1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 #include "perf-sys.h" 5 6 #include "util/evlist.h" 7 #include "util/evsel.h" 8 #include "util/symbol.h" 9 #include "util/thread.h" 10 #include "util/header.h" 11 #include "util/session.h" 12 #include "util/tool.h" 13 #include "util/cloexec.h" 14 #include "util/thread_map.h" 15 #include "util/color.h" 16 #include "util/stat.h" 17 #include "util/string2.h" 18 #include "util/callchain.h" 19 #include "util/time-utils.h" 20 21 #include <subcmd/pager.h> 22 #include <subcmd/parse-options.h> 23 #include "util/trace-event.h" 24 25 #include "util/debug.h" 26 27 #include <linux/kernel.h> 28 #include <linux/log2.h> 29 #include <linux/zalloc.h> 30 #include <sys/prctl.h> 31 #include <sys/resource.h> 32 #include <inttypes.h> 33 34 #include <errno.h> 35 #include <semaphore.h> 36 #include <pthread.h> 37 #include <math.h> 38 #include <api/fs/fs.h> 39 #include <linux/time64.h> 40 41 #include <linux/ctype.h> 42 43 #define PR_SET_NAME 15 /* Set process name */ 44 #define MAX_CPUS 4096 45 #define COMM_LEN 20 46 #define SYM_LEN 129 47 #define MAX_PID 1024000 48 49 struct sched_atom; 50 51 struct task_desc { 52 unsigned long nr; 53 unsigned long pid; 54 char comm[COMM_LEN]; 55 56 unsigned long nr_events; 57 unsigned long curr_event; 58 struct sched_atom **atoms; 59 60 pthread_t thread; 61 sem_t sleep_sem; 62 63 sem_t ready_for_work; 64 sem_t work_done_sem; 65 66 u64 cpu_usage; 67 }; 68 69 enum sched_event_type { 70 SCHED_EVENT_RUN, 71 SCHED_EVENT_SLEEP, 72 SCHED_EVENT_WAKEUP, 73 SCHED_EVENT_MIGRATION, 74 }; 75 76 struct sched_atom { 77 enum sched_event_type type; 78 int specific_wait; 79 u64 timestamp; 80 u64 duration; 81 unsigned long nr; 82 sem_t *wait_sem; 83 struct task_desc *wakee; 84 }; 85 86 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 87 88 /* task state bitmask, copied from include/linux/sched.h */ 89 #define TASK_RUNNING 0 90 #define TASK_INTERRUPTIBLE 1 91 #define TASK_UNINTERRUPTIBLE 2 92 #define __TASK_STOPPED 4 93 #define __TASK_TRACED 8 94 /* in tsk->exit_state */ 95 #define EXIT_DEAD 16 96 #define EXIT_ZOMBIE 32 97 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 98 /* in tsk->state again */ 99 #define TASK_DEAD 64 100 #define TASK_WAKEKILL 128 101 #define TASK_WAKING 256 102 #define TASK_PARKED 512 103 104 enum thread_state { 105 THREAD_SLEEPING = 0, 106 THREAD_WAIT_CPU, 107 THREAD_SCHED_IN, 108 THREAD_IGNORE 109 }; 110 111 struct work_atom { 112 struct list_head list; 113 enum thread_state state; 114 u64 sched_out_time; 115 u64 wake_up_time; 116 u64 sched_in_time; 117 u64 runtime; 118 }; 119 120 struct work_atoms { 121 struct list_head work_list; 122 struct thread *thread; 123 struct rb_node node; 124 u64 max_lat; 125 u64 max_lat_at; 126 u64 total_lat; 127 u64 nb_atoms; 128 u64 total_runtime; 129 int num_merged; 130 }; 131 132 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 133 134 struct perf_sched; 135 136 struct trace_sched_handler { 137 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 138 struct perf_sample *sample, struct machine *machine); 139 140 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 141 struct perf_sample *sample, struct machine *machine); 142 143 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 144 struct perf_sample *sample, struct machine *machine); 145 146 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 147 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 148 struct machine *machine); 149 150 int (*migrate_task_event)(struct perf_sched *sched, 151 struct evsel *evsel, 152 struct perf_sample *sample, 153 struct machine *machine); 154 }; 155 156 #define COLOR_PIDS PERF_COLOR_BLUE 157 #define COLOR_CPUS PERF_COLOR_BG_RED 158 159 struct perf_sched_map { 160 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 161 int *comp_cpus; 162 bool comp; 163 struct perf_thread_map *color_pids; 164 const char *color_pids_str; 165 struct perf_cpu_map *color_cpus; 166 const char *color_cpus_str; 167 struct perf_cpu_map *cpus; 168 const char *cpus_str; 169 }; 170 171 struct perf_sched { 172 struct perf_tool tool; 173 const char *sort_order; 174 unsigned long nr_tasks; 175 struct task_desc **pid_to_task; 176 struct task_desc **tasks; 177 const struct trace_sched_handler *tp_handler; 178 pthread_mutex_t start_work_mutex; 179 pthread_mutex_t work_done_wait_mutex; 180 int profile_cpu; 181 /* 182 * Track the current task - that way we can know whether there's any 183 * weird events, such as a task being switched away that is not current. 184 */ 185 int max_cpu; 186 u32 curr_pid[MAX_CPUS]; 187 struct thread *curr_thread[MAX_CPUS]; 188 char next_shortname1; 189 char next_shortname2; 190 unsigned int replay_repeat; 191 unsigned long nr_run_events; 192 unsigned long nr_sleep_events; 193 unsigned long nr_wakeup_events; 194 unsigned long nr_sleep_corrections; 195 unsigned long nr_run_events_optimized; 196 unsigned long targetless_wakeups; 197 unsigned long multitarget_wakeups; 198 unsigned long nr_runs; 199 unsigned long nr_timestamps; 200 unsigned long nr_unordered_timestamps; 201 unsigned long nr_context_switch_bugs; 202 unsigned long nr_events; 203 unsigned long nr_lost_chunks; 204 unsigned long nr_lost_events; 205 u64 run_measurement_overhead; 206 u64 sleep_measurement_overhead; 207 u64 start_time; 208 u64 cpu_usage; 209 u64 runavg_cpu_usage; 210 u64 parent_cpu_usage; 211 u64 runavg_parent_cpu_usage; 212 u64 sum_runtime; 213 u64 sum_fluct; 214 u64 run_avg; 215 u64 all_runtime; 216 u64 all_count; 217 u64 cpu_last_switched[MAX_CPUS]; 218 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 219 struct list_head sort_list, cmp_pid; 220 bool force; 221 bool skip_merge; 222 struct perf_sched_map map; 223 224 /* options for timehist command */ 225 bool summary; 226 bool summary_only; 227 bool idle_hist; 228 bool show_callchain; 229 unsigned int max_stack; 230 bool show_cpu_visual; 231 bool show_wakeups; 232 bool show_next; 233 bool show_migrations; 234 bool show_state; 235 u64 skipped_samples; 236 const char *time_str; 237 struct perf_time_interval ptime; 238 struct perf_time_interval hist_time; 239 }; 240 241 /* per thread run time data */ 242 struct thread_runtime { 243 u64 last_time; /* time of previous sched in/out event */ 244 u64 dt_run; /* run time */ 245 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 246 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 247 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 248 u64 dt_delay; /* time between wakeup and sched-in */ 249 u64 ready_to_run; /* time of wakeup */ 250 251 struct stats run_stats; 252 u64 total_run_time; 253 u64 total_sleep_time; 254 u64 total_iowait_time; 255 u64 total_preempt_time; 256 u64 total_delay_time; 257 258 int last_state; 259 260 char shortname[3]; 261 bool comm_changed; 262 263 u64 migrations; 264 }; 265 266 /* per event run time data */ 267 struct evsel_runtime { 268 u64 *last_time; /* time this event was last seen per cpu */ 269 u32 ncpu; /* highest cpu slot allocated */ 270 }; 271 272 /* per cpu idle time data */ 273 struct idle_thread_runtime { 274 struct thread_runtime tr; 275 struct thread *last_thread; 276 struct rb_root_cached sorted_root; 277 struct callchain_root callchain; 278 struct callchain_cursor cursor; 279 }; 280 281 /* track idle times per cpu */ 282 static struct thread **idle_threads; 283 static int idle_max_cpu; 284 static char idle_comm[] = "<idle>"; 285 286 static u64 get_nsecs(void) 287 { 288 struct timespec ts; 289 290 clock_gettime(CLOCK_MONOTONIC, &ts); 291 292 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 293 } 294 295 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 296 { 297 u64 T0 = get_nsecs(), T1; 298 299 do { 300 T1 = get_nsecs(); 301 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 302 } 303 304 static void sleep_nsecs(u64 nsecs) 305 { 306 struct timespec ts; 307 308 ts.tv_nsec = nsecs % 999999999; 309 ts.tv_sec = nsecs / 999999999; 310 311 nanosleep(&ts, NULL); 312 } 313 314 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 315 { 316 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 317 int i; 318 319 for (i = 0; i < 10; i++) { 320 T0 = get_nsecs(); 321 burn_nsecs(sched, 0); 322 T1 = get_nsecs(); 323 delta = T1-T0; 324 min_delta = min(min_delta, delta); 325 } 326 sched->run_measurement_overhead = min_delta; 327 328 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 329 } 330 331 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 332 { 333 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 334 int i; 335 336 for (i = 0; i < 10; i++) { 337 T0 = get_nsecs(); 338 sleep_nsecs(10000); 339 T1 = get_nsecs(); 340 delta = T1-T0; 341 min_delta = min(min_delta, delta); 342 } 343 min_delta -= 10000; 344 sched->sleep_measurement_overhead = min_delta; 345 346 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 347 } 348 349 static struct sched_atom * 350 get_new_event(struct task_desc *task, u64 timestamp) 351 { 352 struct sched_atom *event = zalloc(sizeof(*event)); 353 unsigned long idx = task->nr_events; 354 size_t size; 355 356 event->timestamp = timestamp; 357 event->nr = idx; 358 359 task->nr_events++; 360 size = sizeof(struct sched_atom *) * task->nr_events; 361 task->atoms = realloc(task->atoms, size); 362 BUG_ON(!task->atoms); 363 364 task->atoms[idx] = event; 365 366 return event; 367 } 368 369 static struct sched_atom *last_event(struct task_desc *task) 370 { 371 if (!task->nr_events) 372 return NULL; 373 374 return task->atoms[task->nr_events - 1]; 375 } 376 377 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 378 u64 timestamp, u64 duration) 379 { 380 struct sched_atom *event, *curr_event = last_event(task); 381 382 /* 383 * optimize an existing RUN event by merging this one 384 * to it: 385 */ 386 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 387 sched->nr_run_events_optimized++; 388 curr_event->duration += duration; 389 return; 390 } 391 392 event = get_new_event(task, timestamp); 393 394 event->type = SCHED_EVENT_RUN; 395 event->duration = duration; 396 397 sched->nr_run_events++; 398 } 399 400 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 401 u64 timestamp, struct task_desc *wakee) 402 { 403 struct sched_atom *event, *wakee_event; 404 405 event = get_new_event(task, timestamp); 406 event->type = SCHED_EVENT_WAKEUP; 407 event->wakee = wakee; 408 409 wakee_event = last_event(wakee); 410 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 411 sched->targetless_wakeups++; 412 return; 413 } 414 if (wakee_event->wait_sem) { 415 sched->multitarget_wakeups++; 416 return; 417 } 418 419 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 420 sem_init(wakee_event->wait_sem, 0, 0); 421 wakee_event->specific_wait = 1; 422 event->wait_sem = wakee_event->wait_sem; 423 424 sched->nr_wakeup_events++; 425 } 426 427 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 428 u64 timestamp, u64 task_state __maybe_unused) 429 { 430 struct sched_atom *event = get_new_event(task, timestamp); 431 432 event->type = SCHED_EVENT_SLEEP; 433 434 sched->nr_sleep_events++; 435 } 436 437 static struct task_desc *register_pid(struct perf_sched *sched, 438 unsigned long pid, const char *comm) 439 { 440 struct task_desc *task; 441 static int pid_max; 442 443 if (sched->pid_to_task == NULL) { 444 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 445 pid_max = MAX_PID; 446 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 447 } 448 if (pid >= (unsigned long)pid_max) { 449 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 450 sizeof(struct task_desc *))) == NULL); 451 while (pid >= (unsigned long)pid_max) 452 sched->pid_to_task[pid_max++] = NULL; 453 } 454 455 task = sched->pid_to_task[pid]; 456 457 if (task) 458 return task; 459 460 task = zalloc(sizeof(*task)); 461 task->pid = pid; 462 task->nr = sched->nr_tasks; 463 strcpy(task->comm, comm); 464 /* 465 * every task starts in sleeping state - this gets ignored 466 * if there's no wakeup pointing to this sleep state: 467 */ 468 add_sched_event_sleep(sched, task, 0, 0); 469 470 sched->pid_to_task[pid] = task; 471 sched->nr_tasks++; 472 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 473 BUG_ON(!sched->tasks); 474 sched->tasks[task->nr] = task; 475 476 if (verbose > 0) 477 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 478 479 return task; 480 } 481 482 483 static void print_task_traces(struct perf_sched *sched) 484 { 485 struct task_desc *task; 486 unsigned long i; 487 488 for (i = 0; i < sched->nr_tasks; i++) { 489 task = sched->tasks[i]; 490 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 491 task->nr, task->comm, task->pid, task->nr_events); 492 } 493 } 494 495 static void add_cross_task_wakeups(struct perf_sched *sched) 496 { 497 struct task_desc *task1, *task2; 498 unsigned long i, j; 499 500 for (i = 0; i < sched->nr_tasks; i++) { 501 task1 = sched->tasks[i]; 502 j = i + 1; 503 if (j == sched->nr_tasks) 504 j = 0; 505 task2 = sched->tasks[j]; 506 add_sched_event_wakeup(sched, task1, 0, task2); 507 } 508 } 509 510 static void perf_sched__process_event(struct perf_sched *sched, 511 struct sched_atom *atom) 512 { 513 int ret = 0; 514 515 switch (atom->type) { 516 case SCHED_EVENT_RUN: 517 burn_nsecs(sched, atom->duration); 518 break; 519 case SCHED_EVENT_SLEEP: 520 if (atom->wait_sem) 521 ret = sem_wait(atom->wait_sem); 522 BUG_ON(ret); 523 break; 524 case SCHED_EVENT_WAKEUP: 525 if (atom->wait_sem) 526 ret = sem_post(atom->wait_sem); 527 BUG_ON(ret); 528 break; 529 case SCHED_EVENT_MIGRATION: 530 break; 531 default: 532 BUG_ON(1); 533 } 534 } 535 536 static u64 get_cpu_usage_nsec_parent(void) 537 { 538 struct rusage ru; 539 u64 sum; 540 int err; 541 542 err = getrusage(RUSAGE_SELF, &ru); 543 BUG_ON(err); 544 545 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 546 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 547 548 return sum; 549 } 550 551 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 552 { 553 struct perf_event_attr attr; 554 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 555 int fd; 556 struct rlimit limit; 557 bool need_privilege = false; 558 559 memset(&attr, 0, sizeof(attr)); 560 561 attr.type = PERF_TYPE_SOFTWARE; 562 attr.config = PERF_COUNT_SW_TASK_CLOCK; 563 564 force_again: 565 fd = sys_perf_event_open(&attr, 0, -1, -1, 566 perf_event_open_cloexec_flag()); 567 568 if (fd < 0) { 569 if (errno == EMFILE) { 570 if (sched->force) { 571 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 572 limit.rlim_cur += sched->nr_tasks - cur_task; 573 if (limit.rlim_cur > limit.rlim_max) { 574 limit.rlim_max = limit.rlim_cur; 575 need_privilege = true; 576 } 577 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 578 if (need_privilege && errno == EPERM) 579 strcpy(info, "Need privilege\n"); 580 } else 581 goto force_again; 582 } else 583 strcpy(info, "Have a try with -f option\n"); 584 } 585 pr_err("Error: sys_perf_event_open() syscall returned " 586 "with %d (%s)\n%s", fd, 587 str_error_r(errno, sbuf, sizeof(sbuf)), info); 588 exit(EXIT_FAILURE); 589 } 590 return fd; 591 } 592 593 static u64 get_cpu_usage_nsec_self(int fd) 594 { 595 u64 runtime; 596 int ret; 597 598 ret = read(fd, &runtime, sizeof(runtime)); 599 BUG_ON(ret != sizeof(runtime)); 600 601 return runtime; 602 } 603 604 struct sched_thread_parms { 605 struct task_desc *task; 606 struct perf_sched *sched; 607 int fd; 608 }; 609 610 static void *thread_func(void *ctx) 611 { 612 struct sched_thread_parms *parms = ctx; 613 struct task_desc *this_task = parms->task; 614 struct perf_sched *sched = parms->sched; 615 u64 cpu_usage_0, cpu_usage_1; 616 unsigned long i, ret; 617 char comm2[22]; 618 int fd = parms->fd; 619 620 zfree(&parms); 621 622 sprintf(comm2, ":%s", this_task->comm); 623 prctl(PR_SET_NAME, comm2); 624 if (fd < 0) 625 return NULL; 626 again: 627 ret = sem_post(&this_task->ready_for_work); 628 BUG_ON(ret); 629 ret = pthread_mutex_lock(&sched->start_work_mutex); 630 BUG_ON(ret); 631 ret = pthread_mutex_unlock(&sched->start_work_mutex); 632 BUG_ON(ret); 633 634 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 635 636 for (i = 0; i < this_task->nr_events; i++) { 637 this_task->curr_event = i; 638 perf_sched__process_event(sched, this_task->atoms[i]); 639 } 640 641 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 642 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 643 ret = sem_post(&this_task->work_done_sem); 644 BUG_ON(ret); 645 646 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 647 BUG_ON(ret); 648 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 649 BUG_ON(ret); 650 651 goto again; 652 } 653 654 static void create_tasks(struct perf_sched *sched) 655 { 656 struct task_desc *task; 657 pthread_attr_t attr; 658 unsigned long i; 659 int err; 660 661 err = pthread_attr_init(&attr); 662 BUG_ON(err); 663 err = pthread_attr_setstacksize(&attr, 664 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 665 BUG_ON(err); 666 err = pthread_mutex_lock(&sched->start_work_mutex); 667 BUG_ON(err); 668 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 669 BUG_ON(err); 670 for (i = 0; i < sched->nr_tasks; i++) { 671 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 672 BUG_ON(parms == NULL); 673 parms->task = task = sched->tasks[i]; 674 parms->sched = sched; 675 parms->fd = self_open_counters(sched, i); 676 sem_init(&task->sleep_sem, 0, 0); 677 sem_init(&task->ready_for_work, 0, 0); 678 sem_init(&task->work_done_sem, 0, 0); 679 task->curr_event = 0; 680 err = pthread_create(&task->thread, &attr, thread_func, parms); 681 BUG_ON(err); 682 } 683 } 684 685 static void wait_for_tasks(struct perf_sched *sched) 686 { 687 u64 cpu_usage_0, cpu_usage_1; 688 struct task_desc *task; 689 unsigned long i, ret; 690 691 sched->start_time = get_nsecs(); 692 sched->cpu_usage = 0; 693 pthread_mutex_unlock(&sched->work_done_wait_mutex); 694 695 for (i = 0; i < sched->nr_tasks; i++) { 696 task = sched->tasks[i]; 697 ret = sem_wait(&task->ready_for_work); 698 BUG_ON(ret); 699 sem_init(&task->ready_for_work, 0, 0); 700 } 701 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 702 BUG_ON(ret); 703 704 cpu_usage_0 = get_cpu_usage_nsec_parent(); 705 706 pthread_mutex_unlock(&sched->start_work_mutex); 707 708 for (i = 0; i < sched->nr_tasks; i++) { 709 task = sched->tasks[i]; 710 ret = sem_wait(&task->work_done_sem); 711 BUG_ON(ret); 712 sem_init(&task->work_done_sem, 0, 0); 713 sched->cpu_usage += task->cpu_usage; 714 task->cpu_usage = 0; 715 } 716 717 cpu_usage_1 = get_cpu_usage_nsec_parent(); 718 if (!sched->runavg_cpu_usage) 719 sched->runavg_cpu_usage = sched->cpu_usage; 720 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 721 722 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 723 if (!sched->runavg_parent_cpu_usage) 724 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 725 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 726 sched->parent_cpu_usage)/sched->replay_repeat; 727 728 ret = pthread_mutex_lock(&sched->start_work_mutex); 729 BUG_ON(ret); 730 731 for (i = 0; i < sched->nr_tasks; i++) { 732 task = sched->tasks[i]; 733 sem_init(&task->sleep_sem, 0, 0); 734 task->curr_event = 0; 735 } 736 } 737 738 static void run_one_test(struct perf_sched *sched) 739 { 740 u64 T0, T1, delta, avg_delta, fluct; 741 742 T0 = get_nsecs(); 743 wait_for_tasks(sched); 744 T1 = get_nsecs(); 745 746 delta = T1 - T0; 747 sched->sum_runtime += delta; 748 sched->nr_runs++; 749 750 avg_delta = sched->sum_runtime / sched->nr_runs; 751 if (delta < avg_delta) 752 fluct = avg_delta - delta; 753 else 754 fluct = delta - avg_delta; 755 sched->sum_fluct += fluct; 756 if (!sched->run_avg) 757 sched->run_avg = delta; 758 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 759 760 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 761 762 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 763 764 printf("cpu: %0.2f / %0.2f", 765 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 766 767 #if 0 768 /* 769 * rusage statistics done by the parent, these are less 770 * accurate than the sched->sum_exec_runtime based statistics: 771 */ 772 printf(" [%0.2f / %0.2f]", 773 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 774 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 775 #endif 776 777 printf("\n"); 778 779 if (sched->nr_sleep_corrections) 780 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 781 sched->nr_sleep_corrections = 0; 782 } 783 784 static void test_calibrations(struct perf_sched *sched) 785 { 786 u64 T0, T1; 787 788 T0 = get_nsecs(); 789 burn_nsecs(sched, NSEC_PER_MSEC); 790 T1 = get_nsecs(); 791 792 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 793 794 T0 = get_nsecs(); 795 sleep_nsecs(NSEC_PER_MSEC); 796 T1 = get_nsecs(); 797 798 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 799 } 800 801 static int 802 replay_wakeup_event(struct perf_sched *sched, 803 struct evsel *evsel, struct perf_sample *sample, 804 struct machine *machine __maybe_unused) 805 { 806 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 807 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 808 struct task_desc *waker, *wakee; 809 810 if (verbose > 0) { 811 printf("sched_wakeup event %p\n", evsel); 812 813 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 814 } 815 816 waker = register_pid(sched, sample->tid, "<unknown>"); 817 wakee = register_pid(sched, pid, comm); 818 819 add_sched_event_wakeup(sched, waker, sample->time, wakee); 820 return 0; 821 } 822 823 static int replay_switch_event(struct perf_sched *sched, 824 struct evsel *evsel, 825 struct perf_sample *sample, 826 struct machine *machine __maybe_unused) 827 { 828 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 829 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 830 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 831 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 832 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 833 struct task_desc *prev, __maybe_unused *next; 834 u64 timestamp0, timestamp = sample->time; 835 int cpu = sample->cpu; 836 s64 delta; 837 838 if (verbose > 0) 839 printf("sched_switch event %p\n", evsel); 840 841 if (cpu >= MAX_CPUS || cpu < 0) 842 return 0; 843 844 timestamp0 = sched->cpu_last_switched[cpu]; 845 if (timestamp0) 846 delta = timestamp - timestamp0; 847 else 848 delta = 0; 849 850 if (delta < 0) { 851 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 852 return -1; 853 } 854 855 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 856 prev_comm, prev_pid, next_comm, next_pid, delta); 857 858 prev = register_pid(sched, prev_pid, prev_comm); 859 next = register_pid(sched, next_pid, next_comm); 860 861 sched->cpu_last_switched[cpu] = timestamp; 862 863 add_sched_event_run(sched, prev, timestamp, delta); 864 add_sched_event_sleep(sched, prev, timestamp, prev_state); 865 866 return 0; 867 } 868 869 static int replay_fork_event(struct perf_sched *sched, 870 union perf_event *event, 871 struct machine *machine) 872 { 873 struct thread *child, *parent; 874 875 child = machine__findnew_thread(machine, event->fork.pid, 876 event->fork.tid); 877 parent = machine__findnew_thread(machine, event->fork.ppid, 878 event->fork.ptid); 879 880 if (child == NULL || parent == NULL) { 881 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 882 child, parent); 883 goto out_put; 884 } 885 886 if (verbose > 0) { 887 printf("fork event\n"); 888 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 889 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 890 } 891 892 register_pid(sched, parent->tid, thread__comm_str(parent)); 893 register_pid(sched, child->tid, thread__comm_str(child)); 894 out_put: 895 thread__put(child); 896 thread__put(parent); 897 return 0; 898 } 899 900 struct sort_dimension { 901 const char *name; 902 sort_fn_t cmp; 903 struct list_head list; 904 }; 905 906 /* 907 * handle runtime stats saved per thread 908 */ 909 static struct thread_runtime *thread__init_runtime(struct thread *thread) 910 { 911 struct thread_runtime *r; 912 913 r = zalloc(sizeof(struct thread_runtime)); 914 if (!r) 915 return NULL; 916 917 init_stats(&r->run_stats); 918 thread__set_priv(thread, r); 919 920 return r; 921 } 922 923 static struct thread_runtime *thread__get_runtime(struct thread *thread) 924 { 925 struct thread_runtime *tr; 926 927 tr = thread__priv(thread); 928 if (tr == NULL) { 929 tr = thread__init_runtime(thread); 930 if (tr == NULL) 931 pr_debug("Failed to malloc memory for runtime data.\n"); 932 } 933 934 return tr; 935 } 936 937 static int 938 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 939 { 940 struct sort_dimension *sort; 941 int ret = 0; 942 943 BUG_ON(list_empty(list)); 944 945 list_for_each_entry(sort, list, list) { 946 ret = sort->cmp(l, r); 947 if (ret) 948 return ret; 949 } 950 951 return ret; 952 } 953 954 static struct work_atoms * 955 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 956 struct list_head *sort_list) 957 { 958 struct rb_node *node = root->rb_root.rb_node; 959 struct work_atoms key = { .thread = thread }; 960 961 while (node) { 962 struct work_atoms *atoms; 963 int cmp; 964 965 atoms = container_of(node, struct work_atoms, node); 966 967 cmp = thread_lat_cmp(sort_list, &key, atoms); 968 if (cmp > 0) 969 node = node->rb_left; 970 else if (cmp < 0) 971 node = node->rb_right; 972 else { 973 BUG_ON(thread != atoms->thread); 974 return atoms; 975 } 976 } 977 return NULL; 978 } 979 980 static void 981 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 982 struct list_head *sort_list) 983 { 984 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 985 bool leftmost = true; 986 987 while (*new) { 988 struct work_atoms *this; 989 int cmp; 990 991 this = container_of(*new, struct work_atoms, node); 992 parent = *new; 993 994 cmp = thread_lat_cmp(sort_list, data, this); 995 996 if (cmp > 0) 997 new = &((*new)->rb_left); 998 else { 999 new = &((*new)->rb_right); 1000 leftmost = false; 1001 } 1002 } 1003 1004 rb_link_node(&data->node, parent, new); 1005 rb_insert_color_cached(&data->node, root, leftmost); 1006 } 1007 1008 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1009 { 1010 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1011 if (!atoms) { 1012 pr_err("No memory at %s\n", __func__); 1013 return -1; 1014 } 1015 1016 atoms->thread = thread__get(thread); 1017 INIT_LIST_HEAD(&atoms->work_list); 1018 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1019 return 0; 1020 } 1021 1022 static char sched_out_state(u64 prev_state) 1023 { 1024 const char *str = TASK_STATE_TO_CHAR_STR; 1025 1026 return str[prev_state]; 1027 } 1028 1029 static int 1030 add_sched_out_event(struct work_atoms *atoms, 1031 char run_state, 1032 u64 timestamp) 1033 { 1034 struct work_atom *atom = zalloc(sizeof(*atom)); 1035 if (!atom) { 1036 pr_err("Non memory at %s", __func__); 1037 return -1; 1038 } 1039 1040 atom->sched_out_time = timestamp; 1041 1042 if (run_state == 'R') { 1043 atom->state = THREAD_WAIT_CPU; 1044 atom->wake_up_time = atom->sched_out_time; 1045 } 1046 1047 list_add_tail(&atom->list, &atoms->work_list); 1048 return 0; 1049 } 1050 1051 static void 1052 add_runtime_event(struct work_atoms *atoms, u64 delta, 1053 u64 timestamp __maybe_unused) 1054 { 1055 struct work_atom *atom; 1056 1057 BUG_ON(list_empty(&atoms->work_list)); 1058 1059 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1060 1061 atom->runtime += delta; 1062 atoms->total_runtime += delta; 1063 } 1064 1065 static void 1066 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1067 { 1068 struct work_atom *atom; 1069 u64 delta; 1070 1071 if (list_empty(&atoms->work_list)) 1072 return; 1073 1074 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1075 1076 if (atom->state != THREAD_WAIT_CPU) 1077 return; 1078 1079 if (timestamp < atom->wake_up_time) { 1080 atom->state = THREAD_IGNORE; 1081 return; 1082 } 1083 1084 atom->state = THREAD_SCHED_IN; 1085 atom->sched_in_time = timestamp; 1086 1087 delta = atom->sched_in_time - atom->wake_up_time; 1088 atoms->total_lat += delta; 1089 if (delta > atoms->max_lat) { 1090 atoms->max_lat = delta; 1091 atoms->max_lat_at = timestamp; 1092 } 1093 atoms->nb_atoms++; 1094 } 1095 1096 static int latency_switch_event(struct perf_sched *sched, 1097 struct evsel *evsel, 1098 struct perf_sample *sample, 1099 struct machine *machine) 1100 { 1101 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1102 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1103 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 1104 struct work_atoms *out_events, *in_events; 1105 struct thread *sched_out, *sched_in; 1106 u64 timestamp0, timestamp = sample->time; 1107 int cpu = sample->cpu, err = -1; 1108 s64 delta; 1109 1110 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1111 1112 timestamp0 = sched->cpu_last_switched[cpu]; 1113 sched->cpu_last_switched[cpu] = timestamp; 1114 if (timestamp0) 1115 delta = timestamp - timestamp0; 1116 else 1117 delta = 0; 1118 1119 if (delta < 0) { 1120 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1121 return -1; 1122 } 1123 1124 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1125 sched_in = machine__findnew_thread(machine, -1, next_pid); 1126 if (sched_out == NULL || sched_in == NULL) 1127 goto out_put; 1128 1129 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1130 if (!out_events) { 1131 if (thread_atoms_insert(sched, sched_out)) 1132 goto out_put; 1133 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1134 if (!out_events) { 1135 pr_err("out-event: Internal tree error"); 1136 goto out_put; 1137 } 1138 } 1139 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1140 return -1; 1141 1142 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1143 if (!in_events) { 1144 if (thread_atoms_insert(sched, sched_in)) 1145 goto out_put; 1146 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1147 if (!in_events) { 1148 pr_err("in-event: Internal tree error"); 1149 goto out_put; 1150 } 1151 /* 1152 * Take came in we have not heard about yet, 1153 * add in an initial atom in runnable state: 1154 */ 1155 if (add_sched_out_event(in_events, 'R', timestamp)) 1156 goto out_put; 1157 } 1158 add_sched_in_event(in_events, timestamp); 1159 err = 0; 1160 out_put: 1161 thread__put(sched_out); 1162 thread__put(sched_in); 1163 return err; 1164 } 1165 1166 static int latency_runtime_event(struct perf_sched *sched, 1167 struct evsel *evsel, 1168 struct perf_sample *sample, 1169 struct machine *machine) 1170 { 1171 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1172 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 1173 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1174 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1175 u64 timestamp = sample->time; 1176 int cpu = sample->cpu, err = -1; 1177 1178 if (thread == NULL) 1179 return -1; 1180 1181 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1182 if (!atoms) { 1183 if (thread_atoms_insert(sched, thread)) 1184 goto out_put; 1185 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1186 if (!atoms) { 1187 pr_err("in-event: Internal tree error"); 1188 goto out_put; 1189 } 1190 if (add_sched_out_event(atoms, 'R', timestamp)) 1191 goto out_put; 1192 } 1193 1194 add_runtime_event(atoms, runtime, timestamp); 1195 err = 0; 1196 out_put: 1197 thread__put(thread); 1198 return err; 1199 } 1200 1201 static int latency_wakeup_event(struct perf_sched *sched, 1202 struct evsel *evsel, 1203 struct perf_sample *sample, 1204 struct machine *machine) 1205 { 1206 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1207 struct work_atoms *atoms; 1208 struct work_atom *atom; 1209 struct thread *wakee; 1210 u64 timestamp = sample->time; 1211 int err = -1; 1212 1213 wakee = machine__findnew_thread(machine, -1, pid); 1214 if (wakee == NULL) 1215 return -1; 1216 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1217 if (!atoms) { 1218 if (thread_atoms_insert(sched, wakee)) 1219 goto out_put; 1220 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1221 if (!atoms) { 1222 pr_err("wakeup-event: Internal tree error"); 1223 goto out_put; 1224 } 1225 if (add_sched_out_event(atoms, 'S', timestamp)) 1226 goto out_put; 1227 } 1228 1229 BUG_ON(list_empty(&atoms->work_list)); 1230 1231 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1232 1233 /* 1234 * As we do not guarantee the wakeup event happens when 1235 * task is out of run queue, also may happen when task is 1236 * on run queue and wakeup only change ->state to TASK_RUNNING, 1237 * then we should not set the ->wake_up_time when wake up a 1238 * task which is on run queue. 1239 * 1240 * You WILL be missing events if you've recorded only 1241 * one CPU, or are only looking at only one, so don't 1242 * skip in this case. 1243 */ 1244 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1245 goto out_ok; 1246 1247 sched->nr_timestamps++; 1248 if (atom->sched_out_time > timestamp) { 1249 sched->nr_unordered_timestamps++; 1250 goto out_ok; 1251 } 1252 1253 atom->state = THREAD_WAIT_CPU; 1254 atom->wake_up_time = timestamp; 1255 out_ok: 1256 err = 0; 1257 out_put: 1258 thread__put(wakee); 1259 return err; 1260 } 1261 1262 static int latency_migrate_task_event(struct perf_sched *sched, 1263 struct evsel *evsel, 1264 struct perf_sample *sample, 1265 struct machine *machine) 1266 { 1267 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1268 u64 timestamp = sample->time; 1269 struct work_atoms *atoms; 1270 struct work_atom *atom; 1271 struct thread *migrant; 1272 int err = -1; 1273 1274 /* 1275 * Only need to worry about migration when profiling one CPU. 1276 */ 1277 if (sched->profile_cpu == -1) 1278 return 0; 1279 1280 migrant = machine__findnew_thread(machine, -1, pid); 1281 if (migrant == NULL) 1282 return -1; 1283 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1284 if (!atoms) { 1285 if (thread_atoms_insert(sched, migrant)) 1286 goto out_put; 1287 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1288 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1289 if (!atoms) { 1290 pr_err("migration-event: Internal tree error"); 1291 goto out_put; 1292 } 1293 if (add_sched_out_event(atoms, 'R', timestamp)) 1294 goto out_put; 1295 } 1296 1297 BUG_ON(list_empty(&atoms->work_list)); 1298 1299 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1300 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1301 1302 sched->nr_timestamps++; 1303 1304 if (atom->sched_out_time > timestamp) 1305 sched->nr_unordered_timestamps++; 1306 err = 0; 1307 out_put: 1308 thread__put(migrant); 1309 return err; 1310 } 1311 1312 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1313 { 1314 int i; 1315 int ret; 1316 u64 avg; 1317 char max_lat_at[32]; 1318 1319 if (!work_list->nb_atoms) 1320 return; 1321 /* 1322 * Ignore idle threads: 1323 */ 1324 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1325 return; 1326 1327 sched->all_runtime += work_list->total_runtime; 1328 sched->all_count += work_list->nb_atoms; 1329 1330 if (work_list->num_merged > 1) 1331 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1332 else 1333 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1334 1335 for (i = 0; i < 24 - ret; i++) 1336 printf(" "); 1337 1338 avg = work_list->total_lat / work_list->nb_atoms; 1339 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at)); 1340 1341 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n", 1342 (double)work_list->total_runtime / NSEC_PER_MSEC, 1343 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1344 (double)work_list->max_lat / NSEC_PER_MSEC, 1345 max_lat_at); 1346 } 1347 1348 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1349 { 1350 if (l->thread == r->thread) 1351 return 0; 1352 if (l->thread->tid < r->thread->tid) 1353 return -1; 1354 if (l->thread->tid > r->thread->tid) 1355 return 1; 1356 return (int)(l->thread - r->thread); 1357 } 1358 1359 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1360 { 1361 u64 avgl, avgr; 1362 1363 if (!l->nb_atoms) 1364 return -1; 1365 1366 if (!r->nb_atoms) 1367 return 1; 1368 1369 avgl = l->total_lat / l->nb_atoms; 1370 avgr = r->total_lat / r->nb_atoms; 1371 1372 if (avgl < avgr) 1373 return -1; 1374 if (avgl > avgr) 1375 return 1; 1376 1377 return 0; 1378 } 1379 1380 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1381 { 1382 if (l->max_lat < r->max_lat) 1383 return -1; 1384 if (l->max_lat > r->max_lat) 1385 return 1; 1386 1387 return 0; 1388 } 1389 1390 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1391 { 1392 if (l->nb_atoms < r->nb_atoms) 1393 return -1; 1394 if (l->nb_atoms > r->nb_atoms) 1395 return 1; 1396 1397 return 0; 1398 } 1399 1400 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1401 { 1402 if (l->total_runtime < r->total_runtime) 1403 return -1; 1404 if (l->total_runtime > r->total_runtime) 1405 return 1; 1406 1407 return 0; 1408 } 1409 1410 static int sort_dimension__add(const char *tok, struct list_head *list) 1411 { 1412 size_t i; 1413 static struct sort_dimension avg_sort_dimension = { 1414 .name = "avg", 1415 .cmp = avg_cmp, 1416 }; 1417 static struct sort_dimension max_sort_dimension = { 1418 .name = "max", 1419 .cmp = max_cmp, 1420 }; 1421 static struct sort_dimension pid_sort_dimension = { 1422 .name = "pid", 1423 .cmp = pid_cmp, 1424 }; 1425 static struct sort_dimension runtime_sort_dimension = { 1426 .name = "runtime", 1427 .cmp = runtime_cmp, 1428 }; 1429 static struct sort_dimension switch_sort_dimension = { 1430 .name = "switch", 1431 .cmp = switch_cmp, 1432 }; 1433 struct sort_dimension *available_sorts[] = { 1434 &pid_sort_dimension, 1435 &avg_sort_dimension, 1436 &max_sort_dimension, 1437 &switch_sort_dimension, 1438 &runtime_sort_dimension, 1439 }; 1440 1441 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1442 if (!strcmp(available_sorts[i]->name, tok)) { 1443 list_add_tail(&available_sorts[i]->list, list); 1444 1445 return 0; 1446 } 1447 } 1448 1449 return -1; 1450 } 1451 1452 static void perf_sched__sort_lat(struct perf_sched *sched) 1453 { 1454 struct rb_node *node; 1455 struct rb_root_cached *root = &sched->atom_root; 1456 again: 1457 for (;;) { 1458 struct work_atoms *data; 1459 node = rb_first_cached(root); 1460 if (!node) 1461 break; 1462 1463 rb_erase_cached(node, root); 1464 data = rb_entry(node, struct work_atoms, node); 1465 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1466 } 1467 if (root == &sched->atom_root) { 1468 root = &sched->merged_atom_root; 1469 goto again; 1470 } 1471 } 1472 1473 static int process_sched_wakeup_event(struct perf_tool *tool, 1474 struct evsel *evsel, 1475 struct perf_sample *sample, 1476 struct machine *machine) 1477 { 1478 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1479 1480 if (sched->tp_handler->wakeup_event) 1481 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1482 1483 return 0; 1484 } 1485 1486 union map_priv { 1487 void *ptr; 1488 bool color; 1489 }; 1490 1491 static bool thread__has_color(struct thread *thread) 1492 { 1493 union map_priv priv = { 1494 .ptr = thread__priv(thread), 1495 }; 1496 1497 return priv.color; 1498 } 1499 1500 static struct thread* 1501 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1502 { 1503 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1504 union map_priv priv = { 1505 .color = false, 1506 }; 1507 1508 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1509 return thread; 1510 1511 if (thread_map__has(sched->map.color_pids, tid)) 1512 priv.color = true; 1513 1514 thread__set_priv(thread, priv.ptr); 1515 return thread; 1516 } 1517 1518 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1519 struct perf_sample *sample, struct machine *machine) 1520 { 1521 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1522 struct thread *sched_in; 1523 struct thread_runtime *tr; 1524 int new_shortname; 1525 u64 timestamp0, timestamp = sample->time; 1526 s64 delta; 1527 int i, this_cpu = sample->cpu; 1528 int cpus_nr; 1529 bool new_cpu = false; 1530 const char *color = PERF_COLOR_NORMAL; 1531 char stimestamp[32]; 1532 1533 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1534 1535 if (this_cpu > sched->max_cpu) 1536 sched->max_cpu = this_cpu; 1537 1538 if (sched->map.comp) { 1539 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1540 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { 1541 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1542 new_cpu = true; 1543 } 1544 } else 1545 cpus_nr = sched->max_cpu; 1546 1547 timestamp0 = sched->cpu_last_switched[this_cpu]; 1548 sched->cpu_last_switched[this_cpu] = timestamp; 1549 if (timestamp0) 1550 delta = timestamp - timestamp0; 1551 else 1552 delta = 0; 1553 1554 if (delta < 0) { 1555 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1556 return -1; 1557 } 1558 1559 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1560 if (sched_in == NULL) 1561 return -1; 1562 1563 tr = thread__get_runtime(sched_in); 1564 if (tr == NULL) { 1565 thread__put(sched_in); 1566 return -1; 1567 } 1568 1569 sched->curr_thread[this_cpu] = thread__get(sched_in); 1570 1571 printf(" "); 1572 1573 new_shortname = 0; 1574 if (!tr->shortname[0]) { 1575 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1576 /* 1577 * Don't allocate a letter-number for swapper:0 1578 * as a shortname. Instead, we use '.' for it. 1579 */ 1580 tr->shortname[0] = '.'; 1581 tr->shortname[1] = ' '; 1582 } else { 1583 tr->shortname[0] = sched->next_shortname1; 1584 tr->shortname[1] = sched->next_shortname2; 1585 1586 if (sched->next_shortname1 < 'Z') { 1587 sched->next_shortname1++; 1588 } else { 1589 sched->next_shortname1 = 'A'; 1590 if (sched->next_shortname2 < '9') 1591 sched->next_shortname2++; 1592 else 1593 sched->next_shortname2 = '0'; 1594 } 1595 } 1596 new_shortname = 1; 1597 } 1598 1599 for (i = 0; i < cpus_nr; i++) { 1600 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; 1601 struct thread *curr_thread = sched->curr_thread[cpu]; 1602 struct thread_runtime *curr_tr; 1603 const char *pid_color = color; 1604 const char *cpu_color = color; 1605 1606 if (curr_thread && thread__has_color(curr_thread)) 1607 pid_color = COLOR_PIDS; 1608 1609 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) 1610 continue; 1611 1612 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) 1613 cpu_color = COLOR_CPUS; 1614 1615 if (cpu != this_cpu) 1616 color_fprintf(stdout, color, " "); 1617 else 1618 color_fprintf(stdout, cpu_color, "*"); 1619 1620 if (sched->curr_thread[cpu]) { 1621 curr_tr = thread__get_runtime(sched->curr_thread[cpu]); 1622 if (curr_tr == NULL) { 1623 thread__put(sched_in); 1624 return -1; 1625 } 1626 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1627 } else 1628 color_fprintf(stdout, color, " "); 1629 } 1630 1631 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) 1632 goto out; 1633 1634 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1635 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1636 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) { 1637 const char *pid_color = color; 1638 1639 if (thread__has_color(sched_in)) 1640 pid_color = COLOR_PIDS; 1641 1642 color_fprintf(stdout, pid_color, "%s => %s:%d", 1643 tr->shortname, thread__comm_str(sched_in), sched_in->tid); 1644 tr->comm_changed = false; 1645 } 1646 1647 if (sched->map.comp && new_cpu) 1648 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1649 1650 out: 1651 color_fprintf(stdout, color, "\n"); 1652 1653 thread__put(sched_in); 1654 1655 return 0; 1656 } 1657 1658 static int process_sched_switch_event(struct perf_tool *tool, 1659 struct evsel *evsel, 1660 struct perf_sample *sample, 1661 struct machine *machine) 1662 { 1663 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1664 int this_cpu = sample->cpu, err = 0; 1665 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1666 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1667 1668 if (sched->curr_pid[this_cpu] != (u32)-1) { 1669 /* 1670 * Are we trying to switch away a PID that is 1671 * not current? 1672 */ 1673 if (sched->curr_pid[this_cpu] != prev_pid) 1674 sched->nr_context_switch_bugs++; 1675 } 1676 1677 if (sched->tp_handler->switch_event) 1678 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1679 1680 sched->curr_pid[this_cpu] = next_pid; 1681 return err; 1682 } 1683 1684 static int process_sched_runtime_event(struct perf_tool *tool, 1685 struct evsel *evsel, 1686 struct perf_sample *sample, 1687 struct machine *machine) 1688 { 1689 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1690 1691 if (sched->tp_handler->runtime_event) 1692 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1693 1694 return 0; 1695 } 1696 1697 static int perf_sched__process_fork_event(struct perf_tool *tool, 1698 union perf_event *event, 1699 struct perf_sample *sample, 1700 struct machine *machine) 1701 { 1702 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1703 1704 /* run the fork event through the perf machineruy */ 1705 perf_event__process_fork(tool, event, sample, machine); 1706 1707 /* and then run additional processing needed for this command */ 1708 if (sched->tp_handler->fork_event) 1709 return sched->tp_handler->fork_event(sched, event, machine); 1710 1711 return 0; 1712 } 1713 1714 static int process_sched_migrate_task_event(struct perf_tool *tool, 1715 struct evsel *evsel, 1716 struct perf_sample *sample, 1717 struct machine *machine) 1718 { 1719 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1720 1721 if (sched->tp_handler->migrate_task_event) 1722 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1723 1724 return 0; 1725 } 1726 1727 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1728 struct evsel *evsel, 1729 struct perf_sample *sample, 1730 struct machine *machine); 1731 1732 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1733 union perf_event *event __maybe_unused, 1734 struct perf_sample *sample, 1735 struct evsel *evsel, 1736 struct machine *machine) 1737 { 1738 int err = 0; 1739 1740 if (evsel->handler != NULL) { 1741 tracepoint_handler f = evsel->handler; 1742 err = f(tool, evsel, sample, machine); 1743 } 1744 1745 return err; 1746 } 1747 1748 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, 1749 union perf_event *event, 1750 struct perf_sample *sample, 1751 struct machine *machine) 1752 { 1753 struct thread *thread; 1754 struct thread_runtime *tr; 1755 int err; 1756 1757 err = perf_event__process_comm(tool, event, sample, machine); 1758 if (err) 1759 return err; 1760 1761 thread = machine__find_thread(machine, sample->pid, sample->tid); 1762 if (!thread) { 1763 pr_err("Internal error: can't find thread\n"); 1764 return -1; 1765 } 1766 1767 tr = thread__get_runtime(thread); 1768 if (tr == NULL) { 1769 thread__put(thread); 1770 return -1; 1771 } 1772 1773 tr->comm_changed = true; 1774 thread__put(thread); 1775 1776 return 0; 1777 } 1778 1779 static int perf_sched__read_events(struct perf_sched *sched) 1780 { 1781 const struct evsel_str_handler handlers[] = { 1782 { "sched:sched_switch", process_sched_switch_event, }, 1783 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1784 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1785 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1786 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1787 }; 1788 struct perf_session *session; 1789 struct perf_data data = { 1790 .path = input_name, 1791 .mode = PERF_DATA_MODE_READ, 1792 .force = sched->force, 1793 }; 1794 int rc = -1; 1795 1796 session = perf_session__new(&data, false, &sched->tool); 1797 if (session == NULL) { 1798 pr_debug("No Memory for session\n"); 1799 return -1; 1800 } 1801 1802 symbol__init(&session->header.env); 1803 1804 if (perf_session__set_tracepoints_handlers(session, handlers)) 1805 goto out_delete; 1806 1807 if (perf_session__has_traces(session, "record -R")) { 1808 int err = perf_session__process_events(session); 1809 if (err) { 1810 pr_err("Failed to process events, error %d", err); 1811 goto out_delete; 1812 } 1813 1814 sched->nr_events = session->evlist->stats.nr_events[0]; 1815 sched->nr_lost_events = session->evlist->stats.total_lost; 1816 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1817 } 1818 1819 rc = 0; 1820 out_delete: 1821 perf_session__delete(session); 1822 return rc; 1823 } 1824 1825 /* 1826 * scheduling times are printed as msec.usec 1827 */ 1828 static inline void print_sched_time(unsigned long long nsecs, int width) 1829 { 1830 unsigned long msecs; 1831 unsigned long usecs; 1832 1833 msecs = nsecs / NSEC_PER_MSEC; 1834 nsecs -= msecs * NSEC_PER_MSEC; 1835 usecs = nsecs / NSEC_PER_USEC; 1836 printf("%*lu.%03lu ", width, msecs, usecs); 1837 } 1838 1839 /* 1840 * returns runtime data for event, allocating memory for it the 1841 * first time it is used. 1842 */ 1843 static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel) 1844 { 1845 struct evsel_runtime *r = evsel->priv; 1846 1847 if (r == NULL) { 1848 r = zalloc(sizeof(struct evsel_runtime)); 1849 evsel->priv = r; 1850 } 1851 1852 return r; 1853 } 1854 1855 /* 1856 * save last time event was seen per cpu 1857 */ 1858 static void perf_evsel__save_time(struct evsel *evsel, 1859 u64 timestamp, u32 cpu) 1860 { 1861 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1862 1863 if (r == NULL) 1864 return; 1865 1866 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1867 int i, n = __roundup_pow_of_two(cpu+1); 1868 void *p = r->last_time; 1869 1870 p = realloc(r->last_time, n * sizeof(u64)); 1871 if (!p) 1872 return; 1873 1874 r->last_time = p; 1875 for (i = r->ncpu; i < n; ++i) 1876 r->last_time[i] = (u64) 0; 1877 1878 r->ncpu = n; 1879 } 1880 1881 r->last_time[cpu] = timestamp; 1882 } 1883 1884 /* returns last time this event was seen on the given cpu */ 1885 static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu) 1886 { 1887 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1888 1889 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1890 return 0; 1891 1892 return r->last_time[cpu]; 1893 } 1894 1895 static int comm_width = 30; 1896 1897 static char *timehist_get_commstr(struct thread *thread) 1898 { 1899 static char str[32]; 1900 const char *comm = thread__comm_str(thread); 1901 pid_t tid = thread->tid; 1902 pid_t pid = thread->pid_; 1903 int n; 1904 1905 if (pid == 0) 1906 n = scnprintf(str, sizeof(str), "%s", comm); 1907 1908 else if (tid != pid) 1909 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1910 1911 else 1912 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1913 1914 if (n > comm_width) 1915 comm_width = n; 1916 1917 return str; 1918 } 1919 1920 static void timehist_header(struct perf_sched *sched) 1921 { 1922 u32 ncpus = sched->max_cpu + 1; 1923 u32 i, j; 1924 1925 printf("%15s %6s ", "time", "cpu"); 1926 1927 if (sched->show_cpu_visual) { 1928 printf(" "); 1929 for (i = 0, j = 0; i < ncpus; ++i) { 1930 printf("%x", j++); 1931 if (j > 15) 1932 j = 0; 1933 } 1934 printf(" "); 1935 } 1936 1937 printf(" %-*s %9s %9s %9s", comm_width, 1938 "task name", "wait time", "sch delay", "run time"); 1939 1940 if (sched->show_state) 1941 printf(" %s", "state"); 1942 1943 printf("\n"); 1944 1945 /* 1946 * units row 1947 */ 1948 printf("%15s %-6s ", "", ""); 1949 1950 if (sched->show_cpu_visual) 1951 printf(" %*s ", ncpus, ""); 1952 1953 printf(" %-*s %9s %9s %9s", comm_width, 1954 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 1955 1956 if (sched->show_state) 1957 printf(" %5s", ""); 1958 1959 printf("\n"); 1960 1961 /* 1962 * separator 1963 */ 1964 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 1965 1966 if (sched->show_cpu_visual) 1967 printf(" %.*s ", ncpus, graph_dotted_line); 1968 1969 printf(" %.*s %.9s %.9s %.9s", comm_width, 1970 graph_dotted_line, graph_dotted_line, graph_dotted_line, 1971 graph_dotted_line); 1972 1973 if (sched->show_state) 1974 printf(" %.5s", graph_dotted_line); 1975 1976 printf("\n"); 1977 } 1978 1979 static char task_state_char(struct thread *thread, int state) 1980 { 1981 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 1982 unsigned bit = state ? ffs(state) : 0; 1983 1984 /* 'I' for idle */ 1985 if (thread->tid == 0) 1986 return 'I'; 1987 1988 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 1989 } 1990 1991 static void timehist_print_sample(struct perf_sched *sched, 1992 struct evsel *evsel, 1993 struct perf_sample *sample, 1994 struct addr_location *al, 1995 struct thread *thread, 1996 u64 t, int state) 1997 { 1998 struct thread_runtime *tr = thread__priv(thread); 1999 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 2000 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 2001 u32 max_cpus = sched->max_cpu + 1; 2002 char tstr[64]; 2003 char nstr[30]; 2004 u64 wait_time; 2005 2006 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2007 printf("%15s [%04d] ", tstr, sample->cpu); 2008 2009 if (sched->show_cpu_visual) { 2010 u32 i; 2011 char c; 2012 2013 printf(" "); 2014 for (i = 0; i < max_cpus; ++i) { 2015 /* flag idle times with 'i'; others are sched events */ 2016 if (i == sample->cpu) 2017 c = (thread->tid == 0) ? 'i' : 's'; 2018 else 2019 c = ' '; 2020 printf("%c", c); 2021 } 2022 printf(" "); 2023 } 2024 2025 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2026 2027 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2028 print_sched_time(wait_time, 6); 2029 2030 print_sched_time(tr->dt_delay, 6); 2031 print_sched_time(tr->dt_run, 6); 2032 2033 if (sched->show_state) 2034 printf(" %5c ", task_state_char(thread, state)); 2035 2036 if (sched->show_next) { 2037 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2038 printf(" %-*s", comm_width, nstr); 2039 } 2040 2041 if (sched->show_wakeups && !sched->show_next) 2042 printf(" %-*s", comm_width, ""); 2043 2044 if (thread->tid == 0) 2045 goto out; 2046 2047 if (sched->show_callchain) 2048 printf(" "); 2049 2050 sample__fprintf_sym(sample, al, 0, 2051 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2052 EVSEL__PRINT_CALLCHAIN_ARROW | 2053 EVSEL__PRINT_SKIP_IGNORED, 2054 &callchain_cursor, stdout); 2055 2056 out: 2057 printf("\n"); 2058 } 2059 2060 /* 2061 * Explanation of delta-time stats: 2062 * 2063 * t = time of current schedule out event 2064 * tprev = time of previous sched out event 2065 * also time of schedule-in event for current task 2066 * last_time = time of last sched change event for current task 2067 * (i.e, time process was last scheduled out) 2068 * ready_to_run = time of wakeup for current task 2069 * 2070 * -----|------------|------------|------------|------ 2071 * last ready tprev t 2072 * time to run 2073 * 2074 * |-------- dt_wait --------| 2075 * |- dt_delay -|-- dt_run --| 2076 * 2077 * dt_run = run time of current task 2078 * dt_wait = time between last schedule out event for task and tprev 2079 * represents time spent off the cpu 2080 * dt_delay = time between wakeup and schedule-in of task 2081 */ 2082 2083 static void timehist_update_runtime_stats(struct thread_runtime *r, 2084 u64 t, u64 tprev) 2085 { 2086 r->dt_delay = 0; 2087 r->dt_sleep = 0; 2088 r->dt_iowait = 0; 2089 r->dt_preempt = 0; 2090 r->dt_run = 0; 2091 2092 if (tprev) { 2093 r->dt_run = t - tprev; 2094 if (r->ready_to_run) { 2095 if (r->ready_to_run > tprev) 2096 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2097 else 2098 r->dt_delay = tprev - r->ready_to_run; 2099 } 2100 2101 if (r->last_time > tprev) 2102 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2103 else if (r->last_time) { 2104 u64 dt_wait = tprev - r->last_time; 2105 2106 if (r->last_state == TASK_RUNNING) 2107 r->dt_preempt = dt_wait; 2108 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2109 r->dt_iowait = dt_wait; 2110 else 2111 r->dt_sleep = dt_wait; 2112 } 2113 } 2114 2115 update_stats(&r->run_stats, r->dt_run); 2116 2117 r->total_run_time += r->dt_run; 2118 r->total_delay_time += r->dt_delay; 2119 r->total_sleep_time += r->dt_sleep; 2120 r->total_iowait_time += r->dt_iowait; 2121 r->total_preempt_time += r->dt_preempt; 2122 } 2123 2124 static bool is_idle_sample(struct perf_sample *sample, 2125 struct evsel *evsel) 2126 { 2127 /* pid 0 == swapper == idle task */ 2128 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0) 2129 return perf_evsel__intval(evsel, sample, "prev_pid") == 0; 2130 2131 return sample->pid == 0; 2132 } 2133 2134 static void save_task_callchain(struct perf_sched *sched, 2135 struct perf_sample *sample, 2136 struct evsel *evsel, 2137 struct machine *machine) 2138 { 2139 struct callchain_cursor *cursor = &callchain_cursor; 2140 struct thread *thread; 2141 2142 /* want main thread for process - has maps */ 2143 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2144 if (thread == NULL) { 2145 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2146 return; 2147 } 2148 2149 if (!sched->show_callchain || sample->callchain == NULL) 2150 return; 2151 2152 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2153 NULL, NULL, sched->max_stack + 2) != 0) { 2154 if (verbose > 0) 2155 pr_err("Failed to resolve callchain. Skipping\n"); 2156 2157 return; 2158 } 2159 2160 callchain_cursor_commit(cursor); 2161 2162 while (true) { 2163 struct callchain_cursor_node *node; 2164 struct symbol *sym; 2165 2166 node = callchain_cursor_current(cursor); 2167 if (node == NULL) 2168 break; 2169 2170 sym = node->sym; 2171 if (sym) { 2172 if (!strcmp(sym->name, "schedule") || 2173 !strcmp(sym->name, "__schedule") || 2174 !strcmp(sym->name, "preempt_schedule")) 2175 sym->ignore = 1; 2176 } 2177 2178 callchain_cursor_advance(cursor); 2179 } 2180 } 2181 2182 static int init_idle_thread(struct thread *thread) 2183 { 2184 struct idle_thread_runtime *itr; 2185 2186 thread__set_comm(thread, idle_comm, 0); 2187 2188 itr = zalloc(sizeof(*itr)); 2189 if (itr == NULL) 2190 return -ENOMEM; 2191 2192 init_stats(&itr->tr.run_stats); 2193 callchain_init(&itr->callchain); 2194 callchain_cursor_reset(&itr->cursor); 2195 thread__set_priv(thread, itr); 2196 2197 return 0; 2198 } 2199 2200 /* 2201 * Track idle stats per cpu by maintaining a local thread 2202 * struct for the idle task on each cpu. 2203 */ 2204 static int init_idle_threads(int ncpu) 2205 { 2206 int i, ret; 2207 2208 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2209 if (!idle_threads) 2210 return -ENOMEM; 2211 2212 idle_max_cpu = ncpu; 2213 2214 /* allocate the actual thread struct if needed */ 2215 for (i = 0; i < ncpu; ++i) { 2216 idle_threads[i] = thread__new(0, 0); 2217 if (idle_threads[i] == NULL) 2218 return -ENOMEM; 2219 2220 ret = init_idle_thread(idle_threads[i]); 2221 if (ret < 0) 2222 return ret; 2223 } 2224 2225 return 0; 2226 } 2227 2228 static void free_idle_threads(void) 2229 { 2230 int i; 2231 2232 if (idle_threads == NULL) 2233 return; 2234 2235 for (i = 0; i < idle_max_cpu; ++i) { 2236 if ((idle_threads[i])) 2237 thread__delete(idle_threads[i]); 2238 } 2239 2240 free(idle_threads); 2241 } 2242 2243 static struct thread *get_idle_thread(int cpu) 2244 { 2245 /* 2246 * expand/allocate array of pointers to local thread 2247 * structs if needed 2248 */ 2249 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2250 int i, j = __roundup_pow_of_two(cpu+1); 2251 void *p; 2252 2253 p = realloc(idle_threads, j * sizeof(struct thread *)); 2254 if (!p) 2255 return NULL; 2256 2257 idle_threads = (struct thread **) p; 2258 for (i = idle_max_cpu; i < j; ++i) 2259 idle_threads[i] = NULL; 2260 2261 idle_max_cpu = j; 2262 } 2263 2264 /* allocate a new thread struct if needed */ 2265 if (idle_threads[cpu] == NULL) { 2266 idle_threads[cpu] = thread__new(0, 0); 2267 2268 if (idle_threads[cpu]) { 2269 if (init_idle_thread(idle_threads[cpu]) < 0) 2270 return NULL; 2271 } 2272 } 2273 2274 return idle_threads[cpu]; 2275 } 2276 2277 static void save_idle_callchain(struct perf_sched *sched, 2278 struct idle_thread_runtime *itr, 2279 struct perf_sample *sample) 2280 { 2281 if (!sched->show_callchain || sample->callchain == NULL) 2282 return; 2283 2284 callchain_cursor__copy(&itr->cursor, &callchain_cursor); 2285 } 2286 2287 static struct thread *timehist_get_thread(struct perf_sched *sched, 2288 struct perf_sample *sample, 2289 struct machine *machine, 2290 struct evsel *evsel) 2291 { 2292 struct thread *thread; 2293 2294 if (is_idle_sample(sample, evsel)) { 2295 thread = get_idle_thread(sample->cpu); 2296 if (thread == NULL) 2297 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2298 2299 } else { 2300 /* there were samples with tid 0 but non-zero pid */ 2301 thread = machine__findnew_thread(machine, sample->pid, 2302 sample->tid ?: sample->pid); 2303 if (thread == NULL) { 2304 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2305 sample->tid); 2306 } 2307 2308 save_task_callchain(sched, sample, evsel, machine); 2309 if (sched->idle_hist) { 2310 struct thread *idle; 2311 struct idle_thread_runtime *itr; 2312 2313 idle = get_idle_thread(sample->cpu); 2314 if (idle == NULL) { 2315 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2316 return NULL; 2317 } 2318 2319 itr = thread__priv(idle); 2320 if (itr == NULL) 2321 return NULL; 2322 2323 itr->last_thread = thread; 2324 2325 /* copy task callchain when entering to idle */ 2326 if (perf_evsel__intval(evsel, sample, "next_pid") == 0) 2327 save_idle_callchain(sched, itr, sample); 2328 } 2329 } 2330 2331 return thread; 2332 } 2333 2334 static bool timehist_skip_sample(struct perf_sched *sched, 2335 struct thread *thread, 2336 struct evsel *evsel, 2337 struct perf_sample *sample) 2338 { 2339 bool rc = false; 2340 2341 if (thread__is_filtered(thread)) { 2342 rc = true; 2343 sched->skipped_samples++; 2344 } 2345 2346 if (sched->idle_hist) { 2347 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch")) 2348 rc = true; 2349 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 && 2350 perf_evsel__intval(evsel, sample, "next_pid") != 0) 2351 rc = true; 2352 } 2353 2354 return rc; 2355 } 2356 2357 static void timehist_print_wakeup_event(struct perf_sched *sched, 2358 struct evsel *evsel, 2359 struct perf_sample *sample, 2360 struct machine *machine, 2361 struct thread *awakened) 2362 { 2363 struct thread *thread; 2364 char tstr[64]; 2365 2366 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2367 if (thread == NULL) 2368 return; 2369 2370 /* show wakeup unless both awakee and awaker are filtered */ 2371 if (timehist_skip_sample(sched, thread, evsel, sample) && 2372 timehist_skip_sample(sched, awakened, evsel, sample)) { 2373 return; 2374 } 2375 2376 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2377 printf("%15s [%04d] ", tstr, sample->cpu); 2378 if (sched->show_cpu_visual) 2379 printf(" %*s ", sched->max_cpu + 1, ""); 2380 2381 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2382 2383 /* dt spacer */ 2384 printf(" %9s %9s %9s ", "", "", ""); 2385 2386 printf("awakened: %s", timehist_get_commstr(awakened)); 2387 2388 printf("\n"); 2389 } 2390 2391 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2392 union perf_event *event __maybe_unused, 2393 struct evsel *evsel, 2394 struct perf_sample *sample, 2395 struct machine *machine) 2396 { 2397 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2398 struct thread *thread; 2399 struct thread_runtime *tr = NULL; 2400 /* want pid of awakened task not pid in sample */ 2401 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2402 2403 thread = machine__findnew_thread(machine, 0, pid); 2404 if (thread == NULL) 2405 return -1; 2406 2407 tr = thread__get_runtime(thread); 2408 if (tr == NULL) 2409 return -1; 2410 2411 if (tr->ready_to_run == 0) 2412 tr->ready_to_run = sample->time; 2413 2414 /* show wakeups if requested */ 2415 if (sched->show_wakeups && 2416 !perf_time__skip_sample(&sched->ptime, sample->time)) 2417 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2418 2419 return 0; 2420 } 2421 2422 static void timehist_print_migration_event(struct perf_sched *sched, 2423 struct evsel *evsel, 2424 struct perf_sample *sample, 2425 struct machine *machine, 2426 struct thread *migrated) 2427 { 2428 struct thread *thread; 2429 char tstr[64]; 2430 u32 max_cpus = sched->max_cpu + 1; 2431 u32 ocpu, dcpu; 2432 2433 if (sched->summary_only) 2434 return; 2435 2436 max_cpus = sched->max_cpu + 1; 2437 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu"); 2438 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu"); 2439 2440 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2441 if (thread == NULL) 2442 return; 2443 2444 if (timehist_skip_sample(sched, thread, evsel, sample) && 2445 timehist_skip_sample(sched, migrated, evsel, sample)) { 2446 return; 2447 } 2448 2449 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2450 printf("%15s [%04d] ", tstr, sample->cpu); 2451 2452 if (sched->show_cpu_visual) { 2453 u32 i; 2454 char c; 2455 2456 printf(" "); 2457 for (i = 0; i < max_cpus; ++i) { 2458 c = (i == sample->cpu) ? 'm' : ' '; 2459 printf("%c", c); 2460 } 2461 printf(" "); 2462 } 2463 2464 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2465 2466 /* dt spacer */ 2467 printf(" %9s %9s %9s ", "", "", ""); 2468 2469 printf("migrated: %s", timehist_get_commstr(migrated)); 2470 printf(" cpu %d => %d", ocpu, dcpu); 2471 2472 printf("\n"); 2473 } 2474 2475 static int timehist_migrate_task_event(struct perf_tool *tool, 2476 union perf_event *event __maybe_unused, 2477 struct evsel *evsel, 2478 struct perf_sample *sample, 2479 struct machine *machine) 2480 { 2481 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2482 struct thread *thread; 2483 struct thread_runtime *tr = NULL; 2484 /* want pid of migrated task not pid in sample */ 2485 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2486 2487 thread = machine__findnew_thread(machine, 0, pid); 2488 if (thread == NULL) 2489 return -1; 2490 2491 tr = thread__get_runtime(thread); 2492 if (tr == NULL) 2493 return -1; 2494 2495 tr->migrations++; 2496 2497 /* show migrations if requested */ 2498 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2499 2500 return 0; 2501 } 2502 2503 static int timehist_sched_change_event(struct perf_tool *tool, 2504 union perf_event *event, 2505 struct evsel *evsel, 2506 struct perf_sample *sample, 2507 struct machine *machine) 2508 { 2509 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2510 struct perf_time_interval *ptime = &sched->ptime; 2511 struct addr_location al; 2512 struct thread *thread; 2513 struct thread_runtime *tr = NULL; 2514 u64 tprev, t = sample->time; 2515 int rc = 0; 2516 int state = perf_evsel__intval(evsel, sample, "prev_state"); 2517 2518 2519 if (machine__resolve(machine, &al, sample) < 0) { 2520 pr_err("problem processing %d event. skipping it\n", 2521 event->header.type); 2522 rc = -1; 2523 goto out; 2524 } 2525 2526 thread = timehist_get_thread(sched, sample, machine, evsel); 2527 if (thread == NULL) { 2528 rc = -1; 2529 goto out; 2530 } 2531 2532 if (timehist_skip_sample(sched, thread, evsel, sample)) 2533 goto out; 2534 2535 tr = thread__get_runtime(thread); 2536 if (tr == NULL) { 2537 rc = -1; 2538 goto out; 2539 } 2540 2541 tprev = perf_evsel__get_time(evsel, sample->cpu); 2542 2543 /* 2544 * If start time given: 2545 * - sample time is under window user cares about - skip sample 2546 * - tprev is under window user cares about - reset to start of window 2547 */ 2548 if (ptime->start && ptime->start > t) 2549 goto out; 2550 2551 if (tprev && ptime->start > tprev) 2552 tprev = ptime->start; 2553 2554 /* 2555 * If end time given: 2556 * - previous sched event is out of window - we are done 2557 * - sample time is beyond window user cares about - reset it 2558 * to close out stats for time window interest 2559 */ 2560 if (ptime->end) { 2561 if (tprev > ptime->end) 2562 goto out; 2563 2564 if (t > ptime->end) 2565 t = ptime->end; 2566 } 2567 2568 if (!sched->idle_hist || thread->tid == 0) { 2569 timehist_update_runtime_stats(tr, t, tprev); 2570 2571 if (sched->idle_hist) { 2572 struct idle_thread_runtime *itr = (void *)tr; 2573 struct thread_runtime *last_tr; 2574 2575 BUG_ON(thread->tid != 0); 2576 2577 if (itr->last_thread == NULL) 2578 goto out; 2579 2580 /* add current idle time as last thread's runtime */ 2581 last_tr = thread__get_runtime(itr->last_thread); 2582 if (last_tr == NULL) 2583 goto out; 2584 2585 timehist_update_runtime_stats(last_tr, t, tprev); 2586 /* 2587 * remove delta time of last thread as it's not updated 2588 * and otherwise it will show an invalid value next 2589 * time. we only care total run time and run stat. 2590 */ 2591 last_tr->dt_run = 0; 2592 last_tr->dt_delay = 0; 2593 last_tr->dt_sleep = 0; 2594 last_tr->dt_iowait = 0; 2595 last_tr->dt_preempt = 0; 2596 2597 if (itr->cursor.nr) 2598 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2599 2600 itr->last_thread = NULL; 2601 } 2602 } 2603 2604 if (!sched->summary_only) 2605 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2606 2607 out: 2608 if (sched->hist_time.start == 0 && t >= ptime->start) 2609 sched->hist_time.start = t; 2610 if (ptime->end == 0 || t <= ptime->end) 2611 sched->hist_time.end = t; 2612 2613 if (tr) { 2614 /* time of this sched_switch event becomes last time task seen */ 2615 tr->last_time = sample->time; 2616 2617 /* last state is used to determine where to account wait time */ 2618 tr->last_state = state; 2619 2620 /* sched out event for task so reset ready to run time */ 2621 tr->ready_to_run = 0; 2622 } 2623 2624 perf_evsel__save_time(evsel, sample->time, sample->cpu); 2625 2626 return rc; 2627 } 2628 2629 static int timehist_sched_switch_event(struct perf_tool *tool, 2630 union perf_event *event, 2631 struct evsel *evsel, 2632 struct perf_sample *sample, 2633 struct machine *machine __maybe_unused) 2634 { 2635 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2636 } 2637 2638 static int process_lost(struct perf_tool *tool __maybe_unused, 2639 union perf_event *event, 2640 struct perf_sample *sample, 2641 struct machine *machine __maybe_unused) 2642 { 2643 char tstr[64]; 2644 2645 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2646 printf("%15s ", tstr); 2647 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2648 2649 return 0; 2650 } 2651 2652 2653 static void print_thread_runtime(struct thread *t, 2654 struct thread_runtime *r) 2655 { 2656 double mean = avg_stats(&r->run_stats); 2657 float stddev; 2658 2659 printf("%*s %5d %9" PRIu64 " ", 2660 comm_width, timehist_get_commstr(t), t->ppid, 2661 (u64) r->run_stats.n); 2662 2663 print_sched_time(r->total_run_time, 8); 2664 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2665 print_sched_time(r->run_stats.min, 6); 2666 printf(" "); 2667 print_sched_time((u64) mean, 6); 2668 printf(" "); 2669 print_sched_time(r->run_stats.max, 6); 2670 printf(" "); 2671 printf("%5.2f", stddev); 2672 printf(" %5" PRIu64, r->migrations); 2673 printf("\n"); 2674 } 2675 2676 static void print_thread_waittime(struct thread *t, 2677 struct thread_runtime *r) 2678 { 2679 printf("%*s %5d %9" PRIu64 " ", 2680 comm_width, timehist_get_commstr(t), t->ppid, 2681 (u64) r->run_stats.n); 2682 2683 print_sched_time(r->total_run_time, 8); 2684 print_sched_time(r->total_sleep_time, 6); 2685 printf(" "); 2686 print_sched_time(r->total_iowait_time, 6); 2687 printf(" "); 2688 print_sched_time(r->total_preempt_time, 6); 2689 printf(" "); 2690 print_sched_time(r->total_delay_time, 6); 2691 printf("\n"); 2692 } 2693 2694 struct total_run_stats { 2695 struct perf_sched *sched; 2696 u64 sched_count; 2697 u64 task_count; 2698 u64 total_run_time; 2699 }; 2700 2701 static int __show_thread_runtime(struct thread *t, void *priv) 2702 { 2703 struct total_run_stats *stats = priv; 2704 struct thread_runtime *r; 2705 2706 if (thread__is_filtered(t)) 2707 return 0; 2708 2709 r = thread__priv(t); 2710 if (r && r->run_stats.n) { 2711 stats->task_count++; 2712 stats->sched_count += r->run_stats.n; 2713 stats->total_run_time += r->total_run_time; 2714 2715 if (stats->sched->show_state) 2716 print_thread_waittime(t, r); 2717 else 2718 print_thread_runtime(t, r); 2719 } 2720 2721 return 0; 2722 } 2723 2724 static int show_thread_runtime(struct thread *t, void *priv) 2725 { 2726 if (t->dead) 2727 return 0; 2728 2729 return __show_thread_runtime(t, priv); 2730 } 2731 2732 static int show_deadthread_runtime(struct thread *t, void *priv) 2733 { 2734 if (!t->dead) 2735 return 0; 2736 2737 return __show_thread_runtime(t, priv); 2738 } 2739 2740 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2741 { 2742 const char *sep = " <- "; 2743 struct callchain_list *chain; 2744 size_t ret = 0; 2745 char bf[1024]; 2746 bool first; 2747 2748 if (node == NULL) 2749 return 0; 2750 2751 ret = callchain__fprintf_folded(fp, node->parent); 2752 first = (ret == 0); 2753 2754 list_for_each_entry(chain, &node->val, list) { 2755 if (chain->ip >= PERF_CONTEXT_MAX) 2756 continue; 2757 if (chain->ms.sym && chain->ms.sym->ignore) 2758 continue; 2759 ret += fprintf(fp, "%s%s", first ? "" : sep, 2760 callchain_list__sym_name(chain, bf, sizeof(bf), 2761 false)); 2762 first = false; 2763 } 2764 2765 return ret; 2766 } 2767 2768 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2769 { 2770 size_t ret = 0; 2771 FILE *fp = stdout; 2772 struct callchain_node *chain; 2773 struct rb_node *rb_node = rb_first_cached(root); 2774 2775 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2776 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2777 graph_dotted_line); 2778 2779 while (rb_node) { 2780 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2781 rb_node = rb_next(rb_node); 2782 2783 ret += fprintf(fp, " "); 2784 print_sched_time(chain->hit, 12); 2785 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2786 ret += fprintf(fp, " %8d ", chain->count); 2787 ret += callchain__fprintf_folded(fp, chain); 2788 ret += fprintf(fp, "\n"); 2789 } 2790 2791 return ret; 2792 } 2793 2794 static void timehist_print_summary(struct perf_sched *sched, 2795 struct perf_session *session) 2796 { 2797 struct machine *m = &session->machines.host; 2798 struct total_run_stats totals; 2799 u64 task_count; 2800 struct thread *t; 2801 struct thread_runtime *r; 2802 int i; 2803 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2804 2805 memset(&totals, 0, sizeof(totals)); 2806 totals.sched = sched; 2807 2808 if (sched->idle_hist) { 2809 printf("\nIdle-time summary\n"); 2810 printf("%*s parent sched-out ", comm_width, "comm"); 2811 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2812 } else if (sched->show_state) { 2813 printf("\nWait-time summary\n"); 2814 printf("%*s parent sched-in ", comm_width, "comm"); 2815 printf(" run-time sleep iowait preempt delay\n"); 2816 } else { 2817 printf("\nRuntime summary\n"); 2818 printf("%*s parent sched-in ", comm_width, "comm"); 2819 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2820 } 2821 printf("%*s (count) ", comm_width, ""); 2822 printf(" (msec) (msec) (msec) (msec) %s\n", 2823 sched->show_state ? "(msec)" : "%"); 2824 printf("%.117s\n", graph_dotted_line); 2825 2826 machine__for_each_thread(m, show_thread_runtime, &totals); 2827 task_count = totals.task_count; 2828 if (!task_count) 2829 printf("<no still running tasks>\n"); 2830 2831 printf("\nTerminated tasks:\n"); 2832 machine__for_each_thread(m, show_deadthread_runtime, &totals); 2833 if (task_count == totals.task_count) 2834 printf("<no terminated tasks>\n"); 2835 2836 /* CPU idle stats not tracked when samples were skipped */ 2837 if (sched->skipped_samples && !sched->idle_hist) 2838 return; 2839 2840 printf("\nIdle stats:\n"); 2841 for (i = 0; i < idle_max_cpu; ++i) { 2842 t = idle_threads[i]; 2843 if (!t) 2844 continue; 2845 2846 r = thread__priv(t); 2847 if (r && r->run_stats.n) { 2848 totals.sched_count += r->run_stats.n; 2849 printf(" CPU %2d idle for ", i); 2850 print_sched_time(r->total_run_time, 6); 2851 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2852 } else 2853 printf(" CPU %2d idle entire time window\n", i); 2854 } 2855 2856 if (sched->idle_hist && sched->show_callchain) { 2857 callchain_param.mode = CHAIN_FOLDED; 2858 callchain_param.value = CCVAL_PERIOD; 2859 2860 callchain_register_param(&callchain_param); 2861 2862 printf("\nIdle stats by callchain:\n"); 2863 for (i = 0; i < idle_max_cpu; ++i) { 2864 struct idle_thread_runtime *itr; 2865 2866 t = idle_threads[i]; 2867 if (!t) 2868 continue; 2869 2870 itr = thread__priv(t); 2871 if (itr == NULL) 2872 continue; 2873 2874 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 2875 0, &callchain_param); 2876 2877 printf(" CPU %2d:", i); 2878 print_sched_time(itr->tr.total_run_time, 6); 2879 printf(" msec\n"); 2880 timehist_print_idlehist_callchain(&itr->sorted_root); 2881 printf("\n"); 2882 } 2883 } 2884 2885 printf("\n" 2886 " Total number of unique tasks: %" PRIu64 "\n" 2887 "Total number of context switches: %" PRIu64 "\n", 2888 totals.task_count, totals.sched_count); 2889 2890 printf(" Total run time (msec): "); 2891 print_sched_time(totals.total_run_time, 2); 2892 printf("\n"); 2893 2894 printf(" Total scheduling time (msec): "); 2895 print_sched_time(hist_time, 2); 2896 printf(" (x %d)\n", sched->max_cpu); 2897 } 2898 2899 typedef int (*sched_handler)(struct perf_tool *tool, 2900 union perf_event *event, 2901 struct evsel *evsel, 2902 struct perf_sample *sample, 2903 struct machine *machine); 2904 2905 static int perf_timehist__process_sample(struct perf_tool *tool, 2906 union perf_event *event, 2907 struct perf_sample *sample, 2908 struct evsel *evsel, 2909 struct machine *machine) 2910 { 2911 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2912 int err = 0; 2913 int this_cpu = sample->cpu; 2914 2915 if (this_cpu > sched->max_cpu) 2916 sched->max_cpu = this_cpu; 2917 2918 if (evsel->handler != NULL) { 2919 sched_handler f = evsel->handler; 2920 2921 err = f(tool, event, evsel, sample, machine); 2922 } 2923 2924 return err; 2925 } 2926 2927 static int timehist_check_attr(struct perf_sched *sched, 2928 struct evlist *evlist) 2929 { 2930 struct evsel *evsel; 2931 struct evsel_runtime *er; 2932 2933 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 2934 er = perf_evsel__get_runtime(evsel); 2935 if (er == NULL) { 2936 pr_err("Failed to allocate memory for evsel runtime data\n"); 2937 return -1; 2938 } 2939 2940 if (sched->show_callchain && !evsel__has_callchain(evsel)) { 2941 pr_info("Samples do not have callchains.\n"); 2942 sched->show_callchain = 0; 2943 symbol_conf.use_callchain = 0; 2944 } 2945 } 2946 2947 return 0; 2948 } 2949 2950 static int perf_sched__timehist(struct perf_sched *sched) 2951 { 2952 const struct evsel_str_handler handlers[] = { 2953 { "sched:sched_switch", timehist_sched_switch_event, }, 2954 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 2955 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 2956 }; 2957 const struct evsel_str_handler migrate_handlers[] = { 2958 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 2959 }; 2960 struct perf_data data = { 2961 .path = input_name, 2962 .mode = PERF_DATA_MODE_READ, 2963 .force = sched->force, 2964 }; 2965 2966 struct perf_session *session; 2967 struct evlist *evlist; 2968 int err = -1; 2969 2970 /* 2971 * event handlers for timehist option 2972 */ 2973 sched->tool.sample = perf_timehist__process_sample; 2974 sched->tool.mmap = perf_event__process_mmap; 2975 sched->tool.comm = perf_event__process_comm; 2976 sched->tool.exit = perf_event__process_exit; 2977 sched->tool.fork = perf_event__process_fork; 2978 sched->tool.lost = process_lost; 2979 sched->tool.attr = perf_event__process_attr; 2980 sched->tool.tracing_data = perf_event__process_tracing_data; 2981 sched->tool.build_id = perf_event__process_build_id; 2982 2983 sched->tool.ordered_events = true; 2984 sched->tool.ordering_requires_timestamps = true; 2985 2986 symbol_conf.use_callchain = sched->show_callchain; 2987 2988 session = perf_session__new(&data, false, &sched->tool); 2989 if (session == NULL) 2990 return -ENOMEM; 2991 2992 evlist = session->evlist; 2993 2994 symbol__init(&session->header.env); 2995 2996 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 2997 pr_err("Invalid time string\n"); 2998 return -EINVAL; 2999 } 3000 3001 if (timehist_check_attr(sched, evlist) != 0) 3002 goto out; 3003 3004 setup_pager(); 3005 3006 /* setup per-evsel handlers */ 3007 if (perf_session__set_tracepoints_handlers(session, handlers)) 3008 goto out; 3009 3010 /* sched_switch event at a minimum needs to exist */ 3011 if (!perf_evlist__find_tracepoint_by_name(session->evlist, 3012 "sched:sched_switch")) { 3013 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3014 goto out; 3015 } 3016 3017 if (sched->show_migrations && 3018 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3019 goto out; 3020 3021 /* pre-allocate struct for per-CPU idle stats */ 3022 sched->max_cpu = session->header.env.nr_cpus_online; 3023 if (sched->max_cpu == 0) 3024 sched->max_cpu = 4; 3025 if (init_idle_threads(sched->max_cpu)) 3026 goto out; 3027 3028 /* summary_only implies summary option, but don't overwrite summary if set */ 3029 if (sched->summary_only) 3030 sched->summary = sched->summary_only; 3031 3032 if (!sched->summary_only) 3033 timehist_header(sched); 3034 3035 err = perf_session__process_events(session); 3036 if (err) { 3037 pr_err("Failed to process events, error %d", err); 3038 goto out; 3039 } 3040 3041 sched->nr_events = evlist->stats.nr_events[0]; 3042 sched->nr_lost_events = evlist->stats.total_lost; 3043 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3044 3045 if (sched->summary) 3046 timehist_print_summary(sched, session); 3047 3048 out: 3049 free_idle_threads(); 3050 perf_session__delete(session); 3051 3052 return err; 3053 } 3054 3055 3056 static void print_bad_events(struct perf_sched *sched) 3057 { 3058 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3059 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3060 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3061 sched->nr_unordered_timestamps, sched->nr_timestamps); 3062 } 3063 if (sched->nr_lost_events && sched->nr_events) { 3064 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3065 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3066 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3067 } 3068 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3069 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3070 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3071 sched->nr_context_switch_bugs, sched->nr_timestamps); 3072 if (sched->nr_lost_events) 3073 printf(" (due to lost events?)"); 3074 printf("\n"); 3075 } 3076 } 3077 3078 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3079 { 3080 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3081 struct work_atoms *this; 3082 const char *comm = thread__comm_str(data->thread), *this_comm; 3083 bool leftmost = true; 3084 3085 while (*new) { 3086 int cmp; 3087 3088 this = container_of(*new, struct work_atoms, node); 3089 parent = *new; 3090 3091 this_comm = thread__comm_str(this->thread); 3092 cmp = strcmp(comm, this_comm); 3093 if (cmp > 0) { 3094 new = &((*new)->rb_left); 3095 } else if (cmp < 0) { 3096 new = &((*new)->rb_right); 3097 leftmost = false; 3098 } else { 3099 this->num_merged++; 3100 this->total_runtime += data->total_runtime; 3101 this->nb_atoms += data->nb_atoms; 3102 this->total_lat += data->total_lat; 3103 list_splice(&data->work_list, &this->work_list); 3104 if (this->max_lat < data->max_lat) { 3105 this->max_lat = data->max_lat; 3106 this->max_lat_at = data->max_lat_at; 3107 } 3108 zfree(&data); 3109 return; 3110 } 3111 } 3112 3113 data->num_merged++; 3114 rb_link_node(&data->node, parent, new); 3115 rb_insert_color_cached(&data->node, root, leftmost); 3116 } 3117 3118 static void perf_sched__merge_lat(struct perf_sched *sched) 3119 { 3120 struct work_atoms *data; 3121 struct rb_node *node; 3122 3123 if (sched->skip_merge) 3124 return; 3125 3126 while ((node = rb_first_cached(&sched->atom_root))) { 3127 rb_erase_cached(node, &sched->atom_root); 3128 data = rb_entry(node, struct work_atoms, node); 3129 __merge_work_atoms(&sched->merged_atom_root, data); 3130 } 3131 } 3132 3133 static int perf_sched__lat(struct perf_sched *sched) 3134 { 3135 struct rb_node *next; 3136 3137 setup_pager(); 3138 3139 if (perf_sched__read_events(sched)) 3140 return -1; 3141 3142 perf_sched__merge_lat(sched); 3143 perf_sched__sort_lat(sched); 3144 3145 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 3146 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 3147 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3148 3149 next = rb_first_cached(&sched->sorted_atom_root); 3150 3151 while (next) { 3152 struct work_atoms *work_list; 3153 3154 work_list = rb_entry(next, struct work_atoms, node); 3155 output_lat_thread(sched, work_list); 3156 next = rb_next(next); 3157 thread__zput(work_list->thread); 3158 } 3159 3160 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3161 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3162 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3163 3164 printf(" ---------------------------------------------------\n"); 3165 3166 print_bad_events(sched); 3167 printf("\n"); 3168 3169 return 0; 3170 } 3171 3172 static int setup_map_cpus(struct perf_sched *sched) 3173 { 3174 struct perf_cpu_map *map; 3175 3176 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 3177 3178 if (sched->map.comp) { 3179 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int)); 3180 if (!sched->map.comp_cpus) 3181 return -1; 3182 } 3183 3184 if (!sched->map.cpus_str) 3185 return 0; 3186 3187 map = perf_cpu_map__new(sched->map.cpus_str); 3188 if (!map) { 3189 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3190 return -1; 3191 } 3192 3193 sched->map.cpus = map; 3194 return 0; 3195 } 3196 3197 static int setup_color_pids(struct perf_sched *sched) 3198 { 3199 struct perf_thread_map *map; 3200 3201 if (!sched->map.color_pids_str) 3202 return 0; 3203 3204 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3205 if (!map) { 3206 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3207 return -1; 3208 } 3209 3210 sched->map.color_pids = map; 3211 return 0; 3212 } 3213 3214 static int setup_color_cpus(struct perf_sched *sched) 3215 { 3216 struct perf_cpu_map *map; 3217 3218 if (!sched->map.color_cpus_str) 3219 return 0; 3220 3221 map = perf_cpu_map__new(sched->map.color_cpus_str); 3222 if (!map) { 3223 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3224 return -1; 3225 } 3226 3227 sched->map.color_cpus = map; 3228 return 0; 3229 } 3230 3231 static int perf_sched__map(struct perf_sched *sched) 3232 { 3233 if (setup_map_cpus(sched)) 3234 return -1; 3235 3236 if (setup_color_pids(sched)) 3237 return -1; 3238 3239 if (setup_color_cpus(sched)) 3240 return -1; 3241 3242 setup_pager(); 3243 if (perf_sched__read_events(sched)) 3244 return -1; 3245 print_bad_events(sched); 3246 return 0; 3247 } 3248 3249 static int perf_sched__replay(struct perf_sched *sched) 3250 { 3251 unsigned long i; 3252 3253 calibrate_run_measurement_overhead(sched); 3254 calibrate_sleep_measurement_overhead(sched); 3255 3256 test_calibrations(sched); 3257 3258 if (perf_sched__read_events(sched)) 3259 return -1; 3260 3261 printf("nr_run_events: %ld\n", sched->nr_run_events); 3262 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3263 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3264 3265 if (sched->targetless_wakeups) 3266 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3267 if (sched->multitarget_wakeups) 3268 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3269 if (sched->nr_run_events_optimized) 3270 printf("run atoms optimized: %ld\n", 3271 sched->nr_run_events_optimized); 3272 3273 print_task_traces(sched); 3274 add_cross_task_wakeups(sched); 3275 3276 create_tasks(sched); 3277 printf("------------------------------------------------------------\n"); 3278 for (i = 0; i < sched->replay_repeat; i++) 3279 run_one_test(sched); 3280 3281 return 0; 3282 } 3283 3284 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3285 const char * const usage_msg[]) 3286 { 3287 char *tmp, *tok, *str = strdup(sched->sort_order); 3288 3289 for (tok = strtok_r(str, ", ", &tmp); 3290 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3291 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3292 usage_with_options_msg(usage_msg, options, 3293 "Unknown --sort key: `%s'", tok); 3294 } 3295 } 3296 3297 free(str); 3298 3299 sort_dimension__add("pid", &sched->cmp_pid); 3300 } 3301 3302 static int __cmd_record(int argc, const char **argv) 3303 { 3304 unsigned int rec_argc, i, j; 3305 const char **rec_argv; 3306 const char * const record_args[] = { 3307 "record", 3308 "-a", 3309 "-R", 3310 "-m", "1024", 3311 "-c", "1", 3312 "-e", "sched:sched_switch", 3313 "-e", "sched:sched_stat_wait", 3314 "-e", "sched:sched_stat_sleep", 3315 "-e", "sched:sched_stat_iowait", 3316 "-e", "sched:sched_stat_runtime", 3317 "-e", "sched:sched_process_fork", 3318 "-e", "sched:sched_wakeup", 3319 "-e", "sched:sched_wakeup_new", 3320 "-e", "sched:sched_migrate_task", 3321 }; 3322 3323 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 3324 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3325 3326 if (rec_argv == NULL) 3327 return -ENOMEM; 3328 3329 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3330 rec_argv[i] = strdup(record_args[i]); 3331 3332 for (j = 1; j < (unsigned int)argc; j++, i++) 3333 rec_argv[i] = argv[j]; 3334 3335 BUG_ON(i != rec_argc); 3336 3337 return cmd_record(i, rec_argv); 3338 } 3339 3340 int cmd_sched(int argc, const char **argv) 3341 { 3342 static const char default_sort_order[] = "avg, max, switch, runtime"; 3343 struct perf_sched sched = { 3344 .tool = { 3345 .sample = perf_sched__process_tracepoint_sample, 3346 .comm = perf_sched__process_comm, 3347 .namespaces = perf_event__process_namespaces, 3348 .lost = perf_event__process_lost, 3349 .fork = perf_sched__process_fork_event, 3350 .ordered_events = true, 3351 }, 3352 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3353 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3354 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 3355 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 3356 .sort_order = default_sort_order, 3357 .replay_repeat = 10, 3358 .profile_cpu = -1, 3359 .next_shortname1 = 'A', 3360 .next_shortname2 = '0', 3361 .skip_merge = 0, 3362 .show_callchain = 1, 3363 .max_stack = 5, 3364 }; 3365 const struct option sched_options[] = { 3366 OPT_STRING('i', "input", &input_name, "file", 3367 "input file name"), 3368 OPT_INCR('v', "verbose", &verbose, 3369 "be more verbose (show symbol address, etc)"), 3370 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3371 "dump raw trace in ASCII"), 3372 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3373 OPT_END() 3374 }; 3375 const struct option latency_options[] = { 3376 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3377 "sort by key(s): runtime, switch, avg, max"), 3378 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3379 "CPU to profile on"), 3380 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3381 "latency stats per pid instead of per comm"), 3382 OPT_PARENT(sched_options) 3383 }; 3384 const struct option replay_options[] = { 3385 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3386 "repeat the workload replay N times (-1: infinite)"), 3387 OPT_PARENT(sched_options) 3388 }; 3389 const struct option map_options[] = { 3390 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3391 "map output in compact mode"), 3392 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3393 "highlight given pids in map"), 3394 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3395 "highlight given CPUs in map"), 3396 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3397 "display given CPUs in map"), 3398 OPT_PARENT(sched_options) 3399 }; 3400 const struct option timehist_options[] = { 3401 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3402 "file", "vmlinux pathname"), 3403 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3404 "file", "kallsyms pathname"), 3405 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3406 "Display call chains if present (default on)"), 3407 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3408 "Maximum number of functions to display backtrace."), 3409 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3410 "Look for files with symbols relative to this directory"), 3411 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3412 "Show only syscall summary with statistics"), 3413 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3414 "Show all syscalls and summary with statistics"), 3415 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3416 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3417 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3418 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3419 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3420 OPT_STRING(0, "time", &sched.time_str, "str", 3421 "Time span for analysis (start,stop)"), 3422 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3423 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3424 "analyze events only for given process id(s)"), 3425 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3426 "analyze events only for given thread id(s)"), 3427 OPT_PARENT(sched_options) 3428 }; 3429 3430 const char * const latency_usage[] = { 3431 "perf sched latency [<options>]", 3432 NULL 3433 }; 3434 const char * const replay_usage[] = { 3435 "perf sched replay [<options>]", 3436 NULL 3437 }; 3438 const char * const map_usage[] = { 3439 "perf sched map [<options>]", 3440 NULL 3441 }; 3442 const char * const timehist_usage[] = { 3443 "perf sched timehist [<options>]", 3444 NULL 3445 }; 3446 const char *const sched_subcommands[] = { "record", "latency", "map", 3447 "replay", "script", 3448 "timehist", NULL }; 3449 const char *sched_usage[] = { 3450 NULL, 3451 NULL 3452 }; 3453 struct trace_sched_handler lat_ops = { 3454 .wakeup_event = latency_wakeup_event, 3455 .switch_event = latency_switch_event, 3456 .runtime_event = latency_runtime_event, 3457 .migrate_task_event = latency_migrate_task_event, 3458 }; 3459 struct trace_sched_handler map_ops = { 3460 .switch_event = map_switch_event, 3461 }; 3462 struct trace_sched_handler replay_ops = { 3463 .wakeup_event = replay_wakeup_event, 3464 .switch_event = replay_switch_event, 3465 .fork_event = replay_fork_event, 3466 }; 3467 unsigned int i; 3468 3469 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 3470 sched.curr_pid[i] = -1; 3471 3472 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3473 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3474 if (!argc) 3475 usage_with_options(sched_usage, sched_options); 3476 3477 /* 3478 * Aliased to 'perf script' for now: 3479 */ 3480 if (!strcmp(argv[0], "script")) 3481 return cmd_script(argc, argv); 3482 3483 if (!strncmp(argv[0], "rec", 3)) { 3484 return __cmd_record(argc, argv); 3485 } else if (!strncmp(argv[0], "lat", 3)) { 3486 sched.tp_handler = &lat_ops; 3487 if (argc > 1) { 3488 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3489 if (argc) 3490 usage_with_options(latency_usage, latency_options); 3491 } 3492 setup_sorting(&sched, latency_options, latency_usage); 3493 return perf_sched__lat(&sched); 3494 } else if (!strcmp(argv[0], "map")) { 3495 if (argc) { 3496 argc = parse_options(argc, argv, map_options, map_usage, 0); 3497 if (argc) 3498 usage_with_options(map_usage, map_options); 3499 } 3500 sched.tp_handler = &map_ops; 3501 setup_sorting(&sched, latency_options, latency_usage); 3502 return perf_sched__map(&sched); 3503 } else if (!strncmp(argv[0], "rep", 3)) { 3504 sched.tp_handler = &replay_ops; 3505 if (argc) { 3506 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3507 if (argc) 3508 usage_with_options(replay_usage, replay_options); 3509 } 3510 return perf_sched__replay(&sched); 3511 } else if (!strcmp(argv[0], "timehist")) { 3512 if (argc) { 3513 argc = parse_options(argc, argv, timehist_options, 3514 timehist_usage, 0); 3515 if (argc) 3516 usage_with_options(timehist_usage, timehist_options); 3517 } 3518 if ((sched.show_wakeups || sched.show_next) && 3519 sched.summary_only) { 3520 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3521 parse_options_usage(timehist_usage, timehist_options, "s", true); 3522 if (sched.show_wakeups) 3523 parse_options_usage(NULL, timehist_options, "w", true); 3524 if (sched.show_next) 3525 parse_options_usage(NULL, timehist_options, "n", true); 3526 return -EINVAL; 3527 } 3528 3529 return perf_sched__timehist(&sched); 3530 } else { 3531 usage_with_options(sched_usage, sched_options); 3532 } 3533 3534 return 0; 3535 } 3536