1 #include "builtin.h" 2 #include "perf.h" 3 4 #include "util/util.h" 5 #include "util/evlist.h" 6 #include "util/cache.h" 7 #include "util/evsel.h" 8 #include "util/symbol.h" 9 #include "util/thread.h" 10 #include "util/header.h" 11 #include "util/session.h" 12 #include "util/tool.h" 13 14 #include "util/parse-options.h" 15 #include "util/trace-event.h" 16 17 #include "util/debug.h" 18 19 #include <sys/prctl.h> 20 #include <sys/resource.h> 21 22 #include <semaphore.h> 23 #include <pthread.h> 24 #include <math.h> 25 26 #define PR_SET_NAME 15 /* Set process name */ 27 #define MAX_CPUS 4096 28 #define COMM_LEN 20 29 #define SYM_LEN 129 30 #define MAX_PID 65536 31 32 struct sched_atom; 33 34 struct task_desc { 35 unsigned long nr; 36 unsigned long pid; 37 char comm[COMM_LEN]; 38 39 unsigned long nr_events; 40 unsigned long curr_event; 41 struct sched_atom **atoms; 42 43 pthread_t thread; 44 sem_t sleep_sem; 45 46 sem_t ready_for_work; 47 sem_t work_done_sem; 48 49 u64 cpu_usage; 50 }; 51 52 enum sched_event_type { 53 SCHED_EVENT_RUN, 54 SCHED_EVENT_SLEEP, 55 SCHED_EVENT_WAKEUP, 56 SCHED_EVENT_MIGRATION, 57 }; 58 59 struct sched_atom { 60 enum sched_event_type type; 61 int specific_wait; 62 u64 timestamp; 63 u64 duration; 64 unsigned long nr; 65 sem_t *wait_sem; 66 struct task_desc *wakee; 67 }; 68 69 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 70 71 enum thread_state { 72 THREAD_SLEEPING = 0, 73 THREAD_WAIT_CPU, 74 THREAD_SCHED_IN, 75 THREAD_IGNORE 76 }; 77 78 struct work_atom { 79 struct list_head list; 80 enum thread_state state; 81 u64 sched_out_time; 82 u64 wake_up_time; 83 u64 sched_in_time; 84 u64 runtime; 85 }; 86 87 struct work_atoms { 88 struct list_head work_list; 89 struct thread *thread; 90 struct rb_node node; 91 u64 max_lat; 92 u64 max_lat_at; 93 u64 total_lat; 94 u64 nb_atoms; 95 u64 total_runtime; 96 }; 97 98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 99 100 struct perf_sched; 101 102 struct trace_sched_handler { 103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, 104 struct perf_sample *sample, struct machine *machine); 105 106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, 107 struct perf_sample *sample, struct machine *machine); 108 109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, 110 struct perf_sample *sample, struct machine *machine); 111 112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 113 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 114 struct machine *machine); 115 116 int (*migrate_task_event)(struct perf_sched *sched, 117 struct perf_evsel *evsel, 118 struct perf_sample *sample, 119 struct machine *machine); 120 }; 121 122 struct perf_sched { 123 struct perf_tool tool; 124 const char *sort_order; 125 unsigned long nr_tasks; 126 struct task_desc *pid_to_task[MAX_PID]; 127 struct task_desc **tasks; 128 const struct trace_sched_handler *tp_handler; 129 pthread_mutex_t start_work_mutex; 130 pthread_mutex_t work_done_wait_mutex; 131 int profile_cpu; 132 /* 133 * Track the current task - that way we can know whether there's any 134 * weird events, such as a task being switched away that is not current. 135 */ 136 int max_cpu; 137 u32 curr_pid[MAX_CPUS]; 138 struct thread *curr_thread[MAX_CPUS]; 139 char next_shortname1; 140 char next_shortname2; 141 unsigned int replay_repeat; 142 unsigned long nr_run_events; 143 unsigned long nr_sleep_events; 144 unsigned long nr_wakeup_events; 145 unsigned long nr_sleep_corrections; 146 unsigned long nr_run_events_optimized; 147 unsigned long targetless_wakeups; 148 unsigned long multitarget_wakeups; 149 unsigned long nr_runs; 150 unsigned long nr_timestamps; 151 unsigned long nr_unordered_timestamps; 152 unsigned long nr_context_switch_bugs; 153 unsigned long nr_events; 154 unsigned long nr_lost_chunks; 155 unsigned long nr_lost_events; 156 u64 run_measurement_overhead; 157 u64 sleep_measurement_overhead; 158 u64 start_time; 159 u64 cpu_usage; 160 u64 runavg_cpu_usage; 161 u64 parent_cpu_usage; 162 u64 runavg_parent_cpu_usage; 163 u64 sum_runtime; 164 u64 sum_fluct; 165 u64 run_avg; 166 u64 all_runtime; 167 u64 all_count; 168 u64 cpu_last_switched[MAX_CPUS]; 169 struct rb_root atom_root, sorted_atom_root; 170 struct list_head sort_list, cmp_pid; 171 }; 172 173 static u64 get_nsecs(void) 174 { 175 struct timespec ts; 176 177 clock_gettime(CLOCK_MONOTONIC, &ts); 178 179 return ts.tv_sec * 1000000000ULL + ts.tv_nsec; 180 } 181 182 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 183 { 184 u64 T0 = get_nsecs(), T1; 185 186 do { 187 T1 = get_nsecs(); 188 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 189 } 190 191 static void sleep_nsecs(u64 nsecs) 192 { 193 struct timespec ts; 194 195 ts.tv_nsec = nsecs % 999999999; 196 ts.tv_sec = nsecs / 999999999; 197 198 nanosleep(&ts, NULL); 199 } 200 201 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 202 { 203 u64 T0, T1, delta, min_delta = 1000000000ULL; 204 int i; 205 206 for (i = 0; i < 10; i++) { 207 T0 = get_nsecs(); 208 burn_nsecs(sched, 0); 209 T1 = get_nsecs(); 210 delta = T1-T0; 211 min_delta = min(min_delta, delta); 212 } 213 sched->run_measurement_overhead = min_delta; 214 215 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 216 } 217 218 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 219 { 220 u64 T0, T1, delta, min_delta = 1000000000ULL; 221 int i; 222 223 for (i = 0; i < 10; i++) { 224 T0 = get_nsecs(); 225 sleep_nsecs(10000); 226 T1 = get_nsecs(); 227 delta = T1-T0; 228 min_delta = min(min_delta, delta); 229 } 230 min_delta -= 10000; 231 sched->sleep_measurement_overhead = min_delta; 232 233 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 234 } 235 236 static struct sched_atom * 237 get_new_event(struct task_desc *task, u64 timestamp) 238 { 239 struct sched_atom *event = zalloc(sizeof(*event)); 240 unsigned long idx = task->nr_events; 241 size_t size; 242 243 event->timestamp = timestamp; 244 event->nr = idx; 245 246 task->nr_events++; 247 size = sizeof(struct sched_atom *) * task->nr_events; 248 task->atoms = realloc(task->atoms, size); 249 BUG_ON(!task->atoms); 250 251 task->atoms[idx] = event; 252 253 return event; 254 } 255 256 static struct sched_atom *last_event(struct task_desc *task) 257 { 258 if (!task->nr_events) 259 return NULL; 260 261 return task->atoms[task->nr_events - 1]; 262 } 263 264 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 265 u64 timestamp, u64 duration) 266 { 267 struct sched_atom *event, *curr_event = last_event(task); 268 269 /* 270 * optimize an existing RUN event by merging this one 271 * to it: 272 */ 273 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 274 sched->nr_run_events_optimized++; 275 curr_event->duration += duration; 276 return; 277 } 278 279 event = get_new_event(task, timestamp); 280 281 event->type = SCHED_EVENT_RUN; 282 event->duration = duration; 283 284 sched->nr_run_events++; 285 } 286 287 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 288 u64 timestamp, struct task_desc *wakee) 289 { 290 struct sched_atom *event, *wakee_event; 291 292 event = get_new_event(task, timestamp); 293 event->type = SCHED_EVENT_WAKEUP; 294 event->wakee = wakee; 295 296 wakee_event = last_event(wakee); 297 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 298 sched->targetless_wakeups++; 299 return; 300 } 301 if (wakee_event->wait_sem) { 302 sched->multitarget_wakeups++; 303 return; 304 } 305 306 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 307 sem_init(wakee_event->wait_sem, 0, 0); 308 wakee_event->specific_wait = 1; 309 event->wait_sem = wakee_event->wait_sem; 310 311 sched->nr_wakeup_events++; 312 } 313 314 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 315 u64 timestamp, u64 task_state __maybe_unused) 316 { 317 struct sched_atom *event = get_new_event(task, timestamp); 318 319 event->type = SCHED_EVENT_SLEEP; 320 321 sched->nr_sleep_events++; 322 } 323 324 static struct task_desc *register_pid(struct perf_sched *sched, 325 unsigned long pid, const char *comm) 326 { 327 struct task_desc *task; 328 329 BUG_ON(pid >= MAX_PID); 330 331 task = sched->pid_to_task[pid]; 332 333 if (task) 334 return task; 335 336 task = zalloc(sizeof(*task)); 337 task->pid = pid; 338 task->nr = sched->nr_tasks; 339 strcpy(task->comm, comm); 340 /* 341 * every task starts in sleeping state - this gets ignored 342 * if there's no wakeup pointing to this sleep state: 343 */ 344 add_sched_event_sleep(sched, task, 0, 0); 345 346 sched->pid_to_task[pid] = task; 347 sched->nr_tasks++; 348 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *)); 349 BUG_ON(!sched->tasks); 350 sched->tasks[task->nr] = task; 351 352 if (verbose) 353 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 354 355 return task; 356 } 357 358 359 static void print_task_traces(struct perf_sched *sched) 360 { 361 struct task_desc *task; 362 unsigned long i; 363 364 for (i = 0; i < sched->nr_tasks; i++) { 365 task = sched->tasks[i]; 366 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 367 task->nr, task->comm, task->pid, task->nr_events); 368 } 369 } 370 371 static void add_cross_task_wakeups(struct perf_sched *sched) 372 { 373 struct task_desc *task1, *task2; 374 unsigned long i, j; 375 376 for (i = 0; i < sched->nr_tasks; i++) { 377 task1 = sched->tasks[i]; 378 j = i + 1; 379 if (j == sched->nr_tasks) 380 j = 0; 381 task2 = sched->tasks[j]; 382 add_sched_event_wakeup(sched, task1, 0, task2); 383 } 384 } 385 386 static void perf_sched__process_event(struct perf_sched *sched, 387 struct sched_atom *atom) 388 { 389 int ret = 0; 390 391 switch (atom->type) { 392 case SCHED_EVENT_RUN: 393 burn_nsecs(sched, atom->duration); 394 break; 395 case SCHED_EVENT_SLEEP: 396 if (atom->wait_sem) 397 ret = sem_wait(atom->wait_sem); 398 BUG_ON(ret); 399 break; 400 case SCHED_EVENT_WAKEUP: 401 if (atom->wait_sem) 402 ret = sem_post(atom->wait_sem); 403 BUG_ON(ret); 404 break; 405 case SCHED_EVENT_MIGRATION: 406 break; 407 default: 408 BUG_ON(1); 409 } 410 } 411 412 static u64 get_cpu_usage_nsec_parent(void) 413 { 414 struct rusage ru; 415 u64 sum; 416 int err; 417 418 err = getrusage(RUSAGE_SELF, &ru); 419 BUG_ON(err); 420 421 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; 422 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; 423 424 return sum; 425 } 426 427 static int self_open_counters(void) 428 { 429 struct perf_event_attr attr; 430 int fd; 431 432 memset(&attr, 0, sizeof(attr)); 433 434 attr.type = PERF_TYPE_SOFTWARE; 435 attr.config = PERF_COUNT_SW_TASK_CLOCK; 436 437 fd = sys_perf_event_open(&attr, 0, -1, -1, 0); 438 439 if (fd < 0) 440 pr_err("Error: sys_perf_event_open() syscall returned " 441 "with %d (%s)\n", fd, strerror(errno)); 442 return fd; 443 } 444 445 static u64 get_cpu_usage_nsec_self(int fd) 446 { 447 u64 runtime; 448 int ret; 449 450 ret = read(fd, &runtime, sizeof(runtime)); 451 BUG_ON(ret != sizeof(runtime)); 452 453 return runtime; 454 } 455 456 struct sched_thread_parms { 457 struct task_desc *task; 458 struct perf_sched *sched; 459 }; 460 461 static void *thread_func(void *ctx) 462 { 463 struct sched_thread_parms *parms = ctx; 464 struct task_desc *this_task = parms->task; 465 struct perf_sched *sched = parms->sched; 466 u64 cpu_usage_0, cpu_usage_1; 467 unsigned long i, ret; 468 char comm2[22]; 469 int fd; 470 471 zfree(&parms); 472 473 sprintf(comm2, ":%s", this_task->comm); 474 prctl(PR_SET_NAME, comm2); 475 fd = self_open_counters(); 476 if (fd < 0) 477 return NULL; 478 again: 479 ret = sem_post(&this_task->ready_for_work); 480 BUG_ON(ret); 481 ret = pthread_mutex_lock(&sched->start_work_mutex); 482 BUG_ON(ret); 483 ret = pthread_mutex_unlock(&sched->start_work_mutex); 484 BUG_ON(ret); 485 486 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 487 488 for (i = 0; i < this_task->nr_events; i++) { 489 this_task->curr_event = i; 490 perf_sched__process_event(sched, this_task->atoms[i]); 491 } 492 493 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 494 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 495 ret = sem_post(&this_task->work_done_sem); 496 BUG_ON(ret); 497 498 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 499 BUG_ON(ret); 500 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 501 BUG_ON(ret); 502 503 goto again; 504 } 505 506 static void create_tasks(struct perf_sched *sched) 507 { 508 struct task_desc *task; 509 pthread_attr_t attr; 510 unsigned long i; 511 int err; 512 513 err = pthread_attr_init(&attr); 514 BUG_ON(err); 515 err = pthread_attr_setstacksize(&attr, 516 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 517 BUG_ON(err); 518 err = pthread_mutex_lock(&sched->start_work_mutex); 519 BUG_ON(err); 520 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 521 BUG_ON(err); 522 for (i = 0; i < sched->nr_tasks; i++) { 523 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 524 BUG_ON(parms == NULL); 525 parms->task = task = sched->tasks[i]; 526 parms->sched = sched; 527 sem_init(&task->sleep_sem, 0, 0); 528 sem_init(&task->ready_for_work, 0, 0); 529 sem_init(&task->work_done_sem, 0, 0); 530 task->curr_event = 0; 531 err = pthread_create(&task->thread, &attr, thread_func, parms); 532 BUG_ON(err); 533 } 534 } 535 536 static void wait_for_tasks(struct perf_sched *sched) 537 { 538 u64 cpu_usage_0, cpu_usage_1; 539 struct task_desc *task; 540 unsigned long i, ret; 541 542 sched->start_time = get_nsecs(); 543 sched->cpu_usage = 0; 544 pthread_mutex_unlock(&sched->work_done_wait_mutex); 545 546 for (i = 0; i < sched->nr_tasks; i++) { 547 task = sched->tasks[i]; 548 ret = sem_wait(&task->ready_for_work); 549 BUG_ON(ret); 550 sem_init(&task->ready_for_work, 0, 0); 551 } 552 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 553 BUG_ON(ret); 554 555 cpu_usage_0 = get_cpu_usage_nsec_parent(); 556 557 pthread_mutex_unlock(&sched->start_work_mutex); 558 559 for (i = 0; i < sched->nr_tasks; i++) { 560 task = sched->tasks[i]; 561 ret = sem_wait(&task->work_done_sem); 562 BUG_ON(ret); 563 sem_init(&task->work_done_sem, 0, 0); 564 sched->cpu_usage += task->cpu_usage; 565 task->cpu_usage = 0; 566 } 567 568 cpu_usage_1 = get_cpu_usage_nsec_parent(); 569 if (!sched->runavg_cpu_usage) 570 sched->runavg_cpu_usage = sched->cpu_usage; 571 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10; 572 573 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 574 if (!sched->runavg_parent_cpu_usage) 575 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 576 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 + 577 sched->parent_cpu_usage)/10; 578 579 ret = pthread_mutex_lock(&sched->start_work_mutex); 580 BUG_ON(ret); 581 582 for (i = 0; i < sched->nr_tasks; i++) { 583 task = sched->tasks[i]; 584 sem_init(&task->sleep_sem, 0, 0); 585 task->curr_event = 0; 586 } 587 } 588 589 static void run_one_test(struct perf_sched *sched) 590 { 591 u64 T0, T1, delta, avg_delta, fluct; 592 593 T0 = get_nsecs(); 594 wait_for_tasks(sched); 595 T1 = get_nsecs(); 596 597 delta = T1 - T0; 598 sched->sum_runtime += delta; 599 sched->nr_runs++; 600 601 avg_delta = sched->sum_runtime / sched->nr_runs; 602 if (delta < avg_delta) 603 fluct = avg_delta - delta; 604 else 605 fluct = delta - avg_delta; 606 sched->sum_fluct += fluct; 607 if (!sched->run_avg) 608 sched->run_avg = delta; 609 sched->run_avg = (sched->run_avg * 9 + delta) / 10; 610 611 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0); 612 613 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6); 614 615 printf("cpu: %0.2f / %0.2f", 616 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6); 617 618 #if 0 619 /* 620 * rusage statistics done by the parent, these are less 621 * accurate than the sched->sum_exec_runtime based statistics: 622 */ 623 printf(" [%0.2f / %0.2f]", 624 (double)sched->parent_cpu_usage/1e6, 625 (double)sched->runavg_parent_cpu_usage/1e6); 626 #endif 627 628 printf("\n"); 629 630 if (sched->nr_sleep_corrections) 631 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 632 sched->nr_sleep_corrections = 0; 633 } 634 635 static void test_calibrations(struct perf_sched *sched) 636 { 637 u64 T0, T1; 638 639 T0 = get_nsecs(); 640 burn_nsecs(sched, 1e6); 641 T1 = get_nsecs(); 642 643 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 644 645 T0 = get_nsecs(); 646 sleep_nsecs(1e6); 647 T1 = get_nsecs(); 648 649 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 650 } 651 652 static int 653 replay_wakeup_event(struct perf_sched *sched, 654 struct perf_evsel *evsel, struct perf_sample *sample, 655 struct machine *machine __maybe_unused) 656 { 657 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 658 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 659 struct task_desc *waker, *wakee; 660 661 if (verbose) { 662 printf("sched_wakeup event %p\n", evsel); 663 664 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 665 } 666 667 waker = register_pid(sched, sample->tid, "<unknown>"); 668 wakee = register_pid(sched, pid, comm); 669 670 add_sched_event_wakeup(sched, waker, sample->time, wakee); 671 return 0; 672 } 673 674 static int replay_switch_event(struct perf_sched *sched, 675 struct perf_evsel *evsel, 676 struct perf_sample *sample, 677 struct machine *machine __maybe_unused) 678 { 679 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 680 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 681 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 682 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 683 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 684 struct task_desc *prev, __maybe_unused *next; 685 u64 timestamp0, timestamp = sample->time; 686 int cpu = sample->cpu; 687 s64 delta; 688 689 if (verbose) 690 printf("sched_switch event %p\n", evsel); 691 692 if (cpu >= MAX_CPUS || cpu < 0) 693 return 0; 694 695 timestamp0 = sched->cpu_last_switched[cpu]; 696 if (timestamp0) 697 delta = timestamp - timestamp0; 698 else 699 delta = 0; 700 701 if (delta < 0) { 702 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 703 return -1; 704 } 705 706 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 707 prev_comm, prev_pid, next_comm, next_pid, delta); 708 709 prev = register_pid(sched, prev_pid, prev_comm); 710 next = register_pid(sched, next_pid, next_comm); 711 712 sched->cpu_last_switched[cpu] = timestamp; 713 714 add_sched_event_run(sched, prev, timestamp, delta); 715 add_sched_event_sleep(sched, prev, timestamp, prev_state); 716 717 return 0; 718 } 719 720 static int replay_fork_event(struct perf_sched *sched, 721 union perf_event *event, 722 struct machine *machine) 723 { 724 struct thread *child, *parent; 725 726 child = machine__findnew_thread(machine, event->fork.pid, 727 event->fork.tid); 728 parent = machine__findnew_thread(machine, event->fork.ppid, 729 event->fork.ptid); 730 731 if (child == NULL || parent == NULL) { 732 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 733 child, parent); 734 return 0; 735 } 736 737 if (verbose) { 738 printf("fork event\n"); 739 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 740 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 741 } 742 743 register_pid(sched, parent->tid, thread__comm_str(parent)); 744 register_pid(sched, child->tid, thread__comm_str(child)); 745 return 0; 746 } 747 748 struct sort_dimension { 749 const char *name; 750 sort_fn_t cmp; 751 struct list_head list; 752 }; 753 754 static int 755 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 756 { 757 struct sort_dimension *sort; 758 int ret = 0; 759 760 BUG_ON(list_empty(list)); 761 762 list_for_each_entry(sort, list, list) { 763 ret = sort->cmp(l, r); 764 if (ret) 765 return ret; 766 } 767 768 return ret; 769 } 770 771 static struct work_atoms * 772 thread_atoms_search(struct rb_root *root, struct thread *thread, 773 struct list_head *sort_list) 774 { 775 struct rb_node *node = root->rb_node; 776 struct work_atoms key = { .thread = thread }; 777 778 while (node) { 779 struct work_atoms *atoms; 780 int cmp; 781 782 atoms = container_of(node, struct work_atoms, node); 783 784 cmp = thread_lat_cmp(sort_list, &key, atoms); 785 if (cmp > 0) 786 node = node->rb_left; 787 else if (cmp < 0) 788 node = node->rb_right; 789 else { 790 BUG_ON(thread != atoms->thread); 791 return atoms; 792 } 793 } 794 return NULL; 795 } 796 797 static void 798 __thread_latency_insert(struct rb_root *root, struct work_atoms *data, 799 struct list_head *sort_list) 800 { 801 struct rb_node **new = &(root->rb_node), *parent = NULL; 802 803 while (*new) { 804 struct work_atoms *this; 805 int cmp; 806 807 this = container_of(*new, struct work_atoms, node); 808 parent = *new; 809 810 cmp = thread_lat_cmp(sort_list, data, this); 811 812 if (cmp > 0) 813 new = &((*new)->rb_left); 814 else 815 new = &((*new)->rb_right); 816 } 817 818 rb_link_node(&data->node, parent, new); 819 rb_insert_color(&data->node, root); 820 } 821 822 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 823 { 824 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 825 if (!atoms) { 826 pr_err("No memory at %s\n", __func__); 827 return -1; 828 } 829 830 atoms->thread = thread; 831 INIT_LIST_HEAD(&atoms->work_list); 832 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 833 return 0; 834 } 835 836 static char sched_out_state(u64 prev_state) 837 { 838 const char *str = TASK_STATE_TO_CHAR_STR; 839 840 return str[prev_state]; 841 } 842 843 static int 844 add_sched_out_event(struct work_atoms *atoms, 845 char run_state, 846 u64 timestamp) 847 { 848 struct work_atom *atom = zalloc(sizeof(*atom)); 849 if (!atom) { 850 pr_err("Non memory at %s", __func__); 851 return -1; 852 } 853 854 atom->sched_out_time = timestamp; 855 856 if (run_state == 'R') { 857 atom->state = THREAD_WAIT_CPU; 858 atom->wake_up_time = atom->sched_out_time; 859 } 860 861 list_add_tail(&atom->list, &atoms->work_list); 862 return 0; 863 } 864 865 static void 866 add_runtime_event(struct work_atoms *atoms, u64 delta, 867 u64 timestamp __maybe_unused) 868 { 869 struct work_atom *atom; 870 871 BUG_ON(list_empty(&atoms->work_list)); 872 873 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 874 875 atom->runtime += delta; 876 atoms->total_runtime += delta; 877 } 878 879 static void 880 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 881 { 882 struct work_atom *atom; 883 u64 delta; 884 885 if (list_empty(&atoms->work_list)) 886 return; 887 888 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 889 890 if (atom->state != THREAD_WAIT_CPU) 891 return; 892 893 if (timestamp < atom->wake_up_time) { 894 atom->state = THREAD_IGNORE; 895 return; 896 } 897 898 atom->state = THREAD_SCHED_IN; 899 atom->sched_in_time = timestamp; 900 901 delta = atom->sched_in_time - atom->wake_up_time; 902 atoms->total_lat += delta; 903 if (delta > atoms->max_lat) { 904 atoms->max_lat = delta; 905 atoms->max_lat_at = timestamp; 906 } 907 atoms->nb_atoms++; 908 } 909 910 static int latency_switch_event(struct perf_sched *sched, 911 struct perf_evsel *evsel, 912 struct perf_sample *sample, 913 struct machine *machine) 914 { 915 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 916 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 917 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 918 struct work_atoms *out_events, *in_events; 919 struct thread *sched_out, *sched_in; 920 u64 timestamp0, timestamp = sample->time; 921 int cpu = sample->cpu; 922 s64 delta; 923 924 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 925 926 timestamp0 = sched->cpu_last_switched[cpu]; 927 sched->cpu_last_switched[cpu] = timestamp; 928 if (timestamp0) 929 delta = timestamp - timestamp0; 930 else 931 delta = 0; 932 933 if (delta < 0) { 934 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 935 return -1; 936 } 937 938 sched_out = machine__findnew_thread(machine, 0, prev_pid); 939 sched_in = machine__findnew_thread(machine, 0, next_pid); 940 941 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 942 if (!out_events) { 943 if (thread_atoms_insert(sched, sched_out)) 944 return -1; 945 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 946 if (!out_events) { 947 pr_err("out-event: Internal tree error"); 948 return -1; 949 } 950 } 951 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 952 return -1; 953 954 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 955 if (!in_events) { 956 if (thread_atoms_insert(sched, sched_in)) 957 return -1; 958 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 959 if (!in_events) { 960 pr_err("in-event: Internal tree error"); 961 return -1; 962 } 963 /* 964 * Take came in we have not heard about yet, 965 * add in an initial atom in runnable state: 966 */ 967 if (add_sched_out_event(in_events, 'R', timestamp)) 968 return -1; 969 } 970 add_sched_in_event(in_events, timestamp); 971 972 return 0; 973 } 974 975 static int latency_runtime_event(struct perf_sched *sched, 976 struct perf_evsel *evsel, 977 struct perf_sample *sample, 978 struct machine *machine) 979 { 980 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 981 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 982 struct thread *thread = machine__findnew_thread(machine, 0, pid); 983 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 984 u64 timestamp = sample->time; 985 int cpu = sample->cpu; 986 987 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 988 if (!atoms) { 989 if (thread_atoms_insert(sched, thread)) 990 return -1; 991 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 992 if (!atoms) { 993 pr_err("in-event: Internal tree error"); 994 return -1; 995 } 996 if (add_sched_out_event(atoms, 'R', timestamp)) 997 return -1; 998 } 999 1000 add_runtime_event(atoms, runtime, timestamp); 1001 return 0; 1002 } 1003 1004 static int latency_wakeup_event(struct perf_sched *sched, 1005 struct perf_evsel *evsel, 1006 struct perf_sample *sample, 1007 struct machine *machine) 1008 { 1009 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1010 struct work_atoms *atoms; 1011 struct work_atom *atom; 1012 struct thread *wakee; 1013 u64 timestamp = sample->time; 1014 1015 wakee = machine__findnew_thread(machine, 0, pid); 1016 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1017 if (!atoms) { 1018 if (thread_atoms_insert(sched, wakee)) 1019 return -1; 1020 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1021 if (!atoms) { 1022 pr_err("wakeup-event: Internal tree error"); 1023 return -1; 1024 } 1025 if (add_sched_out_event(atoms, 'S', timestamp)) 1026 return -1; 1027 } 1028 1029 BUG_ON(list_empty(&atoms->work_list)); 1030 1031 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1032 1033 /* 1034 * As we do not guarantee the wakeup event happens when 1035 * task is out of run queue, also may happen when task is 1036 * on run queue and wakeup only change ->state to TASK_RUNNING, 1037 * then we should not set the ->wake_up_time when wake up a 1038 * task which is on run queue. 1039 * 1040 * You WILL be missing events if you've recorded only 1041 * one CPU, or are only looking at only one, so don't 1042 * skip in this case. 1043 */ 1044 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1045 return 0; 1046 1047 sched->nr_timestamps++; 1048 if (atom->sched_out_time > timestamp) { 1049 sched->nr_unordered_timestamps++; 1050 return 0; 1051 } 1052 1053 atom->state = THREAD_WAIT_CPU; 1054 atom->wake_up_time = timestamp; 1055 return 0; 1056 } 1057 1058 static int latency_migrate_task_event(struct perf_sched *sched, 1059 struct perf_evsel *evsel, 1060 struct perf_sample *sample, 1061 struct machine *machine) 1062 { 1063 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1064 u64 timestamp = sample->time; 1065 struct work_atoms *atoms; 1066 struct work_atom *atom; 1067 struct thread *migrant; 1068 1069 /* 1070 * Only need to worry about migration when profiling one CPU. 1071 */ 1072 if (sched->profile_cpu == -1) 1073 return 0; 1074 1075 migrant = machine__findnew_thread(machine, 0, pid); 1076 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1077 if (!atoms) { 1078 if (thread_atoms_insert(sched, migrant)) 1079 return -1; 1080 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1081 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1082 if (!atoms) { 1083 pr_err("migration-event: Internal tree error"); 1084 return -1; 1085 } 1086 if (add_sched_out_event(atoms, 'R', timestamp)) 1087 return -1; 1088 } 1089 1090 BUG_ON(list_empty(&atoms->work_list)); 1091 1092 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1093 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1094 1095 sched->nr_timestamps++; 1096 1097 if (atom->sched_out_time > timestamp) 1098 sched->nr_unordered_timestamps++; 1099 1100 return 0; 1101 } 1102 1103 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1104 { 1105 int i; 1106 int ret; 1107 u64 avg; 1108 1109 if (!work_list->nb_atoms) 1110 return; 1111 /* 1112 * Ignore idle threads: 1113 */ 1114 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1115 return; 1116 1117 sched->all_runtime += work_list->total_runtime; 1118 sched->all_count += work_list->nb_atoms; 1119 1120 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1121 1122 for (i = 0; i < 24 - ret; i++) 1123 printf(" "); 1124 1125 avg = work_list->total_lat / work_list->nb_atoms; 1126 1127 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n", 1128 (double)work_list->total_runtime / 1e6, 1129 work_list->nb_atoms, (double)avg / 1e6, 1130 (double)work_list->max_lat / 1e6, 1131 (double)work_list->max_lat_at / 1e9); 1132 } 1133 1134 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1135 { 1136 if (l->thread->tid < r->thread->tid) 1137 return -1; 1138 if (l->thread->tid > r->thread->tid) 1139 return 1; 1140 1141 return 0; 1142 } 1143 1144 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1145 { 1146 u64 avgl, avgr; 1147 1148 if (!l->nb_atoms) 1149 return -1; 1150 1151 if (!r->nb_atoms) 1152 return 1; 1153 1154 avgl = l->total_lat / l->nb_atoms; 1155 avgr = r->total_lat / r->nb_atoms; 1156 1157 if (avgl < avgr) 1158 return -1; 1159 if (avgl > avgr) 1160 return 1; 1161 1162 return 0; 1163 } 1164 1165 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1166 { 1167 if (l->max_lat < r->max_lat) 1168 return -1; 1169 if (l->max_lat > r->max_lat) 1170 return 1; 1171 1172 return 0; 1173 } 1174 1175 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1176 { 1177 if (l->nb_atoms < r->nb_atoms) 1178 return -1; 1179 if (l->nb_atoms > r->nb_atoms) 1180 return 1; 1181 1182 return 0; 1183 } 1184 1185 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1186 { 1187 if (l->total_runtime < r->total_runtime) 1188 return -1; 1189 if (l->total_runtime > r->total_runtime) 1190 return 1; 1191 1192 return 0; 1193 } 1194 1195 static int sort_dimension__add(const char *tok, struct list_head *list) 1196 { 1197 size_t i; 1198 static struct sort_dimension avg_sort_dimension = { 1199 .name = "avg", 1200 .cmp = avg_cmp, 1201 }; 1202 static struct sort_dimension max_sort_dimension = { 1203 .name = "max", 1204 .cmp = max_cmp, 1205 }; 1206 static struct sort_dimension pid_sort_dimension = { 1207 .name = "pid", 1208 .cmp = pid_cmp, 1209 }; 1210 static struct sort_dimension runtime_sort_dimension = { 1211 .name = "runtime", 1212 .cmp = runtime_cmp, 1213 }; 1214 static struct sort_dimension switch_sort_dimension = { 1215 .name = "switch", 1216 .cmp = switch_cmp, 1217 }; 1218 struct sort_dimension *available_sorts[] = { 1219 &pid_sort_dimension, 1220 &avg_sort_dimension, 1221 &max_sort_dimension, 1222 &switch_sort_dimension, 1223 &runtime_sort_dimension, 1224 }; 1225 1226 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1227 if (!strcmp(available_sorts[i]->name, tok)) { 1228 list_add_tail(&available_sorts[i]->list, list); 1229 1230 return 0; 1231 } 1232 } 1233 1234 return -1; 1235 } 1236 1237 static void perf_sched__sort_lat(struct perf_sched *sched) 1238 { 1239 struct rb_node *node; 1240 1241 for (;;) { 1242 struct work_atoms *data; 1243 node = rb_first(&sched->atom_root); 1244 if (!node) 1245 break; 1246 1247 rb_erase(node, &sched->atom_root); 1248 data = rb_entry(node, struct work_atoms, node); 1249 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1250 } 1251 } 1252 1253 static int process_sched_wakeup_event(struct perf_tool *tool, 1254 struct perf_evsel *evsel, 1255 struct perf_sample *sample, 1256 struct machine *machine) 1257 { 1258 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1259 1260 if (sched->tp_handler->wakeup_event) 1261 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1262 1263 return 0; 1264 } 1265 1266 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, 1267 struct perf_sample *sample, struct machine *machine) 1268 { 1269 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1270 struct thread *sched_in; 1271 int new_shortname; 1272 u64 timestamp0, timestamp = sample->time; 1273 s64 delta; 1274 int cpu, this_cpu = sample->cpu; 1275 1276 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1277 1278 if (this_cpu > sched->max_cpu) 1279 sched->max_cpu = this_cpu; 1280 1281 timestamp0 = sched->cpu_last_switched[this_cpu]; 1282 sched->cpu_last_switched[this_cpu] = timestamp; 1283 if (timestamp0) 1284 delta = timestamp - timestamp0; 1285 else 1286 delta = 0; 1287 1288 if (delta < 0) { 1289 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1290 return -1; 1291 } 1292 1293 sched_in = machine__findnew_thread(machine, 0, next_pid); 1294 1295 sched->curr_thread[this_cpu] = sched_in; 1296 1297 printf(" "); 1298 1299 new_shortname = 0; 1300 if (!sched_in->shortname[0]) { 1301 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1302 /* 1303 * Don't allocate a letter-number for swapper:0 1304 * as a shortname. Instead, we use '.' for it. 1305 */ 1306 sched_in->shortname[0] = '.'; 1307 sched_in->shortname[1] = ' '; 1308 } else { 1309 sched_in->shortname[0] = sched->next_shortname1; 1310 sched_in->shortname[1] = sched->next_shortname2; 1311 1312 if (sched->next_shortname1 < 'Z') { 1313 sched->next_shortname1++; 1314 } else { 1315 sched->next_shortname1 = 'A'; 1316 if (sched->next_shortname2 < '9') 1317 sched->next_shortname2++; 1318 else 1319 sched->next_shortname2 = '0'; 1320 } 1321 } 1322 new_shortname = 1; 1323 } 1324 1325 for (cpu = 0; cpu <= sched->max_cpu; cpu++) { 1326 if (cpu != this_cpu) 1327 printf(" "); 1328 else 1329 printf("*"); 1330 1331 if (sched->curr_thread[cpu]) 1332 printf("%2s ", sched->curr_thread[cpu]->shortname); 1333 else 1334 printf(" "); 1335 } 1336 1337 printf(" %12.6f secs ", (double)timestamp/1e9); 1338 if (new_shortname) { 1339 printf("%s => %s:%d\n", 1340 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); 1341 } else { 1342 printf("\n"); 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int process_sched_switch_event(struct perf_tool *tool, 1349 struct perf_evsel *evsel, 1350 struct perf_sample *sample, 1351 struct machine *machine) 1352 { 1353 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1354 int this_cpu = sample->cpu, err = 0; 1355 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1356 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1357 1358 if (sched->curr_pid[this_cpu] != (u32)-1) { 1359 /* 1360 * Are we trying to switch away a PID that is 1361 * not current? 1362 */ 1363 if (sched->curr_pid[this_cpu] != prev_pid) 1364 sched->nr_context_switch_bugs++; 1365 } 1366 1367 if (sched->tp_handler->switch_event) 1368 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1369 1370 sched->curr_pid[this_cpu] = next_pid; 1371 return err; 1372 } 1373 1374 static int process_sched_runtime_event(struct perf_tool *tool, 1375 struct perf_evsel *evsel, 1376 struct perf_sample *sample, 1377 struct machine *machine) 1378 { 1379 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1380 1381 if (sched->tp_handler->runtime_event) 1382 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1383 1384 return 0; 1385 } 1386 1387 static int perf_sched__process_fork_event(struct perf_tool *tool, 1388 union perf_event *event, 1389 struct perf_sample *sample, 1390 struct machine *machine) 1391 { 1392 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1393 1394 /* run the fork event through the perf machineruy */ 1395 perf_event__process_fork(tool, event, sample, machine); 1396 1397 /* and then run additional processing needed for this command */ 1398 if (sched->tp_handler->fork_event) 1399 return sched->tp_handler->fork_event(sched, event, machine); 1400 1401 return 0; 1402 } 1403 1404 static int process_sched_migrate_task_event(struct perf_tool *tool, 1405 struct perf_evsel *evsel, 1406 struct perf_sample *sample, 1407 struct machine *machine) 1408 { 1409 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1410 1411 if (sched->tp_handler->migrate_task_event) 1412 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1413 1414 return 0; 1415 } 1416 1417 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1418 struct perf_evsel *evsel, 1419 struct perf_sample *sample, 1420 struct machine *machine); 1421 1422 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1423 union perf_event *event __maybe_unused, 1424 struct perf_sample *sample, 1425 struct perf_evsel *evsel, 1426 struct machine *machine) 1427 { 1428 int err = 0; 1429 1430 evsel->hists.stats.total_period += sample->period; 1431 hists__inc_nr_samples(&evsel->hists, true); 1432 1433 if (evsel->handler != NULL) { 1434 tracepoint_handler f = evsel->handler; 1435 err = f(tool, evsel, sample, machine); 1436 } 1437 1438 return err; 1439 } 1440 1441 static int perf_sched__read_events(struct perf_sched *sched, 1442 struct perf_session **psession) 1443 { 1444 const struct perf_evsel_str_handler handlers[] = { 1445 { "sched:sched_switch", process_sched_switch_event, }, 1446 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1447 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1448 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1449 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1450 }; 1451 struct perf_session *session; 1452 struct perf_data_file file = { 1453 .path = input_name, 1454 .mode = PERF_DATA_MODE_READ, 1455 }; 1456 1457 session = perf_session__new(&file, false, &sched->tool); 1458 if (session == NULL) { 1459 pr_debug("No Memory for session\n"); 1460 return -1; 1461 } 1462 1463 if (perf_session__set_tracepoints_handlers(session, handlers)) 1464 goto out_delete; 1465 1466 if (perf_session__has_traces(session, "record -R")) { 1467 int err = perf_session__process_events(session, &sched->tool); 1468 if (err) { 1469 pr_err("Failed to process events, error %d", err); 1470 goto out_delete; 1471 } 1472 1473 sched->nr_events = session->stats.nr_events[0]; 1474 sched->nr_lost_events = session->stats.total_lost; 1475 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST]; 1476 } 1477 1478 if (psession) 1479 *psession = session; 1480 else 1481 perf_session__delete(session); 1482 1483 return 0; 1484 1485 out_delete: 1486 perf_session__delete(session); 1487 return -1; 1488 } 1489 1490 static void print_bad_events(struct perf_sched *sched) 1491 { 1492 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 1493 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 1494 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 1495 sched->nr_unordered_timestamps, sched->nr_timestamps); 1496 } 1497 if (sched->nr_lost_events && sched->nr_events) { 1498 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 1499 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 1500 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 1501 } 1502 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 1503 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 1504 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 1505 sched->nr_context_switch_bugs, sched->nr_timestamps); 1506 if (sched->nr_lost_events) 1507 printf(" (due to lost events?)"); 1508 printf("\n"); 1509 } 1510 } 1511 1512 static int perf_sched__lat(struct perf_sched *sched) 1513 { 1514 struct rb_node *next; 1515 struct perf_session *session; 1516 1517 setup_pager(); 1518 1519 /* save session -- references to threads are held in work_list */ 1520 if (perf_sched__read_events(sched, &session)) 1521 return -1; 1522 1523 perf_sched__sort_lat(sched); 1524 1525 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 1526 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 1527 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1528 1529 next = rb_first(&sched->sorted_atom_root); 1530 1531 while (next) { 1532 struct work_atoms *work_list; 1533 1534 work_list = rb_entry(next, struct work_atoms, node); 1535 output_lat_thread(sched, work_list); 1536 next = rb_next(next); 1537 } 1538 1539 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1540 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 1541 (double)sched->all_runtime / 1e6, sched->all_count); 1542 1543 printf(" ---------------------------------------------------\n"); 1544 1545 print_bad_events(sched); 1546 printf("\n"); 1547 1548 perf_session__delete(session); 1549 return 0; 1550 } 1551 1552 static int perf_sched__map(struct perf_sched *sched) 1553 { 1554 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 1555 1556 setup_pager(); 1557 if (perf_sched__read_events(sched, NULL)) 1558 return -1; 1559 print_bad_events(sched); 1560 return 0; 1561 } 1562 1563 static int perf_sched__replay(struct perf_sched *sched) 1564 { 1565 unsigned long i; 1566 1567 calibrate_run_measurement_overhead(sched); 1568 calibrate_sleep_measurement_overhead(sched); 1569 1570 test_calibrations(sched); 1571 1572 if (perf_sched__read_events(sched, NULL)) 1573 return -1; 1574 1575 printf("nr_run_events: %ld\n", sched->nr_run_events); 1576 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 1577 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 1578 1579 if (sched->targetless_wakeups) 1580 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 1581 if (sched->multitarget_wakeups) 1582 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 1583 if (sched->nr_run_events_optimized) 1584 printf("run atoms optimized: %ld\n", 1585 sched->nr_run_events_optimized); 1586 1587 print_task_traces(sched); 1588 add_cross_task_wakeups(sched); 1589 1590 create_tasks(sched); 1591 printf("------------------------------------------------------------\n"); 1592 for (i = 0; i < sched->replay_repeat; i++) 1593 run_one_test(sched); 1594 1595 return 0; 1596 } 1597 1598 static void setup_sorting(struct perf_sched *sched, const struct option *options, 1599 const char * const usage_msg[]) 1600 { 1601 char *tmp, *tok, *str = strdup(sched->sort_order); 1602 1603 for (tok = strtok_r(str, ", ", &tmp); 1604 tok; tok = strtok_r(NULL, ", ", &tmp)) { 1605 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 1606 error("Unknown --sort key: `%s'", tok); 1607 usage_with_options(usage_msg, options); 1608 } 1609 } 1610 1611 free(str); 1612 1613 sort_dimension__add("pid", &sched->cmp_pid); 1614 } 1615 1616 static int __cmd_record(int argc, const char **argv) 1617 { 1618 unsigned int rec_argc, i, j; 1619 const char **rec_argv; 1620 const char * const record_args[] = { 1621 "record", 1622 "-a", 1623 "-R", 1624 "-m", "1024", 1625 "-c", "1", 1626 "-e", "sched:sched_switch", 1627 "-e", "sched:sched_stat_wait", 1628 "-e", "sched:sched_stat_sleep", 1629 "-e", "sched:sched_stat_iowait", 1630 "-e", "sched:sched_stat_runtime", 1631 "-e", "sched:sched_process_fork", 1632 "-e", "sched:sched_wakeup", 1633 "-e", "sched:sched_wakeup_new", 1634 "-e", "sched:sched_migrate_task", 1635 }; 1636 1637 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 1638 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1639 1640 if (rec_argv == NULL) 1641 return -ENOMEM; 1642 1643 for (i = 0; i < ARRAY_SIZE(record_args); i++) 1644 rec_argv[i] = strdup(record_args[i]); 1645 1646 for (j = 1; j < (unsigned int)argc; j++, i++) 1647 rec_argv[i] = argv[j]; 1648 1649 BUG_ON(i != rec_argc); 1650 1651 return cmd_record(i, rec_argv, NULL); 1652 } 1653 1654 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused) 1655 { 1656 const char default_sort_order[] = "avg, max, switch, runtime"; 1657 struct perf_sched sched = { 1658 .tool = { 1659 .sample = perf_sched__process_tracepoint_sample, 1660 .comm = perf_event__process_comm, 1661 .lost = perf_event__process_lost, 1662 .fork = perf_sched__process_fork_event, 1663 .ordered_samples = true, 1664 }, 1665 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 1666 .sort_list = LIST_HEAD_INIT(sched.sort_list), 1667 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 1668 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 1669 .sort_order = default_sort_order, 1670 .replay_repeat = 10, 1671 .profile_cpu = -1, 1672 .next_shortname1 = 'A', 1673 .next_shortname2 = '0', 1674 }; 1675 const struct option latency_options[] = { 1676 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 1677 "sort by key(s): runtime, switch, avg, max"), 1678 OPT_INCR('v', "verbose", &verbose, 1679 "be more verbose (show symbol address, etc)"), 1680 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 1681 "CPU to profile on"), 1682 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1683 "dump raw trace in ASCII"), 1684 OPT_END() 1685 }; 1686 const struct option replay_options[] = { 1687 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 1688 "repeat the workload replay N times (-1: infinite)"), 1689 OPT_INCR('v', "verbose", &verbose, 1690 "be more verbose (show symbol address, etc)"), 1691 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1692 "dump raw trace in ASCII"), 1693 OPT_END() 1694 }; 1695 const struct option sched_options[] = { 1696 OPT_STRING('i', "input", &input_name, "file", 1697 "input file name"), 1698 OPT_INCR('v', "verbose", &verbose, 1699 "be more verbose (show symbol address, etc)"), 1700 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1701 "dump raw trace in ASCII"), 1702 OPT_END() 1703 }; 1704 const char * const latency_usage[] = { 1705 "perf sched latency [<options>]", 1706 NULL 1707 }; 1708 const char * const replay_usage[] = { 1709 "perf sched replay [<options>]", 1710 NULL 1711 }; 1712 const char *const sched_subcommands[] = { "record", "latency", "map", 1713 "replay", "script", NULL }; 1714 const char *sched_usage[] = { 1715 NULL, 1716 NULL 1717 }; 1718 struct trace_sched_handler lat_ops = { 1719 .wakeup_event = latency_wakeup_event, 1720 .switch_event = latency_switch_event, 1721 .runtime_event = latency_runtime_event, 1722 .migrate_task_event = latency_migrate_task_event, 1723 }; 1724 struct trace_sched_handler map_ops = { 1725 .switch_event = map_switch_event, 1726 }; 1727 struct trace_sched_handler replay_ops = { 1728 .wakeup_event = replay_wakeup_event, 1729 .switch_event = replay_switch_event, 1730 .fork_event = replay_fork_event, 1731 }; 1732 unsigned int i; 1733 1734 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 1735 sched.curr_pid[i] = -1; 1736 1737 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 1738 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 1739 if (!argc) 1740 usage_with_options(sched_usage, sched_options); 1741 1742 /* 1743 * Aliased to 'perf script' for now: 1744 */ 1745 if (!strcmp(argv[0], "script")) 1746 return cmd_script(argc, argv, prefix); 1747 1748 symbol__init(); 1749 if (!strncmp(argv[0], "rec", 3)) { 1750 return __cmd_record(argc, argv); 1751 } else if (!strncmp(argv[0], "lat", 3)) { 1752 sched.tp_handler = &lat_ops; 1753 if (argc > 1) { 1754 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 1755 if (argc) 1756 usage_with_options(latency_usage, latency_options); 1757 } 1758 setup_sorting(&sched, latency_options, latency_usage); 1759 return perf_sched__lat(&sched); 1760 } else if (!strcmp(argv[0], "map")) { 1761 sched.tp_handler = &map_ops; 1762 setup_sorting(&sched, latency_options, latency_usage); 1763 return perf_sched__map(&sched); 1764 } else if (!strncmp(argv[0], "rep", 3)) { 1765 sched.tp_handler = &replay_ops; 1766 if (argc) { 1767 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 1768 if (argc) 1769 usage_with_options(replay_usage, replay_options); 1770 } 1771 return perf_sched__replay(&sched); 1772 } else { 1773 usage_with_options(sched_usage, sched_options); 1774 } 1775 1776 return 0; 1777 } 1778