xref: /openbmc/linux/tools/perf/builtin-stat.c (revision 4dc7ccf7)
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8 
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11 
12     Performance counter stats for '/home/mingo/hackbench':
13 
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22 
23     Wall-clock time elapsed:   123.786620 msecs
24 
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39 
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47 #include "util/header.h"
48 #include "util/cpumap.h"
49 
50 #include <sys/prctl.h>
51 #include <math.h>
52 
53 static struct perf_event_attr default_attrs[] = {
54 
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK		},
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES	},
57   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS		},
58   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS		},
59 
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES		},
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS		},
62   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS	},
63   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES		},
64   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES	},
65   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES		},
66 
67 };
68 
69 static int			system_wide			=  0;
70 static unsigned int		nr_cpus				=  0;
71 static int			run_idx				=  0;
72 
73 static int			run_count			=  1;
74 static int			inherit				=  1;
75 static int			scale				=  1;
76 static pid_t			target_pid			= -1;
77 static pid_t			child_pid			= -1;
78 static int			null_run			=  0;
79 
80 static int			fd[MAX_NR_CPUS][MAX_COUNTERS];
81 
82 static int			event_scaled[MAX_COUNTERS];
83 
84 static volatile int done = 0;
85 
86 struct stats
87 {
88 	double n, mean, M2;
89 };
90 
91 static void update_stats(struct stats *stats, u64 val)
92 {
93 	double delta;
94 
95 	stats->n++;
96 	delta = val - stats->mean;
97 	stats->mean += delta / stats->n;
98 	stats->M2 += delta*(val - stats->mean);
99 }
100 
101 static double avg_stats(struct stats *stats)
102 {
103 	return stats->mean;
104 }
105 
106 /*
107  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
108  *
109  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
110  * s^2 = -------------------------------
111  *                  n - 1
112  *
113  * http://en.wikipedia.org/wiki/Stddev
114  *
115  * The std dev of the mean is related to the std dev by:
116  *
117  *             s
118  * s_mean = -------
119  *          sqrt(n)
120  *
121  */
122 static double stddev_stats(struct stats *stats)
123 {
124 	double variance = stats->M2 / (stats->n - 1);
125 	double variance_mean = variance / stats->n;
126 
127 	return sqrt(variance_mean);
128 }
129 
130 struct stats			event_res_stats[MAX_COUNTERS][3];
131 struct stats			runtime_nsecs_stats;
132 struct stats			walltime_nsecs_stats;
133 struct stats			runtime_cycles_stats;
134 struct stats			runtime_branches_stats;
135 
136 #define MATCH_EVENT(t, c, counter)			\
137 	(attrs[counter].type == PERF_TYPE_##t &&	\
138 	 attrs[counter].config == PERF_COUNT_##c)
139 
140 #define ERR_PERF_OPEN \
141 "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n"
142 
143 static void create_perf_stat_counter(int counter, int pid)
144 {
145 	struct perf_event_attr *attr = attrs + counter;
146 
147 	if (scale)
148 		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
149 				    PERF_FORMAT_TOTAL_TIME_RUNNING;
150 
151 	if (system_wide) {
152 		unsigned int cpu;
153 
154 		for (cpu = 0; cpu < nr_cpus; cpu++) {
155 			fd[cpu][counter] = sys_perf_event_open(attr, -1, cpumap[cpu], -1, 0);
156 			if (fd[cpu][counter] < 0 && verbose)
157 				fprintf(stderr, ERR_PERF_OPEN, counter,
158 					fd[cpu][counter], strerror(errno));
159 		}
160 	} else {
161 		attr->inherit	     = inherit;
162 		attr->disabled	     = 1;
163 		attr->enable_on_exec = 1;
164 
165 		fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0);
166 		if (fd[0][counter] < 0 && verbose)
167 			fprintf(stderr, ERR_PERF_OPEN, counter,
168 				fd[0][counter], strerror(errno));
169 	}
170 }
171 
172 /*
173  * Does the counter have nsecs as a unit?
174  */
175 static inline int nsec_counter(int counter)
176 {
177 	if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
178 	    MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
179 		return 1;
180 
181 	return 0;
182 }
183 
184 /*
185  * Read out the results of a single counter:
186  */
187 static void read_counter(int counter)
188 {
189 	u64 count[3], single_count[3];
190 	unsigned int cpu;
191 	size_t res, nv;
192 	int scaled;
193 	int i;
194 
195 	count[0] = count[1] = count[2] = 0;
196 
197 	nv = scale ? 3 : 1;
198 	for (cpu = 0; cpu < nr_cpus; cpu++) {
199 		if (fd[cpu][counter] < 0)
200 			continue;
201 
202 		res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
203 		assert(res == nv * sizeof(u64));
204 
205 		close(fd[cpu][counter]);
206 		fd[cpu][counter] = -1;
207 
208 		count[0] += single_count[0];
209 		if (scale) {
210 			count[1] += single_count[1];
211 			count[2] += single_count[2];
212 		}
213 	}
214 
215 	scaled = 0;
216 	if (scale) {
217 		if (count[2] == 0) {
218 			event_scaled[counter] = -1;
219 			count[0] = 0;
220 			return;
221 		}
222 
223 		if (count[2] < count[1]) {
224 			event_scaled[counter] = 1;
225 			count[0] = (unsigned long long)
226 				((double)count[0] * count[1] / count[2] + 0.5);
227 		}
228 	}
229 
230 	for (i = 0; i < 3; i++)
231 		update_stats(&event_res_stats[counter][i], count[i]);
232 
233 	if (verbose) {
234 		fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
235 				count[0], count[1], count[2]);
236 	}
237 
238 	/*
239 	 * Save the full runtime - to allow normalization during printout:
240 	 */
241 	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
242 		update_stats(&runtime_nsecs_stats, count[0]);
243 	if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
244 		update_stats(&runtime_cycles_stats, count[0]);
245 	if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
246 		update_stats(&runtime_branches_stats, count[0]);
247 }
248 
249 static int run_perf_stat(int argc __used, const char **argv)
250 {
251 	unsigned long long t0, t1;
252 	int status = 0;
253 	int counter;
254 	int pid = target_pid;
255 	int child_ready_pipe[2], go_pipe[2];
256 	const bool forks = (target_pid == -1 && argc > 0);
257 	char buf;
258 
259 	if (!system_wide)
260 		nr_cpus = 1;
261 
262 	if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
263 		perror("failed to create pipes");
264 		exit(1);
265 	}
266 
267 	if (forks) {
268 		if ((pid = fork()) < 0)
269 			perror("failed to fork");
270 
271 		if (!pid) {
272 			close(child_ready_pipe[0]);
273 			close(go_pipe[1]);
274 			fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
275 
276 			/*
277 			 * Do a dummy execvp to get the PLT entry resolved,
278 			 * so we avoid the resolver overhead on the real
279 			 * execvp call.
280 			 */
281 			execvp("", (char **)argv);
282 
283 			/*
284 			 * Tell the parent we're ready to go
285 			 */
286 			close(child_ready_pipe[1]);
287 
288 			/*
289 			 * Wait until the parent tells us to go.
290 			 */
291 			if (read(go_pipe[0], &buf, 1) == -1)
292 				perror("unable to read pipe");
293 
294 			execvp(argv[0], (char **)argv);
295 
296 			perror(argv[0]);
297 			exit(-1);
298 		}
299 
300 		child_pid = pid;
301 
302 		/*
303 		 * Wait for the child to be ready to exec.
304 		 */
305 		close(child_ready_pipe[1]);
306 		close(go_pipe[0]);
307 		if (read(child_ready_pipe[0], &buf, 1) == -1)
308 			perror("unable to read pipe");
309 		close(child_ready_pipe[0]);
310 	}
311 
312 	for (counter = 0; counter < nr_counters; counter++)
313 		create_perf_stat_counter(counter, pid);
314 
315 	/*
316 	 * Enable counters and exec the command:
317 	 */
318 	t0 = rdclock();
319 
320 	if (forks) {
321 		close(go_pipe[1]);
322 		wait(&status);
323 	} else {
324 		while(!done);
325 	}
326 
327 	t1 = rdclock();
328 
329 	update_stats(&walltime_nsecs_stats, t1 - t0);
330 
331 	for (counter = 0; counter < nr_counters; counter++)
332 		read_counter(counter);
333 
334 	return WEXITSTATUS(status);
335 }
336 
337 static void print_noise(int counter, double avg)
338 {
339 	if (run_count == 1)
340 		return;
341 
342 	fprintf(stderr, "   ( +- %7.3f%% )",
343 			100 * stddev_stats(&event_res_stats[counter][0]) / avg);
344 }
345 
346 static void nsec_printout(int counter, double avg)
347 {
348 	double msecs = avg / 1e6;
349 
350 	fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
351 
352 	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
353 		fprintf(stderr, " # %10.3f CPUs ",
354 				avg / avg_stats(&walltime_nsecs_stats));
355 	}
356 }
357 
358 static void abs_printout(int counter, double avg)
359 {
360 	double total, ratio = 0.0;
361 
362 	fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
363 
364 	if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
365 		total = avg_stats(&runtime_cycles_stats);
366 
367 		if (total)
368 			ratio = avg / total;
369 
370 		fprintf(stderr, " # %10.3f IPC  ", ratio);
371 	} else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) &&
372 			runtime_branches_stats.n != 0) {
373 		total = avg_stats(&runtime_branches_stats);
374 
375 		if (total)
376 			ratio = avg * 100 / total;
377 
378 		fprintf(stderr, " # %10.3f %%    ", ratio);
379 
380 	} else if (runtime_nsecs_stats.n != 0) {
381 		total = avg_stats(&runtime_nsecs_stats);
382 
383 		if (total)
384 			ratio = 1000.0 * avg / total;
385 
386 		fprintf(stderr, " # %10.3f M/sec", ratio);
387 	}
388 }
389 
390 /*
391  * Print out the results of a single counter:
392  */
393 static void print_counter(int counter)
394 {
395 	double avg = avg_stats(&event_res_stats[counter][0]);
396 	int scaled = event_scaled[counter];
397 
398 	if (scaled == -1) {
399 		fprintf(stderr, " %14s  %-24s\n",
400 			"<not counted>", event_name(counter));
401 		return;
402 	}
403 
404 	if (nsec_counter(counter))
405 		nsec_printout(counter, avg);
406 	else
407 		abs_printout(counter, avg);
408 
409 	print_noise(counter, avg);
410 
411 	if (scaled) {
412 		double avg_enabled, avg_running;
413 
414 		avg_enabled = avg_stats(&event_res_stats[counter][1]);
415 		avg_running = avg_stats(&event_res_stats[counter][2]);
416 
417 		fprintf(stderr, "  (scaled from %.2f%%)",
418 				100 * avg_running / avg_enabled);
419 	}
420 
421 	fprintf(stderr, "\n");
422 }
423 
424 static void print_stat(int argc, const char **argv)
425 {
426 	int i, counter;
427 
428 	fflush(stdout);
429 
430 	fprintf(stderr, "\n");
431 	fprintf(stderr, " Performance counter stats for ");
432 	if(target_pid == -1) {
433 		fprintf(stderr, "\'%s", argv[0]);
434 		for (i = 1; i < argc; i++)
435 			fprintf(stderr, " %s", argv[i]);
436 	}else
437 		fprintf(stderr, "task pid \'%d", target_pid);
438 
439 	fprintf(stderr, "\'");
440 	if (run_count > 1)
441 		fprintf(stderr, " (%d runs)", run_count);
442 	fprintf(stderr, ":\n\n");
443 
444 	for (counter = 0; counter < nr_counters; counter++)
445 		print_counter(counter);
446 
447 	fprintf(stderr, "\n");
448 	fprintf(stderr, " %14.9f  seconds time elapsed",
449 			avg_stats(&walltime_nsecs_stats)/1e9);
450 	if (run_count > 1) {
451 		fprintf(stderr, "   ( +- %7.3f%% )",
452 				100*stddev_stats(&walltime_nsecs_stats) /
453 				avg_stats(&walltime_nsecs_stats));
454 	}
455 	fprintf(stderr, "\n\n");
456 }
457 
458 static volatile int signr = -1;
459 
460 static void skip_signal(int signo)
461 {
462 	if(target_pid != -1)
463 		done = 1;
464 
465 	signr = signo;
466 }
467 
468 static void sig_atexit(void)
469 {
470 	if (child_pid != -1)
471 		kill(child_pid, SIGTERM);
472 
473 	if (signr == -1)
474 		return;
475 
476 	signal(signr, SIG_DFL);
477 	kill(getpid(), signr);
478 }
479 
480 static const char * const stat_usage[] = {
481 	"perf stat [<options>] [<command>]",
482 	NULL
483 };
484 
485 static const struct option options[] = {
486 	OPT_CALLBACK('e', "event", NULL, "event",
487 		     "event selector. use 'perf list' to list available events",
488 		     parse_events),
489 	OPT_BOOLEAN('i', "inherit", &inherit,
490 		    "child tasks inherit counters"),
491 	OPT_INTEGER('p', "pid", &target_pid,
492 		    "stat events on existing pid"),
493 	OPT_BOOLEAN('a', "all-cpus", &system_wide,
494 		    "system-wide collection from all CPUs"),
495 	OPT_BOOLEAN('c', "scale", &scale,
496 		    "scale/normalize counters"),
497 	OPT_BOOLEAN('v', "verbose", &verbose,
498 		    "be more verbose (show counter open errors, etc)"),
499 	OPT_INTEGER('r', "repeat", &run_count,
500 		    "repeat command and print average + stddev (max: 100)"),
501 	OPT_BOOLEAN('n', "null", &null_run,
502 		    "null run - dont start any counters"),
503 	OPT_END()
504 };
505 
506 int cmd_stat(int argc, const char **argv, const char *prefix __used)
507 {
508 	int status;
509 
510 	argc = parse_options(argc, argv, options, stat_usage,
511 		PARSE_OPT_STOP_AT_NON_OPTION);
512 	if (!argc && target_pid == -1)
513 		usage_with_options(stat_usage, options);
514 	if (run_count <= 0)
515 		usage_with_options(stat_usage, options);
516 
517 	/* Set attrs and nr_counters if no event is selected and !null_run */
518 	if (!null_run && !nr_counters) {
519 		memcpy(attrs, default_attrs, sizeof(default_attrs));
520 		nr_counters = ARRAY_SIZE(default_attrs);
521 	}
522 
523 	if (system_wide)
524 		nr_cpus = read_cpu_map();
525 	else
526 		nr_cpus = 1;
527 
528 	/*
529 	 * We dont want to block the signals - that would cause
530 	 * child tasks to inherit that and Ctrl-C would not work.
531 	 * What we want is for Ctrl-C to work in the exec()-ed
532 	 * task, but being ignored by perf stat itself:
533 	 */
534 	atexit(sig_atexit);
535 	signal(SIGINT,  skip_signal);
536 	signal(SIGALRM, skip_signal);
537 	signal(SIGABRT, skip_signal);
538 
539 	status = 0;
540 	for (run_idx = 0; run_idx < run_count; run_idx++) {
541 		if (run_count != 1 && verbose)
542 			fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
543 		status = run_perf_stat(argc, argv);
544 	}
545 
546 	print_stat(argc, argv);
547 
548 	return status;
549 }
550