1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/event.h" 50 #include "util/evlist.h" 51 #include "util/evsel.h" 52 #include "util/debug.h" 53 #include "util/color.h" 54 #include "util/stat.h" 55 #include "util/header.h" 56 #include "util/cpumap.h" 57 #include "util/thread_map.h" 58 #include "util/counts.h" 59 #include "util/topdown.h" 60 #include "util/session.h" 61 #include "util/tool.h" 62 #include "util/string2.h" 63 #include "util/metricgroup.h" 64 #include "util/synthetic-events.h" 65 #include "util/target.h" 66 #include "util/time-utils.h" 67 #include "util/top.h" 68 #include "util/affinity.h" 69 #include "util/pfm.h" 70 #include "util/bpf_counter.h" 71 #include "util/iostat.h" 72 #include "util/util.h" 73 #include "asm/bug.h" 74 75 #include <linux/time64.h> 76 #include <linux/zalloc.h> 77 #include <api/fs/fs.h> 78 #include <errno.h> 79 #include <signal.h> 80 #include <stdlib.h> 81 #include <sys/prctl.h> 82 #include <inttypes.h> 83 #include <locale.h> 84 #include <math.h> 85 #include <sys/types.h> 86 #include <sys/stat.h> 87 #include <sys/wait.h> 88 #include <unistd.h> 89 #include <sys/time.h> 90 #include <sys/resource.h> 91 #include <linux/err.h> 92 93 #include <linux/ctype.h> 94 #include <perf/evlist.h> 95 #include <internal/threadmap.h> 96 97 #define DEFAULT_SEPARATOR " " 98 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" 99 100 static void print_counters(struct timespec *ts, int argc, const char **argv); 101 102 static struct evlist *evsel_list; 103 static struct parse_events_option_args parse_events_option_args = { 104 .evlistp = &evsel_list, 105 }; 106 107 static bool all_counters_use_bpf = true; 108 109 static struct target target = { 110 .uid = UINT_MAX, 111 }; 112 113 #define METRIC_ONLY_LEN 20 114 115 static volatile sig_atomic_t child_pid = -1; 116 static int detailed_run = 0; 117 static bool transaction_run; 118 static bool topdown_run = false; 119 static bool smi_cost = false; 120 static bool smi_reset = false; 121 static int big_num_opt = -1; 122 static const char *pre_cmd = NULL; 123 static const char *post_cmd = NULL; 124 static bool sync_run = false; 125 static bool forever = false; 126 static bool force_metric_only = false; 127 static struct timespec ref_time; 128 static bool append_file; 129 static bool interval_count; 130 static const char *output_name; 131 static int output_fd; 132 static char *metrics; 133 134 struct perf_stat { 135 bool record; 136 struct perf_data data; 137 struct perf_session *session; 138 u64 bytes_written; 139 struct perf_tool tool; 140 bool maps_allocated; 141 struct perf_cpu_map *cpus; 142 struct perf_thread_map *threads; 143 enum aggr_mode aggr_mode; 144 u32 aggr_level; 145 }; 146 147 static struct perf_stat perf_stat; 148 #define STAT_RECORD perf_stat.record 149 150 static volatile sig_atomic_t done = 0; 151 152 static struct perf_stat_config stat_config = { 153 .aggr_mode = AGGR_GLOBAL, 154 .aggr_level = MAX_CACHE_LVL + 1, 155 .scale = true, 156 .unit_width = 4, /* strlen("unit") */ 157 .run_count = 1, 158 .metric_only_len = METRIC_ONLY_LEN, 159 .walltime_nsecs_stats = &walltime_nsecs_stats, 160 .ru_stats = &ru_stats, 161 .big_num = true, 162 .ctl_fd = -1, 163 .ctl_fd_ack = -1, 164 .iostat_run = false, 165 }; 166 167 static bool cpus_map_matched(struct evsel *a, struct evsel *b) 168 { 169 if (!a->core.cpus && !b->core.cpus) 170 return true; 171 172 if (!a->core.cpus || !b->core.cpus) 173 return false; 174 175 if (perf_cpu_map__nr(a->core.cpus) != perf_cpu_map__nr(b->core.cpus)) 176 return false; 177 178 for (int i = 0; i < perf_cpu_map__nr(a->core.cpus); i++) { 179 if (perf_cpu_map__cpu(a->core.cpus, i).cpu != 180 perf_cpu_map__cpu(b->core.cpus, i).cpu) 181 return false; 182 } 183 184 return true; 185 } 186 187 static void evlist__check_cpu_maps(struct evlist *evlist) 188 { 189 struct evsel *evsel, *warned_leader = NULL; 190 191 evlist__for_each_entry(evlist, evsel) { 192 struct evsel *leader = evsel__leader(evsel); 193 194 /* Check that leader matches cpus with each member. */ 195 if (leader == evsel) 196 continue; 197 if (cpus_map_matched(leader, evsel)) 198 continue; 199 200 /* If there's mismatch disable the group and warn user. */ 201 if (warned_leader != leader) { 202 char buf[200]; 203 204 pr_warning("WARNING: grouped events cpus do not match.\n" 205 "Events with CPUs not matching the leader will " 206 "be removed from the group.\n"); 207 evsel__group_desc(leader, buf, sizeof(buf)); 208 pr_warning(" %s\n", buf); 209 warned_leader = leader; 210 } 211 if (verbose > 0) { 212 char buf[200]; 213 214 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 215 pr_warning(" %s: %s\n", leader->name, buf); 216 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 217 pr_warning(" %s: %s\n", evsel->name, buf); 218 } 219 220 evsel__remove_from_group(evsel, leader); 221 } 222 } 223 224 static inline void diff_timespec(struct timespec *r, struct timespec *a, 225 struct timespec *b) 226 { 227 r->tv_sec = a->tv_sec - b->tv_sec; 228 if (a->tv_nsec < b->tv_nsec) { 229 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 230 r->tv_sec--; 231 } else { 232 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 233 } 234 } 235 236 static void perf_stat__reset_stats(void) 237 { 238 evlist__reset_stats(evsel_list); 239 perf_stat__reset_shadow_stats(); 240 } 241 242 static int process_synthesized_event(struct perf_tool *tool __maybe_unused, 243 union perf_event *event, 244 struct perf_sample *sample __maybe_unused, 245 struct machine *machine __maybe_unused) 246 { 247 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 248 pr_err("failed to write perf data, error: %m\n"); 249 return -1; 250 } 251 252 perf_stat.bytes_written += event->header.size; 253 return 0; 254 } 255 256 static int write_stat_round_event(u64 tm, u64 type) 257 { 258 return perf_event__synthesize_stat_round(NULL, tm, type, 259 process_synthesized_event, 260 NULL); 261 } 262 263 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 264 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 265 266 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 267 268 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 269 struct perf_counts_values *count) 270 { 271 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 272 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 273 274 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 275 process_synthesized_event, NULL); 276 } 277 278 static int read_single_counter(struct evsel *counter, int cpu_map_idx, 279 int thread, struct timespec *rs) 280 { 281 switch(counter->tool_event) { 282 case PERF_TOOL_DURATION_TIME: { 283 u64 val = rs->tv_nsec + rs->tv_sec*1000000000ULL; 284 struct perf_counts_values *count = 285 perf_counts(counter->counts, cpu_map_idx, thread); 286 count->ena = count->run = val; 287 count->val = val; 288 return 0; 289 } 290 case PERF_TOOL_USER_TIME: 291 case PERF_TOOL_SYSTEM_TIME: { 292 u64 val; 293 struct perf_counts_values *count = 294 perf_counts(counter->counts, cpu_map_idx, thread); 295 if (counter->tool_event == PERF_TOOL_USER_TIME) 296 val = ru_stats.ru_utime_usec_stat.mean; 297 else 298 val = ru_stats.ru_stime_usec_stat.mean; 299 count->ena = count->run = val; 300 count->val = val; 301 return 0; 302 } 303 default: 304 case PERF_TOOL_NONE: 305 return evsel__read_counter(counter, cpu_map_idx, thread); 306 case PERF_TOOL_MAX: 307 /* This should never be reached */ 308 return 0; 309 } 310 } 311 312 /* 313 * Read out the results of a single counter: 314 * do not aggregate counts across CPUs in system-wide mode 315 */ 316 static int read_counter_cpu(struct evsel *counter, struct timespec *rs, int cpu_map_idx) 317 { 318 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 319 int thread; 320 321 if (!counter->supported) 322 return -ENOENT; 323 324 for (thread = 0; thread < nthreads; thread++) { 325 struct perf_counts_values *count; 326 327 count = perf_counts(counter->counts, cpu_map_idx, thread); 328 329 /* 330 * The leader's group read loads data into its group members 331 * (via evsel__read_counter()) and sets their count->loaded. 332 */ 333 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 334 read_single_counter(counter, cpu_map_idx, thread, rs)) { 335 counter->counts->scaled = -1; 336 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 337 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 338 return -1; 339 } 340 341 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 342 343 if (STAT_RECORD) { 344 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 345 pr_err("failed to write stat event\n"); 346 return -1; 347 } 348 } 349 350 if (verbose > 1) { 351 fprintf(stat_config.output, 352 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 353 evsel__name(counter), 354 perf_cpu_map__cpu(evsel__cpus(counter), 355 cpu_map_idx).cpu, 356 count->val, count->ena, count->run); 357 } 358 } 359 360 return 0; 361 } 362 363 static int read_affinity_counters(struct timespec *rs) 364 { 365 struct evlist_cpu_iterator evlist_cpu_itr; 366 struct affinity saved_affinity, *affinity; 367 368 if (all_counters_use_bpf) 369 return 0; 370 371 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 372 affinity = NULL; 373 else if (affinity__setup(&saved_affinity) < 0) 374 return -1; 375 else 376 affinity = &saved_affinity; 377 378 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 379 struct evsel *counter = evlist_cpu_itr.evsel; 380 381 if (evsel__is_bpf(counter)) 382 continue; 383 384 if (!counter->err) { 385 counter->err = read_counter_cpu(counter, rs, 386 evlist_cpu_itr.cpu_map_idx); 387 } 388 } 389 if (affinity) 390 affinity__cleanup(&saved_affinity); 391 392 return 0; 393 } 394 395 static int read_bpf_map_counters(void) 396 { 397 struct evsel *counter; 398 int err; 399 400 evlist__for_each_entry(evsel_list, counter) { 401 if (!evsel__is_bpf(counter)) 402 continue; 403 404 err = bpf_counter__read(counter); 405 if (err) 406 return err; 407 } 408 return 0; 409 } 410 411 static int read_counters(struct timespec *rs) 412 { 413 if (!stat_config.stop_read_counter) { 414 if (read_bpf_map_counters() || 415 read_affinity_counters(rs)) 416 return -1; 417 } 418 return 0; 419 } 420 421 static void process_counters(void) 422 { 423 struct evsel *counter; 424 425 evlist__for_each_entry(evsel_list, counter) { 426 if (counter->err) 427 pr_debug("failed to read counter %s\n", counter->name); 428 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 429 pr_warning("failed to process counter %s\n", counter->name); 430 counter->err = 0; 431 } 432 433 perf_stat_merge_counters(&stat_config, evsel_list); 434 perf_stat_process_percore(&stat_config, evsel_list); 435 } 436 437 static void process_interval(void) 438 { 439 struct timespec ts, rs; 440 441 clock_gettime(CLOCK_MONOTONIC, &ts); 442 diff_timespec(&rs, &ts, &ref_time); 443 444 evlist__reset_aggr_stats(evsel_list); 445 446 if (read_counters(&rs) == 0) 447 process_counters(); 448 449 if (STAT_RECORD) { 450 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 451 pr_err("failed to write stat round event\n"); 452 } 453 454 init_stats(&walltime_nsecs_stats); 455 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 456 print_counters(&rs, 0, NULL); 457 } 458 459 static bool handle_interval(unsigned int interval, int *times) 460 { 461 if (interval) { 462 process_interval(); 463 if (interval_count && !(--(*times))) 464 return true; 465 } 466 return false; 467 } 468 469 static int enable_counters(void) 470 { 471 struct evsel *evsel; 472 int err; 473 474 evlist__for_each_entry(evsel_list, evsel) { 475 if (!evsel__is_bpf(evsel)) 476 continue; 477 478 err = bpf_counter__enable(evsel); 479 if (err) 480 return err; 481 } 482 483 if (!target__enable_on_exec(&target)) { 484 if (!all_counters_use_bpf) 485 evlist__enable(evsel_list); 486 } 487 return 0; 488 } 489 490 static void disable_counters(void) 491 { 492 struct evsel *counter; 493 494 /* 495 * If we don't have tracee (attaching to task or cpu), counters may 496 * still be running. To get accurate group ratios, we must stop groups 497 * from counting before reading their constituent counters. 498 */ 499 if (!target__none(&target)) { 500 evlist__for_each_entry(evsel_list, counter) 501 bpf_counter__disable(counter); 502 if (!all_counters_use_bpf) 503 evlist__disable(evsel_list); 504 } 505 } 506 507 static volatile sig_atomic_t workload_exec_errno; 508 509 /* 510 * evlist__prepare_workload will send a SIGUSR1 511 * if the fork fails, since we asked by setting its 512 * want_signal to true. 513 */ 514 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 515 void *ucontext __maybe_unused) 516 { 517 workload_exec_errno = info->si_value.sival_int; 518 } 519 520 static bool evsel__should_store_id(struct evsel *counter) 521 { 522 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 523 } 524 525 static bool is_target_alive(struct target *_target, 526 struct perf_thread_map *threads) 527 { 528 struct stat st; 529 int i; 530 531 if (!target__has_task(_target)) 532 return true; 533 534 for (i = 0; i < threads->nr; i++) { 535 char path[PATH_MAX]; 536 537 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 538 threads->map[i].pid); 539 540 if (!stat(path, &st)) 541 return true; 542 } 543 544 return false; 545 } 546 547 static void process_evlist(struct evlist *evlist, unsigned int interval) 548 { 549 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 550 551 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 552 switch (cmd) { 553 case EVLIST_CTL_CMD_ENABLE: 554 fallthrough; 555 case EVLIST_CTL_CMD_DISABLE: 556 if (interval) 557 process_interval(); 558 break; 559 case EVLIST_CTL_CMD_SNAPSHOT: 560 case EVLIST_CTL_CMD_ACK: 561 case EVLIST_CTL_CMD_UNSUPPORTED: 562 case EVLIST_CTL_CMD_EVLIST: 563 case EVLIST_CTL_CMD_STOP: 564 case EVLIST_CTL_CMD_PING: 565 default: 566 break; 567 } 568 } 569 } 570 571 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 572 int *time_to_sleep) 573 { 574 int tts = *time_to_sleep; 575 struct timespec time_diff; 576 577 diff_timespec(&time_diff, time_stop, time_start); 578 579 tts -= time_diff.tv_sec * MSEC_PER_SEC + 580 time_diff.tv_nsec / NSEC_PER_MSEC; 581 582 if (tts < 0) 583 tts = 0; 584 585 *time_to_sleep = tts; 586 } 587 588 static int dispatch_events(bool forks, int timeout, int interval, int *times) 589 { 590 int child_exited = 0, status = 0; 591 int time_to_sleep, sleep_time; 592 struct timespec time_start, time_stop; 593 594 if (interval) 595 sleep_time = interval; 596 else if (timeout) 597 sleep_time = timeout; 598 else 599 sleep_time = 1000; 600 601 time_to_sleep = sleep_time; 602 603 while (!done) { 604 if (forks) 605 child_exited = waitpid(child_pid, &status, WNOHANG); 606 else 607 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 608 609 if (child_exited) 610 break; 611 612 clock_gettime(CLOCK_MONOTONIC, &time_start); 613 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 614 if (timeout || handle_interval(interval, times)) 615 break; 616 time_to_sleep = sleep_time; 617 } else { /* fd revent */ 618 process_evlist(evsel_list, interval); 619 clock_gettime(CLOCK_MONOTONIC, &time_stop); 620 compute_tts(&time_start, &time_stop, &time_to_sleep); 621 } 622 } 623 624 return status; 625 } 626 627 enum counter_recovery { 628 COUNTER_SKIP, 629 COUNTER_RETRY, 630 COUNTER_FATAL, 631 }; 632 633 static enum counter_recovery stat_handle_error(struct evsel *counter) 634 { 635 char msg[BUFSIZ]; 636 /* 637 * PPC returns ENXIO for HW counters until 2.6.37 638 * (behavior changed with commit b0a873e). 639 */ 640 if (errno == EINVAL || errno == ENOSYS || 641 errno == ENOENT || errno == EOPNOTSUPP || 642 errno == ENXIO) { 643 if (verbose > 0) 644 ui__warning("%s event is not supported by the kernel.\n", 645 evsel__name(counter)); 646 counter->supported = false; 647 /* 648 * errored is a sticky flag that means one of the counter's 649 * cpu event had a problem and needs to be reexamined. 650 */ 651 counter->errored = true; 652 653 if ((evsel__leader(counter) != counter) || 654 !(counter->core.leader->nr_members > 1)) 655 return COUNTER_SKIP; 656 } else if (evsel__fallback(counter, errno, msg, sizeof(msg))) { 657 if (verbose > 0) 658 ui__warning("%s\n", msg); 659 return COUNTER_RETRY; 660 } else if (target__has_per_thread(&target) && 661 evsel_list->core.threads && 662 evsel_list->core.threads->err_thread != -1) { 663 /* 664 * For global --per-thread case, skip current 665 * error thread. 666 */ 667 if (!thread_map__remove(evsel_list->core.threads, 668 evsel_list->core.threads->err_thread)) { 669 evsel_list->core.threads->err_thread = -1; 670 return COUNTER_RETRY; 671 } 672 } else if (counter->skippable) { 673 if (verbose > 0) 674 ui__warning("skipping event %s that kernel failed to open .\n", 675 evsel__name(counter)); 676 counter->supported = false; 677 counter->errored = true; 678 return COUNTER_SKIP; 679 } 680 681 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 682 ui__error("%s\n", msg); 683 684 if (child_pid != -1) 685 kill(child_pid, SIGTERM); 686 return COUNTER_FATAL; 687 } 688 689 static int __run_perf_stat(int argc, const char **argv, int run_idx) 690 { 691 int interval = stat_config.interval; 692 int times = stat_config.times; 693 int timeout = stat_config.timeout; 694 char msg[BUFSIZ]; 695 unsigned long long t0, t1; 696 struct evsel *counter; 697 size_t l; 698 int status = 0; 699 const bool forks = (argc > 0); 700 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 701 struct evlist_cpu_iterator evlist_cpu_itr; 702 struct affinity saved_affinity, *affinity = NULL; 703 int err; 704 bool second_pass = false; 705 706 if (forks) { 707 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 708 perror("failed to prepare workload"); 709 return -1; 710 } 711 child_pid = evsel_list->workload.pid; 712 } 713 714 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 715 if (affinity__setup(&saved_affinity) < 0) 716 return -1; 717 affinity = &saved_affinity; 718 } 719 720 evlist__for_each_entry(evsel_list, counter) { 721 counter->reset_group = false; 722 if (bpf_counter__load(counter, &target)) 723 return -1; 724 if (!(evsel__is_bperf(counter))) 725 all_counters_use_bpf = false; 726 } 727 728 evlist__reset_aggr_stats(evsel_list); 729 730 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 731 counter = evlist_cpu_itr.evsel; 732 733 /* 734 * bperf calls evsel__open_per_cpu() in bperf__load(), so 735 * no need to call it again here. 736 */ 737 if (target.use_bpf) 738 break; 739 740 if (counter->reset_group || counter->errored) 741 continue; 742 if (evsel__is_bperf(counter)) 743 continue; 744 try_again: 745 if (create_perf_stat_counter(counter, &stat_config, &target, 746 evlist_cpu_itr.cpu_map_idx) < 0) { 747 748 /* 749 * Weak group failed. We cannot just undo this here 750 * because earlier CPUs might be in group mode, and the kernel 751 * doesn't support mixing group and non group reads. Defer 752 * it to later. 753 * Don't close here because we're in the wrong affinity. 754 */ 755 if ((errno == EINVAL || errno == EBADF) && 756 evsel__leader(counter) != counter && 757 counter->weak_group) { 758 evlist__reset_weak_group(evsel_list, counter, false); 759 assert(counter->reset_group); 760 second_pass = true; 761 continue; 762 } 763 764 switch (stat_handle_error(counter)) { 765 case COUNTER_FATAL: 766 return -1; 767 case COUNTER_RETRY: 768 goto try_again; 769 case COUNTER_SKIP: 770 continue; 771 default: 772 break; 773 } 774 775 } 776 counter->supported = true; 777 } 778 779 if (second_pass) { 780 /* 781 * Now redo all the weak group after closing them, 782 * and also close errored counters. 783 */ 784 785 /* First close errored or weak retry */ 786 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 787 counter = evlist_cpu_itr.evsel; 788 789 if (!counter->reset_group && !counter->errored) 790 continue; 791 792 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 793 } 794 /* Now reopen weak */ 795 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 796 counter = evlist_cpu_itr.evsel; 797 798 if (!counter->reset_group) 799 continue; 800 try_again_reset: 801 pr_debug2("reopening weak %s\n", evsel__name(counter)); 802 if (create_perf_stat_counter(counter, &stat_config, &target, 803 evlist_cpu_itr.cpu_map_idx) < 0) { 804 805 switch (stat_handle_error(counter)) { 806 case COUNTER_FATAL: 807 return -1; 808 case COUNTER_RETRY: 809 goto try_again_reset; 810 case COUNTER_SKIP: 811 continue; 812 default: 813 break; 814 } 815 } 816 counter->supported = true; 817 } 818 } 819 affinity__cleanup(affinity); 820 821 evlist__for_each_entry(evsel_list, counter) { 822 if (!counter->supported) { 823 perf_evsel__free_fd(&counter->core); 824 continue; 825 } 826 827 l = strlen(counter->unit); 828 if (l > stat_config.unit_width) 829 stat_config.unit_width = l; 830 831 if (evsel__should_store_id(counter) && 832 evsel__store_ids(counter, evsel_list)) 833 return -1; 834 } 835 836 if (evlist__apply_filters(evsel_list, &counter)) { 837 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 838 counter->filter, evsel__name(counter), errno, 839 str_error_r(errno, msg, sizeof(msg))); 840 return -1; 841 } 842 843 if (STAT_RECORD) { 844 int fd = perf_data__fd(&perf_stat.data); 845 846 if (is_pipe) { 847 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 848 } else { 849 err = perf_session__write_header(perf_stat.session, evsel_list, 850 fd, false); 851 } 852 853 if (err < 0) 854 return err; 855 856 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 857 process_synthesized_event, is_pipe); 858 if (err < 0) 859 return err; 860 } 861 862 if (target.initial_delay) { 863 pr_info(EVLIST_DISABLED_MSG); 864 } else { 865 err = enable_counters(); 866 if (err) 867 return -1; 868 } 869 870 /* Exec the command, if any */ 871 if (forks) 872 evlist__start_workload(evsel_list); 873 874 if (target.initial_delay > 0) { 875 usleep(target.initial_delay * USEC_PER_MSEC); 876 err = enable_counters(); 877 if (err) 878 return -1; 879 880 pr_info(EVLIST_ENABLED_MSG); 881 } 882 883 t0 = rdclock(); 884 clock_gettime(CLOCK_MONOTONIC, &ref_time); 885 886 if (forks) { 887 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 888 status = dispatch_events(forks, timeout, interval, ×); 889 if (child_pid != -1) { 890 if (timeout) 891 kill(child_pid, SIGTERM); 892 wait4(child_pid, &status, 0, &stat_config.ru_data); 893 } 894 895 if (workload_exec_errno) { 896 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 897 pr_err("Workload failed: %s\n", emsg); 898 return -1; 899 } 900 901 if (WIFSIGNALED(status)) 902 psignal(WTERMSIG(status), argv[0]); 903 } else { 904 status = dispatch_events(forks, timeout, interval, ×); 905 } 906 907 disable_counters(); 908 909 t1 = rdclock(); 910 911 if (stat_config.walltime_run_table) 912 stat_config.walltime_run[run_idx] = t1 - t0; 913 914 if (interval && stat_config.summary) { 915 stat_config.interval = 0; 916 stat_config.stop_read_counter = true; 917 init_stats(&walltime_nsecs_stats); 918 update_stats(&walltime_nsecs_stats, t1 - t0); 919 920 evlist__copy_prev_raw_counts(evsel_list); 921 evlist__reset_prev_raw_counts(evsel_list); 922 evlist__reset_aggr_stats(evsel_list); 923 } else { 924 update_stats(&walltime_nsecs_stats, t1 - t0); 925 update_rusage_stats(&ru_stats, &stat_config.ru_data); 926 } 927 928 /* 929 * Closing a group leader splits the group, and as we only disable 930 * group leaders, results in remaining events becoming enabled. To 931 * avoid arbitrary skew, we must read all counters before closing any 932 * group leaders. 933 */ 934 if (read_counters(&(struct timespec) { .tv_nsec = t1-t0 }) == 0) 935 process_counters(); 936 937 /* 938 * We need to keep evsel_list alive, because it's processed 939 * later the evsel_list will be closed after. 940 */ 941 if (!STAT_RECORD) 942 evlist__close(evsel_list); 943 944 return WEXITSTATUS(status); 945 } 946 947 static int run_perf_stat(int argc, const char **argv, int run_idx) 948 { 949 int ret; 950 951 if (pre_cmd) { 952 ret = system(pre_cmd); 953 if (ret) 954 return ret; 955 } 956 957 if (sync_run) 958 sync(); 959 960 ret = __run_perf_stat(argc, argv, run_idx); 961 if (ret) 962 return ret; 963 964 if (post_cmd) { 965 ret = system(post_cmd); 966 if (ret) 967 return ret; 968 } 969 970 return ret; 971 } 972 973 static void print_counters(struct timespec *ts, int argc, const char **argv) 974 { 975 /* Do not print anything if we record to the pipe. */ 976 if (STAT_RECORD && perf_stat.data.is_pipe) 977 return; 978 if (quiet) 979 return; 980 981 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 982 } 983 984 static volatile sig_atomic_t signr = -1; 985 986 static void skip_signal(int signo) 987 { 988 if ((child_pid == -1) || stat_config.interval) 989 done = 1; 990 991 signr = signo; 992 /* 993 * render child_pid harmless 994 * won't send SIGTERM to a random 995 * process in case of race condition 996 * and fast PID recycling 997 */ 998 child_pid = -1; 999 } 1000 1001 static void sig_atexit(void) 1002 { 1003 sigset_t set, oset; 1004 1005 /* 1006 * avoid race condition with SIGCHLD handler 1007 * in skip_signal() which is modifying child_pid 1008 * goal is to avoid send SIGTERM to a random 1009 * process 1010 */ 1011 sigemptyset(&set); 1012 sigaddset(&set, SIGCHLD); 1013 sigprocmask(SIG_BLOCK, &set, &oset); 1014 1015 if (child_pid != -1) 1016 kill(child_pid, SIGTERM); 1017 1018 sigprocmask(SIG_SETMASK, &oset, NULL); 1019 1020 if (signr == -1) 1021 return; 1022 1023 signal(signr, SIG_DFL); 1024 kill(getpid(), signr); 1025 } 1026 1027 void perf_stat__set_big_num(int set) 1028 { 1029 stat_config.big_num = (set != 0); 1030 } 1031 1032 void perf_stat__set_no_csv_summary(int set) 1033 { 1034 stat_config.no_csv_summary = (set != 0); 1035 } 1036 1037 static int stat__set_big_num(const struct option *opt __maybe_unused, 1038 const char *s __maybe_unused, int unset) 1039 { 1040 big_num_opt = unset ? 0 : 1; 1041 perf_stat__set_big_num(!unset); 1042 return 0; 1043 } 1044 1045 static int enable_metric_only(const struct option *opt __maybe_unused, 1046 const char *s __maybe_unused, int unset) 1047 { 1048 force_metric_only = true; 1049 stat_config.metric_only = !unset; 1050 return 0; 1051 } 1052 1053 static int append_metric_groups(const struct option *opt __maybe_unused, 1054 const char *str, 1055 int unset __maybe_unused) 1056 { 1057 if (metrics) { 1058 char *tmp; 1059 1060 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1061 return -ENOMEM; 1062 free(metrics); 1063 metrics = tmp; 1064 } else { 1065 metrics = strdup(str); 1066 if (!metrics) 1067 return -ENOMEM; 1068 } 1069 return 0; 1070 } 1071 1072 static int parse_control_option(const struct option *opt, 1073 const char *str, 1074 int unset __maybe_unused) 1075 { 1076 struct perf_stat_config *config = opt->value; 1077 1078 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1079 } 1080 1081 static int parse_stat_cgroups(const struct option *opt, 1082 const char *str, int unset) 1083 { 1084 if (stat_config.cgroup_list) { 1085 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1086 return -1; 1087 } 1088 1089 return parse_cgroups(opt, str, unset); 1090 } 1091 1092 static int parse_cputype(const struct option *opt, 1093 const char *str, 1094 int unset __maybe_unused) 1095 { 1096 const struct perf_pmu *pmu; 1097 struct evlist *evlist = *(struct evlist **)opt->value; 1098 1099 if (!list_empty(&evlist->core.entries)) { 1100 fprintf(stderr, "Must define cputype before events/metrics\n"); 1101 return -1; 1102 } 1103 1104 pmu = perf_pmus__pmu_for_pmu_filter(str); 1105 if (!pmu) { 1106 fprintf(stderr, "--cputype %s is not supported!\n", str); 1107 return -1; 1108 } 1109 parse_events_option_args.pmu_filter = pmu->name; 1110 1111 return 0; 1112 } 1113 1114 static int parse_cache_level(const struct option *opt, 1115 const char *str, 1116 int unset __maybe_unused) 1117 { 1118 int level; 1119 u32 *aggr_mode = (u32 *)opt->value; 1120 u32 *aggr_level = (u32 *)opt->data; 1121 1122 /* 1123 * If no string is specified, aggregate based on the topology of 1124 * Last Level Cache (LLC). Since the LLC level can change from 1125 * architecture to architecture, set level greater than 1126 * MAX_CACHE_LVL which will be interpreted as LLC. 1127 */ 1128 if (str == NULL) { 1129 level = MAX_CACHE_LVL + 1; 1130 goto out; 1131 } 1132 1133 /* 1134 * The format to specify cache level is LX or lX where X is the 1135 * cache level. 1136 */ 1137 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1138 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1139 MAX_CACHE_LVL, 1140 MAX_CACHE_LVL); 1141 return -EINVAL; 1142 } 1143 1144 level = atoi(&str[1]); 1145 if (level < 1) { 1146 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1147 MAX_CACHE_LVL, 1148 MAX_CACHE_LVL); 1149 return -EINVAL; 1150 } 1151 1152 if (level > MAX_CACHE_LVL) { 1153 pr_err("perf only supports max cache level of %d.\n" 1154 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1155 return -EINVAL; 1156 } 1157 out: 1158 *aggr_mode = AGGR_CACHE; 1159 *aggr_level = level; 1160 return 0; 1161 } 1162 1163 static struct option stat_options[] = { 1164 OPT_BOOLEAN('T', "transaction", &transaction_run, 1165 "hardware transaction statistics"), 1166 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 1167 "event selector. use 'perf list' to list available events", 1168 parse_events_option), 1169 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 1170 "event filter", parse_filter), 1171 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 1172 "child tasks do not inherit counters"), 1173 OPT_STRING('p', "pid", &target.pid, "pid", 1174 "stat events on existing process id"), 1175 OPT_STRING('t', "tid", &target.tid, "tid", 1176 "stat events on existing thread id"), 1177 #ifdef HAVE_BPF_SKEL 1178 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 1179 "stat events on existing bpf program id"), 1180 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 1181 "use bpf program to count events"), 1182 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 1183 "path to perf_event_attr map"), 1184 #endif 1185 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 1186 "system-wide collection from all CPUs"), 1187 OPT_BOOLEAN(0, "scale", &stat_config.scale, 1188 "Use --no-scale to disable counter scaling for multiplexing"), 1189 OPT_INCR('v', "verbose", &verbose, 1190 "be more verbose (show counter open errors, etc)"), 1191 OPT_INTEGER('r', "repeat", &stat_config.run_count, 1192 "repeat command and print average + stddev (max: 100, forever: 0)"), 1193 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 1194 "display details about each run (only with -r option)"), 1195 OPT_BOOLEAN('n', "null", &stat_config.null_run, 1196 "null run - dont start any counters"), 1197 OPT_INCR('d', "detailed", &detailed_run, 1198 "detailed run - start a lot of events"), 1199 OPT_BOOLEAN('S', "sync", &sync_run, 1200 "call sync() before starting a run"), 1201 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 1202 "print large numbers with thousands\' separators", 1203 stat__set_big_num), 1204 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 1205 "list of cpus to monitor in system-wide"), 1206 OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode, 1207 "disable CPU count aggregation", AGGR_NONE), 1208 OPT_BOOLEAN(0, "no-merge", &stat_config.no_merge, "Do not merge identical named events"), 1209 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 1210 "Merge identical named hybrid events"), 1211 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 1212 "print counts with custom separator"), 1213 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 1214 "print counts in JSON format"), 1215 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 1216 "monitor event in cgroup name only", parse_stat_cgroups), 1217 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 1218 "expand events for each cgroup"), 1219 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1220 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 1221 OPT_INTEGER(0, "log-fd", &output_fd, 1222 "log output to fd, instead of stderr"), 1223 OPT_STRING(0, "pre", &pre_cmd, "command", 1224 "command to run prior to the measured command"), 1225 OPT_STRING(0, "post", &post_cmd, "command", 1226 "command to run after to the measured command"), 1227 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 1228 "print counts at regular interval in ms " 1229 "(overhead is possible for values <= 100ms)"), 1230 OPT_INTEGER(0, "interval-count", &stat_config.times, 1231 "print counts for fixed number of times"), 1232 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 1233 "clear screen in between new interval"), 1234 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 1235 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 1236 OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode, 1237 "aggregate counts per processor socket", AGGR_SOCKET), 1238 OPT_SET_UINT(0, "per-die", &stat_config.aggr_mode, 1239 "aggregate counts per processor die", AGGR_DIE), 1240 OPT_CALLBACK_OPTARG(0, "per-cache", &stat_config.aggr_mode, &stat_config.aggr_level, 1241 "cache level", "aggregate count at this cache level (Default: LLC)", 1242 parse_cache_level), 1243 OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode, 1244 "aggregate counts per physical processor core", AGGR_CORE), 1245 OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode, 1246 "aggregate counts per thread", AGGR_THREAD), 1247 OPT_SET_UINT(0, "per-node", &stat_config.aggr_mode, 1248 "aggregate counts per numa node", AGGR_NODE), 1249 OPT_INTEGER('D', "delay", &target.initial_delay, 1250 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 1251 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 1252 "Only print computed metrics. No raw values", enable_metric_only), 1253 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 1254 "don't group metric events, impacts multiplexing"), 1255 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 1256 "don't try to share events between metrics in a group"), 1257 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 1258 "don't try to share events between metrics in a group "), 1259 OPT_BOOLEAN(0, "topdown", &topdown_run, 1260 "measure top-down statistics"), 1261 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 1262 "Set the metrics level for the top-down statistics (0: max level)"), 1263 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 1264 "measure SMI cost"), 1265 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 1266 "monitor specified metrics or metric groups (separated by ,)", 1267 append_metric_groups), 1268 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 1269 "Configure all used events to run in kernel space.", 1270 PARSE_OPT_EXCLUSIVE), 1271 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 1272 "Configure all used events to run in user space.", 1273 PARSE_OPT_EXCLUSIVE), 1274 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 1275 "Use with 'percore' event qualifier to show the event " 1276 "counts of one hardware thread by sum up total hardware " 1277 "threads of same physical core"), 1278 OPT_BOOLEAN(0, "summary", &stat_config.summary, 1279 "print summary for interval mode"), 1280 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 1281 "don't print 'summary' for CSV summary output"), 1282 OPT_BOOLEAN(0, "quiet", &quiet, 1283 "don't print any output, messages or warnings (useful with record)"), 1284 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 1285 "Only enable events on applying cpu with this type " 1286 "for hybrid platform (e.g. core or atom)", 1287 parse_cputype), 1288 #ifdef HAVE_LIBPFM 1289 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 1290 "libpfm4 event selector. use 'perf list' to list available events", 1291 parse_libpfm_events_option), 1292 #endif 1293 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 1294 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 1295 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 1296 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 1297 parse_control_option), 1298 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 1299 "measure I/O performance metrics provided by arch/platform", 1300 iostat_parse), 1301 OPT_END() 1302 }; 1303 1304 /** 1305 * Calculate the cache instance ID from the map in 1306 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1307 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1308 */ 1309 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1310 { 1311 int id; 1312 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1313 1314 /* 1315 * If the map contains no CPU, consider the current CPU to 1316 * be the first online CPU in the cache domain else use the 1317 * first online CPU of the cache domain as the ID. 1318 */ 1319 if (perf_cpu_map__empty(cpu_map)) 1320 id = cpu.cpu; 1321 else 1322 id = perf_cpu_map__cpu(cpu_map, 0).cpu; 1323 1324 /* Free the perf_cpu_map used to find the cache ID */ 1325 perf_cpu_map__put(cpu_map); 1326 1327 return id; 1328 } 1329 1330 /** 1331 * cpu__get_cache_id - Returns 0 if successful in populating the 1332 * cache level and cache id. Cache level is read from 1333 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1334 * is the first CPU reported by 1335 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1336 */ 1337 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1338 { 1339 int ret = 0; 1340 u32 cache_level = stat_config.aggr_level; 1341 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1342 u32 i = 0, caches_cnt = 0; 1343 1344 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1345 cache->cache = -1; 1346 1347 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1348 if (ret) { 1349 /* 1350 * If caches_cnt is not 0, cpu_cache_level data 1351 * was allocated when building the topology. 1352 * Free the allocated data before returning. 1353 */ 1354 if (caches_cnt) 1355 goto free_caches; 1356 1357 return ret; 1358 } 1359 1360 if (!caches_cnt) 1361 return -1; 1362 1363 /* 1364 * Save the data for the highest level if no 1365 * level was specified by the user. 1366 */ 1367 if (cache_level > MAX_CACHE_LVL) { 1368 int max_level_index = 0; 1369 1370 for (i = 1; i < caches_cnt; ++i) { 1371 if (caches[i].level > caches[max_level_index].level) 1372 max_level_index = i; 1373 } 1374 1375 cache->cache_lvl = caches[max_level_index].level; 1376 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1377 1378 /* Reset i to 0 to free entire caches[] */ 1379 i = 0; 1380 goto free_caches; 1381 } 1382 1383 for (i = 0; i < caches_cnt; ++i) { 1384 if (caches[i].level == cache_level) { 1385 cache->cache_lvl = cache_level; 1386 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1387 } 1388 1389 cpu_cache_level__free(&caches[i]); 1390 } 1391 1392 free_caches: 1393 /* 1394 * Free all the allocated cpu_cache_level data. 1395 */ 1396 while (i < caches_cnt) 1397 cpu_cache_level__free(&caches[i++]); 1398 1399 return ret; 1400 } 1401 1402 /** 1403 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1404 * level, die and socket populated with the cache instache ID, cache level, 1405 * die and socket for cpu. The function signature is compatible with 1406 * aggr_cpu_id_get_t. 1407 */ 1408 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1409 { 1410 int ret; 1411 struct aggr_cpu_id id; 1412 struct perf_cache cache; 1413 1414 id = aggr_cpu_id__die(cpu, data); 1415 if (aggr_cpu_id__is_empty(&id)) 1416 return id; 1417 1418 ret = cpu__get_cache_details(cpu, &cache); 1419 if (ret) 1420 return id; 1421 1422 id.cache_lvl = cache.cache_lvl; 1423 id.cache = cache.cache; 1424 return id; 1425 } 1426 1427 static const char *const aggr_mode__string[] = { 1428 [AGGR_CORE] = "core", 1429 [AGGR_CACHE] = "cache", 1430 [AGGR_DIE] = "die", 1431 [AGGR_GLOBAL] = "global", 1432 [AGGR_NODE] = "node", 1433 [AGGR_NONE] = "none", 1434 [AGGR_SOCKET] = "socket", 1435 [AGGR_THREAD] = "thread", 1436 [AGGR_UNSET] = "unset", 1437 }; 1438 1439 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1440 struct perf_cpu cpu) 1441 { 1442 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1443 } 1444 1445 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1446 struct perf_cpu cpu) 1447 { 1448 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1449 } 1450 1451 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1452 struct perf_cpu cpu) 1453 { 1454 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1455 } 1456 1457 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1458 struct perf_cpu cpu) 1459 { 1460 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1461 } 1462 1463 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1464 struct perf_cpu cpu) 1465 { 1466 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1467 } 1468 1469 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1470 struct perf_cpu cpu) 1471 { 1472 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1473 } 1474 1475 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1476 struct perf_cpu cpu) 1477 { 1478 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1479 } 1480 1481 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1482 aggr_get_id_t get_id, struct perf_cpu cpu) 1483 { 1484 struct aggr_cpu_id id; 1485 1486 /* per-process mode - should use global aggr mode */ 1487 if (cpu.cpu == -1) 1488 return get_id(config, cpu); 1489 1490 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1491 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1492 1493 id = config->cpus_aggr_map->map[cpu.cpu]; 1494 return id; 1495 } 1496 1497 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1498 struct perf_cpu cpu) 1499 { 1500 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1501 } 1502 1503 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1504 struct perf_cpu cpu) 1505 { 1506 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1507 } 1508 1509 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1510 struct perf_cpu cpu) 1511 { 1512 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1513 } 1514 1515 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1516 struct perf_cpu cpu) 1517 { 1518 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1519 } 1520 1521 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1522 struct perf_cpu cpu) 1523 { 1524 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1525 } 1526 1527 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1528 struct perf_cpu cpu) 1529 { 1530 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1531 } 1532 1533 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1534 struct perf_cpu cpu) 1535 { 1536 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1537 } 1538 1539 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1540 { 1541 switch (aggr_mode) { 1542 case AGGR_SOCKET: 1543 return aggr_cpu_id__socket; 1544 case AGGR_DIE: 1545 return aggr_cpu_id__die; 1546 case AGGR_CACHE: 1547 return aggr_cpu_id__cache; 1548 case AGGR_CORE: 1549 return aggr_cpu_id__core; 1550 case AGGR_NODE: 1551 return aggr_cpu_id__node; 1552 case AGGR_NONE: 1553 return aggr_cpu_id__cpu; 1554 case AGGR_GLOBAL: 1555 return aggr_cpu_id__global; 1556 case AGGR_THREAD: 1557 case AGGR_UNSET: 1558 case AGGR_MAX: 1559 default: 1560 return NULL; 1561 } 1562 } 1563 1564 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1565 { 1566 switch (aggr_mode) { 1567 case AGGR_SOCKET: 1568 return perf_stat__get_socket_cached; 1569 case AGGR_DIE: 1570 return perf_stat__get_die_cached; 1571 case AGGR_CACHE: 1572 return perf_stat__get_cache_id_cached; 1573 case AGGR_CORE: 1574 return perf_stat__get_core_cached; 1575 case AGGR_NODE: 1576 return perf_stat__get_node_cached; 1577 case AGGR_NONE: 1578 return perf_stat__get_cpu_cached; 1579 case AGGR_GLOBAL: 1580 return perf_stat__get_global_cached; 1581 case AGGR_THREAD: 1582 case AGGR_UNSET: 1583 case AGGR_MAX: 1584 default: 1585 return NULL; 1586 } 1587 } 1588 1589 static int perf_stat_init_aggr_mode(void) 1590 { 1591 int nr; 1592 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1593 1594 if (get_id) { 1595 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1596 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1597 get_id, /*data=*/NULL, needs_sort); 1598 if (!stat_config.aggr_map) { 1599 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1600 return -1; 1601 } 1602 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1603 } 1604 1605 if (stat_config.aggr_mode == AGGR_THREAD) { 1606 nr = perf_thread_map__nr(evsel_list->core.threads); 1607 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1608 if (stat_config.aggr_map == NULL) 1609 return -ENOMEM; 1610 1611 for (int s = 0; s < nr; s++) { 1612 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1613 1614 id.thread_idx = s; 1615 stat_config.aggr_map->map[s] = id; 1616 } 1617 return 0; 1618 } 1619 1620 /* 1621 * The evsel_list->cpus is the base we operate on, 1622 * taking the highest cpu number to be the size of 1623 * the aggregation translate cpumap. 1624 */ 1625 if (!perf_cpu_map__empty(evsel_list->core.user_requested_cpus)) 1626 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1627 else 1628 nr = 0; 1629 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1630 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1631 } 1632 1633 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1634 { 1635 if (map) { 1636 WARN_ONCE(refcount_read(&map->refcnt) != 0, 1637 "cpu_aggr_map refcnt unbalanced\n"); 1638 free(map); 1639 } 1640 } 1641 1642 static void cpu_aggr_map__put(struct cpu_aggr_map *map) 1643 { 1644 if (map && refcount_dec_and_test(&map->refcnt)) 1645 cpu_aggr_map__delete(map); 1646 } 1647 1648 static void perf_stat__exit_aggr_mode(void) 1649 { 1650 cpu_aggr_map__put(stat_config.aggr_map); 1651 cpu_aggr_map__put(stat_config.cpus_aggr_map); 1652 stat_config.aggr_map = NULL; 1653 stat_config.cpus_aggr_map = NULL; 1654 } 1655 1656 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1657 { 1658 struct perf_env *env = data; 1659 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1660 1661 if (cpu.cpu != -1) 1662 id.socket = env->cpu[cpu.cpu].socket_id; 1663 1664 return id; 1665 } 1666 1667 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1668 { 1669 struct perf_env *env = data; 1670 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1671 1672 if (cpu.cpu != -1) { 1673 /* 1674 * die_id is relative to socket, so start 1675 * with the socket ID and then add die to 1676 * make a unique ID. 1677 */ 1678 id.socket = env->cpu[cpu.cpu].socket_id; 1679 id.die = env->cpu[cpu.cpu].die_id; 1680 } 1681 1682 return id; 1683 } 1684 1685 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1686 u32 cache_level, struct aggr_cpu_id *id) 1687 { 1688 int i; 1689 int caches_cnt = env->caches_cnt; 1690 struct cpu_cache_level *caches = env->caches; 1691 1692 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1693 id->cache = -1; 1694 1695 if (!caches_cnt) 1696 return; 1697 1698 for (i = caches_cnt - 1; i > -1; --i) { 1699 struct perf_cpu_map *cpu_map; 1700 int map_contains_cpu; 1701 1702 /* 1703 * If user has not specified a level, find the fist level with 1704 * the cpu in the map. Since building the map is expensive, do 1705 * this only if levels match. 1706 */ 1707 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1708 continue; 1709 1710 cpu_map = perf_cpu_map__new(caches[i].map); 1711 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1712 perf_cpu_map__put(cpu_map); 1713 1714 if (map_contains_cpu != -1) { 1715 id->cache_lvl = caches[i].level; 1716 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1717 return; 1718 } 1719 } 1720 } 1721 1722 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1723 void *data) 1724 { 1725 struct perf_env *env = data; 1726 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1727 1728 if (cpu.cpu != -1) { 1729 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1730 1731 id.socket = env->cpu[cpu.cpu].socket_id; 1732 id.die = env->cpu[cpu.cpu].die_id; 1733 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1734 } 1735 1736 return id; 1737 } 1738 1739 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1740 { 1741 struct perf_env *env = data; 1742 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1743 1744 if (cpu.cpu != -1) { 1745 /* 1746 * core_id is relative to socket and die, 1747 * we need a global id. So we set 1748 * socket, die id and core id 1749 */ 1750 id.socket = env->cpu[cpu.cpu].socket_id; 1751 id.die = env->cpu[cpu.cpu].die_id; 1752 id.core = env->cpu[cpu.cpu].core_id; 1753 } 1754 1755 return id; 1756 } 1757 1758 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1759 { 1760 struct perf_env *env = data; 1761 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1762 1763 if (cpu.cpu != -1) { 1764 /* 1765 * core_id is relative to socket and die, 1766 * we need a global id. So we set 1767 * socket, die id and core id 1768 */ 1769 id.socket = env->cpu[cpu.cpu].socket_id; 1770 id.die = env->cpu[cpu.cpu].die_id; 1771 id.core = env->cpu[cpu.cpu].core_id; 1772 id.cpu = cpu; 1773 } 1774 1775 return id; 1776 } 1777 1778 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1779 { 1780 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1781 1782 id.node = perf_env__numa_node(data, cpu); 1783 return id; 1784 } 1785 1786 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1787 void *data __maybe_unused) 1788 { 1789 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1790 1791 /* it always aggregates to the cpu 0 */ 1792 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1793 return id; 1794 } 1795 1796 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1797 struct perf_cpu cpu) 1798 { 1799 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1800 } 1801 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1802 struct perf_cpu cpu) 1803 { 1804 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1805 } 1806 1807 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1808 struct perf_cpu cpu) 1809 { 1810 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1811 } 1812 1813 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1814 struct perf_cpu cpu) 1815 { 1816 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1817 } 1818 1819 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1820 struct perf_cpu cpu) 1821 { 1822 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1823 } 1824 1825 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1826 struct perf_cpu cpu) 1827 { 1828 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1829 } 1830 1831 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1832 struct perf_cpu cpu) 1833 { 1834 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1835 } 1836 1837 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1838 { 1839 switch (aggr_mode) { 1840 case AGGR_SOCKET: 1841 return perf_env__get_socket_aggr_by_cpu; 1842 case AGGR_DIE: 1843 return perf_env__get_die_aggr_by_cpu; 1844 case AGGR_CACHE: 1845 return perf_env__get_cache_aggr_by_cpu; 1846 case AGGR_CORE: 1847 return perf_env__get_core_aggr_by_cpu; 1848 case AGGR_NODE: 1849 return perf_env__get_node_aggr_by_cpu; 1850 case AGGR_GLOBAL: 1851 return perf_env__get_global_aggr_by_cpu; 1852 case AGGR_NONE: 1853 return perf_env__get_cpu_aggr_by_cpu; 1854 case AGGR_THREAD: 1855 case AGGR_UNSET: 1856 case AGGR_MAX: 1857 default: 1858 return NULL; 1859 } 1860 } 1861 1862 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1863 { 1864 switch (aggr_mode) { 1865 case AGGR_SOCKET: 1866 return perf_stat__get_socket_file; 1867 case AGGR_DIE: 1868 return perf_stat__get_die_file; 1869 case AGGR_CACHE: 1870 return perf_stat__get_cache_file; 1871 case AGGR_CORE: 1872 return perf_stat__get_core_file; 1873 case AGGR_NODE: 1874 return perf_stat__get_node_file; 1875 case AGGR_GLOBAL: 1876 return perf_stat__get_global_file; 1877 case AGGR_NONE: 1878 return perf_stat__get_cpu_file; 1879 case AGGR_THREAD: 1880 case AGGR_UNSET: 1881 case AGGR_MAX: 1882 default: 1883 return NULL; 1884 } 1885 } 1886 1887 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1888 { 1889 struct perf_env *env = &st->session->header.env; 1890 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1891 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1892 1893 if (stat_config.aggr_mode == AGGR_THREAD) { 1894 int nr = perf_thread_map__nr(evsel_list->core.threads); 1895 1896 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1897 if (stat_config.aggr_map == NULL) 1898 return -ENOMEM; 1899 1900 for (int s = 0; s < nr; s++) { 1901 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1902 1903 id.thread_idx = s; 1904 stat_config.aggr_map->map[s] = id; 1905 } 1906 return 0; 1907 } 1908 1909 if (!get_id) 1910 return 0; 1911 1912 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1913 get_id, env, needs_sort); 1914 if (!stat_config.aggr_map) { 1915 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1916 return -1; 1917 } 1918 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1919 return 0; 1920 } 1921 1922 /* 1923 * Add default attributes, if there were no attributes specified or 1924 * if -d/--detailed, -d -d or -d -d -d is used: 1925 */ 1926 static int add_default_attributes(void) 1927 { 1928 struct perf_event_attr default_attrs0[] = { 1929 1930 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, 1931 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, 1932 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, 1933 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, 1934 1935 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, 1936 }; 1937 struct perf_event_attr frontend_attrs[] = { 1938 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, 1939 }; 1940 struct perf_event_attr backend_attrs[] = { 1941 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, 1942 }; 1943 struct perf_event_attr default_attrs1[] = { 1944 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, 1945 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, 1946 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, 1947 1948 }; 1949 1950 /* 1951 * Detailed stats (-d), covering the L1 and last level data caches: 1952 */ 1953 struct perf_event_attr detailed_attrs[] = { 1954 1955 { .type = PERF_TYPE_HW_CACHE, 1956 .config = 1957 PERF_COUNT_HW_CACHE_L1D << 0 | 1958 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1959 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1960 1961 { .type = PERF_TYPE_HW_CACHE, 1962 .config = 1963 PERF_COUNT_HW_CACHE_L1D << 0 | 1964 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1965 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1966 1967 { .type = PERF_TYPE_HW_CACHE, 1968 .config = 1969 PERF_COUNT_HW_CACHE_LL << 0 | 1970 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1971 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1972 1973 { .type = PERF_TYPE_HW_CACHE, 1974 .config = 1975 PERF_COUNT_HW_CACHE_LL << 0 | 1976 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1977 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1978 }; 1979 1980 /* 1981 * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: 1982 */ 1983 struct perf_event_attr very_detailed_attrs[] = { 1984 1985 { .type = PERF_TYPE_HW_CACHE, 1986 .config = 1987 PERF_COUNT_HW_CACHE_L1I << 0 | 1988 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1989 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1990 1991 { .type = PERF_TYPE_HW_CACHE, 1992 .config = 1993 PERF_COUNT_HW_CACHE_L1I << 0 | 1994 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1995 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1996 1997 { .type = PERF_TYPE_HW_CACHE, 1998 .config = 1999 PERF_COUNT_HW_CACHE_DTLB << 0 | 2000 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2001 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2002 2003 { .type = PERF_TYPE_HW_CACHE, 2004 .config = 2005 PERF_COUNT_HW_CACHE_DTLB << 0 | 2006 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2007 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2008 2009 { .type = PERF_TYPE_HW_CACHE, 2010 .config = 2011 PERF_COUNT_HW_CACHE_ITLB << 0 | 2012 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2013 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2014 2015 { .type = PERF_TYPE_HW_CACHE, 2016 .config = 2017 PERF_COUNT_HW_CACHE_ITLB << 0 | 2018 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2019 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2020 2021 }; 2022 2023 /* 2024 * Very, very detailed stats (-d -d -d), adding prefetch events: 2025 */ 2026 struct perf_event_attr very_very_detailed_attrs[] = { 2027 2028 { .type = PERF_TYPE_HW_CACHE, 2029 .config = 2030 PERF_COUNT_HW_CACHE_L1D << 0 | 2031 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 2032 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2033 2034 { .type = PERF_TYPE_HW_CACHE, 2035 .config = 2036 PERF_COUNT_HW_CACHE_L1D << 0 | 2037 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 2038 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2039 }; 2040 2041 struct perf_event_attr default_null_attrs[] = {}; 2042 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2043 2044 /* Set attrs if no event is selected and !null_run: */ 2045 if (stat_config.null_run) 2046 return 0; 2047 2048 if (transaction_run) { 2049 /* Handle -T as -M transaction. Once platform specific metrics 2050 * support has been added to the json files, all architectures 2051 * will use this approach. To determine transaction support 2052 * on an architecture test for such a metric name. 2053 */ 2054 if (!metricgroup__has_metric(pmu, "transaction")) { 2055 pr_err("Missing transaction metrics\n"); 2056 return -1; 2057 } 2058 return metricgroup__parse_groups(evsel_list, pmu, "transaction", 2059 stat_config.metric_no_group, 2060 stat_config.metric_no_merge, 2061 stat_config.metric_no_threshold, 2062 stat_config.user_requested_cpu_list, 2063 stat_config.system_wide, 2064 &stat_config.metric_events); 2065 } 2066 2067 if (smi_cost) { 2068 int smi; 2069 2070 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 2071 pr_err("freeze_on_smi is not supported.\n"); 2072 return -1; 2073 } 2074 2075 if (!smi) { 2076 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 2077 fprintf(stderr, "Failed to set freeze_on_smi.\n"); 2078 return -1; 2079 } 2080 smi_reset = true; 2081 } 2082 2083 if (!metricgroup__has_metric(pmu, "smi")) { 2084 pr_err("Missing smi metrics\n"); 2085 return -1; 2086 } 2087 2088 if (!force_metric_only) 2089 stat_config.metric_only = true; 2090 2091 return metricgroup__parse_groups(evsel_list, pmu, "smi", 2092 stat_config.metric_no_group, 2093 stat_config.metric_no_merge, 2094 stat_config.metric_no_threshold, 2095 stat_config.user_requested_cpu_list, 2096 stat_config.system_wide, 2097 &stat_config.metric_events); 2098 } 2099 2100 if (topdown_run) { 2101 unsigned int max_level = metricgroups__topdown_max_level(); 2102 char str[] = "TopdownL1"; 2103 2104 if (!force_metric_only) 2105 stat_config.metric_only = true; 2106 2107 if (!max_level) { 2108 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 2109 "(See perf list the metric groups have names like TopdownL1)\n"); 2110 return -1; 2111 } 2112 if (stat_config.topdown_level > max_level) { 2113 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 2114 return -1; 2115 } else if (!stat_config.topdown_level) 2116 stat_config.topdown_level = 1; 2117 2118 if (!stat_config.interval && !stat_config.metric_only) { 2119 fprintf(stat_config.output, 2120 "Topdown accuracy may decrease when measuring long periods.\n" 2121 "Please print the result regularly, e.g. -I1000\n"); 2122 } 2123 str[8] = stat_config.topdown_level + '0'; 2124 if (metricgroup__parse_groups(evsel_list, 2125 pmu, str, 2126 /*metric_no_group=*/false, 2127 /*metric_no_merge=*/false, 2128 /*metric_no_threshold=*/true, 2129 stat_config.user_requested_cpu_list, 2130 stat_config.system_wide, 2131 &stat_config.metric_events) < 0) 2132 return -1; 2133 } 2134 2135 if (!stat_config.topdown_level) 2136 stat_config.topdown_level = 1; 2137 2138 if (!evsel_list->core.nr_entries) { 2139 /* No events so add defaults. */ 2140 if (target__has_cpu(&target)) 2141 default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK; 2142 2143 if (evlist__add_default_attrs(evsel_list, default_attrs0) < 0) 2144 return -1; 2145 if (perf_pmus__have_event("cpu", "stalled-cycles-frontend")) { 2146 if (evlist__add_default_attrs(evsel_list, frontend_attrs) < 0) 2147 return -1; 2148 } 2149 if (perf_pmus__have_event("cpu", "stalled-cycles-backend")) { 2150 if (evlist__add_default_attrs(evsel_list, backend_attrs) < 0) 2151 return -1; 2152 } 2153 if (evlist__add_default_attrs(evsel_list, default_attrs1) < 0) 2154 return -1; 2155 /* 2156 * Add TopdownL1 metrics if they exist. To minimize 2157 * multiplexing, don't request threshold computation. 2158 */ 2159 if (metricgroup__has_metric(pmu, "Default")) { 2160 struct evlist *metric_evlist = evlist__new(); 2161 struct evsel *metric_evsel; 2162 2163 if (!metric_evlist) 2164 return -1; 2165 2166 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 2167 /*metric_no_group=*/false, 2168 /*metric_no_merge=*/false, 2169 /*metric_no_threshold=*/true, 2170 stat_config.user_requested_cpu_list, 2171 stat_config.system_wide, 2172 &stat_config.metric_events) < 0) 2173 return -1; 2174 2175 evlist__for_each_entry(metric_evlist, metric_evsel) { 2176 metric_evsel->skippable = true; 2177 metric_evsel->default_metricgroup = true; 2178 } 2179 evlist__splice_list_tail(evsel_list, &metric_evlist->core.entries); 2180 evlist__delete(metric_evlist); 2181 } 2182 2183 /* Platform specific attrs */ 2184 if (evlist__add_default_attrs(evsel_list, default_null_attrs) < 0) 2185 return -1; 2186 } 2187 2188 /* Detailed events get appended to the event list: */ 2189 2190 if (detailed_run < 1) 2191 return 0; 2192 2193 /* Append detailed run extra attributes: */ 2194 if (evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) 2195 return -1; 2196 2197 if (detailed_run < 2) 2198 return 0; 2199 2200 /* Append very detailed run extra attributes: */ 2201 if (evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) 2202 return -1; 2203 2204 if (detailed_run < 3) 2205 return 0; 2206 2207 /* Append very, very detailed run extra attributes: */ 2208 return evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); 2209 } 2210 2211 static const char * const stat_record_usage[] = { 2212 "perf stat record [<options>]", 2213 NULL, 2214 }; 2215 2216 static void init_features(struct perf_session *session) 2217 { 2218 int feat; 2219 2220 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2221 perf_header__set_feat(&session->header, feat); 2222 2223 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2224 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2225 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2226 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2227 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2228 } 2229 2230 static int __cmd_record(int argc, const char **argv) 2231 { 2232 struct perf_session *session; 2233 struct perf_data *data = &perf_stat.data; 2234 2235 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2236 PARSE_OPT_STOP_AT_NON_OPTION); 2237 2238 if (output_name) 2239 data->path = output_name; 2240 2241 if (stat_config.run_count != 1 || forever) { 2242 pr_err("Cannot use -r option with perf stat record.\n"); 2243 return -1; 2244 } 2245 2246 session = perf_session__new(data, NULL); 2247 if (IS_ERR(session)) { 2248 pr_err("Perf session creation failed\n"); 2249 return PTR_ERR(session); 2250 } 2251 2252 init_features(session); 2253 2254 session->evlist = evsel_list; 2255 perf_stat.session = session; 2256 perf_stat.record = true; 2257 return argc; 2258 } 2259 2260 static int process_stat_round_event(struct perf_session *session, 2261 union perf_event *event) 2262 { 2263 struct perf_record_stat_round *stat_round = &event->stat_round; 2264 struct timespec tsh, *ts = NULL; 2265 const char **argv = session->header.env.cmdline_argv; 2266 int argc = session->header.env.nr_cmdline; 2267 2268 process_counters(); 2269 2270 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2271 update_stats(&walltime_nsecs_stats, stat_round->time); 2272 2273 if (stat_config.interval && stat_round->time) { 2274 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2275 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2276 ts = &tsh; 2277 } 2278 2279 print_counters(ts, argc, argv); 2280 return 0; 2281 } 2282 2283 static 2284 int process_stat_config_event(struct perf_session *session, 2285 union perf_event *event) 2286 { 2287 struct perf_tool *tool = session->tool; 2288 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2289 2290 perf_event__read_stat_config(&stat_config, &event->stat_config); 2291 2292 if (perf_cpu_map__empty(st->cpus)) { 2293 if (st->aggr_mode != AGGR_UNSET) 2294 pr_warning("warning: processing task data, aggregation mode not set\n"); 2295 } else if (st->aggr_mode != AGGR_UNSET) { 2296 stat_config.aggr_mode = st->aggr_mode; 2297 } 2298 2299 if (perf_stat.data.is_pipe) 2300 perf_stat_init_aggr_mode(); 2301 else 2302 perf_stat_init_aggr_mode_file(st); 2303 2304 if (stat_config.aggr_map) { 2305 int nr_aggr = stat_config.aggr_map->nr; 2306 2307 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2308 pr_err("cannot allocate aggr counts\n"); 2309 return -1; 2310 } 2311 } 2312 return 0; 2313 } 2314 2315 static int set_maps(struct perf_stat *st) 2316 { 2317 if (!st->cpus || !st->threads) 2318 return 0; 2319 2320 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2321 return -EINVAL; 2322 2323 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2324 2325 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2326 return -ENOMEM; 2327 2328 st->maps_allocated = true; 2329 return 0; 2330 } 2331 2332 static 2333 int process_thread_map_event(struct perf_session *session, 2334 union perf_event *event) 2335 { 2336 struct perf_tool *tool = session->tool; 2337 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2338 2339 if (st->threads) { 2340 pr_warning("Extra thread map event, ignoring.\n"); 2341 return 0; 2342 } 2343 2344 st->threads = thread_map__new_event(&event->thread_map); 2345 if (!st->threads) 2346 return -ENOMEM; 2347 2348 return set_maps(st); 2349 } 2350 2351 static 2352 int process_cpu_map_event(struct perf_session *session, 2353 union perf_event *event) 2354 { 2355 struct perf_tool *tool = session->tool; 2356 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2357 struct perf_cpu_map *cpus; 2358 2359 if (st->cpus) { 2360 pr_warning("Extra cpu map event, ignoring.\n"); 2361 return 0; 2362 } 2363 2364 cpus = cpu_map__new_data(&event->cpu_map.data); 2365 if (!cpus) 2366 return -ENOMEM; 2367 2368 st->cpus = cpus; 2369 return set_maps(st); 2370 } 2371 2372 static const char * const stat_report_usage[] = { 2373 "perf stat report [<options>]", 2374 NULL, 2375 }; 2376 2377 static struct perf_stat perf_stat = { 2378 .tool = { 2379 .attr = perf_event__process_attr, 2380 .event_update = perf_event__process_event_update, 2381 .thread_map = process_thread_map_event, 2382 .cpu_map = process_cpu_map_event, 2383 .stat_config = process_stat_config_event, 2384 .stat = perf_event__process_stat_event, 2385 .stat_round = process_stat_round_event, 2386 }, 2387 .aggr_mode = AGGR_UNSET, 2388 .aggr_level = 0, 2389 }; 2390 2391 static int __cmd_report(int argc, const char **argv) 2392 { 2393 struct perf_session *session; 2394 const struct option options[] = { 2395 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2396 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2397 "aggregate counts per processor socket", AGGR_SOCKET), 2398 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2399 "aggregate counts per processor die", AGGR_DIE), 2400 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2401 "cache level", 2402 "aggregate count at this cache level (Default: LLC)", 2403 parse_cache_level), 2404 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2405 "aggregate counts per physical processor core", AGGR_CORE), 2406 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2407 "aggregate counts per numa node", AGGR_NODE), 2408 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2409 "disable CPU count aggregation", AGGR_NONE), 2410 OPT_END() 2411 }; 2412 struct stat st; 2413 int ret; 2414 2415 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2416 2417 if (!input_name || !strlen(input_name)) { 2418 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2419 input_name = "-"; 2420 else 2421 input_name = "perf.data"; 2422 } 2423 2424 perf_stat.data.path = input_name; 2425 perf_stat.data.mode = PERF_DATA_MODE_READ; 2426 2427 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2428 if (IS_ERR(session)) 2429 return PTR_ERR(session); 2430 2431 perf_stat.session = session; 2432 stat_config.output = stderr; 2433 evlist__delete(evsel_list); 2434 evsel_list = session->evlist; 2435 2436 ret = perf_session__process_events(session); 2437 if (ret) 2438 return ret; 2439 2440 perf_session__delete(session); 2441 return 0; 2442 } 2443 2444 static void setup_system_wide(int forks) 2445 { 2446 /* 2447 * Make system wide (-a) the default target if 2448 * no target was specified and one of following 2449 * conditions is met: 2450 * 2451 * - there's no workload specified 2452 * - there is workload specified but all requested 2453 * events are system wide events 2454 */ 2455 if (!target__none(&target)) 2456 return; 2457 2458 if (!forks) 2459 target.system_wide = true; 2460 else { 2461 struct evsel *counter; 2462 2463 evlist__for_each_entry(evsel_list, counter) { 2464 if (!counter->core.requires_cpu && 2465 !evsel__name_is(counter, "duration_time")) { 2466 return; 2467 } 2468 } 2469 2470 if (evsel_list->core.nr_entries) 2471 target.system_wide = true; 2472 } 2473 } 2474 2475 int cmd_stat(int argc, const char **argv) 2476 { 2477 const char * const stat_usage[] = { 2478 "perf stat [<options>] [<command>]", 2479 NULL 2480 }; 2481 int status = -EINVAL, run_idx, err; 2482 const char *mode; 2483 FILE *output = stderr; 2484 unsigned int interval, timeout; 2485 const char * const stat_subcommands[] = { "record", "report" }; 2486 char errbuf[BUFSIZ]; 2487 2488 setlocale(LC_ALL, ""); 2489 2490 evsel_list = evlist__new(); 2491 if (evsel_list == NULL) 2492 return -ENOMEM; 2493 2494 parse_events__shrink_config_terms(); 2495 2496 /* String-parsing callback-based options would segfault when negated */ 2497 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2498 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2499 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2500 2501 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2502 (const char **) stat_usage, 2503 PARSE_OPT_STOP_AT_NON_OPTION); 2504 2505 if (stat_config.csv_sep) { 2506 stat_config.csv_output = true; 2507 if (!strcmp(stat_config.csv_sep, "\\t")) 2508 stat_config.csv_sep = "\t"; 2509 } else 2510 stat_config.csv_sep = DEFAULT_SEPARATOR; 2511 2512 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2513 argc = __cmd_record(argc, argv); 2514 if (argc < 0) 2515 return -1; 2516 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2517 return __cmd_report(argc, argv); 2518 2519 interval = stat_config.interval; 2520 timeout = stat_config.timeout; 2521 2522 /* 2523 * For record command the -o is already taken care of. 2524 */ 2525 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2526 output = NULL; 2527 2528 if (output_name && output_fd) { 2529 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2530 parse_options_usage(stat_usage, stat_options, "o", 1); 2531 parse_options_usage(NULL, stat_options, "log-fd", 0); 2532 goto out; 2533 } 2534 2535 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2536 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2537 goto out; 2538 } 2539 2540 if (stat_config.metric_only && stat_config.run_count > 1) { 2541 fprintf(stderr, "--metric-only is not supported with -r\n"); 2542 goto out; 2543 } 2544 2545 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2546 fprintf(stderr, "--table is only supported with -r\n"); 2547 parse_options_usage(stat_usage, stat_options, "r", 1); 2548 parse_options_usage(NULL, stat_options, "table", 0); 2549 goto out; 2550 } 2551 2552 if (output_fd < 0) { 2553 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2554 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2555 goto out; 2556 } 2557 2558 if (!output && !quiet) { 2559 struct timespec tm; 2560 mode = append_file ? "a" : "w"; 2561 2562 output = fopen(output_name, mode); 2563 if (!output) { 2564 perror("failed to create output file"); 2565 return -1; 2566 } 2567 if (!stat_config.json_output) { 2568 clock_gettime(CLOCK_REALTIME, &tm); 2569 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2570 } 2571 } else if (output_fd > 0) { 2572 mode = append_file ? "a" : "w"; 2573 output = fdopen(output_fd, mode); 2574 if (!output) { 2575 perror("Failed opening logfd"); 2576 return -errno; 2577 } 2578 } 2579 2580 if (stat_config.interval_clear && !isatty(fileno(output))) { 2581 fprintf(stderr, "--interval-clear does not work with output\n"); 2582 parse_options_usage(stat_usage, stat_options, "o", 1); 2583 parse_options_usage(NULL, stat_options, "log-fd", 0); 2584 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2585 return -1; 2586 } 2587 2588 stat_config.output = output; 2589 2590 /* 2591 * let the spreadsheet do the pretty-printing 2592 */ 2593 if (stat_config.csv_output) { 2594 /* User explicitly passed -B? */ 2595 if (big_num_opt == 1) { 2596 fprintf(stderr, "-B option not supported with -x\n"); 2597 parse_options_usage(stat_usage, stat_options, "B", 1); 2598 parse_options_usage(NULL, stat_options, "x", 1); 2599 goto out; 2600 } else /* Nope, so disable big number formatting */ 2601 stat_config.big_num = false; 2602 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2603 stat_config.big_num = false; 2604 2605 err = target__validate(&target); 2606 if (err) { 2607 target__strerror(&target, err, errbuf, BUFSIZ); 2608 pr_warning("%s\n", errbuf); 2609 } 2610 2611 setup_system_wide(argc); 2612 2613 /* 2614 * Display user/system times only for single 2615 * run and when there's specified tracee. 2616 */ 2617 if ((stat_config.run_count == 1) && target__none(&target)) 2618 stat_config.ru_display = true; 2619 2620 if (stat_config.run_count < 0) { 2621 pr_err("Run count must be a positive number\n"); 2622 parse_options_usage(stat_usage, stat_options, "r", 1); 2623 goto out; 2624 } else if (stat_config.run_count == 0) { 2625 forever = true; 2626 stat_config.run_count = 1; 2627 } 2628 2629 if (stat_config.walltime_run_table) { 2630 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2631 if (!stat_config.walltime_run) { 2632 pr_err("failed to setup -r option"); 2633 goto out; 2634 } 2635 } 2636 2637 if ((stat_config.aggr_mode == AGGR_THREAD) && 2638 !target__has_task(&target)) { 2639 if (!target.system_wide || target.cpu_list) { 2640 fprintf(stderr, "The --per-thread option is only " 2641 "available when monitoring via -p -t -a " 2642 "options or only --per-thread.\n"); 2643 parse_options_usage(NULL, stat_options, "p", 1); 2644 parse_options_usage(NULL, stat_options, "t", 1); 2645 goto out; 2646 } 2647 } 2648 2649 /* 2650 * no_aggr, cgroup are for system-wide only 2651 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2652 */ 2653 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2654 stat_config.aggr_mode != AGGR_THREAD) || 2655 (nr_cgroups || stat_config.cgroup_list)) && 2656 !target__has_cpu(&target)) { 2657 fprintf(stderr, "both cgroup and no-aggregation " 2658 "modes only available in system-wide mode\n"); 2659 2660 parse_options_usage(stat_usage, stat_options, "G", 1); 2661 parse_options_usage(NULL, stat_options, "A", 1); 2662 parse_options_usage(NULL, stat_options, "a", 1); 2663 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2664 goto out; 2665 } 2666 2667 if (stat_config.iostat_run) { 2668 status = iostat_prepare(evsel_list, &stat_config); 2669 if (status) 2670 goto out; 2671 if (iostat_mode == IOSTAT_LIST) { 2672 iostat_list(evsel_list, &stat_config); 2673 goto out; 2674 } else if (verbose > 0) 2675 iostat_list(evsel_list, &stat_config); 2676 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2677 target.system_wide = true; 2678 } 2679 2680 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2681 target.per_thread = true; 2682 2683 stat_config.system_wide = target.system_wide; 2684 if (target.cpu_list) { 2685 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2686 if (!stat_config.user_requested_cpu_list) { 2687 status = -ENOMEM; 2688 goto out; 2689 } 2690 } 2691 2692 /* 2693 * Metric parsing needs to be delayed as metrics may optimize events 2694 * knowing the target is system-wide. 2695 */ 2696 if (metrics) { 2697 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2698 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2699 stat_config.metric_no_group, 2700 stat_config.metric_no_merge, 2701 stat_config.metric_no_threshold, 2702 stat_config.user_requested_cpu_list, 2703 stat_config.system_wide, 2704 &stat_config.metric_events); 2705 2706 zfree(&metrics); 2707 if (ret) { 2708 status = ret; 2709 goto out; 2710 } 2711 } 2712 2713 if (add_default_attributes()) 2714 goto out; 2715 2716 if (stat_config.cgroup_list) { 2717 if (nr_cgroups > 0) { 2718 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2719 parse_options_usage(stat_usage, stat_options, "G", 1); 2720 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2721 goto out; 2722 } 2723 2724 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2725 &stat_config.metric_events, true) < 0) { 2726 parse_options_usage(stat_usage, stat_options, 2727 "for-each-cgroup", 0); 2728 goto out; 2729 } 2730 } 2731 2732 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2733 2734 if (evlist__create_maps(evsel_list, &target) < 0) { 2735 if (target__has_task(&target)) { 2736 pr_err("Problems finding threads of monitor\n"); 2737 parse_options_usage(stat_usage, stat_options, "p", 1); 2738 parse_options_usage(NULL, stat_options, "t", 1); 2739 } else if (target__has_cpu(&target)) { 2740 perror("failed to parse CPUs map"); 2741 parse_options_usage(stat_usage, stat_options, "C", 1); 2742 parse_options_usage(NULL, stat_options, "a", 1); 2743 } 2744 goto out; 2745 } 2746 2747 evlist__check_cpu_maps(evsel_list); 2748 2749 /* 2750 * Initialize thread_map with comm names, 2751 * so we could print it out on output. 2752 */ 2753 if (stat_config.aggr_mode == AGGR_THREAD) { 2754 thread_map__read_comms(evsel_list->core.threads); 2755 } 2756 2757 if (stat_config.aggr_mode == AGGR_NODE) 2758 cpu__setup_cpunode_map(); 2759 2760 if (stat_config.times && interval) 2761 interval_count = true; 2762 else if (stat_config.times && !interval) { 2763 pr_err("interval-count option should be used together with " 2764 "interval-print.\n"); 2765 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2766 parse_options_usage(stat_usage, stat_options, "I", 1); 2767 goto out; 2768 } 2769 2770 if (timeout && timeout < 100) { 2771 if (timeout < 10) { 2772 pr_err("timeout must be >= 10ms.\n"); 2773 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2774 goto out; 2775 } else 2776 pr_warning("timeout < 100ms. " 2777 "The overhead percentage could be high in some cases. " 2778 "Please proceed with caution.\n"); 2779 } 2780 if (timeout && interval) { 2781 pr_err("timeout option is not supported with interval-print.\n"); 2782 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2783 parse_options_usage(stat_usage, stat_options, "I", 1); 2784 goto out; 2785 } 2786 2787 if (perf_stat_init_aggr_mode()) 2788 goto out; 2789 2790 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2791 goto out; 2792 2793 /* 2794 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2795 * while avoiding that older tools show confusing messages. 2796 * 2797 * However for pipe sessions we need to keep it zero, 2798 * because script's perf_evsel__check_attr is triggered 2799 * by attr->sample_type != 0, and we can't run it on 2800 * stat sessions. 2801 */ 2802 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2803 2804 /* 2805 * We dont want to block the signals - that would cause 2806 * child tasks to inherit that and Ctrl-C would not work. 2807 * What we want is for Ctrl-C to work in the exec()-ed 2808 * task, but being ignored by perf stat itself: 2809 */ 2810 atexit(sig_atexit); 2811 if (!forever) 2812 signal(SIGINT, skip_signal); 2813 signal(SIGCHLD, skip_signal); 2814 signal(SIGALRM, skip_signal); 2815 signal(SIGABRT, skip_signal); 2816 2817 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2818 goto out; 2819 2820 /* Enable ignoring missing threads when -p option is defined. */ 2821 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2822 status = 0; 2823 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2824 if (stat_config.run_count != 1 && verbose > 0) 2825 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2826 run_idx + 1); 2827 2828 if (run_idx != 0) 2829 evlist__reset_prev_raw_counts(evsel_list); 2830 2831 status = run_perf_stat(argc, argv, run_idx); 2832 if (forever && status != -1 && !interval) { 2833 print_counters(NULL, argc, argv); 2834 perf_stat__reset_stats(); 2835 } 2836 } 2837 2838 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2839 if (stat_config.run_count > 1) 2840 evlist__copy_res_stats(&stat_config, evsel_list); 2841 print_counters(NULL, argc, argv); 2842 } 2843 2844 evlist__finalize_ctlfd(evsel_list); 2845 2846 if (STAT_RECORD) { 2847 /* 2848 * We synthesize the kernel mmap record just so that older tools 2849 * don't emit warnings about not being able to resolve symbols 2850 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2851 * a saner message about no samples being in the perf.data file. 2852 * 2853 * This also serves to suppress a warning about f_header.data.size == 0 2854 * in header.c at the moment 'perf stat record' gets introduced, which 2855 * is not really needed once we start adding the stat specific PERF_RECORD_ 2856 * records, but the need to suppress the kptr_restrict messages in older 2857 * tools remain -acme 2858 */ 2859 int fd = perf_data__fd(&perf_stat.data); 2860 2861 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2862 process_synthesized_event, 2863 &perf_stat.session->machines.host); 2864 if (err) { 2865 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2866 "older tools may produce warnings about this file\n."); 2867 } 2868 2869 if (!interval) { 2870 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2871 pr_err("failed to write stat round event\n"); 2872 } 2873 2874 if (!perf_stat.data.is_pipe) { 2875 perf_stat.session->header.data_size += perf_stat.bytes_written; 2876 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2877 } 2878 2879 evlist__close(evsel_list); 2880 perf_session__delete(perf_stat.session); 2881 } 2882 2883 perf_stat__exit_aggr_mode(); 2884 evlist__free_stats(evsel_list); 2885 out: 2886 if (stat_config.iostat_run) 2887 iostat_release(evsel_list); 2888 2889 zfree(&stat_config.walltime_run); 2890 zfree(&stat_config.user_requested_cpu_list); 2891 2892 if (smi_cost && smi_reset) 2893 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2894 2895 evlist__delete(evsel_list); 2896 2897 metricgroup__rblist_exit(&stat_config.metric_events); 2898 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2899 2900 return status; 2901 } 2902