1 /* 2 * builtin-stat.c 3 * 4 * Builtin stat command: Give a precise performance counters summary 5 * overview about any workload, CPU or specific PID. 6 * 7 * Sample output: 8 9 $ perf stat ~/hackbench 10 10 Time: 0.104 11 12 Performance counter stats for '/home/mingo/hackbench': 13 14 1255.538611 task clock ticks # 10.143 CPU utilization factor 15 54011 context switches # 0.043 M/sec 16 385 CPU migrations # 0.000 M/sec 17 17755 pagefaults # 0.014 M/sec 18 3808323185 CPU cycles # 3033.219 M/sec 19 1575111190 instructions # 1254.530 M/sec 20 17367895 cache references # 13.833 M/sec 21 7674421 cache misses # 6.112 M/sec 22 23 Wall-clock time elapsed: 123.786620 msecs 24 25 * 26 * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 27 * 28 * Improvements and fixes by: 29 * 30 * Arjan van de Ven <arjan@linux.intel.com> 31 * Yanmin Zhang <yanmin.zhang@intel.com> 32 * Wu Fengguang <fengguang.wu@intel.com> 33 * Mike Galbraith <efault@gmx.de> 34 * Paul Mackerras <paulus@samba.org> 35 * Jaswinder Singh Rajput <jaswinder@kernel.org> 36 * 37 * Released under the GPL v2. (and only v2, not any later version) 38 */ 39 40 #include "perf.h" 41 #include "builtin.h" 42 #include "util/util.h" 43 #include "util/parse-options.h" 44 #include "util/parse-events.h" 45 #include "util/event.h" 46 #include "util/debug.h" 47 48 #include <sys/prctl.h> 49 #include <math.h> 50 51 static struct perf_event_attr default_attrs[] = { 52 53 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, 54 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, 55 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, 56 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, 57 58 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, 59 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, 60 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, 61 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, 62 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES }, 63 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES }, 64 65 }; 66 67 static int system_wide = 0; 68 static unsigned int nr_cpus = 0; 69 static int run_idx = 0; 70 71 static int run_count = 1; 72 static int inherit = 1; 73 static int scale = 1; 74 static pid_t target_pid = -1; 75 static pid_t child_pid = -1; 76 static int null_run = 0; 77 78 static int fd[MAX_NR_CPUS][MAX_COUNTERS]; 79 80 static int event_scaled[MAX_COUNTERS]; 81 82 struct stats 83 { 84 double n, mean, M2; 85 }; 86 87 static void update_stats(struct stats *stats, u64 val) 88 { 89 double delta; 90 91 stats->n++; 92 delta = val - stats->mean; 93 stats->mean += delta / stats->n; 94 stats->M2 += delta*(val - stats->mean); 95 } 96 97 static double avg_stats(struct stats *stats) 98 { 99 return stats->mean; 100 } 101 102 /* 103 * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance 104 * 105 * (\Sum n_i^2) - ((\Sum n_i)^2)/n 106 * s^2 = ------------------------------- 107 * n - 1 108 * 109 * http://en.wikipedia.org/wiki/Stddev 110 * 111 * The std dev of the mean is related to the std dev by: 112 * 113 * s 114 * s_mean = ------- 115 * sqrt(n) 116 * 117 */ 118 static double stddev_stats(struct stats *stats) 119 { 120 double variance = stats->M2 / (stats->n - 1); 121 double variance_mean = variance / stats->n; 122 123 return sqrt(variance_mean); 124 } 125 126 struct stats event_res_stats[MAX_COUNTERS][3]; 127 struct stats runtime_nsecs_stats; 128 struct stats walltime_nsecs_stats; 129 struct stats runtime_cycles_stats; 130 struct stats runtime_branches_stats; 131 132 #define MATCH_EVENT(t, c, counter) \ 133 (attrs[counter].type == PERF_TYPE_##t && \ 134 attrs[counter].config == PERF_COUNT_##c) 135 136 #define ERR_PERF_OPEN \ 137 "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n" 138 139 static void create_perf_stat_counter(int counter, int pid) 140 { 141 struct perf_event_attr *attr = attrs + counter; 142 143 if (scale) 144 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | 145 PERF_FORMAT_TOTAL_TIME_RUNNING; 146 147 if (system_wide) { 148 unsigned int cpu; 149 150 for (cpu = 0; cpu < nr_cpus; cpu++) { 151 fd[cpu][counter] = sys_perf_event_open(attr, -1, cpu, -1, 0); 152 if (fd[cpu][counter] < 0 && verbose) 153 fprintf(stderr, ERR_PERF_OPEN, counter, 154 fd[cpu][counter], strerror(errno)); 155 } 156 } else { 157 attr->inherit = inherit; 158 attr->disabled = 1; 159 attr->enable_on_exec = 1; 160 161 fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0); 162 if (fd[0][counter] < 0 && verbose) 163 fprintf(stderr, ERR_PERF_OPEN, counter, 164 fd[0][counter], strerror(errno)); 165 } 166 } 167 168 /* 169 * Does the counter have nsecs as a unit? 170 */ 171 static inline int nsec_counter(int counter) 172 { 173 if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) || 174 MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) 175 return 1; 176 177 return 0; 178 } 179 180 /* 181 * Read out the results of a single counter: 182 */ 183 static void read_counter(int counter) 184 { 185 u64 count[3], single_count[3]; 186 unsigned int cpu; 187 size_t res, nv; 188 int scaled; 189 int i; 190 191 count[0] = count[1] = count[2] = 0; 192 193 nv = scale ? 3 : 1; 194 for (cpu = 0; cpu < nr_cpus; cpu++) { 195 if (fd[cpu][counter] < 0) 196 continue; 197 198 res = read(fd[cpu][counter], single_count, nv * sizeof(u64)); 199 assert(res == nv * sizeof(u64)); 200 201 close(fd[cpu][counter]); 202 fd[cpu][counter] = -1; 203 204 count[0] += single_count[0]; 205 if (scale) { 206 count[1] += single_count[1]; 207 count[2] += single_count[2]; 208 } 209 } 210 211 scaled = 0; 212 if (scale) { 213 if (count[2] == 0) { 214 event_scaled[counter] = -1; 215 count[0] = 0; 216 return; 217 } 218 219 if (count[2] < count[1]) { 220 event_scaled[counter] = 1; 221 count[0] = (unsigned long long) 222 ((double)count[0] * count[1] / count[2] + 0.5); 223 } 224 } 225 226 for (i = 0; i < 3; i++) 227 update_stats(&event_res_stats[counter][i], count[i]); 228 229 if (verbose) { 230 fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter), 231 count[0], count[1], count[2]); 232 } 233 234 /* 235 * Save the full runtime - to allow normalization during printout: 236 */ 237 if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) 238 update_stats(&runtime_nsecs_stats, count[0]); 239 if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter)) 240 update_stats(&runtime_cycles_stats, count[0]); 241 if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter)) 242 update_stats(&runtime_branches_stats, count[0]); 243 } 244 245 static int run_perf_stat(int argc __used, const char **argv) 246 { 247 unsigned long long t0, t1; 248 int status = 0; 249 int counter; 250 int pid; 251 int child_ready_pipe[2], go_pipe[2]; 252 char buf; 253 254 if (!system_wide) 255 nr_cpus = 1; 256 257 if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) { 258 perror("failed to create pipes"); 259 exit(1); 260 } 261 262 if ((pid = fork()) < 0) 263 perror("failed to fork"); 264 265 if (!pid) { 266 close(child_ready_pipe[0]); 267 close(go_pipe[1]); 268 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); 269 270 /* 271 * Do a dummy execvp to get the PLT entry resolved, 272 * so we avoid the resolver overhead on the real 273 * execvp call. 274 */ 275 execvp("", (char **)argv); 276 277 /* 278 * Tell the parent we're ready to go 279 */ 280 close(child_ready_pipe[1]); 281 282 /* 283 * Wait until the parent tells us to go. 284 */ 285 if (read(go_pipe[0], &buf, 1) == -1) 286 perror("unable to read pipe"); 287 288 execvp(argv[0], (char **)argv); 289 290 perror(argv[0]); 291 exit(-1); 292 } 293 294 child_pid = pid; 295 296 /* 297 * Wait for the child to be ready to exec. 298 */ 299 close(child_ready_pipe[1]); 300 close(go_pipe[0]); 301 if (read(child_ready_pipe[0], &buf, 1) == -1) 302 perror("unable to read pipe"); 303 close(child_ready_pipe[0]); 304 305 for (counter = 0; counter < nr_counters; counter++) 306 create_perf_stat_counter(counter, pid); 307 308 /* 309 * Enable counters and exec the command: 310 */ 311 t0 = rdclock(); 312 313 close(go_pipe[1]); 314 wait(&status); 315 316 t1 = rdclock(); 317 318 update_stats(&walltime_nsecs_stats, t1 - t0); 319 320 for (counter = 0; counter < nr_counters; counter++) 321 read_counter(counter); 322 323 return WEXITSTATUS(status); 324 } 325 326 static void print_noise(int counter, double avg) 327 { 328 if (run_count == 1) 329 return; 330 331 fprintf(stderr, " ( +- %7.3f%% )", 332 100 * stddev_stats(&event_res_stats[counter][0]) / avg); 333 } 334 335 static void nsec_printout(int counter, double avg) 336 { 337 double msecs = avg / 1e6; 338 339 fprintf(stderr, " %14.6f %-24s", msecs, event_name(counter)); 340 341 if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) { 342 fprintf(stderr, " # %10.3f CPUs ", 343 avg / avg_stats(&walltime_nsecs_stats)); 344 } 345 } 346 347 static void abs_printout(int counter, double avg) 348 { 349 double total, ratio = 0.0; 350 351 fprintf(stderr, " %14.0f %-24s", avg, event_name(counter)); 352 353 if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) { 354 total = avg_stats(&runtime_cycles_stats); 355 356 if (total) 357 ratio = avg / total; 358 359 fprintf(stderr, " # %10.3f IPC ", ratio); 360 } else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) && 361 runtime_branches_stats.n != 0) { 362 total = avg_stats(&runtime_branches_stats); 363 364 if (total) 365 ratio = avg * 100 / total; 366 367 fprintf(stderr, " # %10.3f %% ", ratio); 368 369 } else if (runtime_nsecs_stats.n != 0) { 370 total = avg_stats(&runtime_nsecs_stats); 371 372 if (total) 373 ratio = 1000.0 * avg / total; 374 375 fprintf(stderr, " # %10.3f M/sec", ratio); 376 } 377 } 378 379 /* 380 * Print out the results of a single counter: 381 */ 382 static void print_counter(int counter) 383 { 384 double avg = avg_stats(&event_res_stats[counter][0]); 385 int scaled = event_scaled[counter]; 386 387 if (scaled == -1) { 388 fprintf(stderr, " %14s %-24s\n", 389 "<not counted>", event_name(counter)); 390 return; 391 } 392 393 if (nsec_counter(counter)) 394 nsec_printout(counter, avg); 395 else 396 abs_printout(counter, avg); 397 398 print_noise(counter, avg); 399 400 if (scaled) { 401 double avg_enabled, avg_running; 402 403 avg_enabled = avg_stats(&event_res_stats[counter][1]); 404 avg_running = avg_stats(&event_res_stats[counter][2]); 405 406 fprintf(stderr, " (scaled from %.2f%%)", 407 100 * avg_running / avg_enabled); 408 } 409 410 fprintf(stderr, "\n"); 411 } 412 413 static void print_stat(int argc, const char **argv) 414 { 415 int i, counter; 416 417 fflush(stdout); 418 419 fprintf(stderr, "\n"); 420 fprintf(stderr, " Performance counter stats for \'%s", argv[0]); 421 422 for (i = 1; i < argc; i++) 423 fprintf(stderr, " %s", argv[i]); 424 425 fprintf(stderr, "\'"); 426 if (run_count > 1) 427 fprintf(stderr, " (%d runs)", run_count); 428 fprintf(stderr, ":\n\n"); 429 430 for (counter = 0; counter < nr_counters; counter++) 431 print_counter(counter); 432 433 fprintf(stderr, "\n"); 434 fprintf(stderr, " %14.9f seconds time elapsed", 435 avg_stats(&walltime_nsecs_stats)/1e9); 436 if (run_count > 1) { 437 fprintf(stderr, " ( +- %7.3f%% )", 438 100*stddev_stats(&walltime_nsecs_stats) / 439 avg_stats(&walltime_nsecs_stats)); 440 } 441 fprintf(stderr, "\n\n"); 442 } 443 444 static volatile int signr = -1; 445 446 static void skip_signal(int signo) 447 { 448 signr = signo; 449 } 450 451 static void sig_atexit(void) 452 { 453 if (child_pid != -1) 454 kill(child_pid, SIGTERM); 455 456 if (signr == -1) 457 return; 458 459 signal(signr, SIG_DFL); 460 kill(getpid(), signr); 461 } 462 463 static const char * const stat_usage[] = { 464 "perf stat [<options>] <command>", 465 NULL 466 }; 467 468 static const struct option options[] = { 469 OPT_CALLBACK('e', "event", NULL, "event", 470 "event selector. use 'perf list' to list available events", 471 parse_events), 472 OPT_BOOLEAN('i', "inherit", &inherit, 473 "child tasks inherit counters"), 474 OPT_INTEGER('p', "pid", &target_pid, 475 "stat events on existing pid"), 476 OPT_BOOLEAN('a', "all-cpus", &system_wide, 477 "system-wide collection from all CPUs"), 478 OPT_BOOLEAN('c', "scale", &scale, 479 "scale/normalize counters"), 480 OPT_BOOLEAN('v', "verbose", &verbose, 481 "be more verbose (show counter open errors, etc)"), 482 OPT_INTEGER('r', "repeat", &run_count, 483 "repeat command and print average + stddev (max: 100)"), 484 OPT_BOOLEAN('n', "null", &null_run, 485 "null run - dont start any counters"), 486 OPT_END() 487 }; 488 489 int cmd_stat(int argc, const char **argv, const char *prefix __used) 490 { 491 int status; 492 493 argc = parse_options(argc, argv, options, stat_usage, 494 PARSE_OPT_STOP_AT_NON_OPTION); 495 if (!argc) 496 usage_with_options(stat_usage, options); 497 if (run_count <= 0) 498 usage_with_options(stat_usage, options); 499 500 /* Set attrs and nr_counters if no event is selected and !null_run */ 501 if (!null_run && !nr_counters) { 502 memcpy(attrs, default_attrs, sizeof(default_attrs)); 503 nr_counters = ARRAY_SIZE(default_attrs); 504 } 505 506 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); 507 assert(nr_cpus <= MAX_NR_CPUS); 508 assert((int)nr_cpus >= 0); 509 510 /* 511 * We dont want to block the signals - that would cause 512 * child tasks to inherit that and Ctrl-C would not work. 513 * What we want is for Ctrl-C to work in the exec()-ed 514 * task, but being ignored by perf stat itself: 515 */ 516 atexit(sig_atexit); 517 signal(SIGINT, skip_signal); 518 signal(SIGALRM, skip_signal); 519 signal(SIGABRT, skip_signal); 520 521 status = 0; 522 for (run_idx = 0; run_idx < run_count; run_idx++) { 523 if (run_count != 1 && verbose) 524 fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1); 525 status = run_perf_stat(argc, argv); 526 } 527 528 print_stat(argc, argv); 529 530 return status; 531 } 532