1 #include "builtin.h" 2 #include "perf.h" 3 4 #include "util/util.h" 5 #include "util/evlist.h" 6 #include "util/cache.h" 7 #include "util/evsel.h" 8 #include "util/symbol.h" 9 #include "util/thread.h" 10 #include "util/header.h" 11 #include "util/session.h" 12 #include "util/tool.h" 13 #include "util/cloexec.h" 14 15 #include "util/parse-options.h" 16 #include "util/trace-event.h" 17 18 #include "util/debug.h" 19 20 #include <sys/prctl.h> 21 #include <sys/resource.h> 22 23 #include <semaphore.h> 24 #include <pthread.h> 25 #include <math.h> 26 27 #define PR_SET_NAME 15 /* Set process name */ 28 #define MAX_CPUS 4096 29 #define COMM_LEN 20 30 #define SYM_LEN 129 31 #define MAX_PID 65536 32 33 struct sched_atom; 34 35 struct task_desc { 36 unsigned long nr; 37 unsigned long pid; 38 char comm[COMM_LEN]; 39 40 unsigned long nr_events; 41 unsigned long curr_event; 42 struct sched_atom **atoms; 43 44 pthread_t thread; 45 sem_t sleep_sem; 46 47 sem_t ready_for_work; 48 sem_t work_done_sem; 49 50 u64 cpu_usage; 51 }; 52 53 enum sched_event_type { 54 SCHED_EVENT_RUN, 55 SCHED_EVENT_SLEEP, 56 SCHED_EVENT_WAKEUP, 57 SCHED_EVENT_MIGRATION, 58 }; 59 60 struct sched_atom { 61 enum sched_event_type type; 62 int specific_wait; 63 u64 timestamp; 64 u64 duration; 65 unsigned long nr; 66 sem_t *wait_sem; 67 struct task_desc *wakee; 68 }; 69 70 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 71 72 enum thread_state { 73 THREAD_SLEEPING = 0, 74 THREAD_WAIT_CPU, 75 THREAD_SCHED_IN, 76 THREAD_IGNORE 77 }; 78 79 struct work_atom { 80 struct list_head list; 81 enum thread_state state; 82 u64 sched_out_time; 83 u64 wake_up_time; 84 u64 sched_in_time; 85 u64 runtime; 86 }; 87 88 struct work_atoms { 89 struct list_head work_list; 90 struct thread *thread; 91 struct rb_node node; 92 u64 max_lat; 93 u64 max_lat_at; 94 u64 total_lat; 95 u64 nb_atoms; 96 u64 total_runtime; 97 }; 98 99 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 100 101 struct perf_sched; 102 103 struct trace_sched_handler { 104 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, 105 struct perf_sample *sample, struct machine *machine); 106 107 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, 108 struct perf_sample *sample, struct machine *machine); 109 110 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, 111 struct perf_sample *sample, struct machine *machine); 112 113 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 114 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 115 struct machine *machine); 116 117 int (*migrate_task_event)(struct perf_sched *sched, 118 struct perf_evsel *evsel, 119 struct perf_sample *sample, 120 struct machine *machine); 121 }; 122 123 struct perf_sched { 124 struct perf_tool tool; 125 const char *sort_order; 126 unsigned long nr_tasks; 127 struct task_desc *pid_to_task[MAX_PID]; 128 struct task_desc **tasks; 129 const struct trace_sched_handler *tp_handler; 130 pthread_mutex_t start_work_mutex; 131 pthread_mutex_t work_done_wait_mutex; 132 int profile_cpu; 133 /* 134 * Track the current task - that way we can know whether there's any 135 * weird events, such as a task being switched away that is not current. 136 */ 137 int max_cpu; 138 u32 curr_pid[MAX_CPUS]; 139 struct thread *curr_thread[MAX_CPUS]; 140 char next_shortname1; 141 char next_shortname2; 142 unsigned int replay_repeat; 143 unsigned long nr_run_events; 144 unsigned long nr_sleep_events; 145 unsigned long nr_wakeup_events; 146 unsigned long nr_sleep_corrections; 147 unsigned long nr_run_events_optimized; 148 unsigned long targetless_wakeups; 149 unsigned long multitarget_wakeups; 150 unsigned long nr_runs; 151 unsigned long nr_timestamps; 152 unsigned long nr_unordered_timestamps; 153 unsigned long nr_context_switch_bugs; 154 unsigned long nr_events; 155 unsigned long nr_lost_chunks; 156 unsigned long nr_lost_events; 157 u64 run_measurement_overhead; 158 u64 sleep_measurement_overhead; 159 u64 start_time; 160 u64 cpu_usage; 161 u64 runavg_cpu_usage; 162 u64 parent_cpu_usage; 163 u64 runavg_parent_cpu_usage; 164 u64 sum_runtime; 165 u64 sum_fluct; 166 u64 run_avg; 167 u64 all_runtime; 168 u64 all_count; 169 u64 cpu_last_switched[MAX_CPUS]; 170 struct rb_root atom_root, sorted_atom_root; 171 struct list_head sort_list, cmp_pid; 172 }; 173 174 static u64 get_nsecs(void) 175 { 176 struct timespec ts; 177 178 clock_gettime(CLOCK_MONOTONIC, &ts); 179 180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec; 181 } 182 183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 184 { 185 u64 T0 = get_nsecs(), T1; 186 187 do { 188 T1 = get_nsecs(); 189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 190 } 191 192 static void sleep_nsecs(u64 nsecs) 193 { 194 struct timespec ts; 195 196 ts.tv_nsec = nsecs % 999999999; 197 ts.tv_sec = nsecs / 999999999; 198 199 nanosleep(&ts, NULL); 200 } 201 202 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 203 { 204 u64 T0, T1, delta, min_delta = 1000000000ULL; 205 int i; 206 207 for (i = 0; i < 10; i++) { 208 T0 = get_nsecs(); 209 burn_nsecs(sched, 0); 210 T1 = get_nsecs(); 211 delta = T1-T0; 212 min_delta = min(min_delta, delta); 213 } 214 sched->run_measurement_overhead = min_delta; 215 216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 217 } 218 219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 220 { 221 u64 T0, T1, delta, min_delta = 1000000000ULL; 222 int i; 223 224 for (i = 0; i < 10; i++) { 225 T0 = get_nsecs(); 226 sleep_nsecs(10000); 227 T1 = get_nsecs(); 228 delta = T1-T0; 229 min_delta = min(min_delta, delta); 230 } 231 min_delta -= 10000; 232 sched->sleep_measurement_overhead = min_delta; 233 234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 235 } 236 237 static struct sched_atom * 238 get_new_event(struct task_desc *task, u64 timestamp) 239 { 240 struct sched_atom *event = zalloc(sizeof(*event)); 241 unsigned long idx = task->nr_events; 242 size_t size; 243 244 event->timestamp = timestamp; 245 event->nr = idx; 246 247 task->nr_events++; 248 size = sizeof(struct sched_atom *) * task->nr_events; 249 task->atoms = realloc(task->atoms, size); 250 BUG_ON(!task->atoms); 251 252 task->atoms[idx] = event; 253 254 return event; 255 } 256 257 static struct sched_atom *last_event(struct task_desc *task) 258 { 259 if (!task->nr_events) 260 return NULL; 261 262 return task->atoms[task->nr_events - 1]; 263 } 264 265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 266 u64 timestamp, u64 duration) 267 { 268 struct sched_atom *event, *curr_event = last_event(task); 269 270 /* 271 * optimize an existing RUN event by merging this one 272 * to it: 273 */ 274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 275 sched->nr_run_events_optimized++; 276 curr_event->duration += duration; 277 return; 278 } 279 280 event = get_new_event(task, timestamp); 281 282 event->type = SCHED_EVENT_RUN; 283 event->duration = duration; 284 285 sched->nr_run_events++; 286 } 287 288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 289 u64 timestamp, struct task_desc *wakee) 290 { 291 struct sched_atom *event, *wakee_event; 292 293 event = get_new_event(task, timestamp); 294 event->type = SCHED_EVENT_WAKEUP; 295 event->wakee = wakee; 296 297 wakee_event = last_event(wakee); 298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 299 sched->targetless_wakeups++; 300 return; 301 } 302 if (wakee_event->wait_sem) { 303 sched->multitarget_wakeups++; 304 return; 305 } 306 307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 308 sem_init(wakee_event->wait_sem, 0, 0); 309 wakee_event->specific_wait = 1; 310 event->wait_sem = wakee_event->wait_sem; 311 312 sched->nr_wakeup_events++; 313 } 314 315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 316 u64 timestamp, u64 task_state __maybe_unused) 317 { 318 struct sched_atom *event = get_new_event(task, timestamp); 319 320 event->type = SCHED_EVENT_SLEEP; 321 322 sched->nr_sleep_events++; 323 } 324 325 static struct task_desc *register_pid(struct perf_sched *sched, 326 unsigned long pid, const char *comm) 327 { 328 struct task_desc *task; 329 330 BUG_ON(pid >= MAX_PID); 331 332 task = sched->pid_to_task[pid]; 333 334 if (task) 335 return task; 336 337 task = zalloc(sizeof(*task)); 338 task->pid = pid; 339 task->nr = sched->nr_tasks; 340 strcpy(task->comm, comm); 341 /* 342 * every task starts in sleeping state - this gets ignored 343 * if there's no wakeup pointing to this sleep state: 344 */ 345 add_sched_event_sleep(sched, task, 0, 0); 346 347 sched->pid_to_task[pid] = task; 348 sched->nr_tasks++; 349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *)); 350 BUG_ON(!sched->tasks); 351 sched->tasks[task->nr] = task; 352 353 if (verbose) 354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 355 356 return task; 357 } 358 359 360 static void print_task_traces(struct perf_sched *sched) 361 { 362 struct task_desc *task; 363 unsigned long i; 364 365 for (i = 0; i < sched->nr_tasks; i++) { 366 task = sched->tasks[i]; 367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 368 task->nr, task->comm, task->pid, task->nr_events); 369 } 370 } 371 372 static void add_cross_task_wakeups(struct perf_sched *sched) 373 { 374 struct task_desc *task1, *task2; 375 unsigned long i, j; 376 377 for (i = 0; i < sched->nr_tasks; i++) { 378 task1 = sched->tasks[i]; 379 j = i + 1; 380 if (j == sched->nr_tasks) 381 j = 0; 382 task2 = sched->tasks[j]; 383 add_sched_event_wakeup(sched, task1, 0, task2); 384 } 385 } 386 387 static void perf_sched__process_event(struct perf_sched *sched, 388 struct sched_atom *atom) 389 { 390 int ret = 0; 391 392 switch (atom->type) { 393 case SCHED_EVENT_RUN: 394 burn_nsecs(sched, atom->duration); 395 break; 396 case SCHED_EVENT_SLEEP: 397 if (atom->wait_sem) 398 ret = sem_wait(atom->wait_sem); 399 BUG_ON(ret); 400 break; 401 case SCHED_EVENT_WAKEUP: 402 if (atom->wait_sem) 403 ret = sem_post(atom->wait_sem); 404 BUG_ON(ret); 405 break; 406 case SCHED_EVENT_MIGRATION: 407 break; 408 default: 409 BUG_ON(1); 410 } 411 } 412 413 static u64 get_cpu_usage_nsec_parent(void) 414 { 415 struct rusage ru; 416 u64 sum; 417 int err; 418 419 err = getrusage(RUSAGE_SELF, &ru); 420 BUG_ON(err); 421 422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; 423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; 424 425 return sum; 426 } 427 428 static int self_open_counters(void) 429 { 430 struct perf_event_attr attr; 431 int fd; 432 433 memset(&attr, 0, sizeof(attr)); 434 435 attr.type = PERF_TYPE_SOFTWARE; 436 attr.config = PERF_COUNT_SW_TASK_CLOCK; 437 438 fd = sys_perf_event_open(&attr, 0, -1, -1, 439 perf_event_open_cloexec_flag()); 440 441 if (fd < 0) 442 pr_err("Error: sys_perf_event_open() syscall returned " 443 "with %d (%s)\n", fd, strerror(errno)); 444 return fd; 445 } 446 447 static u64 get_cpu_usage_nsec_self(int fd) 448 { 449 u64 runtime; 450 int ret; 451 452 ret = read(fd, &runtime, sizeof(runtime)); 453 BUG_ON(ret != sizeof(runtime)); 454 455 return runtime; 456 } 457 458 struct sched_thread_parms { 459 struct task_desc *task; 460 struct perf_sched *sched; 461 }; 462 463 static void *thread_func(void *ctx) 464 { 465 struct sched_thread_parms *parms = ctx; 466 struct task_desc *this_task = parms->task; 467 struct perf_sched *sched = parms->sched; 468 u64 cpu_usage_0, cpu_usage_1; 469 unsigned long i, ret; 470 char comm2[22]; 471 int fd; 472 473 zfree(&parms); 474 475 sprintf(comm2, ":%s", this_task->comm); 476 prctl(PR_SET_NAME, comm2); 477 fd = self_open_counters(); 478 if (fd < 0) 479 return NULL; 480 again: 481 ret = sem_post(&this_task->ready_for_work); 482 BUG_ON(ret); 483 ret = pthread_mutex_lock(&sched->start_work_mutex); 484 BUG_ON(ret); 485 ret = pthread_mutex_unlock(&sched->start_work_mutex); 486 BUG_ON(ret); 487 488 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 489 490 for (i = 0; i < this_task->nr_events; i++) { 491 this_task->curr_event = i; 492 perf_sched__process_event(sched, this_task->atoms[i]); 493 } 494 495 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 496 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 497 ret = sem_post(&this_task->work_done_sem); 498 BUG_ON(ret); 499 500 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 501 BUG_ON(ret); 502 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 503 BUG_ON(ret); 504 505 goto again; 506 } 507 508 static void create_tasks(struct perf_sched *sched) 509 { 510 struct task_desc *task; 511 pthread_attr_t attr; 512 unsigned long i; 513 int err; 514 515 err = pthread_attr_init(&attr); 516 BUG_ON(err); 517 err = pthread_attr_setstacksize(&attr, 518 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 519 BUG_ON(err); 520 err = pthread_mutex_lock(&sched->start_work_mutex); 521 BUG_ON(err); 522 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 523 BUG_ON(err); 524 for (i = 0; i < sched->nr_tasks; i++) { 525 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 526 BUG_ON(parms == NULL); 527 parms->task = task = sched->tasks[i]; 528 parms->sched = sched; 529 sem_init(&task->sleep_sem, 0, 0); 530 sem_init(&task->ready_for_work, 0, 0); 531 sem_init(&task->work_done_sem, 0, 0); 532 task->curr_event = 0; 533 err = pthread_create(&task->thread, &attr, thread_func, parms); 534 BUG_ON(err); 535 } 536 } 537 538 static void wait_for_tasks(struct perf_sched *sched) 539 { 540 u64 cpu_usage_0, cpu_usage_1; 541 struct task_desc *task; 542 unsigned long i, ret; 543 544 sched->start_time = get_nsecs(); 545 sched->cpu_usage = 0; 546 pthread_mutex_unlock(&sched->work_done_wait_mutex); 547 548 for (i = 0; i < sched->nr_tasks; i++) { 549 task = sched->tasks[i]; 550 ret = sem_wait(&task->ready_for_work); 551 BUG_ON(ret); 552 sem_init(&task->ready_for_work, 0, 0); 553 } 554 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 555 BUG_ON(ret); 556 557 cpu_usage_0 = get_cpu_usage_nsec_parent(); 558 559 pthread_mutex_unlock(&sched->start_work_mutex); 560 561 for (i = 0; i < sched->nr_tasks; i++) { 562 task = sched->tasks[i]; 563 ret = sem_wait(&task->work_done_sem); 564 BUG_ON(ret); 565 sem_init(&task->work_done_sem, 0, 0); 566 sched->cpu_usage += task->cpu_usage; 567 task->cpu_usage = 0; 568 } 569 570 cpu_usage_1 = get_cpu_usage_nsec_parent(); 571 if (!sched->runavg_cpu_usage) 572 sched->runavg_cpu_usage = sched->cpu_usage; 573 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10; 574 575 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 576 if (!sched->runavg_parent_cpu_usage) 577 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 578 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 + 579 sched->parent_cpu_usage)/10; 580 581 ret = pthread_mutex_lock(&sched->start_work_mutex); 582 BUG_ON(ret); 583 584 for (i = 0; i < sched->nr_tasks; i++) { 585 task = sched->tasks[i]; 586 sem_init(&task->sleep_sem, 0, 0); 587 task->curr_event = 0; 588 } 589 } 590 591 static void run_one_test(struct perf_sched *sched) 592 { 593 u64 T0, T1, delta, avg_delta, fluct; 594 595 T0 = get_nsecs(); 596 wait_for_tasks(sched); 597 T1 = get_nsecs(); 598 599 delta = T1 - T0; 600 sched->sum_runtime += delta; 601 sched->nr_runs++; 602 603 avg_delta = sched->sum_runtime / sched->nr_runs; 604 if (delta < avg_delta) 605 fluct = avg_delta - delta; 606 else 607 fluct = delta - avg_delta; 608 sched->sum_fluct += fluct; 609 if (!sched->run_avg) 610 sched->run_avg = delta; 611 sched->run_avg = (sched->run_avg * 9 + delta) / 10; 612 613 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0); 614 615 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6); 616 617 printf("cpu: %0.2f / %0.2f", 618 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6); 619 620 #if 0 621 /* 622 * rusage statistics done by the parent, these are less 623 * accurate than the sched->sum_exec_runtime based statistics: 624 */ 625 printf(" [%0.2f / %0.2f]", 626 (double)sched->parent_cpu_usage/1e6, 627 (double)sched->runavg_parent_cpu_usage/1e6); 628 #endif 629 630 printf("\n"); 631 632 if (sched->nr_sleep_corrections) 633 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 634 sched->nr_sleep_corrections = 0; 635 } 636 637 static void test_calibrations(struct perf_sched *sched) 638 { 639 u64 T0, T1; 640 641 T0 = get_nsecs(); 642 burn_nsecs(sched, 1e6); 643 T1 = get_nsecs(); 644 645 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 646 647 T0 = get_nsecs(); 648 sleep_nsecs(1e6); 649 T1 = get_nsecs(); 650 651 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 652 } 653 654 static int 655 replay_wakeup_event(struct perf_sched *sched, 656 struct perf_evsel *evsel, struct perf_sample *sample, 657 struct machine *machine __maybe_unused) 658 { 659 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 660 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 661 struct task_desc *waker, *wakee; 662 663 if (verbose) { 664 printf("sched_wakeup event %p\n", evsel); 665 666 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 667 } 668 669 waker = register_pid(sched, sample->tid, "<unknown>"); 670 wakee = register_pid(sched, pid, comm); 671 672 add_sched_event_wakeup(sched, waker, sample->time, wakee); 673 return 0; 674 } 675 676 static int replay_switch_event(struct perf_sched *sched, 677 struct perf_evsel *evsel, 678 struct perf_sample *sample, 679 struct machine *machine __maybe_unused) 680 { 681 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 682 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 683 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 684 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 685 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 686 struct task_desc *prev, __maybe_unused *next; 687 u64 timestamp0, timestamp = sample->time; 688 int cpu = sample->cpu; 689 s64 delta; 690 691 if (verbose) 692 printf("sched_switch event %p\n", evsel); 693 694 if (cpu >= MAX_CPUS || cpu < 0) 695 return 0; 696 697 timestamp0 = sched->cpu_last_switched[cpu]; 698 if (timestamp0) 699 delta = timestamp - timestamp0; 700 else 701 delta = 0; 702 703 if (delta < 0) { 704 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 705 return -1; 706 } 707 708 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 709 prev_comm, prev_pid, next_comm, next_pid, delta); 710 711 prev = register_pid(sched, prev_pid, prev_comm); 712 next = register_pid(sched, next_pid, next_comm); 713 714 sched->cpu_last_switched[cpu] = timestamp; 715 716 add_sched_event_run(sched, prev, timestamp, delta); 717 add_sched_event_sleep(sched, prev, timestamp, prev_state); 718 719 return 0; 720 } 721 722 static int replay_fork_event(struct perf_sched *sched, 723 union perf_event *event, 724 struct machine *machine) 725 { 726 struct thread *child, *parent; 727 728 child = machine__findnew_thread(machine, event->fork.pid, 729 event->fork.tid); 730 parent = machine__findnew_thread(machine, event->fork.ppid, 731 event->fork.ptid); 732 733 if (child == NULL || parent == NULL) { 734 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 735 child, parent); 736 return 0; 737 } 738 739 if (verbose) { 740 printf("fork event\n"); 741 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 742 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 743 } 744 745 register_pid(sched, parent->tid, thread__comm_str(parent)); 746 register_pid(sched, child->tid, thread__comm_str(child)); 747 return 0; 748 } 749 750 struct sort_dimension { 751 const char *name; 752 sort_fn_t cmp; 753 struct list_head list; 754 }; 755 756 static int 757 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 758 { 759 struct sort_dimension *sort; 760 int ret = 0; 761 762 BUG_ON(list_empty(list)); 763 764 list_for_each_entry(sort, list, list) { 765 ret = sort->cmp(l, r); 766 if (ret) 767 return ret; 768 } 769 770 return ret; 771 } 772 773 static struct work_atoms * 774 thread_atoms_search(struct rb_root *root, struct thread *thread, 775 struct list_head *sort_list) 776 { 777 struct rb_node *node = root->rb_node; 778 struct work_atoms key = { .thread = thread }; 779 780 while (node) { 781 struct work_atoms *atoms; 782 int cmp; 783 784 atoms = container_of(node, struct work_atoms, node); 785 786 cmp = thread_lat_cmp(sort_list, &key, atoms); 787 if (cmp > 0) 788 node = node->rb_left; 789 else if (cmp < 0) 790 node = node->rb_right; 791 else { 792 BUG_ON(thread != atoms->thread); 793 return atoms; 794 } 795 } 796 return NULL; 797 } 798 799 static void 800 __thread_latency_insert(struct rb_root *root, struct work_atoms *data, 801 struct list_head *sort_list) 802 { 803 struct rb_node **new = &(root->rb_node), *parent = NULL; 804 805 while (*new) { 806 struct work_atoms *this; 807 int cmp; 808 809 this = container_of(*new, struct work_atoms, node); 810 parent = *new; 811 812 cmp = thread_lat_cmp(sort_list, data, this); 813 814 if (cmp > 0) 815 new = &((*new)->rb_left); 816 else 817 new = &((*new)->rb_right); 818 } 819 820 rb_link_node(&data->node, parent, new); 821 rb_insert_color(&data->node, root); 822 } 823 824 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 825 { 826 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 827 if (!atoms) { 828 pr_err("No memory at %s\n", __func__); 829 return -1; 830 } 831 832 atoms->thread = thread; 833 INIT_LIST_HEAD(&atoms->work_list); 834 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 835 return 0; 836 } 837 838 static char sched_out_state(u64 prev_state) 839 { 840 const char *str = TASK_STATE_TO_CHAR_STR; 841 842 return str[prev_state]; 843 } 844 845 static int 846 add_sched_out_event(struct work_atoms *atoms, 847 char run_state, 848 u64 timestamp) 849 { 850 struct work_atom *atom = zalloc(sizeof(*atom)); 851 if (!atom) { 852 pr_err("Non memory at %s", __func__); 853 return -1; 854 } 855 856 atom->sched_out_time = timestamp; 857 858 if (run_state == 'R') { 859 atom->state = THREAD_WAIT_CPU; 860 atom->wake_up_time = atom->sched_out_time; 861 } 862 863 list_add_tail(&atom->list, &atoms->work_list); 864 return 0; 865 } 866 867 static void 868 add_runtime_event(struct work_atoms *atoms, u64 delta, 869 u64 timestamp __maybe_unused) 870 { 871 struct work_atom *atom; 872 873 BUG_ON(list_empty(&atoms->work_list)); 874 875 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 876 877 atom->runtime += delta; 878 atoms->total_runtime += delta; 879 } 880 881 static void 882 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 883 { 884 struct work_atom *atom; 885 u64 delta; 886 887 if (list_empty(&atoms->work_list)) 888 return; 889 890 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 891 892 if (atom->state != THREAD_WAIT_CPU) 893 return; 894 895 if (timestamp < atom->wake_up_time) { 896 atom->state = THREAD_IGNORE; 897 return; 898 } 899 900 atom->state = THREAD_SCHED_IN; 901 atom->sched_in_time = timestamp; 902 903 delta = atom->sched_in_time - atom->wake_up_time; 904 atoms->total_lat += delta; 905 if (delta > atoms->max_lat) { 906 atoms->max_lat = delta; 907 atoms->max_lat_at = timestamp; 908 } 909 atoms->nb_atoms++; 910 } 911 912 static int latency_switch_event(struct perf_sched *sched, 913 struct perf_evsel *evsel, 914 struct perf_sample *sample, 915 struct machine *machine) 916 { 917 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 918 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 919 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 920 struct work_atoms *out_events, *in_events; 921 struct thread *sched_out, *sched_in; 922 u64 timestamp0, timestamp = sample->time; 923 int cpu = sample->cpu; 924 s64 delta; 925 926 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 927 928 timestamp0 = sched->cpu_last_switched[cpu]; 929 sched->cpu_last_switched[cpu] = timestamp; 930 if (timestamp0) 931 delta = timestamp - timestamp0; 932 else 933 delta = 0; 934 935 if (delta < 0) { 936 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 937 return -1; 938 } 939 940 sched_out = machine__findnew_thread(machine, -1, prev_pid); 941 sched_in = machine__findnew_thread(machine, -1, next_pid); 942 943 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 944 if (!out_events) { 945 if (thread_atoms_insert(sched, sched_out)) 946 return -1; 947 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 948 if (!out_events) { 949 pr_err("out-event: Internal tree error"); 950 return -1; 951 } 952 } 953 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 954 return -1; 955 956 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 957 if (!in_events) { 958 if (thread_atoms_insert(sched, sched_in)) 959 return -1; 960 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 961 if (!in_events) { 962 pr_err("in-event: Internal tree error"); 963 return -1; 964 } 965 /* 966 * Take came in we have not heard about yet, 967 * add in an initial atom in runnable state: 968 */ 969 if (add_sched_out_event(in_events, 'R', timestamp)) 970 return -1; 971 } 972 add_sched_in_event(in_events, timestamp); 973 974 return 0; 975 } 976 977 static int latency_runtime_event(struct perf_sched *sched, 978 struct perf_evsel *evsel, 979 struct perf_sample *sample, 980 struct machine *machine) 981 { 982 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 983 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 984 struct thread *thread = machine__findnew_thread(machine, -1, pid); 985 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 986 u64 timestamp = sample->time; 987 int cpu = sample->cpu; 988 989 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 990 if (!atoms) { 991 if (thread_atoms_insert(sched, thread)) 992 return -1; 993 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 994 if (!atoms) { 995 pr_err("in-event: Internal tree error"); 996 return -1; 997 } 998 if (add_sched_out_event(atoms, 'R', timestamp)) 999 return -1; 1000 } 1001 1002 add_runtime_event(atoms, runtime, timestamp); 1003 return 0; 1004 } 1005 1006 static int latency_wakeup_event(struct perf_sched *sched, 1007 struct perf_evsel *evsel, 1008 struct perf_sample *sample, 1009 struct machine *machine) 1010 { 1011 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1012 struct work_atoms *atoms; 1013 struct work_atom *atom; 1014 struct thread *wakee; 1015 u64 timestamp = sample->time; 1016 1017 wakee = machine__findnew_thread(machine, -1, pid); 1018 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1019 if (!atoms) { 1020 if (thread_atoms_insert(sched, wakee)) 1021 return -1; 1022 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1023 if (!atoms) { 1024 pr_err("wakeup-event: Internal tree error"); 1025 return -1; 1026 } 1027 if (add_sched_out_event(atoms, 'S', timestamp)) 1028 return -1; 1029 } 1030 1031 BUG_ON(list_empty(&atoms->work_list)); 1032 1033 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1034 1035 /* 1036 * As we do not guarantee the wakeup event happens when 1037 * task is out of run queue, also may happen when task is 1038 * on run queue and wakeup only change ->state to TASK_RUNNING, 1039 * then we should not set the ->wake_up_time when wake up a 1040 * task which is on run queue. 1041 * 1042 * You WILL be missing events if you've recorded only 1043 * one CPU, or are only looking at only one, so don't 1044 * skip in this case. 1045 */ 1046 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1047 return 0; 1048 1049 sched->nr_timestamps++; 1050 if (atom->sched_out_time > timestamp) { 1051 sched->nr_unordered_timestamps++; 1052 return 0; 1053 } 1054 1055 atom->state = THREAD_WAIT_CPU; 1056 atom->wake_up_time = timestamp; 1057 return 0; 1058 } 1059 1060 static int latency_migrate_task_event(struct perf_sched *sched, 1061 struct perf_evsel *evsel, 1062 struct perf_sample *sample, 1063 struct machine *machine) 1064 { 1065 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1066 u64 timestamp = sample->time; 1067 struct work_atoms *atoms; 1068 struct work_atom *atom; 1069 struct thread *migrant; 1070 1071 /* 1072 * Only need to worry about migration when profiling one CPU. 1073 */ 1074 if (sched->profile_cpu == -1) 1075 return 0; 1076 1077 migrant = machine__findnew_thread(machine, -1, pid); 1078 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1079 if (!atoms) { 1080 if (thread_atoms_insert(sched, migrant)) 1081 return -1; 1082 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1083 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1084 if (!atoms) { 1085 pr_err("migration-event: Internal tree error"); 1086 return -1; 1087 } 1088 if (add_sched_out_event(atoms, 'R', timestamp)) 1089 return -1; 1090 } 1091 1092 BUG_ON(list_empty(&atoms->work_list)); 1093 1094 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1095 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1096 1097 sched->nr_timestamps++; 1098 1099 if (atom->sched_out_time > timestamp) 1100 sched->nr_unordered_timestamps++; 1101 1102 return 0; 1103 } 1104 1105 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1106 { 1107 int i; 1108 int ret; 1109 u64 avg; 1110 1111 if (!work_list->nb_atoms) 1112 return; 1113 /* 1114 * Ignore idle threads: 1115 */ 1116 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1117 return; 1118 1119 sched->all_runtime += work_list->total_runtime; 1120 sched->all_count += work_list->nb_atoms; 1121 1122 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1123 1124 for (i = 0; i < 24 - ret; i++) 1125 printf(" "); 1126 1127 avg = work_list->total_lat / work_list->nb_atoms; 1128 1129 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n", 1130 (double)work_list->total_runtime / 1e6, 1131 work_list->nb_atoms, (double)avg / 1e6, 1132 (double)work_list->max_lat / 1e6, 1133 (double)work_list->max_lat_at / 1e9); 1134 } 1135 1136 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1137 { 1138 if (l->thread->tid < r->thread->tid) 1139 return -1; 1140 if (l->thread->tid > r->thread->tid) 1141 return 1; 1142 1143 return 0; 1144 } 1145 1146 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1147 { 1148 u64 avgl, avgr; 1149 1150 if (!l->nb_atoms) 1151 return -1; 1152 1153 if (!r->nb_atoms) 1154 return 1; 1155 1156 avgl = l->total_lat / l->nb_atoms; 1157 avgr = r->total_lat / r->nb_atoms; 1158 1159 if (avgl < avgr) 1160 return -1; 1161 if (avgl > avgr) 1162 return 1; 1163 1164 return 0; 1165 } 1166 1167 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1168 { 1169 if (l->max_lat < r->max_lat) 1170 return -1; 1171 if (l->max_lat > r->max_lat) 1172 return 1; 1173 1174 return 0; 1175 } 1176 1177 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1178 { 1179 if (l->nb_atoms < r->nb_atoms) 1180 return -1; 1181 if (l->nb_atoms > r->nb_atoms) 1182 return 1; 1183 1184 return 0; 1185 } 1186 1187 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1188 { 1189 if (l->total_runtime < r->total_runtime) 1190 return -1; 1191 if (l->total_runtime > r->total_runtime) 1192 return 1; 1193 1194 return 0; 1195 } 1196 1197 static int sort_dimension__add(const char *tok, struct list_head *list) 1198 { 1199 size_t i; 1200 static struct sort_dimension avg_sort_dimension = { 1201 .name = "avg", 1202 .cmp = avg_cmp, 1203 }; 1204 static struct sort_dimension max_sort_dimension = { 1205 .name = "max", 1206 .cmp = max_cmp, 1207 }; 1208 static struct sort_dimension pid_sort_dimension = { 1209 .name = "pid", 1210 .cmp = pid_cmp, 1211 }; 1212 static struct sort_dimension runtime_sort_dimension = { 1213 .name = "runtime", 1214 .cmp = runtime_cmp, 1215 }; 1216 static struct sort_dimension switch_sort_dimension = { 1217 .name = "switch", 1218 .cmp = switch_cmp, 1219 }; 1220 struct sort_dimension *available_sorts[] = { 1221 &pid_sort_dimension, 1222 &avg_sort_dimension, 1223 &max_sort_dimension, 1224 &switch_sort_dimension, 1225 &runtime_sort_dimension, 1226 }; 1227 1228 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1229 if (!strcmp(available_sorts[i]->name, tok)) { 1230 list_add_tail(&available_sorts[i]->list, list); 1231 1232 return 0; 1233 } 1234 } 1235 1236 return -1; 1237 } 1238 1239 static void perf_sched__sort_lat(struct perf_sched *sched) 1240 { 1241 struct rb_node *node; 1242 1243 for (;;) { 1244 struct work_atoms *data; 1245 node = rb_first(&sched->atom_root); 1246 if (!node) 1247 break; 1248 1249 rb_erase(node, &sched->atom_root); 1250 data = rb_entry(node, struct work_atoms, node); 1251 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1252 } 1253 } 1254 1255 static int process_sched_wakeup_event(struct perf_tool *tool, 1256 struct perf_evsel *evsel, 1257 struct perf_sample *sample, 1258 struct machine *machine) 1259 { 1260 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1261 1262 if (sched->tp_handler->wakeup_event) 1263 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1264 1265 return 0; 1266 } 1267 1268 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, 1269 struct perf_sample *sample, struct machine *machine) 1270 { 1271 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1272 struct thread *sched_in; 1273 int new_shortname; 1274 u64 timestamp0, timestamp = sample->time; 1275 s64 delta; 1276 int cpu, this_cpu = sample->cpu; 1277 1278 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1279 1280 if (this_cpu > sched->max_cpu) 1281 sched->max_cpu = this_cpu; 1282 1283 timestamp0 = sched->cpu_last_switched[this_cpu]; 1284 sched->cpu_last_switched[this_cpu] = timestamp; 1285 if (timestamp0) 1286 delta = timestamp - timestamp0; 1287 else 1288 delta = 0; 1289 1290 if (delta < 0) { 1291 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1292 return -1; 1293 } 1294 1295 sched_in = machine__findnew_thread(machine, -1, next_pid); 1296 1297 sched->curr_thread[this_cpu] = sched_in; 1298 1299 printf(" "); 1300 1301 new_shortname = 0; 1302 if (!sched_in->shortname[0]) { 1303 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1304 /* 1305 * Don't allocate a letter-number for swapper:0 1306 * as a shortname. Instead, we use '.' for it. 1307 */ 1308 sched_in->shortname[0] = '.'; 1309 sched_in->shortname[1] = ' '; 1310 } else { 1311 sched_in->shortname[0] = sched->next_shortname1; 1312 sched_in->shortname[1] = sched->next_shortname2; 1313 1314 if (sched->next_shortname1 < 'Z') { 1315 sched->next_shortname1++; 1316 } else { 1317 sched->next_shortname1 = 'A'; 1318 if (sched->next_shortname2 < '9') 1319 sched->next_shortname2++; 1320 else 1321 sched->next_shortname2 = '0'; 1322 } 1323 } 1324 new_shortname = 1; 1325 } 1326 1327 for (cpu = 0; cpu <= sched->max_cpu; cpu++) { 1328 if (cpu != this_cpu) 1329 printf(" "); 1330 else 1331 printf("*"); 1332 1333 if (sched->curr_thread[cpu]) 1334 printf("%2s ", sched->curr_thread[cpu]->shortname); 1335 else 1336 printf(" "); 1337 } 1338 1339 printf(" %12.6f secs ", (double)timestamp/1e9); 1340 if (new_shortname) { 1341 printf("%s => %s:%d\n", 1342 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); 1343 } else { 1344 printf("\n"); 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int process_sched_switch_event(struct perf_tool *tool, 1351 struct perf_evsel *evsel, 1352 struct perf_sample *sample, 1353 struct machine *machine) 1354 { 1355 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1356 int this_cpu = sample->cpu, err = 0; 1357 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1358 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1359 1360 if (sched->curr_pid[this_cpu] != (u32)-1) { 1361 /* 1362 * Are we trying to switch away a PID that is 1363 * not current? 1364 */ 1365 if (sched->curr_pid[this_cpu] != prev_pid) 1366 sched->nr_context_switch_bugs++; 1367 } 1368 1369 if (sched->tp_handler->switch_event) 1370 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1371 1372 sched->curr_pid[this_cpu] = next_pid; 1373 return err; 1374 } 1375 1376 static int process_sched_runtime_event(struct perf_tool *tool, 1377 struct perf_evsel *evsel, 1378 struct perf_sample *sample, 1379 struct machine *machine) 1380 { 1381 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1382 1383 if (sched->tp_handler->runtime_event) 1384 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1385 1386 return 0; 1387 } 1388 1389 static int perf_sched__process_fork_event(struct perf_tool *tool, 1390 union perf_event *event, 1391 struct perf_sample *sample, 1392 struct machine *machine) 1393 { 1394 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1395 1396 /* run the fork event through the perf machineruy */ 1397 perf_event__process_fork(tool, event, sample, machine); 1398 1399 /* and then run additional processing needed for this command */ 1400 if (sched->tp_handler->fork_event) 1401 return sched->tp_handler->fork_event(sched, event, machine); 1402 1403 return 0; 1404 } 1405 1406 static int process_sched_migrate_task_event(struct perf_tool *tool, 1407 struct perf_evsel *evsel, 1408 struct perf_sample *sample, 1409 struct machine *machine) 1410 { 1411 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1412 1413 if (sched->tp_handler->migrate_task_event) 1414 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1415 1416 return 0; 1417 } 1418 1419 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1420 struct perf_evsel *evsel, 1421 struct perf_sample *sample, 1422 struct machine *machine); 1423 1424 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1425 union perf_event *event __maybe_unused, 1426 struct perf_sample *sample, 1427 struct perf_evsel *evsel, 1428 struct machine *machine) 1429 { 1430 int err = 0; 1431 1432 evsel->hists.stats.total_period += sample->period; 1433 hists__inc_nr_samples(&evsel->hists, true); 1434 1435 if (evsel->handler != NULL) { 1436 tracepoint_handler f = evsel->handler; 1437 err = f(tool, evsel, sample, machine); 1438 } 1439 1440 return err; 1441 } 1442 1443 static int perf_sched__read_events(struct perf_sched *sched, 1444 struct perf_session **psession) 1445 { 1446 const struct perf_evsel_str_handler handlers[] = { 1447 { "sched:sched_switch", process_sched_switch_event, }, 1448 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1449 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1450 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1451 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1452 }; 1453 struct perf_session *session; 1454 struct perf_data_file file = { 1455 .path = input_name, 1456 .mode = PERF_DATA_MODE_READ, 1457 }; 1458 1459 session = perf_session__new(&file, false, &sched->tool); 1460 if (session == NULL) { 1461 pr_debug("No Memory for session\n"); 1462 return -1; 1463 } 1464 1465 if (perf_session__set_tracepoints_handlers(session, handlers)) 1466 goto out_delete; 1467 1468 if (perf_session__has_traces(session, "record -R")) { 1469 int err = perf_session__process_events(session, &sched->tool); 1470 if (err) { 1471 pr_err("Failed to process events, error %d", err); 1472 goto out_delete; 1473 } 1474 1475 sched->nr_events = session->stats.nr_events[0]; 1476 sched->nr_lost_events = session->stats.total_lost; 1477 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST]; 1478 } 1479 1480 if (psession) 1481 *psession = session; 1482 else 1483 perf_session__delete(session); 1484 1485 return 0; 1486 1487 out_delete: 1488 perf_session__delete(session); 1489 return -1; 1490 } 1491 1492 static void print_bad_events(struct perf_sched *sched) 1493 { 1494 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 1495 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 1496 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 1497 sched->nr_unordered_timestamps, sched->nr_timestamps); 1498 } 1499 if (sched->nr_lost_events && sched->nr_events) { 1500 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 1501 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 1502 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 1503 } 1504 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 1505 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 1506 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 1507 sched->nr_context_switch_bugs, sched->nr_timestamps); 1508 if (sched->nr_lost_events) 1509 printf(" (due to lost events?)"); 1510 printf("\n"); 1511 } 1512 } 1513 1514 static int perf_sched__lat(struct perf_sched *sched) 1515 { 1516 struct rb_node *next; 1517 struct perf_session *session; 1518 1519 setup_pager(); 1520 1521 /* save session -- references to threads are held in work_list */ 1522 if (perf_sched__read_events(sched, &session)) 1523 return -1; 1524 1525 perf_sched__sort_lat(sched); 1526 1527 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 1528 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 1529 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1530 1531 next = rb_first(&sched->sorted_atom_root); 1532 1533 while (next) { 1534 struct work_atoms *work_list; 1535 1536 work_list = rb_entry(next, struct work_atoms, node); 1537 output_lat_thread(sched, work_list); 1538 next = rb_next(next); 1539 } 1540 1541 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1542 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 1543 (double)sched->all_runtime / 1e6, sched->all_count); 1544 1545 printf(" ---------------------------------------------------\n"); 1546 1547 print_bad_events(sched); 1548 printf("\n"); 1549 1550 perf_session__delete(session); 1551 return 0; 1552 } 1553 1554 static int perf_sched__map(struct perf_sched *sched) 1555 { 1556 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 1557 1558 setup_pager(); 1559 if (perf_sched__read_events(sched, NULL)) 1560 return -1; 1561 print_bad_events(sched); 1562 return 0; 1563 } 1564 1565 static int perf_sched__replay(struct perf_sched *sched) 1566 { 1567 unsigned long i; 1568 1569 calibrate_run_measurement_overhead(sched); 1570 calibrate_sleep_measurement_overhead(sched); 1571 1572 test_calibrations(sched); 1573 1574 if (perf_sched__read_events(sched, NULL)) 1575 return -1; 1576 1577 printf("nr_run_events: %ld\n", sched->nr_run_events); 1578 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 1579 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 1580 1581 if (sched->targetless_wakeups) 1582 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 1583 if (sched->multitarget_wakeups) 1584 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 1585 if (sched->nr_run_events_optimized) 1586 printf("run atoms optimized: %ld\n", 1587 sched->nr_run_events_optimized); 1588 1589 print_task_traces(sched); 1590 add_cross_task_wakeups(sched); 1591 1592 create_tasks(sched); 1593 printf("------------------------------------------------------------\n"); 1594 for (i = 0; i < sched->replay_repeat; i++) 1595 run_one_test(sched); 1596 1597 return 0; 1598 } 1599 1600 static void setup_sorting(struct perf_sched *sched, const struct option *options, 1601 const char * const usage_msg[]) 1602 { 1603 char *tmp, *tok, *str = strdup(sched->sort_order); 1604 1605 for (tok = strtok_r(str, ", ", &tmp); 1606 tok; tok = strtok_r(NULL, ", ", &tmp)) { 1607 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 1608 error("Unknown --sort key: `%s'", tok); 1609 usage_with_options(usage_msg, options); 1610 } 1611 } 1612 1613 free(str); 1614 1615 sort_dimension__add("pid", &sched->cmp_pid); 1616 } 1617 1618 static int __cmd_record(int argc, const char **argv) 1619 { 1620 unsigned int rec_argc, i, j; 1621 const char **rec_argv; 1622 const char * const record_args[] = { 1623 "record", 1624 "-a", 1625 "-R", 1626 "-m", "1024", 1627 "-c", "1", 1628 "-e", "sched:sched_switch", 1629 "-e", "sched:sched_stat_wait", 1630 "-e", "sched:sched_stat_sleep", 1631 "-e", "sched:sched_stat_iowait", 1632 "-e", "sched:sched_stat_runtime", 1633 "-e", "sched:sched_process_fork", 1634 "-e", "sched:sched_wakeup", 1635 "-e", "sched:sched_wakeup_new", 1636 "-e", "sched:sched_migrate_task", 1637 }; 1638 1639 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 1640 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1641 1642 if (rec_argv == NULL) 1643 return -ENOMEM; 1644 1645 for (i = 0; i < ARRAY_SIZE(record_args); i++) 1646 rec_argv[i] = strdup(record_args[i]); 1647 1648 for (j = 1; j < (unsigned int)argc; j++, i++) 1649 rec_argv[i] = argv[j]; 1650 1651 BUG_ON(i != rec_argc); 1652 1653 return cmd_record(i, rec_argv, NULL); 1654 } 1655 1656 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused) 1657 { 1658 const char default_sort_order[] = "avg, max, switch, runtime"; 1659 struct perf_sched sched = { 1660 .tool = { 1661 .sample = perf_sched__process_tracepoint_sample, 1662 .comm = perf_event__process_comm, 1663 .lost = perf_event__process_lost, 1664 .fork = perf_sched__process_fork_event, 1665 .ordered_samples = true, 1666 }, 1667 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 1668 .sort_list = LIST_HEAD_INIT(sched.sort_list), 1669 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 1670 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 1671 .sort_order = default_sort_order, 1672 .replay_repeat = 10, 1673 .profile_cpu = -1, 1674 .next_shortname1 = 'A', 1675 .next_shortname2 = '0', 1676 }; 1677 const struct option latency_options[] = { 1678 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 1679 "sort by key(s): runtime, switch, avg, max"), 1680 OPT_INCR('v', "verbose", &verbose, 1681 "be more verbose (show symbol address, etc)"), 1682 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 1683 "CPU to profile on"), 1684 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1685 "dump raw trace in ASCII"), 1686 OPT_END() 1687 }; 1688 const struct option replay_options[] = { 1689 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 1690 "repeat the workload replay N times (-1: infinite)"), 1691 OPT_INCR('v', "verbose", &verbose, 1692 "be more verbose (show symbol address, etc)"), 1693 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1694 "dump raw trace in ASCII"), 1695 OPT_END() 1696 }; 1697 const struct option sched_options[] = { 1698 OPT_STRING('i', "input", &input_name, "file", 1699 "input file name"), 1700 OPT_INCR('v', "verbose", &verbose, 1701 "be more verbose (show symbol address, etc)"), 1702 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1703 "dump raw trace in ASCII"), 1704 OPT_END() 1705 }; 1706 const char * const latency_usage[] = { 1707 "perf sched latency [<options>]", 1708 NULL 1709 }; 1710 const char * const replay_usage[] = { 1711 "perf sched replay [<options>]", 1712 NULL 1713 }; 1714 const char *const sched_subcommands[] = { "record", "latency", "map", 1715 "replay", "script", NULL }; 1716 const char *sched_usage[] = { 1717 NULL, 1718 NULL 1719 }; 1720 struct trace_sched_handler lat_ops = { 1721 .wakeup_event = latency_wakeup_event, 1722 .switch_event = latency_switch_event, 1723 .runtime_event = latency_runtime_event, 1724 .migrate_task_event = latency_migrate_task_event, 1725 }; 1726 struct trace_sched_handler map_ops = { 1727 .switch_event = map_switch_event, 1728 }; 1729 struct trace_sched_handler replay_ops = { 1730 .wakeup_event = replay_wakeup_event, 1731 .switch_event = replay_switch_event, 1732 .fork_event = replay_fork_event, 1733 }; 1734 unsigned int i; 1735 1736 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 1737 sched.curr_pid[i] = -1; 1738 1739 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 1740 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 1741 if (!argc) 1742 usage_with_options(sched_usage, sched_options); 1743 1744 /* 1745 * Aliased to 'perf script' for now: 1746 */ 1747 if (!strcmp(argv[0], "script")) 1748 return cmd_script(argc, argv, prefix); 1749 1750 symbol__init(); 1751 if (!strncmp(argv[0], "rec", 3)) { 1752 return __cmd_record(argc, argv); 1753 } else if (!strncmp(argv[0], "lat", 3)) { 1754 sched.tp_handler = &lat_ops; 1755 if (argc > 1) { 1756 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 1757 if (argc) 1758 usage_with_options(latency_usage, latency_options); 1759 } 1760 setup_sorting(&sched, latency_options, latency_usage); 1761 return perf_sched__lat(&sched); 1762 } else if (!strcmp(argv[0], "map")) { 1763 sched.tp_handler = &map_ops; 1764 setup_sorting(&sched, latency_options, latency_usage); 1765 return perf_sched__map(&sched); 1766 } else if (!strncmp(argv[0], "rep", 3)) { 1767 sched.tp_handler = &replay_ops; 1768 if (argc) { 1769 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 1770 if (argc) 1771 usage_with_options(replay_usage, replay_options); 1772 } 1773 return perf_sched__replay(&sched); 1774 } else { 1775 usage_with_options(sched_usage, sched_options); 1776 } 1777 1778 return 0; 1779 } 1780