample->merges);
1184 				else if (sample->type == IOTYPE_READ)
1185 					svg_ubox(Y,
1186 						sample->start_time,
1187 						sample->end_time,
1188 						h,
1189 						sample->err ? "error" : "disk",
1190 						sample->fd,
1191 						sample->err,
1192 						sample->merges);
1193 				else if (sample->type == IOTYPE_WRITE)
1194 					svg_lbox(Y,
1195 						sample->start_time,
1196 						sample->end_time,
1197 						h,
1198 						sample->err ? "error" : "disk",
1199 						sample->fd,
1200 						sample->err,
1201 						sample->merges);
1202 				else if (sample->type == IOTYPE_RX)
1203 					svg_ubox(Y,
1204 						sample->start_time,
1205 						sample->end_time,
1206 						h,
1207 						sample->err ? "error" : "net",
1208 						sample->fd,
1209 						sample->err,
1210 						sample->merges);
1211 				else if (sample->type == IOTYPE_TX)
1212 					svg_lbox(Y,
1213 						sample->start_time,
1214 						sample->end_time,
1215 						h,
1216 						sample->err ? "error" : "net",
1217 						sample->fd,
1218 						sample->err,
1219 						sample->merges);
1220 			}
1221 
1222 			suf = "";
1223 			bytes = c->total_bytes;
1224 			if (bytes > 1024) {
1225 				bytes = bytes / 1024;
1226 				suf = "K";
1227 			}
1228 			if (bytes > 1024) {
1229 				bytes = bytes / 1024;
1230 				suf = "M";
1231 			}
1232 			if (bytes > 1024) {
1233 				bytes = bytes / 1024;
1234 				suf = "G";
1235 			}
1236 
1237 
1238 			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1239 			svg_text(Y, c->start_time, comm);
1240 
1241 			c->Y = Y;
1242 			Y++;
1243 			c = c->next;
1244 		}
1245 		p = p->next;
1246 	}
1247 }
1248 
1249 static void draw_process_bars(struct timechart *tchart)
1250 {
1251 	struct per_pid *p;
1252 	struct per_pidcomm *c;
1253 	struct cpu_sample *sample;
1254 	int Y = 0;
1255 
1256 	Y = 2 * tchart->numcpus + 2;
1257 
1258 	p = tchart->all_data;
1259 	while (p) {
1260 		c = p->all;
1261 		while (c) {
1262 			if (!c->display) {
1263 				c->Y = 0;
1264 				c = c->next;
1265 				continue;
1266 			}
1267 
1268 			svg_box(Y, c->start_time, c->end_time, "process");
1269 			sample = c->samples;
1270 			while (sample) {
1271 				if (sample->type == TYPE_RUNNING)
1272 					svg_running(Y, sample->cpu,
1273 						    sample->start_time,
1274 						    sample->end_time,
1275 						    sample->backtrace);
1276 				if (sample->type == TYPE_BLOCKED)
1277 					svg_blocked(Y, sample->cpu,
1278 						    sample->start_time,
1279 						    sample->end_time,
1280 						    sample->backtrace);
1281 				if (sample->type == TYPE_WAITING)
1282 					svg_waiting(Y, sample->cpu,
1283 						    sample->start_time,
1284 						    sample->end_time,
1285 						    sample->backtrace);
1286 				sample = sample->next;
1287 			}
1288 
1289 			if (c->comm) {
1290 				char comm[256];
1291 				if (c->total_time > 5000000000) /* 5 seconds */
1292 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1293 				else
1294 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1295 
1296 				svg_text(Y, c->start_time, comm);
1297 			}
1298 			c->Y = Y;
1299 			Y++;
1300 			c = c->next;
1301 		}
1302 		p = p->next;
1303 	}
1304 }
1305 
1306 static void add_process_filter(const char *string)
1307 {
1308 	int pid = strtoull(string, NULL, 10);
1309 	struct process_filter *filt = malloc(sizeof(*filt));
1310 
1311 	if (!filt)
1312 		return;
1313 
1314 	filt->name = strdup(string);
1315 	filt->pid  = pid;
1316 	filt->next = process_filter;
1317 
1318 	process_filter = filt;
1319 }
1320 
1321 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1322 {
1323 	struct process_filter *filt;
1324 	if (!process_filter)
1325 		return 1;
1326 
1327 	filt = process_filter;
1328 	while (filt) {
1329 		if (filt->pid && p->pid == filt->pid)
1330 			return 1;
1331 		if (strcmp(filt->name, c->comm) == 0)
1332 			return 1;
1333 		filt = filt->next;
1334 	}
1335 	return 0;
1336 }
1337 
1338 static int determine_display_tasks_filtered(struct timechart *tchart)
1339 {
1340 	struct per_pid *p;
1341 	struct per_pidcomm *c;
1342 	int count = 0;
1343 
1344 	p = tchart->all_data;
1345 	while (p) {
1346 		p->display = 0;
1347 		if (p->start_time == 1)
1348 			p->start_time = tchart->first_time;
1349 
1350 		/* no exit marker, task kept running to the end */
1351 		if (p->end_time == 0)
1352 			p->end_time = tchart->last_time;
1353 
1354 		c = p->all;
1355 
1356 		while (c) {
1357 			c->display = 0;
1358 
1359 			if (c->start_time == 1)
1360 				c->start_time = tchart->first_time;
1361 
1362 			if (passes_filter(p, c)) {
1363 				c->display = 1;
1364 				p->display = 1;
1365 				count++;
1366 			}
1367 
1368 			if (c->end_time == 0)
1369 				c->end_time = tchart->last_time;
1370 
1371 			c = c->next;
1372 		}
1373 		p = p->next;
1374 	}
1375 	return count;
1376 }
1377 
1378 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1379 {
1380 	struct per_pid *p;
1381 	struct per_pidcomm *c;
1382 	int count = 0;
1383 
1384 	p = tchart->all_data;
1385 	while (p) {
1386 		p->display = 0;
1387 		if (p->start_time == 1)
1388 			p->start_time = tchart->first_time;
1389 
1390 		/* no exit marker, task kept running to the end */
1391 		if (p->end_time == 0)
1392 			p->end_time = tchart->last_time;
1393 		if (p->total_time >= threshold)
1394 			p->display = 1;
1395 
1396 		c = p->all;
1397 
1398 		while (c) {
1399 			c->display = 0;
1400 
1401 			if (c->start_time == 1)
1402 				c->start_time = tchart->first_time;
1403 
1404 			if (c->total_time >= threshold) {
1405 				c->display = 1;
1406 				count++;
1407 			}
1408 
1409 			if (c->end_time == 0)
1410 				c->end_time = tchart->last_time;
1411 
1412 			c = c->next;
1413 		}
1414 		p = p->next;
1415 	}
1416 	return count;
1417 }
1418 
1419 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1420 {
1421 	struct per_pid *p;
1422 	struct per_pidcomm *c;
1423 	int count = 0;
1424 
1425 	p = timechart->all_data;
1426 	while (p) {
1427 		/* no exit marker, task kept running to the end */
1428 		if (p->end_time == 0)
1429 			p->end_time = timechart->last_time;
1430 
1431 		c = p->all;
1432 
1433 		while (c) {
1434 			c->display = 0;
1435 
1436 			if (c->total_bytes >= threshold) {
1437 				c->display = 1;
1438 				count++;
1439 			}
1440 
1441 			if (c->end_time == 0)
1442 				c->end_time = timechart->last_time;
1443 
1444 			c = c->next;
1445 		}
1446 		p = p->next;
1447 	}
1448 	return count;
1449 }
1450 
1451 #define BYTES_THRESH (1 * 1024 * 1024)
1452 #define TIME_THRESH 10000000
1453 
1454 static void write_svg_file(struct timechart *tchart, const char *filename)
1455 {
1456 	u64 i;
1457 	int count;
1458 	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1459 
1460 	if (tchart->power_only)
1461 		tchart->proc_num = 0;
1462 
1463 	/* We'd like to show at least proc_num tasks;
1464 	 * be less picky if we have fewer */
1465 	do {
1466 		if (process_filter)
1467 			count = determine_display_tasks_filtered(tchart);
1468 		else if (tchart->io_events)
1469 			count = determine_display_io_tasks(tchart, thresh);
1470 		else
1471 			count = determine_display_tasks(tchart, thresh);
1472 		thresh /= 10;
1473 	} while (!process_filter && thresh && count < tchart->proc_num);
1474 
1475 	if (!tchart->proc_num)
1476 		count = 0;
1477 
1478 	if (tchart->io_events) {
1479 		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1480 
1481 		svg_time_grid(0.5);
1482 		svg_io_legenda();
1483 
1484 		draw_io_bars(tchart);
1485 	} else {
1486 		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1487 
1488 		svg_time_grid(0);
1489 
1490 		svg_legenda();
1491 
1492 		for (i = 0; i < tchart->numcpus; i++)
1493 			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1494 
1495 		draw_cpu_usage(tchart);
1496 		if (tchart->proc_num)
1497 			draw_process_bars(tchart);
1498 		if (!tchart->tasks_only)
1499 			draw_c_p_states(tchart);
1500 		if (tchart->proc_num)
1501 			draw_wakeups(tchart);
1502 	}
1503 
1504 	svg_close();
1505 }
1506 
1507 static int process_header(struct perf_file_section *section __maybe_unused,
1508 			  struct perf_header *ph,
1509 			  int feat,
1510 			  int fd __maybe_unused,
1511 			  void *data)
1512 {
1513 	struct timechart *tchart = data;
1514 
1515 	switch (feat) {
1516 	case HEADER_NRCPUS:
1517 		tchart->numcpus = ph->env.nr_cpus_avail;
1518 		break;
1519 
1520 	case HEADER_CPU_TOPOLOGY:
1521 		if (!tchart->topology)
1522 			break;
1523 
1524 		if (svg_build_topology_map(ph->env.sibling_cores,
1525 					   ph->env.nr_sibling_cores,
1526 					   ph->env.sibling_threads,
1527 					   ph->env.nr_sibling_threads))
1528 			fprintf(stderr, "problem building topology\n");
1529 		break;
1530 
1531 	default:
1532 		break;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539 {
1540 	const struct perf_evsel_str_handler power_tracepoints[] = {
1541 		{ "power:cpu_idle",		process_sample_cpu_idle },
1542 		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1543 		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1544 		{ "sched:sched_switch",		process_sample_sched_switch },
1545 #ifdef SUPPORT_OLD_POWER_EVENTS
1546 		{ "power:power_start",		process_sample_power_start },
1547 		{ "power:power_end",		process_sample_power_end },
1548 		{ "power:power_frequency",	process_sample_power_frequency },
1549 #endif
1550 
1551 		{ "syscalls:sys_enter_read",		process_enter_read },
1552 		{ "syscalls:sys_enter_pread64",		process_enter_read },
1553 		{ "syscalls:sys_enter_readv",		process_enter_read },
1554 		{ "syscalls:sys_enter_preadv",		process_enter_read },
1555 		{ "syscalls:sys_enter_write",		process_enter_write },
1556 		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1557 		{ "syscalls:sys_enter_writev",		process_enter_write },
1558 		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1559 		{ "syscalls:sys_enter_sync",		process_enter_sync },
1560 		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1561 		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1562 		{ "syscalls:sys_enter_msync",		process_enter_sync },
1563 		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1564 		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1565 		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1566 		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1567 		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1568 		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1569 		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1570 		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1571 		{ "syscalls:sys_enter_poll",		process_enter_poll },
1572 		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1573 		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1574 		{ "syscalls:sys_enter_select",		process_enter_poll },
1575 
1576 		{ "syscalls:sys_exit_read",		process_exit_read },
1577 		{ "syscalls:sys_exit_pread64",		process_exit_read },
1578 		{ "syscalls:sys_exit_readv",		process_exit_read },
1579 		{ "syscalls:sys_exit_preadv",		process_exit_read },
1580 		{ "syscalls:sys_exit_write",		process_exit_write },
1581 		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1582 		{ "syscalls:sys_exit_writev",		process_exit_write },
1583 		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1584 		{ "syscalls:sys_exit_sync",		process_exit_sync },
1585 		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1586 		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1587 		{ "syscalls:sys_exit_msync",		process_exit_sync },
1588 		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1589 		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1590 		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1591 		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1592 		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1593 		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1594 		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1595 		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1596 		{ "syscalls:sys_exit_poll",		process_exit_poll },
1597 		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1598 		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1599 		{ "syscalls:sys_exit_select",		process_exit_poll },
1600 	};
1601 	struct perf_data_file file = {
1602 		.path = input_name,
1603 		.mode = PERF_DATA_MODE_READ,
1604 		.force = tchart->force,
1605 	};
1606 
1607 	struct perf_session *session = perf_session__new(&file, false,
1608 							 &tchart->tool);
1609 	int ret = -EINVAL;
1610 
1611 	if (session == NULL)
1612 		return -1;
1613 
1614 	symbol__init(&session->header.env);
1615 
1616 	(void)perf_header__process_sections(&session->header,
1617 					    perf_data_file__fd(session->file),
1618 					    tchart,
1619 					    process_header);
1620 
1621 	if (!perf_session__has_traces(session, "timechart record"))
1622 		goto out_delete;
1623 
1624 	if (perf_session__set_tracepoints_handlers(session,
1625 						   power_tracepoints)) {
1626 		pr_err("Initializing session tracepoint handlers failed\n");
1627 		goto out_delete;
1628 	}
1629 
1630 	ret = perf_session__process_events(session);
1631 	if (ret)
1632 		goto out_delete;
1633 
1634 	end_sample_processing(tchart);
1635 
1636 	sort_pids(tchart);
1637 
1638 	write_svg_file(tchart, output_name);
1639 
1640 	pr_info("Written %2.1f seconds of trace to %s.\n",
1641 		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1642 out_delete:
1643 	perf_session__delete(session);
1644 	return ret;
1645 }
1646 
1647 static int timechart__io_record(int argc, const char **argv)
1648 {
1649 	unsigned int rec_argc, i;
1650 	const char **rec_argv;
1651 	const char **p;
1652 	char *filter = NULL;
1653 
1654 	const char * const common_args[] = {
1655 		"record", "-a", "-R", "-c", "1",
1656 	};
1657 	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1658 
1659 	const char * const disk_events[] = {
1660 		"syscalls:sys_enter_read",
1661 		"syscalls:sys_enter_pread64",
1662 		"syscalls:sys_enter_readv",
1663 		"syscalls:sys_enter_preadv",
1664 		"syscalls:sys_enter_write",
1665 		"syscalls:sys_enter_pwrite64",
1666 		"syscalls:sys_enter_writev",
1667 		"syscalls:sys_enter_pwritev",
1668 		"syscalls:sys_enter_sync",
1669 		"syscalls:sys_enter_sync_file_range",
1670 		"syscalls:sys_enter_fsync",
1671 		"syscalls:sys_enter_msync",
1672 
1673 		"syscalls:sys_exit_read",
1674 		"syscalls:sys_exit_pread64",
1675 		"syscalls:sys_exit_readv",
1676 		"syscalls:sys_exit_preadv",
1677 		"syscalls:sys_exit_write",
1678 		"syscalls:sys_exit_pwrite64",
1679 		"syscalls:sys_exit_writev",
1680 		"syscalls:sys_exit_pwritev",
1681 		"syscalls:sys_exit_sync",
1682 		"syscalls:sys_exit_sync_file_range",
1683 		"syscalls:sys_exit_fsync",
1684 		"syscalls:sys_exit_msync",
1685 	};
1686 	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1687 
1688 	const char * const net_events[] = {
1689 		"syscalls:sys_enter_recvfrom",
1690 		"syscalls:sys_enter_recvmmsg",
1691 		"syscalls:sys_enter_recvmsg",
1692 		"syscalls:sys_enter_sendto",
1693 		"syscalls:sys_enter_sendmsg",
1694 		"syscalls:sys_enter_sendmmsg",
1695 
1696 		"syscalls:sys_exit_recvfrom",
1697 		"syscalls:sys_exit_recvmmsg",
1698 		"syscalls:sys_exit_recvmsg",
1699 		"syscalls:sys_exit_sendto",
1700 		"syscalls:sys_exit_sendmsg",
1701 		"syscalls:sys_exit_sendmmsg",
1702 	};
1703 	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1704 
1705 	const char * const poll_events[] = {
1706 		"syscalls:sys_enter_epoll_pwait",
1707 		"syscalls:sys_enter_epoll_wait",
1708 		"syscalls:sys_enter_poll",
1709 		"syscalls:sys_enter_ppoll",
1710 		"syscalls:sys_enter_pselect6",
1711 		"syscalls:sys_enter_select",
1712 
1713 		"syscalls:sys_exit_epoll_pwait",
1714 		"syscalls:sys_exit_epoll_wait",
1715 		"syscalls:sys_exit_poll",
1716 		"syscalls:sys_exit_ppoll",
1717 		"syscalls:sys_exit_pselect6",
1718 		"syscalls:sys_exit_select",
1719 	};
1720 	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1721 
1722 	rec_argc = common_args_nr +
1723 		disk_events_nr * 4 +
1724 		net_events_nr * 4 +
1725 		poll_events_nr * 4 +
1726 		argc;
1727 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1728 
1729 	if (rec_argv == NULL)
1730 		return -ENOMEM;
1731 
1732 	if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1733 		return -ENOMEM;
1734 
1735 	p = rec_argv;
1736 	for (i = 0; i < common_args_nr; i++)
1737 		*p++ = strdup(common_args[i]);
1738 
1739 	for (i = 0; i < disk_events_nr; i++) {
1740 		if (!is_valid_tracepoint(disk_events[i])) {
1741 			rec_argc -= 4;
1742 			continue;
1743 		}
1744 
1745 		*p++ = "-e";
1746 		*p++ = strdup(disk_events[i]);
1747 		*p++ = "--filter";
1748 		*p++ = filter;
1749 	}
1750 	for (i = 0; i < net_events_nr; i++) {
1751 		if (!is_valid_tracepoint(net_events[i])) {
1752 			rec_argc -= 4;
1753 			continue;
1754 		}
1755 
1756 		*p++ = "-e";
1757 		*p++ = strdup(net_events[i]);
1758 		*p++ = "--filter";
1759 		*p++ = filter;
1760 	}
1761 	for (i = 0; i < poll_events_nr; i++) {
1762 		if (!is_valid_tracepoint(poll_events[i])) {
1763 			rec_argc -= 4;
1764 			continue;
1765 		}
1766 
1767 		*p++ = "-e";
1768 		*p++ = strdup(poll_events[i]);
1769 		*p++ = "--filter";
1770 		*p++ = filter;
1771 	}
1772 
1773 	for (i = 0; i < (unsigned int)argc; i++)
1774 		*p++ = argv[i];
1775 
1776 	return cmd_record(rec_argc, rec_argv, NULL);
1777 }
1778 
1779 
1780 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781 {
1782 	unsigned int rec_argc, i, j;
1783 	const char **rec_argv;
1784 	const char **p;
1785 	unsigned int record_elems;
1786 
1787 	const char * const common_args[] = {
1788 		"record", "-a", "-R", "-c", "1",
1789 	};
1790 	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791 
1792 	const char * const backtrace_args[] = {
1793 		"-g",
1794 	};
1795 	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796 
1797 	const char * const power_args[] = {
1798 		"-e", "power:cpu_frequency",
1799 		"-e", "power:cpu_idle",
1800 	};
1801 	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802 
1803 	const char * const old_power_args[] = {
1804 #ifdef SUPPORT_OLD_POWER_EVENTS
1805 		"-e", "power:power_start",
1806 		"-e", "power:power_end",
1807 		"-e", "power:power_frequency",
1808 #endif
1809 	};
1810 	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811 
1812 	const char * const tasks_args[] = {
1813 		"-e", "sched:sched_wakeup",
1814 		"-e", "sched:sched_switch",
1815 	};
1816 	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817 
1818 #ifdef SUPPORT_OLD_POWER_EVENTS
1819 	if (!is_valid_tracepoint("power:cpu_idle") &&
1820 	    is_valid_tracepoint("power:power_start")) {
1821 		use_old_power_events = 1;
1822 		power_args_nr = 0;
1823 	} else {
1824 		old_power_args_nr = 0;
1825 	}
1826 #endif
1827 
1828 	if (tchart->power_only)
1829 		tasks_args_nr = 0;
1830 
1831 	if (tchart->tasks_only) {
1832 		power_args_nr = 0;
1833 		old_power_args_nr = 0;
1834 	}
1835 
1836 	if (!tchart->with_backtrace)
1837 		backtrace_args_no = 0;
1838 
1839 	record_elems = common_args_nr + tasks_args_nr +
1840 		power_args_nr + old_power_args_nr + backtrace_args_no;
1841 
1842 	rec_argc = record_elems + argc;
1843 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844 
1845 	if (rec_argv == NULL)
1846 		return -ENOMEM;
1847 
1848 	p = rec_argv;
1849 	for (i = 0; i < common_args_nr; i++)
1850 		*p++ = strdup(common_args[i]);
1851 
1852 	for (i = 0; i < backtrace_args_no; i++)
1853 		*p++ = strdup(backtrace_args[i]);
1854 
1855 	for (i = 0; i < tasks_args_nr; i++)
1856 		*p++ = strdup(tasks_args[i]);
1857 
1858 	for (i = 0; i < power_args_nr; i++)
1859 		*p++ = strdup(power_args[i]);
1860 
1861 	for (i = 0; i < old_power_args_nr; i++)
1862 		*p++ = strdup(old_power_args[i]);
1863 
1864 	for (j = 0; j < (unsigned int)argc; j++)
1865 		*p++ = argv[j];
1866 
1867 	return cmd_record(rec_argc, rec_argv, NULL);
1868 }
1869 
1870 static int
1871 parse_process(const struct option *opt __maybe_unused, const char *arg,
1872 	      int __maybe_unused unset)
1873 {
1874 	if (arg)
1875 		add_process_filter(arg);
1876 	return 0;
1877 }
1878 
1879 static int
1880 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881 		int __maybe_unused unset)
1882 {
1883 	unsigned long duration = strtoul(arg, NULL, 0);
1884 
1885 	if (svg_highlight || svg_highlight_name)
1886 		return -1;
1887 
1888 	if (duration)
1889 		svg_highlight = duration;
1890 	else
1891 		svg_highlight_name = strdup(arg);
1892 
1893 	return 0;
1894 }
1895 
1896 static int
1897 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898 {
1899 	char unit = 'n';
1900 	u64 *value = opt->value;
1901 
1902 	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903 		switch (unit) {
1904 		case 'm':
1905 			*value *= NSEC_PER_MSEC;
1906 			break;
1907 		case 'u':
1908 			*value *= NSEC_PER_USEC;
1909 			break;
1910 		case 'n':
1911 			break;
1912 		default:
1913 			return -1;
1914 		}
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 int cmd_timechart(int argc, const char **argv,
1921 		  const char *prefix __maybe_unused)
1922 {
1923 	struct timechart tchart = {
1924 		.tool = {
1925 			.comm		 = process_comm_event,
1926 			.fork		 = process_fork_event,
1927 			.exit		 = process_exit_event,
1928 			.sample		 = process_sample_event,
1929 			.ordered_events	 = true,
1930 		},
1931 		.proc_num = 15,
1932 		.min_time = NSEC_PER_MSEC,
1933 		.merge_dist = 1000,
1934 	};
1935 	const char *output_name = "output.svg";
1936 	const struct option timechart_options[] = {
1937 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940 	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 		      "highlight tasks. Pass duration in ns or process name.",
1942 		       parse_highlight),
1943 	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1945 		    "output processes data only"),
1946 	OPT_CALLBACK('p', "process", NULL, "process",
1947 		      "process selector. Pass a pid or process name.",
1948 		       parse_process),
1949 	OPT_CALLBACK(0, "symfs", NULL, "directory",
1950 		     "Look for files with symbols relative to this directory",
1951 		     symbol__config_symfs),
1952 	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1953 		    "min. number of tasks to print"),
1954 	OPT_BOOLEAN('t', "topology", &tchart.topology,
1955 		    "sort CPUs according to topology"),
1956 	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1957 		    "skip EAGAIN errors"),
1958 	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1959 		     "all IO faster than min-time will visually appear longer",
1960 		     parse_time),
1961 	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1962 		     "merge events that are merge-dist us apart",
1963 		     parse_time),
1964 	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1965 	OPT_END()
1966 	};
1967 	const char * const timechart_subcommands[] = { "record", NULL };
1968 	const char *timechart_usage[] = {
1969 		"perf timechart [<options>] {record}",
1970 		NULL
1971 	};
1972 
1973 	const struct option timechart_record_options[] = {
1974 	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1975 	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1976 		    "output processes data only"),
1977 	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1978 		    "record only IO data"),
1979 	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1980 	OPT_END()
1981 	};
1982 	const char * const timechart_record_usage[] = {
1983 		"perf timechart record [<options>]",
1984 		NULL
1985 	};
1986 	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1987 			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1988 
1989 	if (tchart.power_only && tchart.tasks_only) {
1990 		pr_err("-P and -T options cannot be used at the same time.\n");
1991 		return -1;
1992 	}
1993 
1994 	if (argc && !strncmp(argv[0], "rec", 3)) {
1995 		argc = parse_options(argc, argv, timechart_record_options,
1996 				     timechart_record_usage,
1997 				     PARSE_OPT_STOP_AT_NON_OPTION);
1998 
1999 		if (tchart.power_only && tchart.tasks_only) {
2000 			pr_err("-P and -T options cannot be used at the same time.\n");
2001 			return -1;
2002 		}
2003 
2004 		if (tchart.io_only)
2005 			return timechart__io_record(argc, argv);
2006 		else
2007 			return timechart__record(&tchart, argc, argv);
2008 	} else if (argc)
2009 		usage_with_options(timechart_usage, timechart_options);
2010 
2011 	setup_pager();
2012 
2013 	return __cmd_timechart(&tchart, output_name);
2014 }
2015