1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 5 #include "util/util.h" 6 #include "util/evlist.h" 7 #include "util/cache.h" 8 #include "util/evsel.h" 9 #include "util/symbol.h" 10 #include "util/thread.h" 11 #include "util/header.h" 12 #include "util/session.h" 13 #include "util/tool.h" 14 #include "util/cloexec.h" 15 #include "util/thread_map.h" 16 #include "util/color.h" 17 #include "util/stat.h" 18 #include "util/callchain.h" 19 #include "util/time-utils.h" 20 21 #include <subcmd/parse-options.h> 22 #include "util/trace-event.h" 23 24 #include "util/debug.h" 25 26 #include <linux/kernel.h> 27 #include <linux/log2.h> 28 #include <sys/prctl.h> 29 #include <sys/resource.h> 30 #include <inttypes.h> 31 32 #include <errno.h> 33 #include <semaphore.h> 34 #include <pthread.h> 35 #include <math.h> 36 #include <api/fs/fs.h> 37 #include <linux/time64.h> 38 39 #include "sane_ctype.h" 40 41 #define PR_SET_NAME 15 /* Set process name */ 42 #define MAX_CPUS 4096 43 #define COMM_LEN 20 44 #define SYM_LEN 129 45 #define MAX_PID 1024000 46 47 struct sched_atom; 48 49 struct task_desc { 50 unsigned long nr; 51 unsigned long pid; 52 char comm[COMM_LEN]; 53 54 unsigned long nr_events; 55 unsigned long curr_event; 56 struct sched_atom **atoms; 57 58 pthread_t thread; 59 sem_t sleep_sem; 60 61 sem_t ready_for_work; 62 sem_t work_done_sem; 63 64 u64 cpu_usage; 65 }; 66 67 enum sched_event_type { 68 SCHED_EVENT_RUN, 69 SCHED_EVENT_SLEEP, 70 SCHED_EVENT_WAKEUP, 71 SCHED_EVENT_MIGRATION, 72 }; 73 74 struct sched_atom { 75 enum sched_event_type type; 76 int specific_wait; 77 u64 timestamp; 78 u64 duration; 79 unsigned long nr; 80 sem_t *wait_sem; 81 struct task_desc *wakee; 82 }; 83 84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 85 86 /* task state bitmask, copied from include/linux/sched.h */ 87 #define TASK_RUNNING 0 88 #define TASK_INTERRUPTIBLE 1 89 #define TASK_UNINTERRUPTIBLE 2 90 #define __TASK_STOPPED 4 91 #define __TASK_TRACED 8 92 /* in tsk->exit_state */ 93 #define EXIT_DEAD 16 94 #define EXIT_ZOMBIE 32 95 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 96 /* in tsk->state again */ 97 #define TASK_DEAD 64 98 #define TASK_WAKEKILL 128 99 #define TASK_WAKING 256 100 #define TASK_PARKED 512 101 102 enum thread_state { 103 THREAD_SLEEPING = 0, 104 THREAD_WAIT_CPU, 105 THREAD_SCHED_IN, 106 THREAD_IGNORE 107 }; 108 109 struct work_atom { 110 struct list_head list; 111 enum thread_state state; 112 u64 sched_out_time; 113 u64 wake_up_time; 114 u64 sched_in_time; 115 u64 runtime; 116 }; 117 118 struct work_atoms { 119 struct list_head work_list; 120 struct thread *thread; 121 struct rb_node node; 122 u64 max_lat; 123 u64 max_lat_at; 124 u64 total_lat; 125 u64 nb_atoms; 126 u64 total_runtime; 127 int num_merged; 128 }; 129 130 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 131 132 struct perf_sched; 133 134 struct trace_sched_handler { 135 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, 136 struct perf_sample *sample, struct machine *machine); 137 138 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, 139 struct perf_sample *sample, struct machine *machine); 140 141 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, 142 struct perf_sample *sample, struct machine *machine); 143 144 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 145 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 146 struct machine *machine); 147 148 int (*migrate_task_event)(struct perf_sched *sched, 149 struct perf_evsel *evsel, 150 struct perf_sample *sample, 151 struct machine *machine); 152 }; 153 154 #define COLOR_PIDS PERF_COLOR_BLUE 155 #define COLOR_CPUS PERF_COLOR_BG_RED 156 157 struct perf_sched_map { 158 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 159 int *comp_cpus; 160 bool comp; 161 struct thread_map *color_pids; 162 const char *color_pids_str; 163 struct cpu_map *color_cpus; 164 const char *color_cpus_str; 165 struct cpu_map *cpus; 166 const char *cpus_str; 167 }; 168 169 struct perf_sched { 170 struct perf_tool tool; 171 const char *sort_order; 172 unsigned long nr_tasks; 173 struct task_desc **pid_to_task; 174 struct task_desc **tasks; 175 const struct trace_sched_handler *tp_handler; 176 pthread_mutex_t start_work_mutex; 177 pthread_mutex_t work_done_wait_mutex; 178 int profile_cpu; 179 /* 180 * Track the current task - that way we can know whether there's any 181 * weird events, such as a task being switched away that is not current. 182 */ 183 int max_cpu; 184 u32 curr_pid[MAX_CPUS]; 185 struct thread *curr_thread[MAX_CPUS]; 186 char next_shortname1; 187 char next_shortname2; 188 unsigned int replay_repeat; 189 unsigned long nr_run_events; 190 unsigned long nr_sleep_events; 191 unsigned long nr_wakeup_events; 192 unsigned long nr_sleep_corrections; 193 unsigned long nr_run_events_optimized; 194 unsigned long targetless_wakeups; 195 unsigned long multitarget_wakeups; 196 unsigned long nr_runs; 197 unsigned long nr_timestamps; 198 unsigned long nr_unordered_timestamps; 199 unsigned long nr_context_switch_bugs; 200 unsigned long nr_events; 201 unsigned long nr_lost_chunks; 202 unsigned long nr_lost_events; 203 u64 run_measurement_overhead; 204 u64 sleep_measurement_overhead; 205 u64 start_time; 206 u64 cpu_usage; 207 u64 runavg_cpu_usage; 208 u64 parent_cpu_usage; 209 u64 runavg_parent_cpu_usage; 210 u64 sum_runtime; 211 u64 sum_fluct; 212 u64 run_avg; 213 u64 all_runtime; 214 u64 all_count; 215 u64 cpu_last_switched[MAX_CPUS]; 216 struct rb_root atom_root, sorted_atom_root, merged_atom_root; 217 struct list_head sort_list, cmp_pid; 218 bool force; 219 bool skip_merge; 220 struct perf_sched_map map; 221 222 /* options for timehist command */ 223 bool summary; 224 bool summary_only; 225 bool idle_hist; 226 bool show_callchain; 227 unsigned int max_stack; 228 bool show_cpu_visual; 229 bool show_wakeups; 230 bool show_next; 231 bool show_migrations; 232 bool show_state; 233 u64 skipped_samples; 234 const char *time_str; 235 struct perf_time_interval ptime; 236 struct perf_time_interval hist_time; 237 }; 238 239 /* per thread run time data */ 240 struct thread_runtime { 241 u64 last_time; /* time of previous sched in/out event */ 242 u64 dt_run; /* run time */ 243 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 244 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 245 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 246 u64 dt_delay; /* time between wakeup and sched-in */ 247 u64 ready_to_run; /* time of wakeup */ 248 249 struct stats run_stats; 250 u64 total_run_time; 251 u64 total_sleep_time; 252 u64 total_iowait_time; 253 u64 total_preempt_time; 254 u64 total_delay_time; 255 256 int last_state; 257 u64 migrations; 258 }; 259 260 /* per event run time data */ 261 struct evsel_runtime { 262 u64 *last_time; /* time this event was last seen per cpu */ 263 u32 ncpu; /* highest cpu slot allocated */ 264 }; 265 266 /* per cpu idle time data */ 267 struct idle_thread_runtime { 268 struct thread_runtime tr; 269 struct thread *last_thread; 270 struct rb_root sorted_root; 271 struct callchain_root callchain; 272 struct callchain_cursor cursor; 273 }; 274 275 /* track idle times per cpu */ 276 static struct thread **idle_threads; 277 static int idle_max_cpu; 278 static char idle_comm[] = "<idle>"; 279 280 static u64 get_nsecs(void) 281 { 282 struct timespec ts; 283 284 clock_gettime(CLOCK_MONOTONIC, &ts); 285 286 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 287 } 288 289 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 290 { 291 u64 T0 = get_nsecs(), T1; 292 293 do { 294 T1 = get_nsecs(); 295 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 296 } 297 298 static void sleep_nsecs(u64 nsecs) 299 { 300 struct timespec ts; 301 302 ts.tv_nsec = nsecs % 999999999; 303 ts.tv_sec = nsecs / 999999999; 304 305 nanosleep(&ts, NULL); 306 } 307 308 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 309 { 310 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 311 int i; 312 313 for (i = 0; i < 10; i++) { 314 T0 = get_nsecs(); 315 burn_nsecs(sched, 0); 316 T1 = get_nsecs(); 317 delta = T1-T0; 318 min_delta = min(min_delta, delta); 319 } 320 sched->run_measurement_overhead = min_delta; 321 322 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 323 } 324 325 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 326 { 327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 328 int i; 329 330 for (i = 0; i < 10; i++) { 331 T0 = get_nsecs(); 332 sleep_nsecs(10000); 333 T1 = get_nsecs(); 334 delta = T1-T0; 335 min_delta = min(min_delta, delta); 336 } 337 min_delta -= 10000; 338 sched->sleep_measurement_overhead = min_delta; 339 340 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 341 } 342 343 static struct sched_atom * 344 get_new_event(struct task_desc *task, u64 timestamp) 345 { 346 struct sched_atom *event = zalloc(sizeof(*event)); 347 unsigned long idx = task->nr_events; 348 size_t size; 349 350 event->timestamp = timestamp; 351 event->nr = idx; 352 353 task->nr_events++; 354 size = sizeof(struct sched_atom *) * task->nr_events; 355 task->atoms = realloc(task->atoms, size); 356 BUG_ON(!task->atoms); 357 358 task->atoms[idx] = event; 359 360 return event; 361 } 362 363 static struct sched_atom *last_event(struct task_desc *task) 364 { 365 if (!task->nr_events) 366 return NULL; 367 368 return task->atoms[task->nr_events - 1]; 369 } 370 371 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 372 u64 timestamp, u64 duration) 373 { 374 struct sched_atom *event, *curr_event = last_event(task); 375 376 /* 377 * optimize an existing RUN event by merging this one 378 * to it: 379 */ 380 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 381 sched->nr_run_events_optimized++; 382 curr_event->duration += duration; 383 return; 384 } 385 386 event = get_new_event(task, timestamp); 387 388 event->type = SCHED_EVENT_RUN; 389 event->duration = duration; 390 391 sched->nr_run_events++; 392 } 393 394 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 395 u64 timestamp, struct task_desc *wakee) 396 { 397 struct sched_atom *event, *wakee_event; 398 399 event = get_new_event(task, timestamp); 400 event->type = SCHED_EVENT_WAKEUP; 401 event->wakee = wakee; 402 403 wakee_event = last_event(wakee); 404 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 405 sched->targetless_wakeups++; 406 return; 407 } 408 if (wakee_event->wait_sem) { 409 sched->multitarget_wakeups++; 410 return; 411 } 412 413 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 414 sem_init(wakee_event->wait_sem, 0, 0); 415 wakee_event->specific_wait = 1; 416 event->wait_sem = wakee_event->wait_sem; 417 418 sched->nr_wakeup_events++; 419 } 420 421 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 422 u64 timestamp, u64 task_state __maybe_unused) 423 { 424 struct sched_atom *event = get_new_event(task, timestamp); 425 426 event->type = SCHED_EVENT_SLEEP; 427 428 sched->nr_sleep_events++; 429 } 430 431 static struct task_desc *register_pid(struct perf_sched *sched, 432 unsigned long pid, const char *comm) 433 { 434 struct task_desc *task; 435 static int pid_max; 436 437 if (sched->pid_to_task == NULL) { 438 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 439 pid_max = MAX_PID; 440 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 441 } 442 if (pid >= (unsigned long)pid_max) { 443 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 444 sizeof(struct task_desc *))) == NULL); 445 while (pid >= (unsigned long)pid_max) 446 sched->pid_to_task[pid_max++] = NULL; 447 } 448 449 task = sched->pid_to_task[pid]; 450 451 if (task) 452 return task; 453 454 task = zalloc(sizeof(*task)); 455 task->pid = pid; 456 task->nr = sched->nr_tasks; 457 strcpy(task->comm, comm); 458 /* 459 * every task starts in sleeping state - this gets ignored 460 * if there's no wakeup pointing to this sleep state: 461 */ 462 add_sched_event_sleep(sched, task, 0, 0); 463 464 sched->pid_to_task[pid] = task; 465 sched->nr_tasks++; 466 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 467 BUG_ON(!sched->tasks); 468 sched->tasks[task->nr] = task; 469 470 if (verbose > 0) 471 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 472 473 return task; 474 } 475 476 477 static void print_task_traces(struct perf_sched *sched) 478 { 479 struct task_desc *task; 480 unsigned long i; 481 482 for (i = 0; i < sched->nr_tasks; i++) { 483 task = sched->tasks[i]; 484 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 485 task->nr, task->comm, task->pid, task->nr_events); 486 } 487 } 488 489 static void add_cross_task_wakeups(struct perf_sched *sched) 490 { 491 struct task_desc *task1, *task2; 492 unsigned long i, j; 493 494 for (i = 0; i < sched->nr_tasks; i++) { 495 task1 = sched->tasks[i]; 496 j = i + 1; 497 if (j == sched->nr_tasks) 498 j = 0; 499 task2 = sched->tasks[j]; 500 add_sched_event_wakeup(sched, task1, 0, task2); 501 } 502 } 503 504 static void perf_sched__process_event(struct perf_sched *sched, 505 struct sched_atom *atom) 506 { 507 int ret = 0; 508 509 switch (atom->type) { 510 case SCHED_EVENT_RUN: 511 burn_nsecs(sched, atom->duration); 512 break; 513 case SCHED_EVENT_SLEEP: 514 if (atom->wait_sem) 515 ret = sem_wait(atom->wait_sem); 516 BUG_ON(ret); 517 break; 518 case SCHED_EVENT_WAKEUP: 519 if (atom->wait_sem) 520 ret = sem_post(atom->wait_sem); 521 BUG_ON(ret); 522 break; 523 case SCHED_EVENT_MIGRATION: 524 break; 525 default: 526 BUG_ON(1); 527 } 528 } 529 530 static u64 get_cpu_usage_nsec_parent(void) 531 { 532 struct rusage ru; 533 u64 sum; 534 int err; 535 536 err = getrusage(RUSAGE_SELF, &ru); 537 BUG_ON(err); 538 539 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 540 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 541 542 return sum; 543 } 544 545 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 546 { 547 struct perf_event_attr attr; 548 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 549 int fd; 550 struct rlimit limit; 551 bool need_privilege = false; 552 553 memset(&attr, 0, sizeof(attr)); 554 555 attr.type = PERF_TYPE_SOFTWARE; 556 attr.config = PERF_COUNT_SW_TASK_CLOCK; 557 558 force_again: 559 fd = sys_perf_event_open(&attr, 0, -1, -1, 560 perf_event_open_cloexec_flag()); 561 562 if (fd < 0) { 563 if (errno == EMFILE) { 564 if (sched->force) { 565 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 566 limit.rlim_cur += sched->nr_tasks - cur_task; 567 if (limit.rlim_cur > limit.rlim_max) { 568 limit.rlim_max = limit.rlim_cur; 569 need_privilege = true; 570 } 571 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 572 if (need_privilege && errno == EPERM) 573 strcpy(info, "Need privilege\n"); 574 } else 575 goto force_again; 576 } else 577 strcpy(info, "Have a try with -f option\n"); 578 } 579 pr_err("Error: sys_perf_event_open() syscall returned " 580 "with %d (%s)\n%s", fd, 581 str_error_r(errno, sbuf, sizeof(sbuf)), info); 582 exit(EXIT_FAILURE); 583 } 584 return fd; 585 } 586 587 static u64 get_cpu_usage_nsec_self(int fd) 588 { 589 u64 runtime; 590 int ret; 591 592 ret = read(fd, &runtime, sizeof(runtime)); 593 BUG_ON(ret != sizeof(runtime)); 594 595 return runtime; 596 } 597 598 struct sched_thread_parms { 599 struct task_desc *task; 600 struct perf_sched *sched; 601 int fd; 602 }; 603 604 static void *thread_func(void *ctx) 605 { 606 struct sched_thread_parms *parms = ctx; 607 struct task_desc *this_task = parms->task; 608 struct perf_sched *sched = parms->sched; 609 u64 cpu_usage_0, cpu_usage_1; 610 unsigned long i, ret; 611 char comm2[22]; 612 int fd = parms->fd; 613 614 zfree(&parms); 615 616 sprintf(comm2, ":%s", this_task->comm); 617 prctl(PR_SET_NAME, comm2); 618 if (fd < 0) 619 return NULL; 620 again: 621 ret = sem_post(&this_task->ready_for_work); 622 BUG_ON(ret); 623 ret = pthread_mutex_lock(&sched->start_work_mutex); 624 BUG_ON(ret); 625 ret = pthread_mutex_unlock(&sched->start_work_mutex); 626 BUG_ON(ret); 627 628 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 629 630 for (i = 0; i < this_task->nr_events; i++) { 631 this_task->curr_event = i; 632 perf_sched__process_event(sched, this_task->atoms[i]); 633 } 634 635 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 636 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 637 ret = sem_post(&this_task->work_done_sem); 638 BUG_ON(ret); 639 640 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 641 BUG_ON(ret); 642 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 643 BUG_ON(ret); 644 645 goto again; 646 } 647 648 static void create_tasks(struct perf_sched *sched) 649 { 650 struct task_desc *task; 651 pthread_attr_t attr; 652 unsigned long i; 653 int err; 654 655 err = pthread_attr_init(&attr); 656 BUG_ON(err); 657 err = pthread_attr_setstacksize(&attr, 658 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 659 BUG_ON(err); 660 err = pthread_mutex_lock(&sched->start_work_mutex); 661 BUG_ON(err); 662 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 663 BUG_ON(err); 664 for (i = 0; i < sched->nr_tasks; i++) { 665 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 666 BUG_ON(parms == NULL); 667 parms->task = task = sched->tasks[i]; 668 parms->sched = sched; 669 parms->fd = self_open_counters(sched, i); 670 sem_init(&task->sleep_sem, 0, 0); 671 sem_init(&task->ready_for_work, 0, 0); 672 sem_init(&task->work_done_sem, 0, 0); 673 task->curr_event = 0; 674 err = pthread_create(&task->thread, &attr, thread_func, parms); 675 BUG_ON(err); 676 } 677 } 678 679 static void wait_for_tasks(struct perf_sched *sched) 680 { 681 u64 cpu_usage_0, cpu_usage_1; 682 struct task_desc *task; 683 unsigned long i, ret; 684 685 sched->start_time = get_nsecs(); 686 sched->cpu_usage = 0; 687 pthread_mutex_unlock(&sched->work_done_wait_mutex); 688 689 for (i = 0; i < sched->nr_tasks; i++) { 690 task = sched->tasks[i]; 691 ret = sem_wait(&task->ready_for_work); 692 BUG_ON(ret); 693 sem_init(&task->ready_for_work, 0, 0); 694 } 695 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 696 BUG_ON(ret); 697 698 cpu_usage_0 = get_cpu_usage_nsec_parent(); 699 700 pthread_mutex_unlock(&sched->start_work_mutex); 701 702 for (i = 0; i < sched->nr_tasks; i++) { 703 task = sched->tasks[i]; 704 ret = sem_wait(&task->work_done_sem); 705 BUG_ON(ret); 706 sem_init(&task->work_done_sem, 0, 0); 707 sched->cpu_usage += task->cpu_usage; 708 task->cpu_usage = 0; 709 } 710 711 cpu_usage_1 = get_cpu_usage_nsec_parent(); 712 if (!sched->runavg_cpu_usage) 713 sched->runavg_cpu_usage = sched->cpu_usage; 714 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 715 716 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 717 if (!sched->runavg_parent_cpu_usage) 718 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 719 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 720 sched->parent_cpu_usage)/sched->replay_repeat; 721 722 ret = pthread_mutex_lock(&sched->start_work_mutex); 723 BUG_ON(ret); 724 725 for (i = 0; i < sched->nr_tasks; i++) { 726 task = sched->tasks[i]; 727 sem_init(&task->sleep_sem, 0, 0); 728 task->curr_event = 0; 729 } 730 } 731 732 static void run_one_test(struct perf_sched *sched) 733 { 734 u64 T0, T1, delta, avg_delta, fluct; 735 736 T0 = get_nsecs(); 737 wait_for_tasks(sched); 738 T1 = get_nsecs(); 739 740 delta = T1 - T0; 741 sched->sum_runtime += delta; 742 sched->nr_runs++; 743 744 avg_delta = sched->sum_runtime / sched->nr_runs; 745 if (delta < avg_delta) 746 fluct = avg_delta - delta; 747 else 748 fluct = delta - avg_delta; 749 sched->sum_fluct += fluct; 750 if (!sched->run_avg) 751 sched->run_avg = delta; 752 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 753 754 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 755 756 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 757 758 printf("cpu: %0.2f / %0.2f", 759 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 760 761 #if 0 762 /* 763 * rusage statistics done by the parent, these are less 764 * accurate than the sched->sum_exec_runtime based statistics: 765 */ 766 printf(" [%0.2f / %0.2f]", 767 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 768 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 769 #endif 770 771 printf("\n"); 772 773 if (sched->nr_sleep_corrections) 774 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 775 sched->nr_sleep_corrections = 0; 776 } 777 778 static void test_calibrations(struct perf_sched *sched) 779 { 780 u64 T0, T1; 781 782 T0 = get_nsecs(); 783 burn_nsecs(sched, NSEC_PER_MSEC); 784 T1 = get_nsecs(); 785 786 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 787 788 T0 = get_nsecs(); 789 sleep_nsecs(NSEC_PER_MSEC); 790 T1 = get_nsecs(); 791 792 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 793 } 794 795 static int 796 replay_wakeup_event(struct perf_sched *sched, 797 struct perf_evsel *evsel, struct perf_sample *sample, 798 struct machine *machine __maybe_unused) 799 { 800 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 801 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 802 struct task_desc *waker, *wakee; 803 804 if (verbose > 0) { 805 printf("sched_wakeup event %p\n", evsel); 806 807 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 808 } 809 810 waker = register_pid(sched, sample->tid, "<unknown>"); 811 wakee = register_pid(sched, pid, comm); 812 813 add_sched_event_wakeup(sched, waker, sample->time, wakee); 814 return 0; 815 } 816 817 static int replay_switch_event(struct perf_sched *sched, 818 struct perf_evsel *evsel, 819 struct perf_sample *sample, 820 struct machine *machine __maybe_unused) 821 { 822 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 823 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 824 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 825 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 826 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 827 struct task_desc *prev, __maybe_unused *next; 828 u64 timestamp0, timestamp = sample->time; 829 int cpu = sample->cpu; 830 s64 delta; 831 832 if (verbose > 0) 833 printf("sched_switch event %p\n", evsel); 834 835 if (cpu >= MAX_CPUS || cpu < 0) 836 return 0; 837 838 timestamp0 = sched->cpu_last_switched[cpu]; 839 if (timestamp0) 840 delta = timestamp - timestamp0; 841 else 842 delta = 0; 843 844 if (delta < 0) { 845 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 846 return -1; 847 } 848 849 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 850 prev_comm, prev_pid, next_comm, next_pid, delta); 851 852 prev = register_pid(sched, prev_pid, prev_comm); 853 next = register_pid(sched, next_pid, next_comm); 854 855 sched->cpu_last_switched[cpu] = timestamp; 856 857 add_sched_event_run(sched, prev, timestamp, delta); 858 add_sched_event_sleep(sched, prev, timestamp, prev_state); 859 860 return 0; 861 } 862 863 static int replay_fork_event(struct perf_sched *sched, 864 union perf_event *event, 865 struct machine *machine) 866 { 867 struct thread *child, *parent; 868 869 child = machine__findnew_thread(machine, event->fork.pid, 870 event->fork.tid); 871 parent = machine__findnew_thread(machine, event->fork.ppid, 872 event->fork.ptid); 873 874 if (child == NULL || parent == NULL) { 875 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 876 child, parent); 877 goto out_put; 878 } 879 880 if (verbose > 0) { 881 printf("fork event\n"); 882 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 883 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 884 } 885 886 register_pid(sched, parent->tid, thread__comm_str(parent)); 887 register_pid(sched, child->tid, thread__comm_str(child)); 888 out_put: 889 thread__put(child); 890 thread__put(parent); 891 return 0; 892 } 893 894 struct sort_dimension { 895 const char *name; 896 sort_fn_t cmp; 897 struct list_head list; 898 }; 899 900 static int 901 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 902 { 903 struct sort_dimension *sort; 904 int ret = 0; 905 906 BUG_ON(list_empty(list)); 907 908 list_for_each_entry(sort, list, list) { 909 ret = sort->cmp(l, r); 910 if (ret) 911 return ret; 912 } 913 914 return ret; 915 } 916 917 static struct work_atoms * 918 thread_atoms_search(struct rb_root *root, struct thread *thread, 919 struct list_head *sort_list) 920 { 921 struct rb_node *node = root->rb_node; 922 struct work_atoms key = { .thread = thread }; 923 924 while (node) { 925 struct work_atoms *atoms; 926 int cmp; 927 928 atoms = container_of(node, struct work_atoms, node); 929 930 cmp = thread_lat_cmp(sort_list, &key, atoms); 931 if (cmp > 0) 932 node = node->rb_left; 933 else if (cmp < 0) 934 node = node->rb_right; 935 else { 936 BUG_ON(thread != atoms->thread); 937 return atoms; 938 } 939 } 940 return NULL; 941 } 942 943 static void 944 __thread_latency_insert(struct rb_root *root, struct work_atoms *data, 945 struct list_head *sort_list) 946 { 947 struct rb_node **new = &(root->rb_node), *parent = NULL; 948 949 while (*new) { 950 struct work_atoms *this; 951 int cmp; 952 953 this = container_of(*new, struct work_atoms, node); 954 parent = *new; 955 956 cmp = thread_lat_cmp(sort_list, data, this); 957 958 if (cmp > 0) 959 new = &((*new)->rb_left); 960 else 961 new = &((*new)->rb_right); 962 } 963 964 rb_link_node(&data->node, parent, new); 965 rb_insert_color(&data->node, root); 966 } 967 968 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 969 { 970 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 971 if (!atoms) { 972 pr_err("No memory at %s\n", __func__); 973 return -1; 974 } 975 976 atoms->thread = thread__get(thread); 977 INIT_LIST_HEAD(&atoms->work_list); 978 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 979 return 0; 980 } 981 982 static char sched_out_state(u64 prev_state) 983 { 984 const char *str = TASK_STATE_TO_CHAR_STR; 985 986 return str[prev_state]; 987 } 988 989 static int 990 add_sched_out_event(struct work_atoms *atoms, 991 char run_state, 992 u64 timestamp) 993 { 994 struct work_atom *atom = zalloc(sizeof(*atom)); 995 if (!atom) { 996 pr_err("Non memory at %s", __func__); 997 return -1; 998 } 999 1000 atom->sched_out_time = timestamp; 1001 1002 if (run_state == 'R') { 1003 atom->state = THREAD_WAIT_CPU; 1004 atom->wake_up_time = atom->sched_out_time; 1005 } 1006 1007 list_add_tail(&atom->list, &atoms->work_list); 1008 return 0; 1009 } 1010 1011 static void 1012 add_runtime_event(struct work_atoms *atoms, u64 delta, 1013 u64 timestamp __maybe_unused) 1014 { 1015 struct work_atom *atom; 1016 1017 BUG_ON(list_empty(&atoms->work_list)); 1018 1019 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1020 1021 atom->runtime += delta; 1022 atoms->total_runtime += delta; 1023 } 1024 1025 static void 1026 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1027 { 1028 struct work_atom *atom; 1029 u64 delta; 1030 1031 if (list_empty(&atoms->work_list)) 1032 return; 1033 1034 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1035 1036 if (atom->state != THREAD_WAIT_CPU) 1037 return; 1038 1039 if (timestamp < atom->wake_up_time) { 1040 atom->state = THREAD_IGNORE; 1041 return; 1042 } 1043 1044 atom->state = THREAD_SCHED_IN; 1045 atom->sched_in_time = timestamp; 1046 1047 delta = atom->sched_in_time - atom->wake_up_time; 1048 atoms->total_lat += delta; 1049 if (delta > atoms->max_lat) { 1050 atoms->max_lat = delta; 1051 atoms->max_lat_at = timestamp; 1052 } 1053 atoms->nb_atoms++; 1054 } 1055 1056 static int latency_switch_event(struct perf_sched *sched, 1057 struct perf_evsel *evsel, 1058 struct perf_sample *sample, 1059 struct machine *machine) 1060 { 1061 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1062 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1063 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 1064 struct work_atoms *out_events, *in_events; 1065 struct thread *sched_out, *sched_in; 1066 u64 timestamp0, timestamp = sample->time; 1067 int cpu = sample->cpu, err = -1; 1068 s64 delta; 1069 1070 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1071 1072 timestamp0 = sched->cpu_last_switched[cpu]; 1073 sched->cpu_last_switched[cpu] = timestamp; 1074 if (timestamp0) 1075 delta = timestamp - timestamp0; 1076 else 1077 delta = 0; 1078 1079 if (delta < 0) { 1080 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1081 return -1; 1082 } 1083 1084 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1085 sched_in = machine__findnew_thread(machine, -1, next_pid); 1086 if (sched_out == NULL || sched_in == NULL) 1087 goto out_put; 1088 1089 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1090 if (!out_events) { 1091 if (thread_atoms_insert(sched, sched_out)) 1092 goto out_put; 1093 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1094 if (!out_events) { 1095 pr_err("out-event: Internal tree error"); 1096 goto out_put; 1097 } 1098 } 1099 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1100 return -1; 1101 1102 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1103 if (!in_events) { 1104 if (thread_atoms_insert(sched, sched_in)) 1105 goto out_put; 1106 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1107 if (!in_events) { 1108 pr_err("in-event: Internal tree error"); 1109 goto out_put; 1110 } 1111 /* 1112 * Take came in we have not heard about yet, 1113 * add in an initial atom in runnable state: 1114 */ 1115 if (add_sched_out_event(in_events, 'R', timestamp)) 1116 goto out_put; 1117 } 1118 add_sched_in_event(in_events, timestamp); 1119 err = 0; 1120 out_put: 1121 thread__put(sched_out); 1122 thread__put(sched_in); 1123 return err; 1124 } 1125 1126 static int latency_runtime_event(struct perf_sched *sched, 1127 struct perf_evsel *evsel, 1128 struct perf_sample *sample, 1129 struct machine *machine) 1130 { 1131 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1132 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 1133 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1134 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1135 u64 timestamp = sample->time; 1136 int cpu = sample->cpu, err = -1; 1137 1138 if (thread == NULL) 1139 return -1; 1140 1141 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1142 if (!atoms) { 1143 if (thread_atoms_insert(sched, thread)) 1144 goto out_put; 1145 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1146 if (!atoms) { 1147 pr_err("in-event: Internal tree error"); 1148 goto out_put; 1149 } 1150 if (add_sched_out_event(atoms, 'R', timestamp)) 1151 goto out_put; 1152 } 1153 1154 add_runtime_event(atoms, runtime, timestamp); 1155 err = 0; 1156 out_put: 1157 thread__put(thread); 1158 return err; 1159 } 1160 1161 static int latency_wakeup_event(struct perf_sched *sched, 1162 struct perf_evsel *evsel, 1163 struct perf_sample *sample, 1164 struct machine *machine) 1165 { 1166 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1167 struct work_atoms *atoms; 1168 struct work_atom *atom; 1169 struct thread *wakee; 1170 u64 timestamp = sample->time; 1171 int err = -1; 1172 1173 wakee = machine__findnew_thread(machine, -1, pid); 1174 if (wakee == NULL) 1175 return -1; 1176 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1177 if (!atoms) { 1178 if (thread_atoms_insert(sched, wakee)) 1179 goto out_put; 1180 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1181 if (!atoms) { 1182 pr_err("wakeup-event: Internal tree error"); 1183 goto out_put; 1184 } 1185 if (add_sched_out_event(atoms, 'S', timestamp)) 1186 goto out_put; 1187 } 1188 1189 BUG_ON(list_empty(&atoms->work_list)); 1190 1191 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1192 1193 /* 1194 * As we do not guarantee the wakeup event happens when 1195 * task is out of run queue, also may happen when task is 1196 * on run queue and wakeup only change ->state to TASK_RUNNING, 1197 * then we should not set the ->wake_up_time when wake up a 1198 * task which is on run queue. 1199 * 1200 * You WILL be missing events if you've recorded only 1201 * one CPU, or are only looking at only one, so don't 1202 * skip in this case. 1203 */ 1204 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1205 goto out_ok; 1206 1207 sched->nr_timestamps++; 1208 if (atom->sched_out_time > timestamp) { 1209 sched->nr_unordered_timestamps++; 1210 goto out_ok; 1211 } 1212 1213 atom->state = THREAD_WAIT_CPU; 1214 atom->wake_up_time = timestamp; 1215 out_ok: 1216 err = 0; 1217 out_put: 1218 thread__put(wakee); 1219 return err; 1220 } 1221 1222 static int latency_migrate_task_event(struct perf_sched *sched, 1223 struct perf_evsel *evsel, 1224 struct perf_sample *sample, 1225 struct machine *machine) 1226 { 1227 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1228 u64 timestamp = sample->time; 1229 struct work_atoms *atoms; 1230 struct work_atom *atom; 1231 struct thread *migrant; 1232 int err = -1; 1233 1234 /* 1235 * Only need to worry about migration when profiling one CPU. 1236 */ 1237 if (sched->profile_cpu == -1) 1238 return 0; 1239 1240 migrant = machine__findnew_thread(machine, -1, pid); 1241 if (migrant == NULL) 1242 return -1; 1243 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1244 if (!atoms) { 1245 if (thread_atoms_insert(sched, migrant)) 1246 goto out_put; 1247 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1248 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1249 if (!atoms) { 1250 pr_err("migration-event: Internal tree error"); 1251 goto out_put; 1252 } 1253 if (add_sched_out_event(atoms, 'R', timestamp)) 1254 goto out_put; 1255 } 1256 1257 BUG_ON(list_empty(&atoms->work_list)); 1258 1259 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1260 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1261 1262 sched->nr_timestamps++; 1263 1264 if (atom->sched_out_time > timestamp) 1265 sched->nr_unordered_timestamps++; 1266 err = 0; 1267 out_put: 1268 thread__put(migrant); 1269 return err; 1270 } 1271 1272 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1273 { 1274 int i; 1275 int ret; 1276 u64 avg; 1277 char max_lat_at[32]; 1278 1279 if (!work_list->nb_atoms) 1280 return; 1281 /* 1282 * Ignore idle threads: 1283 */ 1284 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1285 return; 1286 1287 sched->all_runtime += work_list->total_runtime; 1288 sched->all_count += work_list->nb_atoms; 1289 1290 if (work_list->num_merged > 1) 1291 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1292 else 1293 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1294 1295 for (i = 0; i < 24 - ret; i++) 1296 printf(" "); 1297 1298 avg = work_list->total_lat / work_list->nb_atoms; 1299 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at)); 1300 1301 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n", 1302 (double)work_list->total_runtime / NSEC_PER_MSEC, 1303 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1304 (double)work_list->max_lat / NSEC_PER_MSEC, 1305 max_lat_at); 1306 } 1307 1308 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1309 { 1310 if (l->thread == r->thread) 1311 return 0; 1312 if (l->thread->tid < r->thread->tid) 1313 return -1; 1314 if (l->thread->tid > r->thread->tid) 1315 return 1; 1316 return (int)(l->thread - r->thread); 1317 } 1318 1319 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1320 { 1321 u64 avgl, avgr; 1322 1323 if (!l->nb_atoms) 1324 return -1; 1325 1326 if (!r->nb_atoms) 1327 return 1; 1328 1329 avgl = l->total_lat / l->nb_atoms; 1330 avgr = r->total_lat / r->nb_atoms; 1331 1332 if (avgl < avgr) 1333 return -1; 1334 if (avgl > avgr) 1335 return 1; 1336 1337 return 0; 1338 } 1339 1340 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1341 { 1342 if (l->max_lat < r->max_lat) 1343 return -1; 1344 if (l->max_lat > r->max_lat) 1345 return 1; 1346 1347 return 0; 1348 } 1349 1350 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1351 { 1352 if (l->nb_atoms < r->nb_atoms) 1353 return -1; 1354 if (l->nb_atoms > r->nb_atoms) 1355 return 1; 1356 1357 return 0; 1358 } 1359 1360 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1361 { 1362 if (l->total_runtime < r->total_runtime) 1363 return -1; 1364 if (l->total_runtime > r->total_runtime) 1365 return 1; 1366 1367 return 0; 1368 } 1369 1370 static int sort_dimension__add(const char *tok, struct list_head *list) 1371 { 1372 size_t i; 1373 static struct sort_dimension avg_sort_dimension = { 1374 .name = "avg", 1375 .cmp = avg_cmp, 1376 }; 1377 static struct sort_dimension max_sort_dimension = { 1378 .name = "max", 1379 .cmp = max_cmp, 1380 }; 1381 static struct sort_dimension pid_sort_dimension = { 1382 .name = "pid", 1383 .cmp = pid_cmp, 1384 }; 1385 static struct sort_dimension runtime_sort_dimension = { 1386 .name = "runtime", 1387 .cmp = runtime_cmp, 1388 }; 1389 static struct sort_dimension switch_sort_dimension = { 1390 .name = "switch", 1391 .cmp = switch_cmp, 1392 }; 1393 struct sort_dimension *available_sorts[] = { 1394 &pid_sort_dimension, 1395 &avg_sort_dimension, 1396 &max_sort_dimension, 1397 &switch_sort_dimension, 1398 &runtime_sort_dimension, 1399 }; 1400 1401 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1402 if (!strcmp(available_sorts[i]->name, tok)) { 1403 list_add_tail(&available_sorts[i]->list, list); 1404 1405 return 0; 1406 } 1407 } 1408 1409 return -1; 1410 } 1411 1412 static void perf_sched__sort_lat(struct perf_sched *sched) 1413 { 1414 struct rb_node *node; 1415 struct rb_root *root = &sched->atom_root; 1416 again: 1417 for (;;) { 1418 struct work_atoms *data; 1419 node = rb_first(root); 1420 if (!node) 1421 break; 1422 1423 rb_erase(node, root); 1424 data = rb_entry(node, struct work_atoms, node); 1425 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1426 } 1427 if (root == &sched->atom_root) { 1428 root = &sched->merged_atom_root; 1429 goto again; 1430 } 1431 } 1432 1433 static int process_sched_wakeup_event(struct perf_tool *tool, 1434 struct perf_evsel *evsel, 1435 struct perf_sample *sample, 1436 struct machine *machine) 1437 { 1438 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1439 1440 if (sched->tp_handler->wakeup_event) 1441 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1442 1443 return 0; 1444 } 1445 1446 union map_priv { 1447 void *ptr; 1448 bool color; 1449 }; 1450 1451 static bool thread__has_color(struct thread *thread) 1452 { 1453 union map_priv priv = { 1454 .ptr = thread__priv(thread), 1455 }; 1456 1457 return priv.color; 1458 } 1459 1460 static struct thread* 1461 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1462 { 1463 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1464 union map_priv priv = { 1465 .color = false, 1466 }; 1467 1468 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1469 return thread; 1470 1471 if (thread_map__has(sched->map.color_pids, tid)) 1472 priv.color = true; 1473 1474 thread__set_priv(thread, priv.ptr); 1475 return thread; 1476 } 1477 1478 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, 1479 struct perf_sample *sample, struct machine *machine) 1480 { 1481 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1482 struct thread *sched_in; 1483 int new_shortname; 1484 u64 timestamp0, timestamp = sample->time; 1485 s64 delta; 1486 int i, this_cpu = sample->cpu; 1487 int cpus_nr; 1488 bool new_cpu = false; 1489 const char *color = PERF_COLOR_NORMAL; 1490 char stimestamp[32]; 1491 1492 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1493 1494 if (this_cpu > sched->max_cpu) 1495 sched->max_cpu = this_cpu; 1496 1497 if (sched->map.comp) { 1498 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1499 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { 1500 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1501 new_cpu = true; 1502 } 1503 } else 1504 cpus_nr = sched->max_cpu; 1505 1506 timestamp0 = sched->cpu_last_switched[this_cpu]; 1507 sched->cpu_last_switched[this_cpu] = timestamp; 1508 if (timestamp0) 1509 delta = timestamp - timestamp0; 1510 else 1511 delta = 0; 1512 1513 if (delta < 0) { 1514 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1515 return -1; 1516 } 1517 1518 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1519 if (sched_in == NULL) 1520 return -1; 1521 1522 sched->curr_thread[this_cpu] = thread__get(sched_in); 1523 1524 printf(" "); 1525 1526 new_shortname = 0; 1527 if (!sched_in->shortname[0]) { 1528 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1529 /* 1530 * Don't allocate a letter-number for swapper:0 1531 * as a shortname. Instead, we use '.' for it. 1532 */ 1533 sched_in->shortname[0] = '.'; 1534 sched_in->shortname[1] = ' '; 1535 } else { 1536 sched_in->shortname[0] = sched->next_shortname1; 1537 sched_in->shortname[1] = sched->next_shortname2; 1538 1539 if (sched->next_shortname1 < 'Z') { 1540 sched->next_shortname1++; 1541 } else { 1542 sched->next_shortname1 = 'A'; 1543 if (sched->next_shortname2 < '9') 1544 sched->next_shortname2++; 1545 else 1546 sched->next_shortname2 = '0'; 1547 } 1548 } 1549 new_shortname = 1; 1550 } 1551 1552 for (i = 0; i < cpus_nr; i++) { 1553 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; 1554 struct thread *curr_thread = sched->curr_thread[cpu]; 1555 const char *pid_color = color; 1556 const char *cpu_color = color; 1557 1558 if (curr_thread && thread__has_color(curr_thread)) 1559 pid_color = COLOR_PIDS; 1560 1561 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) 1562 continue; 1563 1564 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) 1565 cpu_color = COLOR_CPUS; 1566 1567 if (cpu != this_cpu) 1568 color_fprintf(stdout, color, " "); 1569 else 1570 color_fprintf(stdout, cpu_color, "*"); 1571 1572 if (sched->curr_thread[cpu]) 1573 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname); 1574 else 1575 color_fprintf(stdout, color, " "); 1576 } 1577 1578 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) 1579 goto out; 1580 1581 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1582 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1583 if (new_shortname || (verbose > 0 && sched_in->tid)) { 1584 const char *pid_color = color; 1585 1586 if (thread__has_color(sched_in)) 1587 pid_color = COLOR_PIDS; 1588 1589 color_fprintf(stdout, pid_color, "%s => %s:%d", 1590 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); 1591 } 1592 1593 if (sched->map.comp && new_cpu) 1594 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1595 1596 out: 1597 color_fprintf(stdout, color, "\n"); 1598 1599 thread__put(sched_in); 1600 1601 return 0; 1602 } 1603 1604 static int process_sched_switch_event(struct perf_tool *tool, 1605 struct perf_evsel *evsel, 1606 struct perf_sample *sample, 1607 struct machine *machine) 1608 { 1609 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1610 int this_cpu = sample->cpu, err = 0; 1611 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1612 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1613 1614 if (sched->curr_pid[this_cpu] != (u32)-1) { 1615 /* 1616 * Are we trying to switch away a PID that is 1617 * not current? 1618 */ 1619 if (sched->curr_pid[this_cpu] != prev_pid) 1620 sched->nr_context_switch_bugs++; 1621 } 1622 1623 if (sched->tp_handler->switch_event) 1624 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1625 1626 sched->curr_pid[this_cpu] = next_pid; 1627 return err; 1628 } 1629 1630 static int process_sched_runtime_event(struct perf_tool *tool, 1631 struct perf_evsel *evsel, 1632 struct perf_sample *sample, 1633 struct machine *machine) 1634 { 1635 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1636 1637 if (sched->tp_handler->runtime_event) 1638 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1639 1640 return 0; 1641 } 1642 1643 static int perf_sched__process_fork_event(struct perf_tool *tool, 1644 union perf_event *event, 1645 struct perf_sample *sample, 1646 struct machine *machine) 1647 { 1648 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1649 1650 /* run the fork event through the perf machineruy */ 1651 perf_event__process_fork(tool, event, sample, machine); 1652 1653 /* and then run additional processing needed for this command */ 1654 if (sched->tp_handler->fork_event) 1655 return sched->tp_handler->fork_event(sched, event, machine); 1656 1657 return 0; 1658 } 1659 1660 static int process_sched_migrate_task_event(struct perf_tool *tool, 1661 struct perf_evsel *evsel, 1662 struct perf_sample *sample, 1663 struct machine *machine) 1664 { 1665 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1666 1667 if (sched->tp_handler->migrate_task_event) 1668 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1669 1670 return 0; 1671 } 1672 1673 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1674 struct perf_evsel *evsel, 1675 struct perf_sample *sample, 1676 struct machine *machine); 1677 1678 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1679 union perf_event *event __maybe_unused, 1680 struct perf_sample *sample, 1681 struct perf_evsel *evsel, 1682 struct machine *machine) 1683 { 1684 int err = 0; 1685 1686 if (evsel->handler != NULL) { 1687 tracepoint_handler f = evsel->handler; 1688 err = f(tool, evsel, sample, machine); 1689 } 1690 1691 return err; 1692 } 1693 1694 static int perf_sched__read_events(struct perf_sched *sched) 1695 { 1696 const struct perf_evsel_str_handler handlers[] = { 1697 { "sched:sched_switch", process_sched_switch_event, }, 1698 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1699 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1700 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1701 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1702 }; 1703 struct perf_session *session; 1704 struct perf_data data = { 1705 .file = { 1706 .path = input_name, 1707 }, 1708 .mode = PERF_DATA_MODE_READ, 1709 .force = sched->force, 1710 }; 1711 int rc = -1; 1712 1713 session = perf_session__new(&data, false, &sched->tool); 1714 if (session == NULL) { 1715 pr_debug("No Memory for session\n"); 1716 return -1; 1717 } 1718 1719 symbol__init(&session->header.env); 1720 1721 if (perf_session__set_tracepoints_handlers(session, handlers)) 1722 goto out_delete; 1723 1724 if (perf_session__has_traces(session, "record -R")) { 1725 int err = perf_session__process_events(session); 1726 if (err) { 1727 pr_err("Failed to process events, error %d", err); 1728 goto out_delete; 1729 } 1730 1731 sched->nr_events = session->evlist->stats.nr_events[0]; 1732 sched->nr_lost_events = session->evlist->stats.total_lost; 1733 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1734 } 1735 1736 rc = 0; 1737 out_delete: 1738 perf_session__delete(session); 1739 return rc; 1740 } 1741 1742 /* 1743 * scheduling times are printed as msec.usec 1744 */ 1745 static inline void print_sched_time(unsigned long long nsecs, int width) 1746 { 1747 unsigned long msecs; 1748 unsigned long usecs; 1749 1750 msecs = nsecs / NSEC_PER_MSEC; 1751 nsecs -= msecs * NSEC_PER_MSEC; 1752 usecs = nsecs / NSEC_PER_USEC; 1753 printf("%*lu.%03lu ", width, msecs, usecs); 1754 } 1755 1756 /* 1757 * returns runtime data for event, allocating memory for it the 1758 * first time it is used. 1759 */ 1760 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel) 1761 { 1762 struct evsel_runtime *r = evsel->priv; 1763 1764 if (r == NULL) { 1765 r = zalloc(sizeof(struct evsel_runtime)); 1766 evsel->priv = r; 1767 } 1768 1769 return r; 1770 } 1771 1772 /* 1773 * save last time event was seen per cpu 1774 */ 1775 static void perf_evsel__save_time(struct perf_evsel *evsel, 1776 u64 timestamp, u32 cpu) 1777 { 1778 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1779 1780 if (r == NULL) 1781 return; 1782 1783 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1784 int i, n = __roundup_pow_of_two(cpu+1); 1785 void *p = r->last_time; 1786 1787 p = realloc(r->last_time, n * sizeof(u64)); 1788 if (!p) 1789 return; 1790 1791 r->last_time = p; 1792 for (i = r->ncpu; i < n; ++i) 1793 r->last_time[i] = (u64) 0; 1794 1795 r->ncpu = n; 1796 } 1797 1798 r->last_time[cpu] = timestamp; 1799 } 1800 1801 /* returns last time this event was seen on the given cpu */ 1802 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu) 1803 { 1804 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1805 1806 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1807 return 0; 1808 1809 return r->last_time[cpu]; 1810 } 1811 1812 static int comm_width = 30; 1813 1814 static char *timehist_get_commstr(struct thread *thread) 1815 { 1816 static char str[32]; 1817 const char *comm = thread__comm_str(thread); 1818 pid_t tid = thread->tid; 1819 pid_t pid = thread->pid_; 1820 int n; 1821 1822 if (pid == 0) 1823 n = scnprintf(str, sizeof(str), "%s", comm); 1824 1825 else if (tid != pid) 1826 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1827 1828 else 1829 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1830 1831 if (n > comm_width) 1832 comm_width = n; 1833 1834 return str; 1835 } 1836 1837 static void timehist_header(struct perf_sched *sched) 1838 { 1839 u32 ncpus = sched->max_cpu + 1; 1840 u32 i, j; 1841 1842 printf("%15s %6s ", "time", "cpu"); 1843 1844 if (sched->show_cpu_visual) { 1845 printf(" "); 1846 for (i = 0, j = 0; i < ncpus; ++i) { 1847 printf("%x", j++); 1848 if (j > 15) 1849 j = 0; 1850 } 1851 printf(" "); 1852 } 1853 1854 printf(" %-*s %9s %9s %9s", comm_width, 1855 "task name", "wait time", "sch delay", "run time"); 1856 1857 if (sched->show_state) 1858 printf(" %s", "state"); 1859 1860 printf("\n"); 1861 1862 /* 1863 * units row 1864 */ 1865 printf("%15s %-6s ", "", ""); 1866 1867 if (sched->show_cpu_visual) 1868 printf(" %*s ", ncpus, ""); 1869 1870 printf(" %-*s %9s %9s %9s", comm_width, 1871 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 1872 1873 if (sched->show_state) 1874 printf(" %5s", ""); 1875 1876 printf("\n"); 1877 1878 /* 1879 * separator 1880 */ 1881 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 1882 1883 if (sched->show_cpu_visual) 1884 printf(" %.*s ", ncpus, graph_dotted_line); 1885 1886 printf(" %.*s %.9s %.9s %.9s", comm_width, 1887 graph_dotted_line, graph_dotted_line, graph_dotted_line, 1888 graph_dotted_line); 1889 1890 if (sched->show_state) 1891 printf(" %.5s", graph_dotted_line); 1892 1893 printf("\n"); 1894 } 1895 1896 static char task_state_char(struct thread *thread, int state) 1897 { 1898 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 1899 unsigned bit = state ? ffs(state) : 0; 1900 1901 /* 'I' for idle */ 1902 if (thread->tid == 0) 1903 return 'I'; 1904 1905 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 1906 } 1907 1908 static void timehist_print_sample(struct perf_sched *sched, 1909 struct perf_evsel *evsel, 1910 struct perf_sample *sample, 1911 struct addr_location *al, 1912 struct thread *thread, 1913 u64 t, int state) 1914 { 1915 struct thread_runtime *tr = thread__priv(thread); 1916 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 1917 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1918 u32 max_cpus = sched->max_cpu + 1; 1919 char tstr[64]; 1920 char nstr[30]; 1921 u64 wait_time; 1922 1923 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 1924 printf("%15s [%04d] ", tstr, sample->cpu); 1925 1926 if (sched->show_cpu_visual) { 1927 u32 i; 1928 char c; 1929 1930 printf(" "); 1931 for (i = 0; i < max_cpus; ++i) { 1932 /* flag idle times with 'i'; others are sched events */ 1933 if (i == sample->cpu) 1934 c = (thread->tid == 0) ? 'i' : 's'; 1935 else 1936 c = ' '; 1937 printf("%c", c); 1938 } 1939 printf(" "); 1940 } 1941 1942 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 1943 1944 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 1945 print_sched_time(wait_time, 6); 1946 1947 print_sched_time(tr->dt_delay, 6); 1948 print_sched_time(tr->dt_run, 6); 1949 1950 if (sched->show_state) 1951 printf(" %5c ", task_state_char(thread, state)); 1952 1953 if (sched->show_next) { 1954 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 1955 printf(" %-*s", comm_width, nstr); 1956 } 1957 1958 if (sched->show_wakeups && !sched->show_next) 1959 printf(" %-*s", comm_width, ""); 1960 1961 if (thread->tid == 0) 1962 goto out; 1963 1964 if (sched->show_callchain) 1965 printf(" "); 1966 1967 sample__fprintf_sym(sample, al, 0, 1968 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 1969 EVSEL__PRINT_CALLCHAIN_ARROW | 1970 EVSEL__PRINT_SKIP_IGNORED, 1971 &callchain_cursor, stdout); 1972 1973 out: 1974 printf("\n"); 1975 } 1976 1977 /* 1978 * Explanation of delta-time stats: 1979 * 1980 * t = time of current schedule out event 1981 * tprev = time of previous sched out event 1982 * also time of schedule-in event for current task 1983 * last_time = time of last sched change event for current task 1984 * (i.e, time process was last scheduled out) 1985 * ready_to_run = time of wakeup for current task 1986 * 1987 * -----|------------|------------|------------|------ 1988 * last ready tprev t 1989 * time to run 1990 * 1991 * |-------- dt_wait --------| 1992 * |- dt_delay -|-- dt_run --| 1993 * 1994 * dt_run = run time of current task 1995 * dt_wait = time between last schedule out event for task and tprev 1996 * represents time spent off the cpu 1997 * dt_delay = time between wakeup and schedule-in of task 1998 */ 1999 2000 static void timehist_update_runtime_stats(struct thread_runtime *r, 2001 u64 t, u64 tprev) 2002 { 2003 r->dt_delay = 0; 2004 r->dt_sleep = 0; 2005 r->dt_iowait = 0; 2006 r->dt_preempt = 0; 2007 r->dt_run = 0; 2008 2009 if (tprev) { 2010 r->dt_run = t - tprev; 2011 if (r->ready_to_run) { 2012 if (r->ready_to_run > tprev) 2013 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2014 else 2015 r->dt_delay = tprev - r->ready_to_run; 2016 } 2017 2018 if (r->last_time > tprev) 2019 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2020 else if (r->last_time) { 2021 u64 dt_wait = tprev - r->last_time; 2022 2023 if (r->last_state == TASK_RUNNING) 2024 r->dt_preempt = dt_wait; 2025 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2026 r->dt_iowait = dt_wait; 2027 else 2028 r->dt_sleep = dt_wait; 2029 } 2030 } 2031 2032 update_stats(&r->run_stats, r->dt_run); 2033 2034 r->total_run_time += r->dt_run; 2035 r->total_delay_time += r->dt_delay; 2036 r->total_sleep_time += r->dt_sleep; 2037 r->total_iowait_time += r->dt_iowait; 2038 r->total_preempt_time += r->dt_preempt; 2039 } 2040 2041 static bool is_idle_sample(struct perf_sample *sample, 2042 struct perf_evsel *evsel) 2043 { 2044 /* pid 0 == swapper == idle task */ 2045 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0) 2046 return perf_evsel__intval(evsel, sample, "prev_pid") == 0; 2047 2048 return sample->pid == 0; 2049 } 2050 2051 static void save_task_callchain(struct perf_sched *sched, 2052 struct perf_sample *sample, 2053 struct perf_evsel *evsel, 2054 struct machine *machine) 2055 { 2056 struct callchain_cursor *cursor = &callchain_cursor; 2057 struct thread *thread; 2058 2059 /* want main thread for process - has maps */ 2060 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2061 if (thread == NULL) { 2062 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2063 return; 2064 } 2065 2066 if (!symbol_conf.use_callchain || sample->callchain == NULL) 2067 return; 2068 2069 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2070 NULL, NULL, sched->max_stack + 2) != 0) { 2071 if (verbose > 0) 2072 pr_err("Failed to resolve callchain. Skipping\n"); 2073 2074 return; 2075 } 2076 2077 callchain_cursor_commit(cursor); 2078 2079 while (true) { 2080 struct callchain_cursor_node *node; 2081 struct symbol *sym; 2082 2083 node = callchain_cursor_current(cursor); 2084 if (node == NULL) 2085 break; 2086 2087 sym = node->sym; 2088 if (sym) { 2089 if (!strcmp(sym->name, "schedule") || 2090 !strcmp(sym->name, "__schedule") || 2091 !strcmp(sym->name, "preempt_schedule")) 2092 sym->ignore = 1; 2093 } 2094 2095 callchain_cursor_advance(cursor); 2096 } 2097 } 2098 2099 static int init_idle_thread(struct thread *thread) 2100 { 2101 struct idle_thread_runtime *itr; 2102 2103 thread__set_comm(thread, idle_comm, 0); 2104 2105 itr = zalloc(sizeof(*itr)); 2106 if (itr == NULL) 2107 return -ENOMEM; 2108 2109 init_stats(&itr->tr.run_stats); 2110 callchain_init(&itr->callchain); 2111 callchain_cursor_reset(&itr->cursor); 2112 thread__set_priv(thread, itr); 2113 2114 return 0; 2115 } 2116 2117 /* 2118 * Track idle stats per cpu by maintaining a local thread 2119 * struct for the idle task on each cpu. 2120 */ 2121 static int init_idle_threads(int ncpu) 2122 { 2123 int i, ret; 2124 2125 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2126 if (!idle_threads) 2127 return -ENOMEM; 2128 2129 idle_max_cpu = ncpu; 2130 2131 /* allocate the actual thread struct if needed */ 2132 for (i = 0; i < ncpu; ++i) { 2133 idle_threads[i] = thread__new(0, 0); 2134 if (idle_threads[i] == NULL) 2135 return -ENOMEM; 2136 2137 ret = init_idle_thread(idle_threads[i]); 2138 if (ret < 0) 2139 return ret; 2140 } 2141 2142 return 0; 2143 } 2144 2145 static void free_idle_threads(void) 2146 { 2147 int i; 2148 2149 if (idle_threads == NULL) 2150 return; 2151 2152 for (i = 0; i < idle_max_cpu; ++i) { 2153 if ((idle_threads[i])) 2154 thread__delete(idle_threads[i]); 2155 } 2156 2157 free(idle_threads); 2158 } 2159 2160 static struct thread *get_idle_thread(int cpu) 2161 { 2162 /* 2163 * expand/allocate array of pointers to local thread 2164 * structs if needed 2165 */ 2166 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2167 int i, j = __roundup_pow_of_two(cpu+1); 2168 void *p; 2169 2170 p = realloc(idle_threads, j * sizeof(struct thread *)); 2171 if (!p) 2172 return NULL; 2173 2174 idle_threads = (struct thread **) p; 2175 for (i = idle_max_cpu; i < j; ++i) 2176 idle_threads[i] = NULL; 2177 2178 idle_max_cpu = j; 2179 } 2180 2181 /* allocate a new thread struct if needed */ 2182 if (idle_threads[cpu] == NULL) { 2183 idle_threads[cpu] = thread__new(0, 0); 2184 2185 if (idle_threads[cpu]) { 2186 if (init_idle_thread(idle_threads[cpu]) < 0) 2187 return NULL; 2188 } 2189 } 2190 2191 return idle_threads[cpu]; 2192 } 2193 2194 static void save_idle_callchain(struct idle_thread_runtime *itr, 2195 struct perf_sample *sample) 2196 { 2197 if (!symbol_conf.use_callchain || sample->callchain == NULL) 2198 return; 2199 2200 callchain_cursor__copy(&itr->cursor, &callchain_cursor); 2201 } 2202 2203 /* 2204 * handle runtime stats saved per thread 2205 */ 2206 static struct thread_runtime *thread__init_runtime(struct thread *thread) 2207 { 2208 struct thread_runtime *r; 2209 2210 r = zalloc(sizeof(struct thread_runtime)); 2211 if (!r) 2212 return NULL; 2213 2214 init_stats(&r->run_stats); 2215 thread__set_priv(thread, r); 2216 2217 return r; 2218 } 2219 2220 static struct thread_runtime *thread__get_runtime(struct thread *thread) 2221 { 2222 struct thread_runtime *tr; 2223 2224 tr = thread__priv(thread); 2225 if (tr == NULL) { 2226 tr = thread__init_runtime(thread); 2227 if (tr == NULL) 2228 pr_debug("Failed to malloc memory for runtime data.\n"); 2229 } 2230 2231 return tr; 2232 } 2233 2234 static struct thread *timehist_get_thread(struct perf_sched *sched, 2235 struct perf_sample *sample, 2236 struct machine *machine, 2237 struct perf_evsel *evsel) 2238 { 2239 struct thread *thread; 2240 2241 if (is_idle_sample(sample, evsel)) { 2242 thread = get_idle_thread(sample->cpu); 2243 if (thread == NULL) 2244 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2245 2246 } else { 2247 /* there were samples with tid 0 but non-zero pid */ 2248 thread = machine__findnew_thread(machine, sample->pid, 2249 sample->tid ?: sample->pid); 2250 if (thread == NULL) { 2251 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2252 sample->tid); 2253 } 2254 2255 save_task_callchain(sched, sample, evsel, machine); 2256 if (sched->idle_hist) { 2257 struct thread *idle; 2258 struct idle_thread_runtime *itr; 2259 2260 idle = get_idle_thread(sample->cpu); 2261 if (idle == NULL) { 2262 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2263 return NULL; 2264 } 2265 2266 itr = thread__priv(idle); 2267 if (itr == NULL) 2268 return NULL; 2269 2270 itr->last_thread = thread; 2271 2272 /* copy task callchain when entering to idle */ 2273 if (perf_evsel__intval(evsel, sample, "next_pid") == 0) 2274 save_idle_callchain(itr, sample); 2275 } 2276 } 2277 2278 return thread; 2279 } 2280 2281 static bool timehist_skip_sample(struct perf_sched *sched, 2282 struct thread *thread, 2283 struct perf_evsel *evsel, 2284 struct perf_sample *sample) 2285 { 2286 bool rc = false; 2287 2288 if (thread__is_filtered(thread)) { 2289 rc = true; 2290 sched->skipped_samples++; 2291 } 2292 2293 if (sched->idle_hist) { 2294 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch")) 2295 rc = true; 2296 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 && 2297 perf_evsel__intval(evsel, sample, "next_pid") != 0) 2298 rc = true; 2299 } 2300 2301 return rc; 2302 } 2303 2304 static void timehist_print_wakeup_event(struct perf_sched *sched, 2305 struct perf_evsel *evsel, 2306 struct perf_sample *sample, 2307 struct machine *machine, 2308 struct thread *awakened) 2309 { 2310 struct thread *thread; 2311 char tstr[64]; 2312 2313 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2314 if (thread == NULL) 2315 return; 2316 2317 /* show wakeup unless both awakee and awaker are filtered */ 2318 if (timehist_skip_sample(sched, thread, evsel, sample) && 2319 timehist_skip_sample(sched, awakened, evsel, sample)) { 2320 return; 2321 } 2322 2323 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2324 printf("%15s [%04d] ", tstr, sample->cpu); 2325 if (sched->show_cpu_visual) 2326 printf(" %*s ", sched->max_cpu + 1, ""); 2327 2328 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2329 2330 /* dt spacer */ 2331 printf(" %9s %9s %9s ", "", "", ""); 2332 2333 printf("awakened: %s", timehist_get_commstr(awakened)); 2334 2335 printf("\n"); 2336 } 2337 2338 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2339 union perf_event *event __maybe_unused, 2340 struct perf_evsel *evsel, 2341 struct perf_sample *sample, 2342 struct machine *machine) 2343 { 2344 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2345 struct thread *thread; 2346 struct thread_runtime *tr = NULL; 2347 /* want pid of awakened task not pid in sample */ 2348 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2349 2350 thread = machine__findnew_thread(machine, 0, pid); 2351 if (thread == NULL) 2352 return -1; 2353 2354 tr = thread__get_runtime(thread); 2355 if (tr == NULL) 2356 return -1; 2357 2358 if (tr->ready_to_run == 0) 2359 tr->ready_to_run = sample->time; 2360 2361 /* show wakeups if requested */ 2362 if (sched->show_wakeups && 2363 !perf_time__skip_sample(&sched->ptime, sample->time)) 2364 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2365 2366 return 0; 2367 } 2368 2369 static void timehist_print_migration_event(struct perf_sched *sched, 2370 struct perf_evsel *evsel, 2371 struct perf_sample *sample, 2372 struct machine *machine, 2373 struct thread *migrated) 2374 { 2375 struct thread *thread; 2376 char tstr[64]; 2377 u32 max_cpus = sched->max_cpu + 1; 2378 u32 ocpu, dcpu; 2379 2380 if (sched->summary_only) 2381 return; 2382 2383 max_cpus = sched->max_cpu + 1; 2384 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu"); 2385 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu"); 2386 2387 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2388 if (thread == NULL) 2389 return; 2390 2391 if (timehist_skip_sample(sched, thread, evsel, sample) && 2392 timehist_skip_sample(sched, migrated, evsel, sample)) { 2393 return; 2394 } 2395 2396 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2397 printf("%15s [%04d] ", tstr, sample->cpu); 2398 2399 if (sched->show_cpu_visual) { 2400 u32 i; 2401 char c; 2402 2403 printf(" "); 2404 for (i = 0; i < max_cpus; ++i) { 2405 c = (i == sample->cpu) ? 'm' : ' '; 2406 printf("%c", c); 2407 } 2408 printf(" "); 2409 } 2410 2411 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2412 2413 /* dt spacer */ 2414 printf(" %9s %9s %9s ", "", "", ""); 2415 2416 printf("migrated: %s", timehist_get_commstr(migrated)); 2417 printf(" cpu %d => %d", ocpu, dcpu); 2418 2419 printf("\n"); 2420 } 2421 2422 static int timehist_migrate_task_event(struct perf_tool *tool, 2423 union perf_event *event __maybe_unused, 2424 struct perf_evsel *evsel, 2425 struct perf_sample *sample, 2426 struct machine *machine) 2427 { 2428 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2429 struct thread *thread; 2430 struct thread_runtime *tr = NULL; 2431 /* want pid of migrated task not pid in sample */ 2432 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2433 2434 thread = machine__findnew_thread(machine, 0, pid); 2435 if (thread == NULL) 2436 return -1; 2437 2438 tr = thread__get_runtime(thread); 2439 if (tr == NULL) 2440 return -1; 2441 2442 tr->migrations++; 2443 2444 /* show migrations if requested */ 2445 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2446 2447 return 0; 2448 } 2449 2450 static int timehist_sched_change_event(struct perf_tool *tool, 2451 union perf_event *event, 2452 struct perf_evsel *evsel, 2453 struct perf_sample *sample, 2454 struct machine *machine) 2455 { 2456 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2457 struct perf_time_interval *ptime = &sched->ptime; 2458 struct addr_location al; 2459 struct thread *thread; 2460 struct thread_runtime *tr = NULL; 2461 u64 tprev, t = sample->time; 2462 int rc = 0; 2463 int state = perf_evsel__intval(evsel, sample, "prev_state"); 2464 2465 2466 if (machine__resolve(machine, &al, sample) < 0) { 2467 pr_err("problem processing %d event. skipping it\n", 2468 event->header.type); 2469 rc = -1; 2470 goto out; 2471 } 2472 2473 thread = timehist_get_thread(sched, sample, machine, evsel); 2474 if (thread == NULL) { 2475 rc = -1; 2476 goto out; 2477 } 2478 2479 if (timehist_skip_sample(sched, thread, evsel, sample)) 2480 goto out; 2481 2482 tr = thread__get_runtime(thread); 2483 if (tr == NULL) { 2484 rc = -1; 2485 goto out; 2486 } 2487 2488 tprev = perf_evsel__get_time(evsel, sample->cpu); 2489 2490 /* 2491 * If start time given: 2492 * - sample time is under window user cares about - skip sample 2493 * - tprev is under window user cares about - reset to start of window 2494 */ 2495 if (ptime->start && ptime->start > t) 2496 goto out; 2497 2498 if (tprev && ptime->start > tprev) 2499 tprev = ptime->start; 2500 2501 /* 2502 * If end time given: 2503 * - previous sched event is out of window - we are done 2504 * - sample time is beyond window user cares about - reset it 2505 * to close out stats for time window interest 2506 */ 2507 if (ptime->end) { 2508 if (tprev > ptime->end) 2509 goto out; 2510 2511 if (t > ptime->end) 2512 t = ptime->end; 2513 } 2514 2515 if (!sched->idle_hist || thread->tid == 0) { 2516 timehist_update_runtime_stats(tr, t, tprev); 2517 2518 if (sched->idle_hist) { 2519 struct idle_thread_runtime *itr = (void *)tr; 2520 struct thread_runtime *last_tr; 2521 2522 BUG_ON(thread->tid != 0); 2523 2524 if (itr->last_thread == NULL) 2525 goto out; 2526 2527 /* add current idle time as last thread's runtime */ 2528 last_tr = thread__get_runtime(itr->last_thread); 2529 if (last_tr == NULL) 2530 goto out; 2531 2532 timehist_update_runtime_stats(last_tr, t, tprev); 2533 /* 2534 * remove delta time of last thread as it's not updated 2535 * and otherwise it will show an invalid value next 2536 * time. we only care total run time and run stat. 2537 */ 2538 last_tr->dt_run = 0; 2539 last_tr->dt_delay = 0; 2540 last_tr->dt_sleep = 0; 2541 last_tr->dt_iowait = 0; 2542 last_tr->dt_preempt = 0; 2543 2544 if (itr->cursor.nr) 2545 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2546 2547 itr->last_thread = NULL; 2548 } 2549 } 2550 2551 if (!sched->summary_only) 2552 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2553 2554 out: 2555 if (sched->hist_time.start == 0 && t >= ptime->start) 2556 sched->hist_time.start = t; 2557 if (ptime->end == 0 || t <= ptime->end) 2558 sched->hist_time.end = t; 2559 2560 if (tr) { 2561 /* time of this sched_switch event becomes last time task seen */ 2562 tr->last_time = sample->time; 2563 2564 /* last state is used to determine where to account wait time */ 2565 tr->last_state = state; 2566 2567 /* sched out event for task so reset ready to run time */ 2568 tr->ready_to_run = 0; 2569 } 2570 2571 perf_evsel__save_time(evsel, sample->time, sample->cpu); 2572 2573 return rc; 2574 } 2575 2576 static int timehist_sched_switch_event(struct perf_tool *tool, 2577 union perf_event *event, 2578 struct perf_evsel *evsel, 2579 struct perf_sample *sample, 2580 struct machine *machine __maybe_unused) 2581 { 2582 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2583 } 2584 2585 static int process_lost(struct perf_tool *tool __maybe_unused, 2586 union perf_event *event, 2587 struct perf_sample *sample, 2588 struct machine *machine __maybe_unused) 2589 { 2590 char tstr[64]; 2591 2592 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2593 printf("%15s ", tstr); 2594 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2595 2596 return 0; 2597 } 2598 2599 2600 static void print_thread_runtime(struct thread *t, 2601 struct thread_runtime *r) 2602 { 2603 double mean = avg_stats(&r->run_stats); 2604 float stddev; 2605 2606 printf("%*s %5d %9" PRIu64 " ", 2607 comm_width, timehist_get_commstr(t), t->ppid, 2608 (u64) r->run_stats.n); 2609 2610 print_sched_time(r->total_run_time, 8); 2611 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2612 print_sched_time(r->run_stats.min, 6); 2613 printf(" "); 2614 print_sched_time((u64) mean, 6); 2615 printf(" "); 2616 print_sched_time(r->run_stats.max, 6); 2617 printf(" "); 2618 printf("%5.2f", stddev); 2619 printf(" %5" PRIu64, r->migrations); 2620 printf("\n"); 2621 } 2622 2623 static void print_thread_waittime(struct thread *t, 2624 struct thread_runtime *r) 2625 { 2626 printf("%*s %5d %9" PRIu64 " ", 2627 comm_width, timehist_get_commstr(t), t->ppid, 2628 (u64) r->run_stats.n); 2629 2630 print_sched_time(r->total_run_time, 8); 2631 print_sched_time(r->total_sleep_time, 6); 2632 printf(" "); 2633 print_sched_time(r->total_iowait_time, 6); 2634 printf(" "); 2635 print_sched_time(r->total_preempt_time, 6); 2636 printf(" "); 2637 print_sched_time(r->total_delay_time, 6); 2638 printf("\n"); 2639 } 2640 2641 struct total_run_stats { 2642 struct perf_sched *sched; 2643 u64 sched_count; 2644 u64 task_count; 2645 u64 total_run_time; 2646 }; 2647 2648 static int __show_thread_runtime(struct thread *t, void *priv) 2649 { 2650 struct total_run_stats *stats = priv; 2651 struct thread_runtime *r; 2652 2653 if (thread__is_filtered(t)) 2654 return 0; 2655 2656 r = thread__priv(t); 2657 if (r && r->run_stats.n) { 2658 stats->task_count++; 2659 stats->sched_count += r->run_stats.n; 2660 stats->total_run_time += r->total_run_time; 2661 2662 if (stats->sched->show_state) 2663 print_thread_waittime(t, r); 2664 else 2665 print_thread_runtime(t, r); 2666 } 2667 2668 return 0; 2669 } 2670 2671 static int show_thread_runtime(struct thread *t, void *priv) 2672 { 2673 if (t->dead) 2674 return 0; 2675 2676 return __show_thread_runtime(t, priv); 2677 } 2678 2679 static int show_deadthread_runtime(struct thread *t, void *priv) 2680 { 2681 if (!t->dead) 2682 return 0; 2683 2684 return __show_thread_runtime(t, priv); 2685 } 2686 2687 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2688 { 2689 const char *sep = " <- "; 2690 struct callchain_list *chain; 2691 size_t ret = 0; 2692 char bf[1024]; 2693 bool first; 2694 2695 if (node == NULL) 2696 return 0; 2697 2698 ret = callchain__fprintf_folded(fp, node->parent); 2699 first = (ret == 0); 2700 2701 list_for_each_entry(chain, &node->val, list) { 2702 if (chain->ip >= PERF_CONTEXT_MAX) 2703 continue; 2704 if (chain->ms.sym && chain->ms.sym->ignore) 2705 continue; 2706 ret += fprintf(fp, "%s%s", first ? "" : sep, 2707 callchain_list__sym_name(chain, bf, sizeof(bf), 2708 false)); 2709 first = false; 2710 } 2711 2712 return ret; 2713 } 2714 2715 static size_t timehist_print_idlehist_callchain(struct rb_root *root) 2716 { 2717 size_t ret = 0; 2718 FILE *fp = stdout; 2719 struct callchain_node *chain; 2720 struct rb_node *rb_node = rb_first(root); 2721 2722 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2723 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2724 graph_dotted_line); 2725 2726 while (rb_node) { 2727 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2728 rb_node = rb_next(rb_node); 2729 2730 ret += fprintf(fp, " "); 2731 print_sched_time(chain->hit, 12); 2732 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2733 ret += fprintf(fp, " %8d ", chain->count); 2734 ret += callchain__fprintf_folded(fp, chain); 2735 ret += fprintf(fp, "\n"); 2736 } 2737 2738 return ret; 2739 } 2740 2741 static void timehist_print_summary(struct perf_sched *sched, 2742 struct perf_session *session) 2743 { 2744 struct machine *m = &session->machines.host; 2745 struct total_run_stats totals; 2746 u64 task_count; 2747 struct thread *t; 2748 struct thread_runtime *r; 2749 int i; 2750 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2751 2752 memset(&totals, 0, sizeof(totals)); 2753 totals.sched = sched; 2754 2755 if (sched->idle_hist) { 2756 printf("\nIdle-time summary\n"); 2757 printf("%*s parent sched-out ", comm_width, "comm"); 2758 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2759 } else if (sched->show_state) { 2760 printf("\nWait-time summary\n"); 2761 printf("%*s parent sched-in ", comm_width, "comm"); 2762 printf(" run-time sleep iowait preempt delay\n"); 2763 } else { 2764 printf("\nRuntime summary\n"); 2765 printf("%*s parent sched-in ", comm_width, "comm"); 2766 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2767 } 2768 printf("%*s (count) ", comm_width, ""); 2769 printf(" (msec) (msec) (msec) (msec) %s\n", 2770 sched->show_state ? "(msec)" : "%"); 2771 printf("%.117s\n", graph_dotted_line); 2772 2773 machine__for_each_thread(m, show_thread_runtime, &totals); 2774 task_count = totals.task_count; 2775 if (!task_count) 2776 printf("<no still running tasks>\n"); 2777 2778 printf("\nTerminated tasks:\n"); 2779 machine__for_each_thread(m, show_deadthread_runtime, &totals); 2780 if (task_count == totals.task_count) 2781 printf("<no terminated tasks>\n"); 2782 2783 /* CPU idle stats not tracked when samples were skipped */ 2784 if (sched->skipped_samples && !sched->idle_hist) 2785 return; 2786 2787 printf("\nIdle stats:\n"); 2788 for (i = 0; i < idle_max_cpu; ++i) { 2789 t = idle_threads[i]; 2790 if (!t) 2791 continue; 2792 2793 r = thread__priv(t); 2794 if (r && r->run_stats.n) { 2795 totals.sched_count += r->run_stats.n; 2796 printf(" CPU %2d idle for ", i); 2797 print_sched_time(r->total_run_time, 6); 2798 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2799 } else 2800 printf(" CPU %2d idle entire time window\n", i); 2801 } 2802 2803 if (sched->idle_hist && symbol_conf.use_callchain) { 2804 callchain_param.mode = CHAIN_FOLDED; 2805 callchain_param.value = CCVAL_PERIOD; 2806 2807 callchain_register_param(&callchain_param); 2808 2809 printf("\nIdle stats by callchain:\n"); 2810 for (i = 0; i < idle_max_cpu; ++i) { 2811 struct idle_thread_runtime *itr; 2812 2813 t = idle_threads[i]; 2814 if (!t) 2815 continue; 2816 2817 itr = thread__priv(t); 2818 if (itr == NULL) 2819 continue; 2820 2821 callchain_param.sort(&itr->sorted_root, &itr->callchain, 2822 0, &callchain_param); 2823 2824 printf(" CPU %2d:", i); 2825 print_sched_time(itr->tr.total_run_time, 6); 2826 printf(" msec\n"); 2827 timehist_print_idlehist_callchain(&itr->sorted_root); 2828 printf("\n"); 2829 } 2830 } 2831 2832 printf("\n" 2833 " Total number of unique tasks: %" PRIu64 "\n" 2834 "Total number of context switches: %" PRIu64 "\n", 2835 totals.task_count, totals.sched_count); 2836 2837 printf(" Total run time (msec): "); 2838 print_sched_time(totals.total_run_time, 2); 2839 printf("\n"); 2840 2841 printf(" Total scheduling time (msec): "); 2842 print_sched_time(hist_time, 2); 2843 printf(" (x %d)\n", sched->max_cpu); 2844 } 2845 2846 typedef int (*sched_handler)(struct perf_tool *tool, 2847 union perf_event *event, 2848 struct perf_evsel *evsel, 2849 struct perf_sample *sample, 2850 struct machine *machine); 2851 2852 static int perf_timehist__process_sample(struct perf_tool *tool, 2853 union perf_event *event, 2854 struct perf_sample *sample, 2855 struct perf_evsel *evsel, 2856 struct machine *machine) 2857 { 2858 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2859 int err = 0; 2860 int this_cpu = sample->cpu; 2861 2862 if (this_cpu > sched->max_cpu) 2863 sched->max_cpu = this_cpu; 2864 2865 if (evsel->handler != NULL) { 2866 sched_handler f = evsel->handler; 2867 2868 err = f(tool, event, evsel, sample, machine); 2869 } 2870 2871 return err; 2872 } 2873 2874 static int timehist_check_attr(struct perf_sched *sched, 2875 struct perf_evlist *evlist) 2876 { 2877 struct perf_evsel *evsel; 2878 struct evsel_runtime *er; 2879 2880 list_for_each_entry(evsel, &evlist->entries, node) { 2881 er = perf_evsel__get_runtime(evsel); 2882 if (er == NULL) { 2883 pr_err("Failed to allocate memory for evsel runtime data\n"); 2884 return -1; 2885 } 2886 2887 if (sched->show_callchain && 2888 !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) { 2889 pr_info("Samples do not have callchains.\n"); 2890 sched->show_callchain = 0; 2891 symbol_conf.use_callchain = 0; 2892 } 2893 } 2894 2895 return 0; 2896 } 2897 2898 static int perf_sched__timehist(struct perf_sched *sched) 2899 { 2900 const struct perf_evsel_str_handler handlers[] = { 2901 { "sched:sched_switch", timehist_sched_switch_event, }, 2902 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 2903 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 2904 }; 2905 const struct perf_evsel_str_handler migrate_handlers[] = { 2906 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 2907 }; 2908 struct perf_data data = { 2909 .file = { 2910 .path = input_name, 2911 }, 2912 .mode = PERF_DATA_MODE_READ, 2913 .force = sched->force, 2914 }; 2915 2916 struct perf_session *session; 2917 struct perf_evlist *evlist; 2918 int err = -1; 2919 2920 /* 2921 * event handlers for timehist option 2922 */ 2923 sched->tool.sample = perf_timehist__process_sample; 2924 sched->tool.mmap = perf_event__process_mmap; 2925 sched->tool.comm = perf_event__process_comm; 2926 sched->tool.exit = perf_event__process_exit; 2927 sched->tool.fork = perf_event__process_fork; 2928 sched->tool.lost = process_lost; 2929 sched->tool.attr = perf_event__process_attr; 2930 sched->tool.tracing_data = perf_event__process_tracing_data; 2931 sched->tool.build_id = perf_event__process_build_id; 2932 2933 sched->tool.ordered_events = true; 2934 sched->tool.ordering_requires_timestamps = true; 2935 2936 symbol_conf.use_callchain = sched->show_callchain; 2937 2938 session = perf_session__new(&data, false, &sched->tool); 2939 if (session == NULL) 2940 return -ENOMEM; 2941 2942 evlist = session->evlist; 2943 2944 symbol__init(&session->header.env); 2945 2946 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 2947 pr_err("Invalid time string\n"); 2948 return -EINVAL; 2949 } 2950 2951 if (timehist_check_attr(sched, evlist) != 0) 2952 goto out; 2953 2954 setup_pager(); 2955 2956 /* setup per-evsel handlers */ 2957 if (perf_session__set_tracepoints_handlers(session, handlers)) 2958 goto out; 2959 2960 /* sched_switch event at a minimum needs to exist */ 2961 if (!perf_evlist__find_tracepoint_by_name(session->evlist, 2962 "sched:sched_switch")) { 2963 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 2964 goto out; 2965 } 2966 2967 if (sched->show_migrations && 2968 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 2969 goto out; 2970 2971 /* pre-allocate struct for per-CPU idle stats */ 2972 sched->max_cpu = session->header.env.nr_cpus_online; 2973 if (sched->max_cpu == 0) 2974 sched->max_cpu = 4; 2975 if (init_idle_threads(sched->max_cpu)) 2976 goto out; 2977 2978 /* summary_only implies summary option, but don't overwrite summary if set */ 2979 if (sched->summary_only) 2980 sched->summary = sched->summary_only; 2981 2982 if (!sched->summary_only) 2983 timehist_header(sched); 2984 2985 err = perf_session__process_events(session); 2986 if (err) { 2987 pr_err("Failed to process events, error %d", err); 2988 goto out; 2989 } 2990 2991 sched->nr_events = evlist->stats.nr_events[0]; 2992 sched->nr_lost_events = evlist->stats.total_lost; 2993 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 2994 2995 if (sched->summary) 2996 timehist_print_summary(sched, session); 2997 2998 out: 2999 free_idle_threads(); 3000 perf_session__delete(session); 3001 3002 return err; 3003 } 3004 3005 3006 static void print_bad_events(struct perf_sched *sched) 3007 { 3008 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3009 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3010 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3011 sched->nr_unordered_timestamps, sched->nr_timestamps); 3012 } 3013 if (sched->nr_lost_events && sched->nr_events) { 3014 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3015 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3016 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3017 } 3018 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3019 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3020 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3021 sched->nr_context_switch_bugs, sched->nr_timestamps); 3022 if (sched->nr_lost_events) 3023 printf(" (due to lost events?)"); 3024 printf("\n"); 3025 } 3026 } 3027 3028 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data) 3029 { 3030 struct rb_node **new = &(root->rb_node), *parent = NULL; 3031 struct work_atoms *this; 3032 const char *comm = thread__comm_str(data->thread), *this_comm; 3033 3034 while (*new) { 3035 int cmp; 3036 3037 this = container_of(*new, struct work_atoms, node); 3038 parent = *new; 3039 3040 this_comm = thread__comm_str(this->thread); 3041 cmp = strcmp(comm, this_comm); 3042 if (cmp > 0) { 3043 new = &((*new)->rb_left); 3044 } else if (cmp < 0) { 3045 new = &((*new)->rb_right); 3046 } else { 3047 this->num_merged++; 3048 this->total_runtime += data->total_runtime; 3049 this->nb_atoms += data->nb_atoms; 3050 this->total_lat += data->total_lat; 3051 list_splice(&data->work_list, &this->work_list); 3052 if (this->max_lat < data->max_lat) { 3053 this->max_lat = data->max_lat; 3054 this->max_lat_at = data->max_lat_at; 3055 } 3056 zfree(&data); 3057 return; 3058 } 3059 } 3060 3061 data->num_merged++; 3062 rb_link_node(&data->node, parent, new); 3063 rb_insert_color(&data->node, root); 3064 } 3065 3066 static void perf_sched__merge_lat(struct perf_sched *sched) 3067 { 3068 struct work_atoms *data; 3069 struct rb_node *node; 3070 3071 if (sched->skip_merge) 3072 return; 3073 3074 while ((node = rb_first(&sched->atom_root))) { 3075 rb_erase(node, &sched->atom_root); 3076 data = rb_entry(node, struct work_atoms, node); 3077 __merge_work_atoms(&sched->merged_atom_root, data); 3078 } 3079 } 3080 3081 static int perf_sched__lat(struct perf_sched *sched) 3082 { 3083 struct rb_node *next; 3084 3085 setup_pager(); 3086 3087 if (perf_sched__read_events(sched)) 3088 return -1; 3089 3090 perf_sched__merge_lat(sched); 3091 perf_sched__sort_lat(sched); 3092 3093 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 3094 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 3095 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3096 3097 next = rb_first(&sched->sorted_atom_root); 3098 3099 while (next) { 3100 struct work_atoms *work_list; 3101 3102 work_list = rb_entry(next, struct work_atoms, node); 3103 output_lat_thread(sched, work_list); 3104 next = rb_next(next); 3105 thread__zput(work_list->thread); 3106 } 3107 3108 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3109 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3110 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3111 3112 printf(" ---------------------------------------------------\n"); 3113 3114 print_bad_events(sched); 3115 printf("\n"); 3116 3117 return 0; 3118 } 3119 3120 static int setup_map_cpus(struct perf_sched *sched) 3121 { 3122 struct cpu_map *map; 3123 3124 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 3125 3126 if (sched->map.comp) { 3127 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int)); 3128 if (!sched->map.comp_cpus) 3129 return -1; 3130 } 3131 3132 if (!sched->map.cpus_str) 3133 return 0; 3134 3135 map = cpu_map__new(sched->map.cpus_str); 3136 if (!map) { 3137 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3138 return -1; 3139 } 3140 3141 sched->map.cpus = map; 3142 return 0; 3143 } 3144 3145 static int setup_color_pids(struct perf_sched *sched) 3146 { 3147 struct thread_map *map; 3148 3149 if (!sched->map.color_pids_str) 3150 return 0; 3151 3152 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3153 if (!map) { 3154 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3155 return -1; 3156 } 3157 3158 sched->map.color_pids = map; 3159 return 0; 3160 } 3161 3162 static int setup_color_cpus(struct perf_sched *sched) 3163 { 3164 struct cpu_map *map; 3165 3166 if (!sched->map.color_cpus_str) 3167 return 0; 3168 3169 map = cpu_map__new(sched->map.color_cpus_str); 3170 if (!map) { 3171 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3172 return -1; 3173 } 3174 3175 sched->map.color_cpus = map; 3176 return 0; 3177 } 3178 3179 static int perf_sched__map(struct perf_sched *sched) 3180 { 3181 if (setup_map_cpus(sched)) 3182 return -1; 3183 3184 if (setup_color_pids(sched)) 3185 return -1; 3186 3187 if (setup_color_cpus(sched)) 3188 return -1; 3189 3190 setup_pager(); 3191 if (perf_sched__read_events(sched)) 3192 return -1; 3193 print_bad_events(sched); 3194 return 0; 3195 } 3196 3197 static int perf_sched__replay(struct perf_sched *sched) 3198 { 3199 unsigned long i; 3200 3201 calibrate_run_measurement_overhead(sched); 3202 calibrate_sleep_measurement_overhead(sched); 3203 3204 test_calibrations(sched); 3205 3206 if (perf_sched__read_events(sched)) 3207 return -1; 3208 3209 printf("nr_run_events: %ld\n", sched->nr_run_events); 3210 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3211 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3212 3213 if (sched->targetless_wakeups) 3214 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3215 if (sched->multitarget_wakeups) 3216 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3217 if (sched->nr_run_events_optimized) 3218 printf("run atoms optimized: %ld\n", 3219 sched->nr_run_events_optimized); 3220 3221 print_task_traces(sched); 3222 add_cross_task_wakeups(sched); 3223 3224 create_tasks(sched); 3225 printf("------------------------------------------------------------\n"); 3226 for (i = 0; i < sched->replay_repeat; i++) 3227 run_one_test(sched); 3228 3229 return 0; 3230 } 3231 3232 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3233 const char * const usage_msg[]) 3234 { 3235 char *tmp, *tok, *str = strdup(sched->sort_order); 3236 3237 for (tok = strtok_r(str, ", ", &tmp); 3238 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3239 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3240 usage_with_options_msg(usage_msg, options, 3241 "Unknown --sort key: `%s'", tok); 3242 } 3243 } 3244 3245 free(str); 3246 3247 sort_dimension__add("pid", &sched->cmp_pid); 3248 } 3249 3250 static int __cmd_record(int argc, const char **argv) 3251 { 3252 unsigned int rec_argc, i, j; 3253 const char **rec_argv; 3254 const char * const record_args[] = { 3255 "record", 3256 "-a", 3257 "-R", 3258 "-m", "1024", 3259 "-c", "1", 3260 "-e", "sched:sched_switch", 3261 "-e", "sched:sched_stat_wait", 3262 "-e", "sched:sched_stat_sleep", 3263 "-e", "sched:sched_stat_iowait", 3264 "-e", "sched:sched_stat_runtime", 3265 "-e", "sched:sched_process_fork", 3266 "-e", "sched:sched_wakeup", 3267 "-e", "sched:sched_wakeup_new", 3268 "-e", "sched:sched_migrate_task", 3269 }; 3270 3271 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 3272 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3273 3274 if (rec_argv == NULL) 3275 return -ENOMEM; 3276 3277 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3278 rec_argv[i] = strdup(record_args[i]); 3279 3280 for (j = 1; j < (unsigned int)argc; j++, i++) 3281 rec_argv[i] = argv[j]; 3282 3283 BUG_ON(i != rec_argc); 3284 3285 return cmd_record(i, rec_argv); 3286 } 3287 3288 int cmd_sched(int argc, const char **argv) 3289 { 3290 const char default_sort_order[] = "avg, max, switch, runtime"; 3291 struct perf_sched sched = { 3292 .tool = { 3293 .sample = perf_sched__process_tracepoint_sample, 3294 .comm = perf_event__process_comm, 3295 .namespaces = perf_event__process_namespaces, 3296 .lost = perf_event__process_lost, 3297 .fork = perf_sched__process_fork_event, 3298 .ordered_events = true, 3299 }, 3300 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3301 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3302 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 3303 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 3304 .sort_order = default_sort_order, 3305 .replay_repeat = 10, 3306 .profile_cpu = -1, 3307 .next_shortname1 = 'A', 3308 .next_shortname2 = '0', 3309 .skip_merge = 0, 3310 .show_callchain = 1, 3311 .max_stack = 5, 3312 }; 3313 const struct option sched_options[] = { 3314 OPT_STRING('i', "input", &input_name, "file", 3315 "input file name"), 3316 OPT_INCR('v', "verbose", &verbose, 3317 "be more verbose (show symbol address, etc)"), 3318 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3319 "dump raw trace in ASCII"), 3320 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3321 OPT_END() 3322 }; 3323 const struct option latency_options[] = { 3324 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3325 "sort by key(s): runtime, switch, avg, max"), 3326 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3327 "CPU to profile on"), 3328 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3329 "latency stats per pid instead of per comm"), 3330 OPT_PARENT(sched_options) 3331 }; 3332 const struct option replay_options[] = { 3333 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3334 "repeat the workload replay N times (-1: infinite)"), 3335 OPT_PARENT(sched_options) 3336 }; 3337 const struct option map_options[] = { 3338 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3339 "map output in compact mode"), 3340 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3341 "highlight given pids in map"), 3342 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3343 "highlight given CPUs in map"), 3344 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3345 "display given CPUs in map"), 3346 OPT_PARENT(sched_options) 3347 }; 3348 const struct option timehist_options[] = { 3349 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3350 "file", "vmlinux pathname"), 3351 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3352 "file", "kallsyms pathname"), 3353 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3354 "Display call chains if present (default on)"), 3355 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3356 "Maximum number of functions to display backtrace."), 3357 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3358 "Look for files with symbols relative to this directory"), 3359 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3360 "Show only syscall summary with statistics"), 3361 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3362 "Show all syscalls and summary with statistics"), 3363 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3364 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3365 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3366 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3367 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3368 OPT_STRING(0, "time", &sched.time_str, "str", 3369 "Time span for analysis (start,stop)"), 3370 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3371 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3372 "analyze events only for given process id(s)"), 3373 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3374 "analyze events only for given thread id(s)"), 3375 OPT_PARENT(sched_options) 3376 }; 3377 3378 const char * const latency_usage[] = { 3379 "perf sched latency [<options>]", 3380 NULL 3381 }; 3382 const char * const replay_usage[] = { 3383 "perf sched replay [<options>]", 3384 NULL 3385 }; 3386 const char * const map_usage[] = { 3387 "perf sched map [<options>]", 3388 NULL 3389 }; 3390 const char * const timehist_usage[] = { 3391 "perf sched timehist [<options>]", 3392 NULL 3393 }; 3394 const char *const sched_subcommands[] = { "record", "latency", "map", 3395 "replay", "script", 3396 "timehist", NULL }; 3397 const char *sched_usage[] = { 3398 NULL, 3399 NULL 3400 }; 3401 struct trace_sched_handler lat_ops = { 3402 .wakeup_event = latency_wakeup_event, 3403 .switch_event = latency_switch_event, 3404 .runtime_event = latency_runtime_event, 3405 .migrate_task_event = latency_migrate_task_event, 3406 }; 3407 struct trace_sched_handler map_ops = { 3408 .switch_event = map_switch_event, 3409 }; 3410 struct trace_sched_handler replay_ops = { 3411 .wakeup_event = replay_wakeup_event, 3412 .switch_event = replay_switch_event, 3413 .fork_event = replay_fork_event, 3414 }; 3415 unsigned int i; 3416 3417 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 3418 sched.curr_pid[i] = -1; 3419 3420 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3421 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3422 if (!argc) 3423 usage_with_options(sched_usage, sched_options); 3424 3425 /* 3426 * Aliased to 'perf script' for now: 3427 */ 3428 if (!strcmp(argv[0], "script")) 3429 return cmd_script(argc, argv); 3430 3431 if (!strncmp(argv[0], "rec", 3)) { 3432 return __cmd_record(argc, argv); 3433 } else if (!strncmp(argv[0], "lat", 3)) { 3434 sched.tp_handler = &lat_ops; 3435 if (argc > 1) { 3436 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3437 if (argc) 3438 usage_with_options(latency_usage, latency_options); 3439 } 3440 setup_sorting(&sched, latency_options, latency_usage); 3441 return perf_sched__lat(&sched); 3442 } else if (!strcmp(argv[0], "map")) { 3443 if (argc) { 3444 argc = parse_options(argc, argv, map_options, map_usage, 0); 3445 if (argc) 3446 usage_with_options(map_usage, map_options); 3447 } 3448 sched.tp_handler = &map_ops; 3449 setup_sorting(&sched, latency_options, latency_usage); 3450 return perf_sched__map(&sched); 3451 } else if (!strncmp(argv[0], "rep", 3)) { 3452 sched.tp_handler = &replay_ops; 3453 if (argc) { 3454 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3455 if (argc) 3456 usage_with_options(replay_usage, replay_options); 3457 } 3458 return perf_sched__replay(&sched); 3459 } else if (!strcmp(argv[0], "timehist")) { 3460 if (argc) { 3461 argc = parse_options(argc, argv, timehist_options, 3462 timehist_usage, 0); 3463 if (argc) 3464 usage_with_options(timehist_usage, timehist_options); 3465 } 3466 if ((sched.show_wakeups || sched.show_next) && 3467 sched.summary_only) { 3468 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3469 parse_options_usage(timehist_usage, timehist_options, "s", true); 3470 if (sched.show_wakeups) 3471 parse_options_usage(NULL, timehist_options, "w", true); 3472 if (sched.show_next) 3473 parse_options_usage(NULL, timehist_options, "n", true); 3474 return -EINVAL; 3475 } 3476 3477 return perf_sched__timehist(&sched); 3478 } else { 3479 usage_with_options(sched_usage, sched_options); 3480 } 3481 3482 return 0; 3483 } 3484