xref: /openbmc/linux/tools/perf/builtin-sched.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10 
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13 
14 #include "util/debug.h"
15 
16 #include <sys/prctl.h>
17 
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21 
22 static char			const *input_name = "perf.data";
23 
24 static char			default_sort_order[] = "avg, max, switch, runtime";
25 static const char		*sort_order = default_sort_order;
26 
27 static int			profile_cpu = -1;
28 
29 #define PR_SET_NAME		15               /* Set process name */
30 #define MAX_CPUS		4096
31 
32 static u64			run_measurement_overhead;
33 static u64			sleep_measurement_overhead;
34 
35 #define COMM_LEN		20
36 #define SYM_LEN			129
37 
38 #define MAX_PID			65536
39 
40 static unsigned long		nr_tasks;
41 
42 struct sched_atom;
43 
44 struct task_desc {
45 	unsigned long		nr;
46 	unsigned long		pid;
47 	char			comm[COMM_LEN];
48 
49 	unsigned long		nr_events;
50 	unsigned long		curr_event;
51 	struct sched_atom	**atoms;
52 
53 	pthread_t		thread;
54 	sem_t			sleep_sem;
55 
56 	sem_t			ready_for_work;
57 	sem_t			work_done_sem;
58 
59 	u64			cpu_usage;
60 };
61 
62 enum sched_event_type {
63 	SCHED_EVENT_RUN,
64 	SCHED_EVENT_SLEEP,
65 	SCHED_EVENT_WAKEUP,
66 	SCHED_EVENT_MIGRATION,
67 };
68 
69 struct sched_atom {
70 	enum sched_event_type	type;
71 	int			specific_wait;
72 	u64			timestamp;
73 	u64			duration;
74 	unsigned long		nr;
75 	sem_t			*wait_sem;
76 	struct task_desc	*wakee;
77 };
78 
79 static struct task_desc		*pid_to_task[MAX_PID];
80 
81 static struct task_desc		**tasks;
82 
83 static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84 static u64			start_time;
85 
86 static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87 
88 static unsigned long		nr_run_events;
89 static unsigned long		nr_sleep_events;
90 static unsigned long		nr_wakeup_events;
91 
92 static unsigned long		nr_sleep_corrections;
93 static unsigned long		nr_run_events_optimized;
94 
95 static unsigned long		targetless_wakeups;
96 static unsigned long		multitarget_wakeups;
97 
98 static u64			cpu_usage;
99 static u64			runavg_cpu_usage;
100 static u64			parent_cpu_usage;
101 static u64			runavg_parent_cpu_usage;
102 
103 static unsigned long		nr_runs;
104 static u64			sum_runtime;
105 static u64			sum_fluct;
106 static u64			run_avg;
107 
108 static unsigned int		replay_repeat = 10;
109 static unsigned long		nr_timestamps;
110 static unsigned long		nr_unordered_timestamps;
111 static unsigned long		nr_state_machine_bugs;
112 static unsigned long		nr_context_switch_bugs;
113 static unsigned long		nr_events;
114 static unsigned long		nr_lost_chunks;
115 static unsigned long		nr_lost_events;
116 
117 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118 
119 enum thread_state {
120 	THREAD_SLEEPING = 0,
121 	THREAD_WAIT_CPU,
122 	THREAD_SCHED_IN,
123 	THREAD_IGNORE
124 };
125 
126 struct work_atom {
127 	struct list_head	list;
128 	enum thread_state	state;
129 	u64			sched_out_time;
130 	u64			wake_up_time;
131 	u64			sched_in_time;
132 	u64			runtime;
133 };
134 
135 struct work_atoms {
136 	struct list_head	work_list;
137 	struct thread		*thread;
138 	struct rb_node		node;
139 	u64			max_lat;
140 	u64			max_lat_at;
141 	u64			total_lat;
142 	u64			nb_atoms;
143 	u64			total_runtime;
144 };
145 
146 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147 
148 static struct rb_root		atom_root, sorted_atom_root;
149 
150 static u64			all_runtime;
151 static u64			all_count;
152 
153 
154 static u64 get_nsecs(void)
155 {
156 	struct timespec ts;
157 
158 	clock_gettime(CLOCK_MONOTONIC, &ts);
159 
160 	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161 }
162 
163 static void burn_nsecs(u64 nsecs)
164 {
165 	u64 T0 = get_nsecs(), T1;
166 
167 	do {
168 		T1 = get_nsecs();
169 	} while (T1 + run_measurement_overhead < T0 + nsecs);
170 }
171 
172 static void sleep_nsecs(u64 nsecs)
173 {
174 	struct timespec ts;
175 
176 	ts.tv_nsec = nsecs % 999999999;
177 	ts.tv_sec = nsecs / 999999999;
178 
179 	nanosleep(&ts, NULL);
180 }
181 
182 static void calibrate_run_measurement_overhead(void)
183 {
184 	u64 T0, T1, delta, min_delta = 1000000000ULL;
185 	int i;
186 
187 	for (i = 0; i < 10; i++) {
188 		T0 = get_nsecs();
189 		burn_nsecs(0);
190 		T1 = get_nsecs();
191 		delta = T1-T0;
192 		min_delta = min(min_delta, delta);
193 	}
194 	run_measurement_overhead = min_delta;
195 
196 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197 }
198 
199 static void calibrate_sleep_measurement_overhead(void)
200 {
201 	u64 T0, T1, delta, min_delta = 1000000000ULL;
202 	int i;
203 
204 	for (i = 0; i < 10; i++) {
205 		T0 = get_nsecs();
206 		sleep_nsecs(10000);
207 		T1 = get_nsecs();
208 		delta = T1-T0;
209 		min_delta = min(min_delta, delta);
210 	}
211 	min_delta -= 10000;
212 	sleep_measurement_overhead = min_delta;
213 
214 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215 }
216 
217 static struct sched_atom *
218 get_new_event(struct task_desc *task, u64 timestamp)
219 {
220 	struct sched_atom *event = zalloc(sizeof(*event));
221 	unsigned long idx = task->nr_events;
222 	size_t size;
223 
224 	event->timestamp = timestamp;
225 	event->nr = idx;
226 
227 	task->nr_events++;
228 	size = sizeof(struct sched_atom *) * task->nr_events;
229 	task->atoms = realloc(task->atoms, size);
230 	BUG_ON(!task->atoms);
231 
232 	task->atoms[idx] = event;
233 
234 	return event;
235 }
236 
237 static struct sched_atom *last_event(struct task_desc *task)
238 {
239 	if (!task->nr_events)
240 		return NULL;
241 
242 	return task->atoms[task->nr_events - 1];
243 }
244 
245 static void
246 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247 {
248 	struct sched_atom *event, *curr_event = last_event(task);
249 
250 	/*
251 	 * optimize an existing RUN event by merging this one
252 	 * to it:
253 	 */
254 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255 		nr_run_events_optimized++;
256 		curr_event->duration += duration;
257 		return;
258 	}
259 
260 	event = get_new_event(task, timestamp);
261 
262 	event->type = SCHED_EVENT_RUN;
263 	event->duration = duration;
264 
265 	nr_run_events++;
266 }
267 
268 static void
269 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270 		       struct task_desc *wakee)
271 {
272 	struct sched_atom *event, *wakee_event;
273 
274 	event = get_new_event(task, timestamp);
275 	event->type = SCHED_EVENT_WAKEUP;
276 	event->wakee = wakee;
277 
278 	wakee_event = last_event(wakee);
279 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280 		targetless_wakeups++;
281 		return;
282 	}
283 	if (wakee_event->wait_sem) {
284 		multitarget_wakeups++;
285 		return;
286 	}
287 
288 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289 	sem_init(wakee_event->wait_sem, 0, 0);
290 	wakee_event->specific_wait = 1;
291 	event->wait_sem = wakee_event->wait_sem;
292 
293 	nr_wakeup_events++;
294 }
295 
296 static void
297 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298 		      u64 task_state __used)
299 {
300 	struct sched_atom *event = get_new_event(task, timestamp);
301 
302 	event->type = SCHED_EVENT_SLEEP;
303 
304 	nr_sleep_events++;
305 }
306 
307 static struct task_desc *register_pid(unsigned long pid, const char *comm)
308 {
309 	struct task_desc *task;
310 
311 	BUG_ON(pid >= MAX_PID);
312 
313 	task = pid_to_task[pid];
314 
315 	if (task)
316 		return task;
317 
318 	task = zalloc(sizeof(*task));
319 	task->pid = pid;
320 	task->nr = nr_tasks;
321 	strcpy(task->comm, comm);
322 	/*
323 	 * every task starts in sleeping state - this gets ignored
324 	 * if there's no wakeup pointing to this sleep state:
325 	 */
326 	add_sched_event_sleep(task, 0, 0);
327 
328 	pid_to_task[pid] = task;
329 	nr_tasks++;
330 	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331 	BUG_ON(!tasks);
332 	tasks[task->nr] = task;
333 
334 	if (verbose)
335 		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336 
337 	return task;
338 }
339 
340 
341 static void print_task_traces(void)
342 {
343 	struct task_desc *task;
344 	unsigned long i;
345 
346 	for (i = 0; i < nr_tasks; i++) {
347 		task = tasks[i];
348 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349 			task->nr, task->comm, task->pid, task->nr_events);
350 	}
351 }
352 
353 static void add_cross_task_wakeups(void)
354 {
355 	struct task_desc *task1, *task2;
356 	unsigned long i, j;
357 
358 	for (i = 0; i < nr_tasks; i++) {
359 		task1 = tasks[i];
360 		j = i + 1;
361 		if (j == nr_tasks)
362 			j = 0;
363 		task2 = tasks[j];
364 		add_sched_event_wakeup(task1, 0, task2);
365 	}
366 }
367 
368 static void
369 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370 {
371 	int ret = 0;
372 	u64 now;
373 	long long delta;
374 
375 	now = get_nsecs();
376 	delta = start_time + atom->timestamp - now;
377 
378 	switch (atom->type) {
379 		case SCHED_EVENT_RUN:
380 			burn_nsecs(atom->duration);
381 			break;
382 		case SCHED_EVENT_SLEEP:
383 			if (atom->wait_sem)
384 				ret = sem_wait(atom->wait_sem);
385 			BUG_ON(ret);
386 			break;
387 		case SCHED_EVENT_WAKEUP:
388 			if (atom->wait_sem)
389 				ret = sem_post(atom->wait_sem);
390 			BUG_ON(ret);
391 			break;
392 		case SCHED_EVENT_MIGRATION:
393 			break;
394 		default:
395 			BUG_ON(1);
396 	}
397 }
398 
399 static u64 get_cpu_usage_nsec_parent(void)
400 {
401 	struct rusage ru;
402 	u64 sum;
403 	int err;
404 
405 	err = getrusage(RUSAGE_SELF, &ru);
406 	BUG_ON(err);
407 
408 	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
409 	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
410 
411 	return sum;
412 }
413 
414 static int self_open_counters(void)
415 {
416 	struct perf_event_attr attr;
417 	int fd;
418 
419 	memset(&attr, 0, sizeof(attr));
420 
421 	attr.type = PERF_TYPE_SOFTWARE;
422 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
423 
424 	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
425 
426 	if (fd < 0)
427 		die("Error: sys_perf_event_open() syscall returned"
428 		    "with %d (%s)\n", fd, strerror(errno));
429 	return fd;
430 }
431 
432 static u64 get_cpu_usage_nsec_self(int fd)
433 {
434 	u64 runtime;
435 	int ret;
436 
437 	ret = read(fd, &runtime, sizeof(runtime));
438 	BUG_ON(ret != sizeof(runtime));
439 
440 	return runtime;
441 }
442 
443 static void *thread_func(void *ctx)
444 {
445 	struct task_desc *this_task = ctx;
446 	u64 cpu_usage_0, cpu_usage_1;
447 	unsigned long i, ret;
448 	char comm2[22];
449 	int fd;
450 
451 	sprintf(comm2, ":%s", this_task->comm);
452 	prctl(PR_SET_NAME, comm2);
453 	fd = self_open_counters();
454 
455 again:
456 	ret = sem_post(&this_task->ready_for_work);
457 	BUG_ON(ret);
458 	ret = pthread_mutex_lock(&start_work_mutex);
459 	BUG_ON(ret);
460 	ret = pthread_mutex_unlock(&start_work_mutex);
461 	BUG_ON(ret);
462 
463 	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
464 
465 	for (i = 0; i < this_task->nr_events; i++) {
466 		this_task->curr_event = i;
467 		process_sched_event(this_task, this_task->atoms[i]);
468 	}
469 
470 	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
471 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
472 	ret = sem_post(&this_task->work_done_sem);
473 	BUG_ON(ret);
474 
475 	ret = pthread_mutex_lock(&work_done_wait_mutex);
476 	BUG_ON(ret);
477 	ret = pthread_mutex_unlock(&work_done_wait_mutex);
478 	BUG_ON(ret);
479 
480 	goto again;
481 }
482 
483 static void create_tasks(void)
484 {
485 	struct task_desc *task;
486 	pthread_attr_t attr;
487 	unsigned long i;
488 	int err;
489 
490 	err = pthread_attr_init(&attr);
491 	BUG_ON(err);
492 	err = pthread_attr_setstacksize(&attr,
493 			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
494 	BUG_ON(err);
495 	err = pthread_mutex_lock(&start_work_mutex);
496 	BUG_ON(err);
497 	err = pthread_mutex_lock(&work_done_wait_mutex);
498 	BUG_ON(err);
499 	for (i = 0; i < nr_tasks; i++) {
500 		task = tasks[i];
501 		sem_init(&task->sleep_sem, 0, 0);
502 		sem_init(&task->ready_for_work, 0, 0);
503 		sem_init(&task->work_done_sem, 0, 0);
504 		task->curr_event = 0;
505 		err = pthread_create(&task->thread, &attr, thread_func, task);
506 		BUG_ON(err);
507 	}
508 }
509 
510 static void wait_for_tasks(void)
511 {
512 	u64 cpu_usage_0, cpu_usage_1;
513 	struct task_desc *task;
514 	unsigned long i, ret;
515 
516 	start_time = get_nsecs();
517 	cpu_usage = 0;
518 	pthread_mutex_unlock(&work_done_wait_mutex);
519 
520 	for (i = 0; i < nr_tasks; i++) {
521 		task = tasks[i];
522 		ret = sem_wait(&task->ready_for_work);
523 		BUG_ON(ret);
524 		sem_init(&task->ready_for_work, 0, 0);
525 	}
526 	ret = pthread_mutex_lock(&work_done_wait_mutex);
527 	BUG_ON(ret);
528 
529 	cpu_usage_0 = get_cpu_usage_nsec_parent();
530 
531 	pthread_mutex_unlock(&start_work_mutex);
532 
533 	for (i = 0; i < nr_tasks; i++) {
534 		task = tasks[i];
535 		ret = sem_wait(&task->work_done_sem);
536 		BUG_ON(ret);
537 		sem_init(&task->work_done_sem, 0, 0);
538 		cpu_usage += task->cpu_usage;
539 		task->cpu_usage = 0;
540 	}
541 
542 	cpu_usage_1 = get_cpu_usage_nsec_parent();
543 	if (!runavg_cpu_usage)
544 		runavg_cpu_usage = cpu_usage;
545 	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
546 
547 	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
548 	if (!runavg_parent_cpu_usage)
549 		runavg_parent_cpu_usage = parent_cpu_usage;
550 	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
551 				   parent_cpu_usage)/10;
552 
553 	ret = pthread_mutex_lock(&start_work_mutex);
554 	BUG_ON(ret);
555 
556 	for (i = 0; i < nr_tasks; i++) {
557 		task = tasks[i];
558 		sem_init(&task->sleep_sem, 0, 0);
559 		task->curr_event = 0;
560 	}
561 }
562 
563 static void run_one_test(void)
564 {
565 	u64 T0, T1, delta, avg_delta, fluct, std_dev;
566 
567 	T0 = get_nsecs();
568 	wait_for_tasks();
569 	T1 = get_nsecs();
570 
571 	delta = T1 - T0;
572 	sum_runtime += delta;
573 	nr_runs++;
574 
575 	avg_delta = sum_runtime / nr_runs;
576 	if (delta < avg_delta)
577 		fluct = avg_delta - delta;
578 	else
579 		fluct = delta - avg_delta;
580 	sum_fluct += fluct;
581 	std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
582 	if (!run_avg)
583 		run_avg = delta;
584 	run_avg = (run_avg*9 + delta)/10;
585 
586 	printf("#%-3ld: %0.3f, ",
587 		nr_runs, (double)delta/1000000.0);
588 
589 	printf("ravg: %0.2f, ",
590 		(double)run_avg/1e6);
591 
592 	printf("cpu: %0.2f / %0.2f",
593 		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
594 
595 #if 0
596 	/*
597 	 * rusage statistics done by the parent, these are less
598 	 * accurate than the sum_exec_runtime based statistics:
599 	 */
600 	printf(" [%0.2f / %0.2f]",
601 		(double)parent_cpu_usage/1e6,
602 		(double)runavg_parent_cpu_usage/1e6);
603 #endif
604 
605 	printf("\n");
606 
607 	if (nr_sleep_corrections)
608 		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
609 	nr_sleep_corrections = 0;
610 }
611 
612 static void test_calibrations(void)
613 {
614 	u64 T0, T1;
615 
616 	T0 = get_nsecs();
617 	burn_nsecs(1e6);
618 	T1 = get_nsecs();
619 
620 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
621 
622 	T0 = get_nsecs();
623 	sleep_nsecs(1e6);
624 	T1 = get_nsecs();
625 
626 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
627 }
628 
629 #define FILL_FIELD(ptr, field, event, data)	\
630 	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
631 
632 #define FILL_ARRAY(ptr, array, event, data)			\
633 do {								\
634 	void *__array = raw_field_ptr(event, #array, data);	\
635 	memcpy(ptr.array, __array, sizeof(ptr.array));	\
636 } while(0)
637 
638 #define FILL_COMMON_FIELDS(ptr, event, data)			\
639 do {								\
640 	FILL_FIELD(ptr, common_type, event, data);		\
641 	FILL_FIELD(ptr, common_flags, event, data);		\
642 	FILL_FIELD(ptr, common_preempt_count, event, data);	\
643 	FILL_FIELD(ptr, common_pid, event, data);		\
644 	FILL_FIELD(ptr, common_tgid, event, data);		\
645 } while (0)
646 
647 
648 
649 struct trace_switch_event {
650 	u32 size;
651 
652 	u16 common_type;
653 	u8 common_flags;
654 	u8 common_preempt_count;
655 	u32 common_pid;
656 	u32 common_tgid;
657 
658 	char prev_comm[16];
659 	u32 prev_pid;
660 	u32 prev_prio;
661 	u64 prev_state;
662 	char next_comm[16];
663 	u32 next_pid;
664 	u32 next_prio;
665 };
666 
667 struct trace_runtime_event {
668 	u32 size;
669 
670 	u16 common_type;
671 	u8 common_flags;
672 	u8 common_preempt_count;
673 	u32 common_pid;
674 	u32 common_tgid;
675 
676 	char comm[16];
677 	u32 pid;
678 	u64 runtime;
679 	u64 vruntime;
680 };
681 
682 struct trace_wakeup_event {
683 	u32 size;
684 
685 	u16 common_type;
686 	u8 common_flags;
687 	u8 common_preempt_count;
688 	u32 common_pid;
689 	u32 common_tgid;
690 
691 	char comm[16];
692 	u32 pid;
693 
694 	u32 prio;
695 	u32 success;
696 	u32 cpu;
697 };
698 
699 struct trace_fork_event {
700 	u32 size;
701 
702 	u16 common_type;
703 	u8 common_flags;
704 	u8 common_preempt_count;
705 	u32 common_pid;
706 	u32 common_tgid;
707 
708 	char parent_comm[16];
709 	u32 parent_pid;
710 	char child_comm[16];
711 	u32 child_pid;
712 };
713 
714 struct trace_migrate_task_event {
715 	u32 size;
716 
717 	u16 common_type;
718 	u8 common_flags;
719 	u8 common_preempt_count;
720 	u32 common_pid;
721 	u32 common_tgid;
722 
723 	char comm[16];
724 	u32 pid;
725 
726 	u32 prio;
727 	u32 cpu;
728 };
729 
730 struct trace_sched_handler {
731 	void (*switch_event)(struct trace_switch_event *,
732 			     struct perf_session *,
733 			     struct event *,
734 			     int cpu,
735 			     u64 timestamp,
736 			     struct thread *thread);
737 
738 	void (*runtime_event)(struct trace_runtime_event *,
739 			      struct perf_session *,
740 			      struct event *,
741 			      int cpu,
742 			      u64 timestamp,
743 			      struct thread *thread);
744 
745 	void (*wakeup_event)(struct trace_wakeup_event *,
746 			     struct perf_session *,
747 			     struct event *,
748 			     int cpu,
749 			     u64 timestamp,
750 			     struct thread *thread);
751 
752 	void (*fork_event)(struct trace_fork_event *,
753 			   struct event *,
754 			   int cpu,
755 			   u64 timestamp,
756 			   struct thread *thread);
757 
758 	void (*migrate_task_event)(struct trace_migrate_task_event *,
759 			   struct perf_session *session,
760 			   struct event *,
761 			   int cpu,
762 			   u64 timestamp,
763 			   struct thread *thread);
764 };
765 
766 
767 static void
768 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
769 		    struct perf_session *session __used,
770 		    struct event *event,
771 		    int cpu __used,
772 		    u64 timestamp __used,
773 		    struct thread *thread __used)
774 {
775 	struct task_desc *waker, *wakee;
776 
777 	if (verbose) {
778 		printf("sched_wakeup event %p\n", event);
779 
780 		printf(" ... pid %d woke up %s/%d\n",
781 			wakeup_event->common_pid,
782 			wakeup_event->comm,
783 			wakeup_event->pid);
784 	}
785 
786 	waker = register_pid(wakeup_event->common_pid, "<unknown>");
787 	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
788 
789 	add_sched_event_wakeup(waker, timestamp, wakee);
790 }
791 
792 static u64 cpu_last_switched[MAX_CPUS];
793 
794 static void
795 replay_switch_event(struct trace_switch_event *switch_event,
796 		    struct perf_session *session __used,
797 		    struct event *event,
798 		    int cpu,
799 		    u64 timestamp,
800 		    struct thread *thread __used)
801 {
802 	struct task_desc *prev, *next;
803 	u64 timestamp0;
804 	s64 delta;
805 
806 	if (verbose)
807 		printf("sched_switch event %p\n", event);
808 
809 	if (cpu >= MAX_CPUS || cpu < 0)
810 		return;
811 
812 	timestamp0 = cpu_last_switched[cpu];
813 	if (timestamp0)
814 		delta = timestamp - timestamp0;
815 	else
816 		delta = 0;
817 
818 	if (delta < 0)
819 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
820 
821 	if (verbose) {
822 		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
823 			switch_event->prev_comm, switch_event->prev_pid,
824 			switch_event->next_comm, switch_event->next_pid,
825 			delta);
826 	}
827 
828 	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
829 	next = register_pid(switch_event->next_pid, switch_event->next_comm);
830 
831 	cpu_last_switched[cpu] = timestamp;
832 
833 	add_sched_event_run(prev, timestamp, delta);
834 	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
835 }
836 
837 
838 static void
839 replay_fork_event(struct trace_fork_event *fork_event,
840 		  struct event *event,
841 		  int cpu __used,
842 		  u64 timestamp __used,
843 		  struct thread *thread __used)
844 {
845 	if (verbose) {
846 		printf("sched_fork event %p\n", event);
847 		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
848 		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
849 	}
850 	register_pid(fork_event->parent_pid, fork_event->parent_comm);
851 	register_pid(fork_event->child_pid, fork_event->child_comm);
852 }
853 
854 static struct trace_sched_handler replay_ops  = {
855 	.wakeup_event		= replay_wakeup_event,
856 	.switch_event		= replay_switch_event,
857 	.fork_event		= replay_fork_event,
858 };
859 
860 struct sort_dimension {
861 	const char		*name;
862 	sort_fn_t		cmp;
863 	struct list_head	list;
864 };
865 
866 static LIST_HEAD(cmp_pid);
867 
868 static int
869 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
870 {
871 	struct sort_dimension *sort;
872 	int ret = 0;
873 
874 	BUG_ON(list_empty(list));
875 
876 	list_for_each_entry(sort, list, list) {
877 		ret = sort->cmp(l, r);
878 		if (ret)
879 			return ret;
880 	}
881 
882 	return ret;
883 }
884 
885 static struct work_atoms *
886 thread_atoms_search(struct rb_root *root, struct thread *thread,
887 			 struct list_head *sort_list)
888 {
889 	struct rb_node *node = root->rb_node;
890 	struct work_atoms key = { .thread = thread };
891 
892 	while (node) {
893 		struct work_atoms *atoms;
894 		int cmp;
895 
896 		atoms = container_of(node, struct work_atoms, node);
897 
898 		cmp = thread_lat_cmp(sort_list, &key, atoms);
899 		if (cmp > 0)
900 			node = node->rb_left;
901 		else if (cmp < 0)
902 			node = node->rb_right;
903 		else {
904 			BUG_ON(thread != atoms->thread);
905 			return atoms;
906 		}
907 	}
908 	return NULL;
909 }
910 
911 static void
912 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
913 			 struct list_head *sort_list)
914 {
915 	struct rb_node **new = &(root->rb_node), *parent = NULL;
916 
917 	while (*new) {
918 		struct work_atoms *this;
919 		int cmp;
920 
921 		this = container_of(*new, struct work_atoms, node);
922 		parent = *new;
923 
924 		cmp = thread_lat_cmp(sort_list, data, this);
925 
926 		if (cmp > 0)
927 			new = &((*new)->rb_left);
928 		else
929 			new = &((*new)->rb_right);
930 	}
931 
932 	rb_link_node(&data->node, parent, new);
933 	rb_insert_color(&data->node, root);
934 }
935 
936 static void thread_atoms_insert(struct thread *thread)
937 {
938 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
939 	if (!atoms)
940 		die("No memory");
941 
942 	atoms->thread = thread;
943 	INIT_LIST_HEAD(&atoms->work_list);
944 	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
945 }
946 
947 static void
948 latency_fork_event(struct trace_fork_event *fork_event __used,
949 		   struct event *event __used,
950 		   int cpu __used,
951 		   u64 timestamp __used,
952 		   struct thread *thread __used)
953 {
954 	/* should insert the newcomer */
955 }
956 
957 __used
958 static char sched_out_state(struct trace_switch_event *switch_event)
959 {
960 	const char *str = TASK_STATE_TO_CHAR_STR;
961 
962 	return str[switch_event->prev_state];
963 }
964 
965 static void
966 add_sched_out_event(struct work_atoms *atoms,
967 		    char run_state,
968 		    u64 timestamp)
969 {
970 	struct work_atom *atom = zalloc(sizeof(*atom));
971 	if (!atom)
972 		die("Non memory");
973 
974 	atom->sched_out_time = timestamp;
975 
976 	if (run_state == 'R') {
977 		atom->state = THREAD_WAIT_CPU;
978 		atom->wake_up_time = atom->sched_out_time;
979 	}
980 
981 	list_add_tail(&atom->list, &atoms->work_list);
982 }
983 
984 static void
985 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
986 {
987 	struct work_atom *atom;
988 
989 	BUG_ON(list_empty(&atoms->work_list));
990 
991 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
992 
993 	atom->runtime += delta;
994 	atoms->total_runtime += delta;
995 }
996 
997 static void
998 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
999 {
1000 	struct work_atom *atom;
1001 	u64 delta;
1002 
1003 	if (list_empty(&atoms->work_list))
1004 		return;
1005 
1006 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1007 
1008 	if (atom->state != THREAD_WAIT_CPU)
1009 		return;
1010 
1011 	if (timestamp < atom->wake_up_time) {
1012 		atom->state = THREAD_IGNORE;
1013 		return;
1014 	}
1015 
1016 	atom->state = THREAD_SCHED_IN;
1017 	atom->sched_in_time = timestamp;
1018 
1019 	delta = atom->sched_in_time - atom->wake_up_time;
1020 	atoms->total_lat += delta;
1021 	if (delta > atoms->max_lat) {
1022 		atoms->max_lat = delta;
1023 		atoms->max_lat_at = timestamp;
1024 	}
1025 	atoms->nb_atoms++;
1026 }
1027 
1028 static void
1029 latency_switch_event(struct trace_switch_event *switch_event,
1030 		     struct perf_session *session,
1031 		     struct event *event __used,
1032 		     int cpu,
1033 		     u64 timestamp,
1034 		     struct thread *thread __used)
1035 {
1036 	struct work_atoms *out_events, *in_events;
1037 	struct thread *sched_out, *sched_in;
1038 	u64 timestamp0;
1039 	s64 delta;
1040 
1041 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1042 
1043 	timestamp0 = cpu_last_switched[cpu];
1044 	cpu_last_switched[cpu] = timestamp;
1045 	if (timestamp0)
1046 		delta = timestamp - timestamp0;
1047 	else
1048 		delta = 0;
1049 
1050 	if (delta < 0)
1051 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1052 
1053 
1054 	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1055 	sched_in = perf_session__findnew(session, switch_event->next_pid);
1056 
1057 	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1058 	if (!out_events) {
1059 		thread_atoms_insert(sched_out);
1060 		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1061 		if (!out_events)
1062 			die("out-event: Internal tree error");
1063 	}
1064 	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1065 
1066 	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1067 	if (!in_events) {
1068 		thread_atoms_insert(sched_in);
1069 		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1070 		if (!in_events)
1071 			die("in-event: Internal tree error");
1072 		/*
1073 		 * Take came in we have not heard about yet,
1074 		 * add in an initial atom in runnable state:
1075 		 */
1076 		add_sched_out_event(in_events, 'R', timestamp);
1077 	}
1078 	add_sched_in_event(in_events, timestamp);
1079 }
1080 
1081 static void
1082 latency_runtime_event(struct trace_runtime_event *runtime_event,
1083 		     struct perf_session *session,
1084 		     struct event *event __used,
1085 		     int cpu,
1086 		     u64 timestamp,
1087 		     struct thread *this_thread __used)
1088 {
1089 	struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1090 	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1091 
1092 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1093 	if (!atoms) {
1094 		thread_atoms_insert(thread);
1095 		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1096 		if (!atoms)
1097 			die("in-event: Internal tree error");
1098 		add_sched_out_event(atoms, 'R', timestamp);
1099 	}
1100 
1101 	add_runtime_event(atoms, runtime_event->runtime, timestamp);
1102 }
1103 
1104 static void
1105 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1106 		     struct perf_session *session,
1107 		     struct event *__event __used,
1108 		     int cpu __used,
1109 		     u64 timestamp,
1110 		     struct thread *thread __used)
1111 {
1112 	struct work_atoms *atoms;
1113 	struct work_atom *atom;
1114 	struct thread *wakee;
1115 
1116 	/* Note for later, it may be interesting to observe the failing cases */
1117 	if (!wakeup_event->success)
1118 		return;
1119 
1120 	wakee = perf_session__findnew(session, wakeup_event->pid);
1121 	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1122 	if (!atoms) {
1123 		thread_atoms_insert(wakee);
1124 		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1125 		if (!atoms)
1126 			die("wakeup-event: Internal tree error");
1127 		add_sched_out_event(atoms, 'S', timestamp);
1128 	}
1129 
1130 	BUG_ON(list_empty(&atoms->work_list));
1131 
1132 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1133 
1134 	/*
1135 	 * You WILL be missing events if you've recorded only
1136 	 * one CPU, or are only looking at only one, so don't
1137 	 * make useless noise.
1138 	 */
1139 	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1140 		nr_state_machine_bugs++;
1141 
1142 	nr_timestamps++;
1143 	if (atom->sched_out_time > timestamp) {
1144 		nr_unordered_timestamps++;
1145 		return;
1146 	}
1147 
1148 	atom->state = THREAD_WAIT_CPU;
1149 	atom->wake_up_time = timestamp;
1150 }
1151 
1152 static void
1153 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1154 		     struct perf_session *session,
1155 		     struct event *__event __used,
1156 		     int cpu __used,
1157 		     u64 timestamp,
1158 		     struct thread *thread __used)
1159 {
1160 	struct work_atoms *atoms;
1161 	struct work_atom *atom;
1162 	struct thread *migrant;
1163 
1164 	/*
1165 	 * Only need to worry about migration when profiling one CPU.
1166 	 */
1167 	if (profile_cpu == -1)
1168 		return;
1169 
1170 	migrant = perf_session__findnew(session, migrate_task_event->pid);
1171 	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1172 	if (!atoms) {
1173 		thread_atoms_insert(migrant);
1174 		register_pid(migrant->pid, migrant->comm);
1175 		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1176 		if (!atoms)
1177 			die("migration-event: Internal tree error");
1178 		add_sched_out_event(atoms, 'R', timestamp);
1179 	}
1180 
1181 	BUG_ON(list_empty(&atoms->work_list));
1182 
1183 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1184 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1185 
1186 	nr_timestamps++;
1187 
1188 	if (atom->sched_out_time > timestamp)
1189 		nr_unordered_timestamps++;
1190 }
1191 
1192 static struct trace_sched_handler lat_ops  = {
1193 	.wakeup_event		= latency_wakeup_event,
1194 	.switch_event		= latency_switch_event,
1195 	.runtime_event		= latency_runtime_event,
1196 	.fork_event		= latency_fork_event,
1197 	.migrate_task_event	= latency_migrate_task_event,
1198 };
1199 
1200 static void output_lat_thread(struct work_atoms *work_list)
1201 {
1202 	int i;
1203 	int ret;
1204 	u64 avg;
1205 
1206 	if (!work_list->nb_atoms)
1207 		return;
1208 	/*
1209 	 * Ignore idle threads:
1210 	 */
1211 	if (!strcmp(work_list->thread->comm, "swapper"))
1212 		return;
1213 
1214 	all_runtime += work_list->total_runtime;
1215 	all_count += work_list->nb_atoms;
1216 
1217 	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1218 
1219 	for (i = 0; i < 24 - ret; i++)
1220 		printf(" ");
1221 
1222 	avg = work_list->total_lat / work_list->nb_atoms;
1223 
1224 	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1225 	      (double)work_list->total_runtime / 1e6,
1226 		 work_list->nb_atoms, (double)avg / 1e6,
1227 		 (double)work_list->max_lat / 1e6,
1228 		 (double)work_list->max_lat_at / 1e9);
1229 }
1230 
1231 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1232 {
1233 	if (l->thread->pid < r->thread->pid)
1234 		return -1;
1235 	if (l->thread->pid > r->thread->pid)
1236 		return 1;
1237 
1238 	return 0;
1239 }
1240 
1241 static struct sort_dimension pid_sort_dimension = {
1242 	.name			= "pid",
1243 	.cmp			= pid_cmp,
1244 };
1245 
1246 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1247 {
1248 	u64 avgl, avgr;
1249 
1250 	if (!l->nb_atoms)
1251 		return -1;
1252 
1253 	if (!r->nb_atoms)
1254 		return 1;
1255 
1256 	avgl = l->total_lat / l->nb_atoms;
1257 	avgr = r->total_lat / r->nb_atoms;
1258 
1259 	if (avgl < avgr)
1260 		return -1;
1261 	if (avgl > avgr)
1262 		return 1;
1263 
1264 	return 0;
1265 }
1266 
1267 static struct sort_dimension avg_sort_dimension = {
1268 	.name			= "avg",
1269 	.cmp			= avg_cmp,
1270 };
1271 
1272 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1273 {
1274 	if (l->max_lat < r->max_lat)
1275 		return -1;
1276 	if (l->max_lat > r->max_lat)
1277 		return 1;
1278 
1279 	return 0;
1280 }
1281 
1282 static struct sort_dimension max_sort_dimension = {
1283 	.name			= "max",
1284 	.cmp			= max_cmp,
1285 };
1286 
1287 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1288 {
1289 	if (l->nb_atoms < r->nb_atoms)
1290 		return -1;
1291 	if (l->nb_atoms > r->nb_atoms)
1292 		return 1;
1293 
1294 	return 0;
1295 }
1296 
1297 static struct sort_dimension switch_sort_dimension = {
1298 	.name			= "switch",
1299 	.cmp			= switch_cmp,
1300 };
1301 
1302 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1303 {
1304 	if (l->total_runtime < r->total_runtime)
1305 		return -1;
1306 	if (l->total_runtime > r->total_runtime)
1307 		return 1;
1308 
1309 	return 0;
1310 }
1311 
1312 static struct sort_dimension runtime_sort_dimension = {
1313 	.name			= "runtime",
1314 	.cmp			= runtime_cmp,
1315 };
1316 
1317 static struct sort_dimension *available_sorts[] = {
1318 	&pid_sort_dimension,
1319 	&avg_sort_dimension,
1320 	&max_sort_dimension,
1321 	&switch_sort_dimension,
1322 	&runtime_sort_dimension,
1323 };
1324 
1325 #define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1326 
1327 static LIST_HEAD(sort_list);
1328 
1329 static int sort_dimension__add(const char *tok, struct list_head *list)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1334 		if (!strcmp(available_sorts[i]->name, tok)) {
1335 			list_add_tail(&available_sorts[i]->list, list);
1336 
1337 			return 0;
1338 		}
1339 	}
1340 
1341 	return -1;
1342 }
1343 
1344 static void setup_sorting(void);
1345 
1346 static void sort_lat(void)
1347 {
1348 	struct rb_node *node;
1349 
1350 	for (;;) {
1351 		struct work_atoms *data;
1352 		node = rb_first(&atom_root);
1353 		if (!node)
1354 			break;
1355 
1356 		rb_erase(node, &atom_root);
1357 		data = rb_entry(node, struct work_atoms, node);
1358 		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
1359 	}
1360 }
1361 
1362 static struct trace_sched_handler *trace_handler;
1363 
1364 static void
1365 process_sched_wakeup_event(void *data, struct perf_session *session,
1366 			   struct event *event,
1367 			   int cpu __used,
1368 			   u64 timestamp __used,
1369 			   struct thread *thread __used)
1370 {
1371 	struct trace_wakeup_event wakeup_event;
1372 
1373 	FILL_COMMON_FIELDS(wakeup_event, event, data);
1374 
1375 	FILL_ARRAY(wakeup_event, comm, event, data);
1376 	FILL_FIELD(wakeup_event, pid, event, data);
1377 	FILL_FIELD(wakeup_event, prio, event, data);
1378 	FILL_FIELD(wakeup_event, success, event, data);
1379 	FILL_FIELD(wakeup_event, cpu, event, data);
1380 
1381 	if (trace_handler->wakeup_event)
1382 		trace_handler->wakeup_event(&wakeup_event, session, event,
1383 					    cpu, timestamp, thread);
1384 }
1385 
1386 /*
1387  * Track the current task - that way we can know whether there's any
1388  * weird events, such as a task being switched away that is not current.
1389  */
1390 static int max_cpu;
1391 
1392 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1393 
1394 static struct thread *curr_thread[MAX_CPUS];
1395 
1396 static char next_shortname1 = 'A';
1397 static char next_shortname2 = '0';
1398 
1399 static void
1400 map_switch_event(struct trace_switch_event *switch_event,
1401 		 struct perf_session *session,
1402 		 struct event *event __used,
1403 		 int this_cpu,
1404 		 u64 timestamp,
1405 		 struct thread *thread __used)
1406 {
1407 	struct thread *sched_out, *sched_in;
1408 	int new_shortname;
1409 	u64 timestamp0;
1410 	s64 delta;
1411 	int cpu;
1412 
1413 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1414 
1415 	if (this_cpu > max_cpu)
1416 		max_cpu = this_cpu;
1417 
1418 	timestamp0 = cpu_last_switched[this_cpu];
1419 	cpu_last_switched[this_cpu] = timestamp;
1420 	if (timestamp0)
1421 		delta = timestamp - timestamp0;
1422 	else
1423 		delta = 0;
1424 
1425 	if (delta < 0)
1426 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1427 
1428 
1429 	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1430 	sched_in = perf_session__findnew(session, switch_event->next_pid);
1431 
1432 	curr_thread[this_cpu] = sched_in;
1433 
1434 	printf("  ");
1435 
1436 	new_shortname = 0;
1437 	if (!sched_in->shortname[0]) {
1438 		sched_in->shortname[0] = next_shortname1;
1439 		sched_in->shortname[1] = next_shortname2;
1440 
1441 		if (next_shortname1 < 'Z') {
1442 			next_shortname1++;
1443 		} else {
1444 			next_shortname1='A';
1445 			if (next_shortname2 < '9') {
1446 				next_shortname2++;
1447 			} else {
1448 				next_shortname2='0';
1449 			}
1450 		}
1451 		new_shortname = 1;
1452 	}
1453 
1454 	for (cpu = 0; cpu <= max_cpu; cpu++) {
1455 		if (cpu != this_cpu)
1456 			printf(" ");
1457 		else
1458 			printf("*");
1459 
1460 		if (curr_thread[cpu]) {
1461 			if (curr_thread[cpu]->pid)
1462 				printf("%2s ", curr_thread[cpu]->shortname);
1463 			else
1464 				printf(".  ");
1465 		} else
1466 			printf("   ");
1467 	}
1468 
1469 	printf("  %12.6f secs ", (double)timestamp/1e9);
1470 	if (new_shortname) {
1471 		printf("%s => %s:%d\n",
1472 			sched_in->shortname, sched_in->comm, sched_in->pid);
1473 	} else {
1474 		printf("\n");
1475 	}
1476 }
1477 
1478 
1479 static void
1480 process_sched_switch_event(void *data, struct perf_session *session,
1481 			   struct event *event,
1482 			   int this_cpu,
1483 			   u64 timestamp __used,
1484 			   struct thread *thread __used)
1485 {
1486 	struct trace_switch_event switch_event;
1487 
1488 	FILL_COMMON_FIELDS(switch_event, event, data);
1489 
1490 	FILL_ARRAY(switch_event, prev_comm, event, data);
1491 	FILL_FIELD(switch_event, prev_pid, event, data);
1492 	FILL_FIELD(switch_event, prev_prio, event, data);
1493 	FILL_FIELD(switch_event, prev_state, event, data);
1494 	FILL_ARRAY(switch_event, next_comm, event, data);
1495 	FILL_FIELD(switch_event, next_pid, event, data);
1496 	FILL_FIELD(switch_event, next_prio, event, data);
1497 
1498 	if (curr_pid[this_cpu] != (u32)-1) {
1499 		/*
1500 		 * Are we trying to switch away a PID that is
1501 		 * not current?
1502 		 */
1503 		if (curr_pid[this_cpu] != switch_event.prev_pid)
1504 			nr_context_switch_bugs++;
1505 	}
1506 	if (trace_handler->switch_event)
1507 		trace_handler->switch_event(&switch_event, session, event,
1508 					    this_cpu, timestamp, thread);
1509 
1510 	curr_pid[this_cpu] = switch_event.next_pid;
1511 }
1512 
1513 static void
1514 process_sched_runtime_event(void *data, struct perf_session *session,
1515 			   struct event *event,
1516 			   int cpu __used,
1517 			   u64 timestamp __used,
1518 			   struct thread *thread __used)
1519 {
1520 	struct trace_runtime_event runtime_event;
1521 
1522 	FILL_ARRAY(runtime_event, comm, event, data);
1523 	FILL_FIELD(runtime_event, pid, event, data);
1524 	FILL_FIELD(runtime_event, runtime, event, data);
1525 	FILL_FIELD(runtime_event, vruntime, event, data);
1526 
1527 	if (trace_handler->runtime_event)
1528 		trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1529 }
1530 
1531 static void
1532 process_sched_fork_event(void *data,
1533 			 struct event *event,
1534 			 int cpu __used,
1535 			 u64 timestamp __used,
1536 			 struct thread *thread __used)
1537 {
1538 	struct trace_fork_event fork_event;
1539 
1540 	FILL_COMMON_FIELDS(fork_event, event, data);
1541 
1542 	FILL_ARRAY(fork_event, parent_comm, event, data);
1543 	FILL_FIELD(fork_event, parent_pid, event, data);
1544 	FILL_ARRAY(fork_event, child_comm, event, data);
1545 	FILL_FIELD(fork_event, child_pid, event, data);
1546 
1547 	if (trace_handler->fork_event)
1548 		trace_handler->fork_event(&fork_event, event,
1549 					  cpu, timestamp, thread);
1550 }
1551 
1552 static void
1553 process_sched_exit_event(struct event *event,
1554 			 int cpu __used,
1555 			 u64 timestamp __used,
1556 			 struct thread *thread __used)
1557 {
1558 	if (verbose)
1559 		printf("sched_exit event %p\n", event);
1560 }
1561 
1562 static void
1563 process_sched_migrate_task_event(void *data, struct perf_session *session,
1564 			   struct event *event,
1565 			   int cpu __used,
1566 			   u64 timestamp __used,
1567 			   struct thread *thread __used)
1568 {
1569 	struct trace_migrate_task_event migrate_task_event;
1570 
1571 	FILL_COMMON_FIELDS(migrate_task_event, event, data);
1572 
1573 	FILL_ARRAY(migrate_task_event, comm, event, data);
1574 	FILL_FIELD(migrate_task_event, pid, event, data);
1575 	FILL_FIELD(migrate_task_event, prio, event, data);
1576 	FILL_FIELD(migrate_task_event, cpu, event, data);
1577 
1578 	if (trace_handler->migrate_task_event)
1579 		trace_handler->migrate_task_event(&migrate_task_event, session,
1580 						 event, cpu, timestamp, thread);
1581 }
1582 
1583 static void
1584 process_raw_event(event_t *raw_event __used, struct perf_session *session,
1585 		  void *data, int cpu, u64 timestamp, struct thread *thread)
1586 {
1587 	struct event *event;
1588 	int type;
1589 
1590 
1591 	type = trace_parse_common_type(data);
1592 	event = trace_find_event(type);
1593 
1594 	if (!strcmp(event->name, "sched_switch"))
1595 		process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1596 	if (!strcmp(event->name, "sched_stat_runtime"))
1597 		process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1598 	if (!strcmp(event->name, "sched_wakeup"))
1599 		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1600 	if (!strcmp(event->name, "sched_wakeup_new"))
1601 		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1602 	if (!strcmp(event->name, "sched_process_fork"))
1603 		process_sched_fork_event(data, event, cpu, timestamp, thread);
1604 	if (!strcmp(event->name, "sched_process_exit"))
1605 		process_sched_exit_event(event, cpu, timestamp, thread);
1606 	if (!strcmp(event->name, "sched_migrate_task"))
1607 		process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1608 }
1609 
1610 static int process_sample_event(event_t *event, struct sample_data *sample,
1611 				struct perf_session *session)
1612 {
1613 	struct thread *thread;
1614 
1615 	if (!(session->sample_type & PERF_SAMPLE_RAW))
1616 		return 0;
1617 
1618 	thread = perf_session__findnew(session, sample->pid);
1619 	if (thread == NULL) {
1620 		pr_debug("problem processing %d event, skipping it.\n",
1621 			 event->header.type);
1622 		return -1;
1623 	}
1624 
1625 	dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1626 
1627 	if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1628 		return 0;
1629 
1630 	process_raw_event(event, session, sample->raw_data, sample->cpu,
1631 			  sample->time, thread);
1632 
1633 	return 0;
1634 }
1635 
1636 static struct perf_event_ops event_ops = {
1637 	.sample			= process_sample_event,
1638 	.comm			= event__process_comm,
1639 	.lost			= event__process_lost,
1640 	.fork			= event__process_task,
1641 	.ordered_samples	= true,
1642 };
1643 
1644 static int read_events(void)
1645 {
1646 	int err = -EINVAL;
1647 	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1648 							 0, false, &event_ops);
1649 	if (session == NULL)
1650 		return -ENOMEM;
1651 
1652 	if (perf_session__has_traces(session, "record -R")) {
1653 		err = perf_session__process_events(session, &event_ops);
1654 		nr_events      = session->hists.stats.nr_events[0];
1655 		nr_lost_events = session->hists.stats.total_lost;
1656 		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1657 	}
1658 
1659 	perf_session__delete(session);
1660 	return err;
1661 }
1662 
1663 static void print_bad_events(void)
1664 {
1665 	if (nr_unordered_timestamps && nr_timestamps) {
1666 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1667 			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1668 			nr_unordered_timestamps, nr_timestamps);
1669 	}
1670 	if (nr_lost_events && nr_events) {
1671 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1672 			(double)nr_lost_events/(double)nr_events*100.0,
1673 			nr_lost_events, nr_events, nr_lost_chunks);
1674 	}
1675 	if (nr_state_machine_bugs && nr_timestamps) {
1676 		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1677 			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1678 			nr_state_machine_bugs, nr_timestamps);
1679 		if (nr_lost_events)
1680 			printf(" (due to lost events?)");
1681 		printf("\n");
1682 	}
1683 	if (nr_context_switch_bugs && nr_timestamps) {
1684 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1685 			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1686 			nr_context_switch_bugs, nr_timestamps);
1687 		if (nr_lost_events)
1688 			printf(" (due to lost events?)");
1689 		printf("\n");
1690 	}
1691 }
1692 
1693 static void __cmd_lat(void)
1694 {
1695 	struct rb_node *next;
1696 
1697 	setup_pager();
1698 	read_events();
1699 	sort_lat();
1700 
1701 	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1702 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1703 	printf(" ---------------------------------------------------------------------------------------------------------------\n");
1704 
1705 	next = rb_first(&sorted_atom_root);
1706 
1707 	while (next) {
1708 		struct work_atoms *work_list;
1709 
1710 		work_list = rb_entry(next, struct work_atoms, node);
1711 		output_lat_thread(work_list);
1712 		next = rb_next(next);
1713 	}
1714 
1715 	printf(" -----------------------------------------------------------------------------------------\n");
1716 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1717 		(double)all_runtime/1e6, all_count);
1718 
1719 	printf(" ---------------------------------------------------\n");
1720 
1721 	print_bad_events();
1722 	printf("\n");
1723 
1724 }
1725 
1726 static struct trace_sched_handler map_ops  = {
1727 	.wakeup_event		= NULL,
1728 	.switch_event		= map_switch_event,
1729 	.runtime_event		= NULL,
1730 	.fork_event		= NULL,
1731 };
1732 
1733 static void __cmd_map(void)
1734 {
1735 	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1736 
1737 	setup_pager();
1738 	read_events();
1739 	print_bad_events();
1740 }
1741 
1742 static void __cmd_replay(void)
1743 {
1744 	unsigned long i;
1745 
1746 	calibrate_run_measurement_overhead();
1747 	calibrate_sleep_measurement_overhead();
1748 
1749 	test_calibrations();
1750 
1751 	read_events();
1752 
1753 	printf("nr_run_events:        %ld\n", nr_run_events);
1754 	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1755 	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1756 
1757 	if (targetless_wakeups)
1758 		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1759 	if (multitarget_wakeups)
1760 		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1761 	if (nr_run_events_optimized)
1762 		printf("run atoms optimized: %ld\n",
1763 			nr_run_events_optimized);
1764 
1765 	print_task_traces();
1766 	add_cross_task_wakeups();
1767 
1768 	create_tasks();
1769 	printf("------------------------------------------------------------\n");
1770 	for (i = 0; i < replay_repeat; i++)
1771 		run_one_test();
1772 }
1773 
1774 
1775 static const char * const sched_usage[] = {
1776 	"perf sched [<options>] {record|latency|map|replay|trace}",
1777 	NULL
1778 };
1779 
1780 static const struct option sched_options[] = {
1781 	OPT_STRING('i', "input", &input_name, "file",
1782 		    "input file name"),
1783 	OPT_INCR('v', "verbose", &verbose,
1784 		    "be more verbose (show symbol address, etc)"),
1785 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1786 		    "dump raw trace in ASCII"),
1787 	OPT_END()
1788 };
1789 
1790 static const char * const latency_usage[] = {
1791 	"perf sched latency [<options>]",
1792 	NULL
1793 };
1794 
1795 static const struct option latency_options[] = {
1796 	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1797 		   "sort by key(s): runtime, switch, avg, max"),
1798 	OPT_INCR('v', "verbose", &verbose,
1799 		    "be more verbose (show symbol address, etc)"),
1800 	OPT_INTEGER('C', "CPU", &profile_cpu,
1801 		    "CPU to profile on"),
1802 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1803 		    "dump raw trace in ASCII"),
1804 	OPT_END()
1805 };
1806 
1807 static const char * const replay_usage[] = {
1808 	"perf sched replay [<options>]",
1809 	NULL
1810 };
1811 
1812 static const struct option replay_options[] = {
1813 	OPT_UINTEGER('r', "repeat", &replay_repeat,
1814 		     "repeat the workload replay N times (-1: infinite)"),
1815 	OPT_INCR('v', "verbose", &verbose,
1816 		    "be more verbose (show symbol address, etc)"),
1817 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1818 		    "dump raw trace in ASCII"),
1819 	OPT_END()
1820 };
1821 
1822 static void setup_sorting(void)
1823 {
1824 	char *tmp, *tok, *str = strdup(sort_order);
1825 
1826 	for (tok = strtok_r(str, ", ", &tmp);
1827 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1828 		if (sort_dimension__add(tok, &sort_list) < 0) {
1829 			error("Unknown --sort key: `%s'", tok);
1830 			usage_with_options(latency_usage, latency_options);
1831 		}
1832 	}
1833 
1834 	free(str);
1835 
1836 	sort_dimension__add("pid", &cmp_pid);
1837 }
1838 
1839 static const char *record_args[] = {
1840 	"record",
1841 	"-a",
1842 	"-R",
1843 	"-f",
1844 	"-m", "1024",
1845 	"-c", "1",
1846 	"-e", "sched:sched_switch",
1847 	"-e", "sched:sched_stat_wait",
1848 	"-e", "sched:sched_stat_sleep",
1849 	"-e", "sched:sched_stat_iowait",
1850 	"-e", "sched:sched_stat_runtime",
1851 	"-e", "sched:sched_process_exit",
1852 	"-e", "sched:sched_process_fork",
1853 	"-e", "sched:sched_wakeup",
1854 	"-e", "sched:sched_migrate_task",
1855 };
1856 
1857 static int __cmd_record(int argc, const char **argv)
1858 {
1859 	unsigned int rec_argc, i, j;
1860 	const char **rec_argv;
1861 
1862 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1863 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1864 
1865 	if (rec_argv == NULL)
1866 		return -ENOMEM;
1867 
1868 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1869 		rec_argv[i] = strdup(record_args[i]);
1870 
1871 	for (j = 1; j < (unsigned int)argc; j++, i++)
1872 		rec_argv[i] = argv[j];
1873 
1874 	BUG_ON(i != rec_argc);
1875 
1876 	return cmd_record(i, rec_argv, NULL);
1877 }
1878 
1879 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1880 {
1881 	argc = parse_options(argc, argv, sched_options, sched_usage,
1882 			     PARSE_OPT_STOP_AT_NON_OPTION);
1883 	if (!argc)
1884 		usage_with_options(sched_usage, sched_options);
1885 
1886 	/*
1887 	 * Aliased to 'perf script' for now:
1888 	 */
1889 	if (!strcmp(argv[0], "script"))
1890 		return cmd_script(argc, argv, prefix);
1891 
1892 	symbol__init();
1893 	if (!strncmp(argv[0], "rec", 3)) {
1894 		return __cmd_record(argc, argv);
1895 	} else if (!strncmp(argv[0], "lat", 3)) {
1896 		trace_handler = &lat_ops;
1897 		if (argc > 1) {
1898 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1899 			if (argc)
1900 				usage_with_options(latency_usage, latency_options);
1901 		}
1902 		setup_sorting();
1903 		__cmd_lat();
1904 	} else if (!strcmp(argv[0], "map")) {
1905 		trace_handler = &map_ops;
1906 		setup_sorting();
1907 		__cmd_map();
1908 	} else if (!strncmp(argv[0], "rep", 3)) {
1909 		trace_handler = &replay_ops;
1910 		if (argc) {
1911 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1912 			if (argc)
1913 				usage_with_options(replay_usage, replay_options);
1914 		}
1915 		__cmd_replay();
1916 	} else {
1917 		usage_with_options(sched_usage, sched_options);
1918 	}
1919 
1920 	return 0;
1921 }
1922