1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include <traceevent/event-parse.h>
16 
17 #include "builtin.h"
18 
19 #include "util/util.h"
20 
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30 
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
43 
44 
45 static unsigned int	numcpus;
46 static u64		min_freq;	/* Lowest CPU frequency seen */
47 static u64		max_freq;	/* Highest CPU frequency seen */
48 static u64		turbo_frequency;
49 
50 static u64		first_time, last_time;
51 
52 static bool		power_only;
53 
54 
55 struct per_pid;
56 struct per_pidcomm;
57 
58 struct cpu_sample;
59 struct power_event;
60 struct wake_event;
61 
62 struct sample_wrapper;
63 
64 /*
65  * Datastructure layout:
66  * We keep an list of "pid"s, matching the kernels notion of a task struct.
67  * Each "pid" entry, has a list of "comm"s.
68  *	this is because we want to track different programs different, while
69  *	exec will reuse the original pid (by design).
70  * Each comm has a list of samples that will be used to draw
71  * final graph.
72  */
73 
74 struct per_pid {
75 	struct per_pid *next;
76 
77 	int		pid;
78 	int		ppid;
79 
80 	u64		start_time;
81 	u64		end_time;
82 	u64		total_time;
83 	int		display;
84 
85 	struct per_pidcomm *all;
86 	struct per_pidcomm *current;
87 };
88 
89 
90 struct per_pidcomm {
91 	struct per_pidcomm *next;
92 
93 	u64		start_time;
94 	u64		end_time;
95 	u64		total_time;
96 
97 	int		Y;
98 	int		display;
99 
100 	long		state;
101 	u64		state_since;
102 
103 	char		*comm;
104 
105 	struct cpu_sample *samples;
106 };
107 
108 struct sample_wrapper {
109 	struct sample_wrapper *next;
110 
111 	u64		timestamp;
112 	unsigned char	data[0];
113 };
114 
115 #define TYPE_NONE	0
116 #define TYPE_RUNNING	1
117 #define TYPE_WAITING	2
118 #define TYPE_BLOCKED	3
119 
120 struct cpu_sample {
121 	struct cpu_sample *next;
122 
123 	u64 start_time;
124 	u64 end_time;
125 	int type;
126 	int cpu;
127 };
128 
129 static struct per_pid *all_data;
130 
131 #define CSTATE 1
132 #define PSTATE 2
133 
134 struct power_event {
135 	struct power_event *next;
136 	int type;
137 	int state;
138 	u64 start_time;
139 	u64 end_time;
140 	int cpu;
141 };
142 
143 struct wake_event {
144 	struct wake_event *next;
145 	int waker;
146 	int wakee;
147 	u64 time;
148 };
149 
150 static struct power_event    *power_events;
151 static struct wake_event     *wake_events;
152 
153 struct process_filter;
154 struct process_filter {
155 	char			*name;
156 	int			pid;
157 	struct process_filter	*next;
158 };
159 
160 static struct process_filter *process_filter;
161 
162 
163 static struct per_pid *find_create_pid(int pid)
164 {
165 	struct per_pid *cursor = all_data;
166 
167 	while (cursor) {
168 		if (cursor->pid == pid)
169 			return cursor;
170 		cursor = cursor->next;
171 	}
172 	cursor = zalloc(sizeof(*cursor));
173 	assert(cursor != NULL);
174 	cursor->pid = pid;
175 	cursor->next = all_data;
176 	all_data = cursor;
177 	return cursor;
178 }
179 
180 static void pid_set_comm(int pid, char *comm)
181 {
182 	struct per_pid *p;
183 	struct per_pidcomm *c;
184 	p = find_create_pid(pid);
185 	c = p->all;
186 	while (c) {
187 		if (c->comm && strcmp(c->comm, comm) == 0) {
188 			p->current = c;
189 			return;
190 		}
191 		if (!c->comm) {
192 			c->comm = strdup(comm);
193 			p->current = c;
194 			return;
195 		}
196 		c = c->next;
197 	}
198 	c = zalloc(sizeof(*c));
199 	assert(c != NULL);
200 	c->comm = strdup(comm);
201 	p->current = c;
202 	c->next = p->all;
203 	p->all = c;
204 }
205 
206 static void pid_fork(int pid, int ppid, u64 timestamp)
207 {
208 	struct per_pid *p, *pp;
209 	p = find_create_pid(pid);
210 	pp = find_create_pid(ppid);
211 	p->ppid = ppid;
212 	if (pp->current && pp->current->comm && !p->current)
213 		pid_set_comm(pid, pp->current->comm);
214 
215 	p->start_time = timestamp;
216 	if (p->current) {
217 		p->current->start_time = timestamp;
218 		p->current->state_since = timestamp;
219 	}
220 }
221 
222 static void pid_exit(int pid, u64 timestamp)
223 {
224 	struct per_pid *p;
225 	p = find_create_pid(pid);
226 	p->end_time = timestamp;
227 	if (p->current)
228 		p->current->end_time = timestamp;
229 }
230 
231 static void
232 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
233 {
234 	struct per_pid *p;
235 	struct per_pidcomm *c;
236 	struct cpu_sample *sample;
237 
238 	p = find_create_pid(pid);
239 	c = p->current;
240 	if (!c) {
241 		c = zalloc(sizeof(*c));
242 		assert(c != NULL);
243 		p->current = c;
244 		c->next = p->all;
245 		p->all = c;
246 	}
247 
248 	sample = zalloc(sizeof(*sample));
249 	assert(sample != NULL);
250 	sample->start_time = start;
251 	sample->end_time = end;
252 	sample->type = type;
253 	sample->next = c->samples;
254 	sample->cpu = cpu;
255 	c->samples = sample;
256 
257 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
258 		c->total_time += (end-start);
259 		p->total_time += (end-start);
260 	}
261 
262 	if (c->start_time == 0 || c->start_time > start)
263 		c->start_time = start;
264 	if (p->start_time == 0 || p->start_time > start)
265 		p->start_time = start;
266 }
267 
268 #define MAX_CPUS 4096
269 
270 static u64 cpus_cstate_start_times[MAX_CPUS];
271 static int cpus_cstate_state[MAX_CPUS];
272 static u64 cpus_pstate_start_times[MAX_CPUS];
273 static u64 cpus_pstate_state[MAX_CPUS];
274 
275 static int process_comm_event(struct perf_tool *tool __maybe_unused,
276 			      union perf_event *event,
277 			      struct perf_sample *sample __maybe_unused,
278 			      struct machine *machine __maybe_unused)
279 {
280 	pid_set_comm(event->comm.tid, event->comm.comm);
281 	return 0;
282 }
283 
284 static int process_fork_event(struct perf_tool *tool __maybe_unused,
285 			      union perf_event *event,
286 			      struct perf_sample *sample __maybe_unused,
287 			      struct machine *machine __maybe_unused)
288 {
289 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
290 	return 0;
291 }
292 
293 static int process_exit_event(struct perf_tool *tool __maybe_unused,
294 			      union perf_event *event,
295 			      struct perf_sample *sample __maybe_unused,
296 			      struct machine *machine __maybe_unused)
297 {
298 	pid_exit(event->fork.pid, event->fork.time);
299 	return 0;
300 }
301 
302 struct trace_entry {
303 	unsigned short		type;
304 	unsigned char		flags;
305 	unsigned char		preempt_count;
306 	int			pid;
307 	int			lock_depth;
308 };
309 
310 #ifdef SUPPORT_OLD_POWER_EVENTS
311 static int use_old_power_events;
312 struct power_entry_old {
313 	struct trace_entry te;
314 	u64	type;
315 	u64	value;
316 	u64	cpu_id;
317 };
318 #endif
319 
320 struct power_processor_entry {
321 	struct trace_entry te;
322 	u32	state;
323 	u32	cpu_id;
324 };
325 
326 #define TASK_COMM_LEN 16
327 struct wakeup_entry {
328 	struct trace_entry te;
329 	char comm[TASK_COMM_LEN];
330 	int   pid;
331 	int   prio;
332 	int   success;
333 };
334 
335 struct sched_switch {
336 	struct trace_entry te;
337 	char prev_comm[TASK_COMM_LEN];
338 	int  prev_pid;
339 	int  prev_prio;
340 	long prev_state; /* Arjan weeps. */
341 	char next_comm[TASK_COMM_LEN];
342 	int  next_pid;
343 	int  next_prio;
344 };
345 
346 static void c_state_start(int cpu, u64 timestamp, int state)
347 {
348 	cpus_cstate_start_times[cpu] = timestamp;
349 	cpus_cstate_state[cpu] = state;
350 }
351 
352 static void c_state_end(int cpu, u64 timestamp)
353 {
354 	struct power_event *pwr = zalloc(sizeof(*pwr));
355 
356 	if (!pwr)
357 		return;
358 
359 	pwr->state = cpus_cstate_state[cpu];
360 	pwr->start_time = cpus_cstate_start_times[cpu];
361 	pwr->end_time = timestamp;
362 	pwr->cpu = cpu;
363 	pwr->type = CSTATE;
364 	pwr->next = power_events;
365 
366 	power_events = pwr;
367 }
368 
369 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
370 {
371 	struct power_event *pwr;
372 
373 	if (new_freq > 8000000) /* detect invalid data */
374 		return;
375 
376 	pwr = zalloc(sizeof(*pwr));
377 	if (!pwr)
378 		return;
379 
380 	pwr->state = cpus_pstate_state[cpu];
381 	pwr->start_time = cpus_pstate_start_times[cpu];
382 	pwr->end_time = timestamp;
383 	pwr->cpu = cpu;
384 	pwr->type = PSTATE;
385 	pwr->next = power_events;
386 
387 	if (!pwr->start_time)
388 		pwr->start_time = first_time;
389 
390 	power_events = pwr;
391 
392 	cpus_pstate_state[cpu] = new_freq;
393 	cpus_pstate_start_times[cpu] = timestamp;
394 
395 	if ((u64)new_freq > max_freq)
396 		max_freq = new_freq;
397 
398 	if (new_freq < min_freq || min_freq == 0)
399 		min_freq = new_freq;
400 
401 	if (new_freq == max_freq - 1000)
402 			turbo_frequency = max_freq;
403 }
404 
405 static void
406 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
407 {
408 	struct per_pid *p;
409 	struct wakeup_entry *wake = (void *)te;
410 	struct wake_event *we = zalloc(sizeof(*we));
411 
412 	if (!we)
413 		return;
414 
415 	we->time = timestamp;
416 	we->waker = pid;
417 
418 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
419 		we->waker = -1;
420 
421 	we->wakee = wake->pid;
422 	we->next = wake_events;
423 	wake_events = we;
424 	p = find_create_pid(we->wakee);
425 
426 	if (p && p->current && p->current->state == TYPE_NONE) {
427 		p->current->state_since = timestamp;
428 		p->current->state = TYPE_WAITING;
429 	}
430 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
431 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
432 		p->current->state_since = timestamp;
433 		p->current->state = TYPE_WAITING;
434 	}
435 }
436 
437 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
438 {
439 	struct per_pid *p = NULL, *prev_p;
440 	struct sched_switch *sw = (void *)te;
441 
442 
443 	prev_p = find_create_pid(sw->prev_pid);
444 
445 	p = find_create_pid(sw->next_pid);
446 
447 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
448 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
449 	if (p && p->current) {
450 		if (p->current->state != TYPE_NONE)
451 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
452 
453 		p->current->state_since = timestamp;
454 		p->current->state = TYPE_RUNNING;
455 	}
456 
457 	if (prev_p->current) {
458 		prev_p->current->state = TYPE_NONE;
459 		prev_p->current->state_since = timestamp;
460 		if (sw->prev_state & 2)
461 			prev_p->current->state = TYPE_BLOCKED;
462 		if (sw->prev_state == 0)
463 			prev_p->current->state = TYPE_WAITING;
464 	}
465 }
466 
467 typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
468 				  struct perf_sample *sample);
469 
470 static int process_sample_event(struct perf_tool *tool __maybe_unused,
471 				union perf_event *event __maybe_unused,
472 				struct perf_sample *sample,
473 				struct perf_evsel *evsel,
474 				struct machine *machine __maybe_unused)
475 {
476 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
477 		if (!first_time || first_time > sample->time)
478 			first_time = sample->time;
479 		if (last_time < sample->time)
480 			last_time = sample->time;
481 	}
482 
483 	if (sample->cpu > numcpus)
484 		numcpus = sample->cpu;
485 
486 	if (evsel->handler != NULL) {
487 		tracepoint_handler f = evsel->handler;
488 		return f(evsel, sample);
489 	}
490 
491 	return 0;
492 }
493 
494 static int
495 process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
496 			struct perf_sample *sample)
497 {
498 	struct power_processor_entry *ppe = sample->raw_data;
499 
500 	if (ppe->state == (u32) PWR_EVENT_EXIT)
501 		c_state_end(ppe->cpu_id, sample->time);
502 	else
503 		c_state_start(ppe->cpu_id, sample->time, ppe->state);
504 	return 0;
505 }
506 
507 static int
508 process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
509 			     struct perf_sample *sample)
510 {
511 	struct power_processor_entry *ppe = sample->raw_data;
512 
513 	p_state_change(ppe->cpu_id, sample->time, ppe->state);
514 	return 0;
515 }
516 
517 static int
518 process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
519 			    struct perf_sample *sample)
520 {
521 	struct trace_entry *te = sample->raw_data;
522 
523 	sched_wakeup(sample->cpu, sample->time, sample->pid, te);
524 	return 0;
525 }
526 
527 static int
528 process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
529 			    struct perf_sample *sample)
530 {
531 	struct trace_entry *te = sample->raw_data;
532 
533 	sched_switch(sample->cpu, sample->time, te);
534 	return 0;
535 }
536 
537 #ifdef SUPPORT_OLD_POWER_EVENTS
538 static int
539 process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
540 			   struct perf_sample *sample)
541 {
542 	struct power_entry_old *peo = sample->raw_data;
543 
544 	c_state_start(peo->cpu_id, sample->time, peo->value);
545 	return 0;
546 }
547 
548 static int
549 process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
550 			 struct perf_sample *sample)
551 {
552 	c_state_end(sample->cpu, sample->time);
553 	return 0;
554 }
555 
556 static int
557 process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
558 			       struct perf_sample *sample)
559 {
560 	struct power_entry_old *peo = sample->raw_data;
561 
562 	p_state_change(peo->cpu_id, sample->time, peo->value);
563 	return 0;
564 }
565 #endif /* SUPPORT_OLD_POWER_EVENTS */
566 
567 /*
568  * After the last sample we need to wrap up the current C/P state
569  * and close out each CPU for these.
570  */
571 static void end_sample_processing(void)
572 {
573 	u64 cpu;
574 	struct power_event *pwr;
575 
576 	for (cpu = 0; cpu <= numcpus; cpu++) {
577 		/* C state */
578 #if 0
579 		pwr = zalloc(sizeof(*pwr));
580 		if (!pwr)
581 			return;
582 
583 		pwr->state = cpus_cstate_state[cpu];
584 		pwr->start_time = cpus_cstate_start_times[cpu];
585 		pwr->end_time = last_time;
586 		pwr->cpu = cpu;
587 		pwr->type = CSTATE;
588 		pwr->next = power_events;
589 
590 		power_events = pwr;
591 #endif
592 		/* P state */
593 
594 		pwr = zalloc(sizeof(*pwr));
595 		if (!pwr)
596 			return;
597 
598 		pwr->state = cpus_pstate_state[cpu];
599 		pwr->start_time = cpus_pstate_start_times[cpu];
600 		pwr->end_time = last_time;
601 		pwr->cpu = cpu;
602 		pwr->type = PSTATE;
603 		pwr->next = power_events;
604 
605 		if (!pwr->start_time)
606 			pwr->start_time = first_time;
607 		if (!pwr->state)
608 			pwr->state = min_freq;
609 		power_events = pwr;
610 	}
611 }
612 
613 /*
614  * Sort the pid datastructure
615  */
616 static void sort_pids(void)
617 {
618 	struct per_pid *new_list, *p, *cursor, *prev;
619 	/* sort by ppid first, then by pid, lowest to highest */
620 
621 	new_list = NULL;
622 
623 	while (all_data) {
624 		p = all_data;
625 		all_data = p->next;
626 		p->next = NULL;
627 
628 		if (new_list == NULL) {
629 			new_list = p;
630 			p->next = NULL;
631 			continue;
632 		}
633 		prev = NULL;
634 		cursor = new_list;
635 		while (cursor) {
636 			if (cursor->ppid > p->ppid ||
637 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
638 				/* must insert before */
639 				if (prev) {
640 					p->next = prev->next;
641 					prev->next = p;
642 					cursor = NULL;
643 					continue;
644 				} else {
645 					p->next = new_list;
646 					new_list = p;
647 					cursor = NULL;
648 					continue;
649 				}
650 			}
651 
652 			prev = cursor;
653 			cursor = cursor->next;
654 			if (!cursor)
655 				prev->next = p;
656 		}
657 	}
658 	all_data = new_list;
659 }
660 
661 
662 static void draw_c_p_states(void)
663 {
664 	struct power_event *pwr;
665 	pwr = power_events;
666 
667 	/*
668 	 * two pass drawing so that the P state bars are on top of the C state blocks
669 	 */
670 	while (pwr) {
671 		if (pwr->type == CSTATE)
672 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
673 		pwr = pwr->next;
674 	}
675 
676 	pwr = power_events;
677 	while (pwr) {
678 		if (pwr->type == PSTATE) {
679 			if (!pwr->state)
680 				pwr->state = min_freq;
681 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
682 		}
683 		pwr = pwr->next;
684 	}
685 }
686 
687 static void draw_wakeups(void)
688 {
689 	struct wake_event *we;
690 	struct per_pid *p;
691 	struct per_pidcomm *c;
692 
693 	we = wake_events;
694 	while (we) {
695 		int from = 0, to = 0;
696 		char *task_from = NULL, *task_to = NULL;
697 
698 		/* locate the column of the waker and wakee */
699 		p = all_data;
700 		while (p) {
701 			if (p->pid == we->waker || p->pid == we->wakee) {
702 				c = p->all;
703 				while (c) {
704 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
705 						if (p->pid == we->waker && !from) {
706 							from = c->Y;
707 							task_from = strdup(c->comm);
708 						}
709 						if (p->pid == we->wakee && !to) {
710 							to = c->Y;
711 							task_to = strdup(c->comm);
712 						}
713 					}
714 					c = c->next;
715 				}
716 				c = p->all;
717 				while (c) {
718 					if (p->pid == we->waker && !from) {
719 						from = c->Y;
720 						task_from = strdup(c->comm);
721 					}
722 					if (p->pid == we->wakee && !to) {
723 						to = c->Y;
724 						task_to = strdup(c->comm);
725 					}
726 					c = c->next;
727 				}
728 			}
729 			p = p->next;
730 		}
731 
732 		if (!task_from) {
733 			task_from = malloc(40);
734 			sprintf(task_from, "[%i]", we->waker);
735 		}
736 		if (!task_to) {
737 			task_to = malloc(40);
738 			sprintf(task_to, "[%i]", we->wakee);
739 		}
740 
741 		if (we->waker == -1)
742 			svg_interrupt(we->time, to);
743 		else if (from && to && abs(from - to) == 1)
744 			svg_wakeline(we->time, from, to);
745 		else
746 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
747 		we = we->next;
748 
749 		free(task_from);
750 		free(task_to);
751 	}
752 }
753 
754 static void draw_cpu_usage(void)
755 {
756 	struct per_pid *p;
757 	struct per_pidcomm *c;
758 	struct cpu_sample *sample;
759 	p = all_data;
760 	while (p) {
761 		c = p->all;
762 		while (c) {
763 			sample = c->samples;
764 			while (sample) {
765 				if (sample->type == TYPE_RUNNING)
766 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
767 
768 				sample = sample->next;
769 			}
770 			c = c->next;
771 		}
772 		p = p->next;
773 	}
774 }
775 
776 static void draw_process_bars(void)
777 {
778 	struct per_pid *p;
779 	struct per_pidcomm *c;
780 	struct cpu_sample *sample;
781 	int Y = 0;
782 
783 	Y = 2 * numcpus + 2;
784 
785 	p = all_data;
786 	while (p) {
787 		c = p->all;
788 		while (c) {
789 			if (!c->display) {
790 				c->Y = 0;
791 				c = c->next;
792 				continue;
793 			}
794 
795 			svg_box(Y, c->start_time, c->end_time, "process");
796 			sample = c->samples;
797 			while (sample) {
798 				if (sample->type == TYPE_RUNNING)
799 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
800 				if (sample->type == TYPE_BLOCKED)
801 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
802 				if (sample->type == TYPE_WAITING)
803 					svg_waiting(Y, sample->start_time, sample->end_time);
804 				sample = sample->next;
805 			}
806 
807 			if (c->comm) {
808 				char comm[256];
809 				if (c->total_time > 5000000000) /* 5 seconds */
810 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
811 				else
812 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
813 
814 				svg_text(Y, c->start_time, comm);
815 			}
816 			c->Y = Y;
817 			Y++;
818 			c = c->next;
819 		}
820 		p = p->next;
821 	}
822 }
823 
824 static void add_process_filter(const char *string)
825 {
826 	int pid = strtoull(string, NULL, 10);
827 	struct process_filter *filt = malloc(sizeof(*filt));
828 
829 	if (!filt)
830 		return;
831 
832 	filt->name = strdup(string);
833 	filt->pid  = pid;
834 	filt->next = process_filter;
835 
836 	process_filter = filt;
837 }
838 
839 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
840 {
841 	struct process_filter *filt;
842 	if (!process_filter)
843 		return 1;
844 
845 	filt = process_filter;
846 	while (filt) {
847 		if (filt->pid && p->pid == filt->pid)
848 			return 1;
849 		if (strcmp(filt->name, c->comm) == 0)
850 			return 1;
851 		filt = filt->next;
852 	}
853 	return 0;
854 }
855 
856 static int determine_display_tasks_filtered(void)
857 {
858 	struct per_pid *p;
859 	struct per_pidcomm *c;
860 	int count = 0;
861 
862 	p = all_data;
863 	while (p) {
864 		p->display = 0;
865 		if (p->start_time == 1)
866 			p->start_time = first_time;
867 
868 		/* no exit marker, task kept running to the end */
869 		if (p->end_time == 0)
870 			p->end_time = last_time;
871 
872 		c = p->all;
873 
874 		while (c) {
875 			c->display = 0;
876 
877 			if (c->start_time == 1)
878 				c->start_time = first_time;
879 
880 			if (passes_filter(p, c)) {
881 				c->display = 1;
882 				p->display = 1;
883 				count++;
884 			}
885 
886 			if (c->end_time == 0)
887 				c->end_time = last_time;
888 
889 			c = c->next;
890 		}
891 		p = p->next;
892 	}
893 	return count;
894 }
895 
896 static int determine_display_tasks(u64 threshold)
897 {
898 	struct per_pid *p;
899 	struct per_pidcomm *c;
900 	int count = 0;
901 
902 	if (process_filter)
903 		return determine_display_tasks_filtered();
904 
905 	p = all_data;
906 	while (p) {
907 		p->display = 0;
908 		if (p->start_time == 1)
909 			p->start_time = first_time;
910 
911 		/* no exit marker, task kept running to the end */
912 		if (p->end_time == 0)
913 			p->end_time = last_time;
914 		if (p->total_time >= threshold && !power_only)
915 			p->display = 1;
916 
917 		c = p->all;
918 
919 		while (c) {
920 			c->display = 0;
921 
922 			if (c->start_time == 1)
923 				c->start_time = first_time;
924 
925 			if (c->total_time >= threshold && !power_only) {
926 				c->display = 1;
927 				count++;
928 			}
929 
930 			if (c->end_time == 0)
931 				c->end_time = last_time;
932 
933 			c = c->next;
934 		}
935 		p = p->next;
936 	}
937 	return count;
938 }
939 
940 
941 
942 #define TIME_THRESH 10000000
943 
944 static void write_svg_file(const char *filename)
945 {
946 	u64 i;
947 	int count;
948 
949 	numcpus++;
950 
951 
952 	count = determine_display_tasks(TIME_THRESH);
953 
954 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
955 	if (count < 15)
956 		count = determine_display_tasks(TIME_THRESH / 10);
957 
958 	open_svg(filename, numcpus, count, first_time, last_time);
959 
960 	svg_time_grid();
961 	svg_legenda();
962 
963 	for (i = 0; i < numcpus; i++)
964 		svg_cpu_box(i, max_freq, turbo_frequency);
965 
966 	draw_cpu_usage();
967 	draw_process_bars();
968 	draw_c_p_states();
969 	draw_wakeups();
970 
971 	svg_close();
972 }
973 
974 static int __cmd_timechart(const char *output_name)
975 {
976 	struct perf_tool perf_timechart = {
977 		.comm		 = process_comm_event,
978 		.fork		 = process_fork_event,
979 		.exit		 = process_exit_event,
980 		.sample		 = process_sample_event,
981 		.ordered_samples = true,
982 	};
983 	const struct perf_evsel_str_handler power_tracepoints[] = {
984 		{ "power:cpu_idle",		process_sample_cpu_idle },
985 		{ "power:cpu_frequency",	process_sample_cpu_frequency },
986 		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
987 		{ "sched:sched_switch",		process_sample_sched_switch },
988 #ifdef SUPPORT_OLD_POWER_EVENTS
989 		{ "power:power_start",		process_sample_power_start },
990 		{ "power:power_end",		process_sample_power_end },
991 		{ "power:power_frequency",	process_sample_power_frequency },
992 #endif
993 	};
994 	struct perf_data_file file = {
995 		.path = input_name,
996 		.mode = PERF_DATA_MODE_READ,
997 	};
998 
999 	struct perf_session *session = perf_session__new(&file, false,
1000 							 &perf_timechart);
1001 	int ret = -EINVAL;
1002 
1003 	if (session == NULL)
1004 		return -ENOMEM;
1005 
1006 	if (!perf_session__has_traces(session, "timechart record"))
1007 		goto out_delete;
1008 
1009 	if (perf_session__set_tracepoints_handlers(session,
1010 						   power_tracepoints)) {
1011 		pr_err("Initializing session tracepoint handlers failed\n");
1012 		goto out_delete;
1013 	}
1014 
1015 	ret = perf_session__process_events(session, &perf_timechart);
1016 	if (ret)
1017 		goto out_delete;
1018 
1019 	end_sample_processing();
1020 
1021 	sort_pids();
1022 
1023 	write_svg_file(output_name);
1024 
1025 	pr_info("Written %2.1f seconds of trace to %s.\n",
1026 		(last_time - first_time) / 1000000000.0, output_name);
1027 out_delete:
1028 	perf_session__delete(session);
1029 	return ret;
1030 }
1031 
1032 static int __cmd_record(int argc, const char **argv)
1033 {
1034 #ifdef SUPPORT_OLD_POWER_EVENTS
1035 	const char * const record_old_args[] = {
1036 		"record", "-a", "-R", "-c", "1",
1037 		"-e", "power:power_start",
1038 		"-e", "power:power_end",
1039 		"-e", "power:power_frequency",
1040 		"-e", "sched:sched_wakeup",
1041 		"-e", "sched:sched_switch",
1042 	};
1043 #endif
1044 	const char * const record_new_args[] = {
1045 		"record", "-a", "-R", "-c", "1",
1046 		"-e", "power:cpu_frequency",
1047 		"-e", "power:cpu_idle",
1048 		"-e", "sched:sched_wakeup",
1049 		"-e", "sched:sched_switch",
1050 	};
1051 	unsigned int rec_argc, i, j;
1052 	const char **rec_argv;
1053 	const char * const *record_args = record_new_args;
1054 	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1055 
1056 #ifdef SUPPORT_OLD_POWER_EVENTS
1057 	if (!is_valid_tracepoint("power:cpu_idle") &&
1058 	    is_valid_tracepoint("power:power_start")) {
1059 		use_old_power_events = 1;
1060 		record_args = record_old_args;
1061 		record_elems = ARRAY_SIZE(record_old_args);
1062 	}
1063 #endif
1064 
1065 	rec_argc = record_elems + argc - 1;
1066 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1067 
1068 	if (rec_argv == NULL)
1069 		return -ENOMEM;
1070 
1071 	for (i = 0; i < record_elems; i++)
1072 		rec_argv[i] = strdup(record_args[i]);
1073 
1074 	for (j = 1; j < (unsigned int)argc; j++, i++)
1075 		rec_argv[i] = argv[j];
1076 
1077 	return cmd_record(i, rec_argv, NULL);
1078 }
1079 
1080 static int
1081 parse_process(const struct option *opt __maybe_unused, const char *arg,
1082 	      int __maybe_unused unset)
1083 {
1084 	if (arg)
1085 		add_process_filter(arg);
1086 	return 0;
1087 }
1088 
1089 int cmd_timechart(int argc, const char **argv,
1090 		  const char *prefix __maybe_unused)
1091 {
1092 	const char *output_name = "output.svg";
1093 	const struct option options[] = {
1094 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1095 	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1096 	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1097 	OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1098 	OPT_CALLBACK('p', "process", NULL, "process",
1099 		      "process selector. Pass a pid or process name.",
1100 		       parse_process),
1101 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1102 		    "Look for files with symbols relative to this directory"),
1103 	OPT_END()
1104 	};
1105 	const char * const timechart_usage[] = {
1106 		"perf timechart [<options>] {record}",
1107 		NULL
1108 	};
1109 
1110 	argc = parse_options(argc, argv, options, timechart_usage,
1111 			PARSE_OPT_STOP_AT_NON_OPTION);
1112 
1113 	symbol__init();
1114 
1115 	if (argc && !strncmp(argv[0], "rec", 3))
1116 		return __cmd_record(argc, argv);
1117 	else if (argc)
1118 		usage_with_options(timechart_usage, options);
1119 
1120 	setup_pager();
1121 
1122 	return __cmd_timechart(output_name);
1123 }
1124