xref: /openbmc/linux/tools/perf/builtin-stat.c (revision fd589a8f)
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8 
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11 
12     Performance counter stats for '/home/mingo/hackbench':
13 
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22 
23     Wall-clock time elapsed:   123.786620 msecs
24 
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39 
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47 
48 #include <sys/prctl.h>
49 #include <math.h>
50 
51 static struct perf_counter_attr default_attrs[] = {
52 
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK	},
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS	},
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS	},
57 
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES	},
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS	},
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES	},
62 
63 };
64 
65 static int			system_wide			=  0;
66 static unsigned int		nr_cpus				=  0;
67 static int			run_idx				=  0;
68 
69 static int			run_count			=  1;
70 static int			inherit				=  1;
71 static int			scale				=  1;
72 static int			target_pid			= -1;
73 static int			null_run			=  0;
74 
75 static int			fd[MAX_NR_CPUS][MAX_COUNTERS];
76 
77 static int			event_scaled[MAX_COUNTERS];
78 
79 struct stats
80 {
81 	double n, mean, M2;
82 };
83 
84 static void update_stats(struct stats *stats, u64 val)
85 {
86 	double delta;
87 
88 	stats->n++;
89 	delta = val - stats->mean;
90 	stats->mean += delta / stats->n;
91 	stats->M2 += delta*(val - stats->mean);
92 }
93 
94 static double avg_stats(struct stats *stats)
95 {
96 	return stats->mean;
97 }
98 
99 /*
100  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
101  *
102  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
103  * s^2 = -------------------------------
104  *                  n - 1
105  *
106  * http://en.wikipedia.org/wiki/Stddev
107  *
108  * The std dev of the mean is related to the std dev by:
109  *
110  *             s
111  * s_mean = -------
112  *          sqrt(n)
113  *
114  */
115 static double stddev_stats(struct stats *stats)
116 {
117 	double variance = stats->M2 / (stats->n - 1);
118 	double variance_mean = variance / stats->n;
119 
120 	return sqrt(variance_mean);
121 }
122 
123 struct stats			event_res_stats[MAX_COUNTERS][3];
124 struct stats			runtime_nsecs_stats;
125 struct stats			walltime_nsecs_stats;
126 struct stats			runtime_cycles_stats;
127 
128 #define MATCH_EVENT(t, c, counter)			\
129 	(attrs[counter].type == PERF_TYPE_##t &&	\
130 	 attrs[counter].config == PERF_COUNT_##c)
131 
132 #define ERR_PERF_OPEN \
133 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
134 
135 static void create_perf_stat_counter(int counter, int pid)
136 {
137 	struct perf_counter_attr *attr = attrs + counter;
138 
139 	if (scale)
140 		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
141 				    PERF_FORMAT_TOTAL_TIME_RUNNING;
142 
143 	if (system_wide) {
144 		unsigned int cpu;
145 
146 		for (cpu = 0; cpu < nr_cpus; cpu++) {
147 			fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
148 			if (fd[cpu][counter] < 0 && verbose)
149 				fprintf(stderr, ERR_PERF_OPEN, counter,
150 					fd[cpu][counter], strerror(errno));
151 		}
152 	} else {
153 		attr->inherit	     = inherit;
154 		attr->disabled	     = 1;
155 		attr->enable_on_exec = 1;
156 
157 		fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
158 		if (fd[0][counter] < 0 && verbose)
159 			fprintf(stderr, ERR_PERF_OPEN, counter,
160 				fd[0][counter], strerror(errno));
161 	}
162 }
163 
164 /*
165  * Does the counter have nsecs as a unit?
166  */
167 static inline int nsec_counter(int counter)
168 {
169 	if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
170 	    MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
171 		return 1;
172 
173 	return 0;
174 }
175 
176 /*
177  * Read out the results of a single counter:
178  */
179 static void read_counter(int counter)
180 {
181 	u64 count[3], single_count[3];
182 	unsigned int cpu;
183 	size_t res, nv;
184 	int scaled;
185 	int i;
186 
187 	count[0] = count[1] = count[2] = 0;
188 
189 	nv = scale ? 3 : 1;
190 	for (cpu = 0; cpu < nr_cpus; cpu++) {
191 		if (fd[cpu][counter] < 0)
192 			continue;
193 
194 		res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
195 		assert(res == nv * sizeof(u64));
196 
197 		close(fd[cpu][counter]);
198 		fd[cpu][counter] = -1;
199 
200 		count[0] += single_count[0];
201 		if (scale) {
202 			count[1] += single_count[1];
203 			count[2] += single_count[2];
204 		}
205 	}
206 
207 	scaled = 0;
208 	if (scale) {
209 		if (count[2] == 0) {
210 			event_scaled[counter] = -1;
211 			count[0] = 0;
212 			return;
213 		}
214 
215 		if (count[2] < count[1]) {
216 			event_scaled[counter] = 1;
217 			count[0] = (unsigned long long)
218 				((double)count[0] * count[1] / count[2] + 0.5);
219 		}
220 	}
221 
222 	for (i = 0; i < 3; i++)
223 		update_stats(&event_res_stats[counter][i], count[i]);
224 
225 	if (verbose) {
226 		fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
227 				count[0], count[1], count[2]);
228 	}
229 
230 	/*
231 	 * Save the full runtime - to allow normalization during printout:
232 	 */
233 	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
234 		update_stats(&runtime_nsecs_stats, count[0]);
235 	if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
236 		update_stats(&runtime_cycles_stats, count[0]);
237 }
238 
239 static int run_perf_stat(int argc __used, const char **argv)
240 {
241 	unsigned long long t0, t1;
242 	int status = 0;
243 	int counter;
244 	int pid;
245 	int child_ready_pipe[2], go_pipe[2];
246 	char buf;
247 
248 	if (!system_wide)
249 		nr_cpus = 1;
250 
251 	if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
252 		perror("failed to create pipes");
253 		exit(1);
254 	}
255 
256 	if ((pid = fork()) < 0)
257 		perror("failed to fork");
258 
259 	if (!pid) {
260 		close(child_ready_pipe[0]);
261 		close(go_pipe[1]);
262 		fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
263 
264 		/*
265 		 * Do a dummy execvp to get the PLT entry resolved,
266 		 * so we avoid the resolver overhead on the real
267 		 * execvp call.
268 		 */
269 		execvp("", (char **)argv);
270 
271 		/*
272 		 * Tell the parent we're ready to go
273 		 */
274 		close(child_ready_pipe[1]);
275 
276 		/*
277 		 * Wait until the parent tells us to go.
278 		 */
279 		if (read(go_pipe[0], &buf, 1) == -1)
280 			perror("unable to read pipe");
281 
282 		execvp(argv[0], (char **)argv);
283 
284 		perror(argv[0]);
285 		exit(-1);
286 	}
287 
288 	/*
289 	 * Wait for the child to be ready to exec.
290 	 */
291 	close(child_ready_pipe[1]);
292 	close(go_pipe[0]);
293 	if (read(child_ready_pipe[0], &buf, 1) == -1)
294 		perror("unable to read pipe");
295 	close(child_ready_pipe[0]);
296 
297 	for (counter = 0; counter < nr_counters; counter++)
298 		create_perf_stat_counter(counter, pid);
299 
300 	/*
301 	 * Enable counters and exec the command:
302 	 */
303 	t0 = rdclock();
304 
305 	close(go_pipe[1]);
306 	wait(&status);
307 
308 	t1 = rdclock();
309 
310 	update_stats(&walltime_nsecs_stats, t1 - t0);
311 
312 	for (counter = 0; counter < nr_counters; counter++)
313 		read_counter(counter);
314 
315 	return WEXITSTATUS(status);
316 }
317 
318 static void print_noise(int counter, double avg)
319 {
320 	if (run_count == 1)
321 		return;
322 
323 	fprintf(stderr, "   ( +- %7.3f%% )",
324 			100 * stddev_stats(&event_res_stats[counter][0]) / avg);
325 }
326 
327 static void nsec_printout(int counter, double avg)
328 {
329 	double msecs = avg / 1e6;
330 
331 	fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
332 
333 	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
334 		fprintf(stderr, " # %10.3f CPUs ",
335 				avg / avg_stats(&walltime_nsecs_stats));
336 	}
337 }
338 
339 static void abs_printout(int counter, double avg)
340 {
341 	fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
342 
343 	if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
344 		fprintf(stderr, " # %10.3f IPC  ",
345 				avg / avg_stats(&runtime_cycles_stats));
346 	} else {
347 		fprintf(stderr, " # %10.3f M/sec",
348 				1000.0 * avg / avg_stats(&runtime_nsecs_stats));
349 	}
350 }
351 
352 /*
353  * Print out the results of a single counter:
354  */
355 static void print_counter(int counter)
356 {
357 	double avg = avg_stats(&event_res_stats[counter][0]);
358 	int scaled = event_scaled[counter];
359 
360 	if (scaled == -1) {
361 		fprintf(stderr, " %14s  %-24s\n",
362 			"<not counted>", event_name(counter));
363 		return;
364 	}
365 
366 	if (nsec_counter(counter))
367 		nsec_printout(counter, avg);
368 	else
369 		abs_printout(counter, avg);
370 
371 	print_noise(counter, avg);
372 
373 	if (scaled) {
374 		double avg_enabled, avg_running;
375 
376 		avg_enabled = avg_stats(&event_res_stats[counter][1]);
377 		avg_running = avg_stats(&event_res_stats[counter][2]);
378 
379 		fprintf(stderr, "  (scaled from %.2f%%)",
380 				100 * avg_running / avg_enabled);
381 	}
382 
383 	fprintf(stderr, "\n");
384 }
385 
386 static void print_stat(int argc, const char **argv)
387 {
388 	int i, counter;
389 
390 	fflush(stdout);
391 
392 	fprintf(stderr, "\n");
393 	fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
394 
395 	for (i = 1; i < argc; i++)
396 		fprintf(stderr, " %s", argv[i]);
397 
398 	fprintf(stderr, "\'");
399 	if (run_count > 1)
400 		fprintf(stderr, " (%d runs)", run_count);
401 	fprintf(stderr, ":\n\n");
402 
403 	for (counter = 0; counter < nr_counters; counter++)
404 		print_counter(counter);
405 
406 	fprintf(stderr, "\n");
407 	fprintf(stderr, " %14.9f  seconds time elapsed",
408 			avg_stats(&walltime_nsecs_stats)/1e9);
409 	if (run_count > 1) {
410 		fprintf(stderr, "   ( +- %7.3f%% )",
411 				100*stddev_stats(&walltime_nsecs_stats) /
412 				avg_stats(&walltime_nsecs_stats));
413 	}
414 	fprintf(stderr, "\n\n");
415 }
416 
417 static volatile int signr = -1;
418 
419 static void skip_signal(int signo)
420 {
421 	signr = signo;
422 }
423 
424 static void sig_atexit(void)
425 {
426 	if (signr == -1)
427 		return;
428 
429 	signal(signr, SIG_DFL);
430 	kill(getpid(), signr);
431 }
432 
433 static const char * const stat_usage[] = {
434 	"perf stat [<options>] <command>",
435 	NULL
436 };
437 
438 static const struct option options[] = {
439 	OPT_CALLBACK('e', "event", NULL, "event",
440 		     "event selector. use 'perf list' to list available events",
441 		     parse_events),
442 	OPT_BOOLEAN('i', "inherit", &inherit,
443 		    "child tasks inherit counters"),
444 	OPT_INTEGER('p', "pid", &target_pid,
445 		    "stat events on existing pid"),
446 	OPT_BOOLEAN('a', "all-cpus", &system_wide,
447 		    "system-wide collection from all CPUs"),
448 	OPT_BOOLEAN('c', "scale", &scale,
449 		    "scale/normalize counters"),
450 	OPT_BOOLEAN('v', "verbose", &verbose,
451 		    "be more verbose (show counter open errors, etc)"),
452 	OPT_INTEGER('r', "repeat", &run_count,
453 		    "repeat command and print average + stddev (max: 100)"),
454 	OPT_BOOLEAN('n', "null", &null_run,
455 		    "null run - dont start any counters"),
456 	OPT_END()
457 };
458 
459 int cmd_stat(int argc, const char **argv, const char *prefix __used)
460 {
461 	int status;
462 
463 	argc = parse_options(argc, argv, options, stat_usage,
464 		PARSE_OPT_STOP_AT_NON_OPTION);
465 	if (!argc)
466 		usage_with_options(stat_usage, options);
467 	if (run_count <= 0)
468 		usage_with_options(stat_usage, options);
469 
470 	/* Set attrs and nr_counters if no event is selected and !null_run */
471 	if (!null_run && !nr_counters) {
472 		memcpy(attrs, default_attrs, sizeof(default_attrs));
473 		nr_counters = ARRAY_SIZE(default_attrs);
474 	}
475 
476 	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
477 	assert(nr_cpus <= MAX_NR_CPUS);
478 	assert((int)nr_cpus >= 0);
479 
480 	/*
481 	 * We dont want to block the signals - that would cause
482 	 * child tasks to inherit that and Ctrl-C would not work.
483 	 * What we want is for Ctrl-C to work in the exec()-ed
484 	 * task, but being ignored by perf stat itself:
485 	 */
486 	atexit(sig_atexit);
487 	signal(SIGINT,  skip_signal);
488 	signal(SIGALRM, skip_signal);
489 	signal(SIGABRT, skip_signal);
490 
491 	status = 0;
492 	for (run_idx = 0; run_idx < run_count; run_idx++) {
493 		if (run_count != 1 && verbose)
494 			fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
495 		status = run_perf_stat(argc, argv);
496 	}
497 
498 	print_stat(argc, argv);
499 
500 	return status;
501 }
502