1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 #include "perf-sys.h" 5 6 #include "util/cpumap.h" 7 #include "util/evlist.h" 8 #include "util/evsel.h" 9 #include "util/evsel_fprintf.h" 10 #include "util/mutex.h" 11 #include "util/symbol.h" 12 #include "util/thread.h" 13 #include "util/header.h" 14 #include "util/session.h" 15 #include "util/tool.h" 16 #include "util/cloexec.h" 17 #include "util/thread_map.h" 18 #include "util/color.h" 19 #include "util/stat.h" 20 #include "util/string2.h" 21 #include "util/callchain.h" 22 #include "util/time-utils.h" 23 24 #include <subcmd/pager.h> 25 #include <subcmd/parse-options.h> 26 #include "util/trace-event.h" 27 28 #include "util/debug.h" 29 #include "util/event.h" 30 31 #include <linux/kernel.h> 32 #include <linux/log2.h> 33 #include <linux/zalloc.h> 34 #include <sys/prctl.h> 35 #include <sys/resource.h> 36 #include <inttypes.h> 37 38 #include <errno.h> 39 #include <semaphore.h> 40 #include <pthread.h> 41 #include <math.h> 42 #include <api/fs/fs.h> 43 #include <perf/cpumap.h> 44 #include <linux/time64.h> 45 #include <linux/err.h> 46 47 #include <linux/ctype.h> 48 49 #define PR_SET_NAME 15 /* Set process name */ 50 #define MAX_CPUS 4096 51 #define COMM_LEN 20 52 #define SYM_LEN 129 53 #define MAX_PID 1024000 54 55 static const char *cpu_list; 56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 57 58 struct sched_atom; 59 60 struct task_desc { 61 unsigned long nr; 62 unsigned long pid; 63 char comm[COMM_LEN]; 64 65 unsigned long nr_events; 66 unsigned long curr_event; 67 struct sched_atom **atoms; 68 69 pthread_t thread; 70 sem_t sleep_sem; 71 72 sem_t ready_for_work; 73 sem_t work_done_sem; 74 75 u64 cpu_usage; 76 }; 77 78 enum sched_event_type { 79 SCHED_EVENT_RUN, 80 SCHED_EVENT_SLEEP, 81 SCHED_EVENT_WAKEUP, 82 SCHED_EVENT_MIGRATION, 83 }; 84 85 struct sched_atom { 86 enum sched_event_type type; 87 int specific_wait; 88 u64 timestamp; 89 u64 duration; 90 unsigned long nr; 91 sem_t *wait_sem; 92 struct task_desc *wakee; 93 }; 94 95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 96 97 /* task state bitmask, copied from include/linux/sched.h */ 98 #define TASK_RUNNING 0 99 #define TASK_INTERRUPTIBLE 1 100 #define TASK_UNINTERRUPTIBLE 2 101 #define __TASK_STOPPED 4 102 #define __TASK_TRACED 8 103 /* in tsk->exit_state */ 104 #define EXIT_DEAD 16 105 #define EXIT_ZOMBIE 32 106 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 107 /* in tsk->state again */ 108 #define TASK_DEAD 64 109 #define TASK_WAKEKILL 128 110 #define TASK_WAKING 256 111 #define TASK_PARKED 512 112 113 enum thread_state { 114 THREAD_SLEEPING = 0, 115 THREAD_WAIT_CPU, 116 THREAD_SCHED_IN, 117 THREAD_IGNORE 118 }; 119 120 struct work_atom { 121 struct list_head list; 122 enum thread_state state; 123 u64 sched_out_time; 124 u64 wake_up_time; 125 u64 sched_in_time; 126 u64 runtime; 127 }; 128 129 struct work_atoms { 130 struct list_head work_list; 131 struct thread *thread; 132 struct rb_node node; 133 u64 max_lat; 134 u64 max_lat_start; 135 u64 max_lat_end; 136 u64 total_lat; 137 u64 nb_atoms; 138 u64 total_runtime; 139 int num_merged; 140 }; 141 142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 143 144 struct perf_sched; 145 146 struct trace_sched_handler { 147 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 148 struct perf_sample *sample, struct machine *machine); 149 150 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 151 struct perf_sample *sample, struct machine *machine); 152 153 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 154 struct perf_sample *sample, struct machine *machine); 155 156 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 157 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 158 struct machine *machine); 159 160 int (*migrate_task_event)(struct perf_sched *sched, 161 struct evsel *evsel, 162 struct perf_sample *sample, 163 struct machine *machine); 164 }; 165 166 #define COLOR_PIDS PERF_COLOR_BLUE 167 #define COLOR_CPUS PERF_COLOR_BG_RED 168 169 struct perf_sched_map { 170 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 171 struct perf_cpu *comp_cpus; 172 bool comp; 173 struct perf_thread_map *color_pids; 174 const char *color_pids_str; 175 struct perf_cpu_map *color_cpus; 176 const char *color_cpus_str; 177 struct perf_cpu_map *cpus; 178 const char *cpus_str; 179 }; 180 181 struct perf_sched { 182 struct perf_tool tool; 183 const char *sort_order; 184 unsigned long nr_tasks; 185 struct task_desc **pid_to_task; 186 struct task_desc **tasks; 187 const struct trace_sched_handler *tp_handler; 188 struct mutex start_work_mutex; 189 struct mutex work_done_wait_mutex; 190 int profile_cpu; 191 /* 192 * Track the current task - that way we can know whether there's any 193 * weird events, such as a task being switched away that is not current. 194 */ 195 struct perf_cpu max_cpu; 196 u32 curr_pid[MAX_CPUS]; 197 struct thread *curr_thread[MAX_CPUS]; 198 char next_shortname1; 199 char next_shortname2; 200 unsigned int replay_repeat; 201 unsigned long nr_run_events; 202 unsigned long nr_sleep_events; 203 unsigned long nr_wakeup_events; 204 unsigned long nr_sleep_corrections; 205 unsigned long nr_run_events_optimized; 206 unsigned long targetless_wakeups; 207 unsigned long multitarget_wakeups; 208 unsigned long nr_runs; 209 unsigned long nr_timestamps; 210 unsigned long nr_unordered_timestamps; 211 unsigned long nr_context_switch_bugs; 212 unsigned long nr_events; 213 unsigned long nr_lost_chunks; 214 unsigned long nr_lost_events; 215 u64 run_measurement_overhead; 216 u64 sleep_measurement_overhead; 217 u64 start_time; 218 u64 cpu_usage; 219 u64 runavg_cpu_usage; 220 u64 parent_cpu_usage; 221 u64 runavg_parent_cpu_usage; 222 u64 sum_runtime; 223 u64 sum_fluct; 224 u64 run_avg; 225 u64 all_runtime; 226 u64 all_count; 227 u64 cpu_last_switched[MAX_CPUS]; 228 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 229 struct list_head sort_list, cmp_pid; 230 bool force; 231 bool skip_merge; 232 struct perf_sched_map map; 233 234 /* options for timehist command */ 235 bool summary; 236 bool summary_only; 237 bool idle_hist; 238 bool show_callchain; 239 unsigned int max_stack; 240 bool show_cpu_visual; 241 bool show_wakeups; 242 bool show_next; 243 bool show_migrations; 244 bool show_state; 245 u64 skipped_samples; 246 const char *time_str; 247 struct perf_time_interval ptime; 248 struct perf_time_interval hist_time; 249 volatile bool thread_funcs_exit; 250 }; 251 252 /* per thread run time data */ 253 struct thread_runtime { 254 u64 last_time; /* time of previous sched in/out event */ 255 u64 dt_run; /* run time */ 256 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 257 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 258 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 259 u64 dt_delay; /* time between wakeup and sched-in */ 260 u64 ready_to_run; /* time of wakeup */ 261 262 struct stats run_stats; 263 u64 total_run_time; 264 u64 total_sleep_time; 265 u64 total_iowait_time; 266 u64 total_preempt_time; 267 u64 total_delay_time; 268 269 int last_state; 270 271 char shortname[3]; 272 bool comm_changed; 273 274 u64 migrations; 275 }; 276 277 /* per event run time data */ 278 struct evsel_runtime { 279 u64 *last_time; /* time this event was last seen per cpu */ 280 u32 ncpu; /* highest cpu slot allocated */ 281 }; 282 283 /* per cpu idle time data */ 284 struct idle_thread_runtime { 285 struct thread_runtime tr; 286 struct thread *last_thread; 287 struct rb_root_cached sorted_root; 288 struct callchain_root callchain; 289 struct callchain_cursor cursor; 290 }; 291 292 /* track idle times per cpu */ 293 static struct thread **idle_threads; 294 static int idle_max_cpu; 295 static char idle_comm[] = "<idle>"; 296 297 static u64 get_nsecs(void) 298 { 299 struct timespec ts; 300 301 clock_gettime(CLOCK_MONOTONIC, &ts); 302 303 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 304 } 305 306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 307 { 308 u64 T0 = get_nsecs(), T1; 309 310 do { 311 T1 = get_nsecs(); 312 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 313 } 314 315 static void sleep_nsecs(u64 nsecs) 316 { 317 struct timespec ts; 318 319 ts.tv_nsec = nsecs % 999999999; 320 ts.tv_sec = nsecs / 999999999; 321 322 nanosleep(&ts, NULL); 323 } 324 325 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 326 { 327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 328 int i; 329 330 for (i = 0; i < 10; i++) { 331 T0 = get_nsecs(); 332 burn_nsecs(sched, 0); 333 T1 = get_nsecs(); 334 delta = T1-T0; 335 min_delta = min(min_delta, delta); 336 } 337 sched->run_measurement_overhead = min_delta; 338 339 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 340 } 341 342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 343 { 344 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 345 int i; 346 347 for (i = 0; i < 10; i++) { 348 T0 = get_nsecs(); 349 sleep_nsecs(10000); 350 T1 = get_nsecs(); 351 delta = T1-T0; 352 min_delta = min(min_delta, delta); 353 } 354 min_delta -= 10000; 355 sched->sleep_measurement_overhead = min_delta; 356 357 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 358 } 359 360 static struct sched_atom * 361 get_new_event(struct task_desc *task, u64 timestamp) 362 { 363 struct sched_atom *event = zalloc(sizeof(*event)); 364 unsigned long idx = task->nr_events; 365 size_t size; 366 367 event->timestamp = timestamp; 368 event->nr = idx; 369 370 task->nr_events++; 371 size = sizeof(struct sched_atom *) * task->nr_events; 372 task->atoms = realloc(task->atoms, size); 373 BUG_ON(!task->atoms); 374 375 task->atoms[idx] = event; 376 377 return event; 378 } 379 380 static struct sched_atom *last_event(struct task_desc *task) 381 { 382 if (!task->nr_events) 383 return NULL; 384 385 return task->atoms[task->nr_events - 1]; 386 } 387 388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 389 u64 timestamp, u64 duration) 390 { 391 struct sched_atom *event, *curr_event = last_event(task); 392 393 /* 394 * optimize an existing RUN event by merging this one 395 * to it: 396 */ 397 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 398 sched->nr_run_events_optimized++; 399 curr_event->duration += duration; 400 return; 401 } 402 403 event = get_new_event(task, timestamp); 404 405 event->type = SCHED_EVENT_RUN; 406 event->duration = duration; 407 408 sched->nr_run_events++; 409 } 410 411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 412 u64 timestamp, struct task_desc *wakee) 413 { 414 struct sched_atom *event, *wakee_event; 415 416 event = get_new_event(task, timestamp); 417 event->type = SCHED_EVENT_WAKEUP; 418 event->wakee = wakee; 419 420 wakee_event = last_event(wakee); 421 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 422 sched->targetless_wakeups++; 423 return; 424 } 425 if (wakee_event->wait_sem) { 426 sched->multitarget_wakeups++; 427 return; 428 } 429 430 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 431 sem_init(wakee_event->wait_sem, 0, 0); 432 wakee_event->specific_wait = 1; 433 event->wait_sem = wakee_event->wait_sem; 434 435 sched->nr_wakeup_events++; 436 } 437 438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 439 u64 timestamp, u64 task_state __maybe_unused) 440 { 441 struct sched_atom *event = get_new_event(task, timestamp); 442 443 event->type = SCHED_EVENT_SLEEP; 444 445 sched->nr_sleep_events++; 446 } 447 448 static struct task_desc *register_pid(struct perf_sched *sched, 449 unsigned long pid, const char *comm) 450 { 451 struct task_desc *task; 452 static int pid_max; 453 454 if (sched->pid_to_task == NULL) { 455 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 456 pid_max = MAX_PID; 457 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 458 } 459 if (pid >= (unsigned long)pid_max) { 460 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 461 sizeof(struct task_desc *))) == NULL); 462 while (pid >= (unsigned long)pid_max) 463 sched->pid_to_task[pid_max++] = NULL; 464 } 465 466 task = sched->pid_to_task[pid]; 467 468 if (task) 469 return task; 470 471 task = zalloc(sizeof(*task)); 472 task->pid = pid; 473 task->nr = sched->nr_tasks; 474 strcpy(task->comm, comm); 475 /* 476 * every task starts in sleeping state - this gets ignored 477 * if there's no wakeup pointing to this sleep state: 478 */ 479 add_sched_event_sleep(sched, task, 0, 0); 480 481 sched->pid_to_task[pid] = task; 482 sched->nr_tasks++; 483 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 484 BUG_ON(!sched->tasks); 485 sched->tasks[task->nr] = task; 486 487 if (verbose > 0) 488 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 489 490 return task; 491 } 492 493 494 static void print_task_traces(struct perf_sched *sched) 495 { 496 struct task_desc *task; 497 unsigned long i; 498 499 for (i = 0; i < sched->nr_tasks; i++) { 500 task = sched->tasks[i]; 501 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 502 task->nr, task->comm, task->pid, task->nr_events); 503 } 504 } 505 506 static void add_cross_task_wakeups(struct perf_sched *sched) 507 { 508 struct task_desc *task1, *task2; 509 unsigned long i, j; 510 511 for (i = 0; i < sched->nr_tasks; i++) { 512 task1 = sched->tasks[i]; 513 j = i + 1; 514 if (j == sched->nr_tasks) 515 j = 0; 516 task2 = sched->tasks[j]; 517 add_sched_event_wakeup(sched, task1, 0, task2); 518 } 519 } 520 521 static void perf_sched__process_event(struct perf_sched *sched, 522 struct sched_atom *atom) 523 { 524 int ret = 0; 525 526 switch (atom->type) { 527 case SCHED_EVENT_RUN: 528 burn_nsecs(sched, atom->duration); 529 break; 530 case SCHED_EVENT_SLEEP: 531 if (atom->wait_sem) 532 ret = sem_wait(atom->wait_sem); 533 BUG_ON(ret); 534 break; 535 case SCHED_EVENT_WAKEUP: 536 if (atom->wait_sem) 537 ret = sem_post(atom->wait_sem); 538 BUG_ON(ret); 539 break; 540 case SCHED_EVENT_MIGRATION: 541 break; 542 default: 543 BUG_ON(1); 544 } 545 } 546 547 static u64 get_cpu_usage_nsec_parent(void) 548 { 549 struct rusage ru; 550 u64 sum; 551 int err; 552 553 err = getrusage(RUSAGE_SELF, &ru); 554 BUG_ON(err); 555 556 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 557 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 558 559 return sum; 560 } 561 562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 563 { 564 struct perf_event_attr attr; 565 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 566 int fd; 567 struct rlimit limit; 568 bool need_privilege = false; 569 570 memset(&attr, 0, sizeof(attr)); 571 572 attr.type = PERF_TYPE_SOFTWARE; 573 attr.config = PERF_COUNT_SW_TASK_CLOCK; 574 575 force_again: 576 fd = sys_perf_event_open(&attr, 0, -1, -1, 577 perf_event_open_cloexec_flag()); 578 579 if (fd < 0) { 580 if (errno == EMFILE) { 581 if (sched->force) { 582 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 583 limit.rlim_cur += sched->nr_tasks - cur_task; 584 if (limit.rlim_cur > limit.rlim_max) { 585 limit.rlim_max = limit.rlim_cur; 586 need_privilege = true; 587 } 588 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 589 if (need_privilege && errno == EPERM) 590 strcpy(info, "Need privilege\n"); 591 } else 592 goto force_again; 593 } else 594 strcpy(info, "Have a try with -f option\n"); 595 } 596 pr_err("Error: sys_perf_event_open() syscall returned " 597 "with %d (%s)\n%s", fd, 598 str_error_r(errno, sbuf, sizeof(sbuf)), info); 599 exit(EXIT_FAILURE); 600 } 601 return fd; 602 } 603 604 static u64 get_cpu_usage_nsec_self(int fd) 605 { 606 u64 runtime; 607 int ret; 608 609 ret = read(fd, &runtime, sizeof(runtime)); 610 BUG_ON(ret != sizeof(runtime)); 611 612 return runtime; 613 } 614 615 struct sched_thread_parms { 616 struct task_desc *task; 617 struct perf_sched *sched; 618 int fd; 619 }; 620 621 static void *thread_func(void *ctx) 622 { 623 struct sched_thread_parms *parms = ctx; 624 struct task_desc *this_task = parms->task; 625 struct perf_sched *sched = parms->sched; 626 u64 cpu_usage_0, cpu_usage_1; 627 unsigned long i, ret; 628 char comm2[22]; 629 int fd = parms->fd; 630 631 zfree(&parms); 632 633 sprintf(comm2, ":%s", this_task->comm); 634 prctl(PR_SET_NAME, comm2); 635 if (fd < 0) 636 return NULL; 637 638 while (!sched->thread_funcs_exit) { 639 ret = sem_post(&this_task->ready_for_work); 640 BUG_ON(ret); 641 mutex_lock(&sched->start_work_mutex); 642 mutex_unlock(&sched->start_work_mutex); 643 644 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 645 646 for (i = 0; i < this_task->nr_events; i++) { 647 this_task->curr_event = i; 648 perf_sched__process_event(sched, this_task->atoms[i]); 649 } 650 651 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 652 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 653 ret = sem_post(&this_task->work_done_sem); 654 BUG_ON(ret); 655 656 mutex_lock(&sched->work_done_wait_mutex); 657 mutex_unlock(&sched->work_done_wait_mutex); 658 } 659 return NULL; 660 } 661 662 static void create_tasks(struct perf_sched *sched) 663 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) 664 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) 665 { 666 struct task_desc *task; 667 pthread_attr_t attr; 668 unsigned long i; 669 int err; 670 671 err = pthread_attr_init(&attr); 672 BUG_ON(err); 673 err = pthread_attr_setstacksize(&attr, 674 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); 675 BUG_ON(err); 676 mutex_lock(&sched->start_work_mutex); 677 mutex_lock(&sched->work_done_wait_mutex); 678 for (i = 0; i < sched->nr_tasks; i++) { 679 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 680 BUG_ON(parms == NULL); 681 parms->task = task = sched->tasks[i]; 682 parms->sched = sched; 683 parms->fd = self_open_counters(sched, i); 684 sem_init(&task->sleep_sem, 0, 0); 685 sem_init(&task->ready_for_work, 0, 0); 686 sem_init(&task->work_done_sem, 0, 0); 687 task->curr_event = 0; 688 err = pthread_create(&task->thread, &attr, thread_func, parms); 689 BUG_ON(err); 690 } 691 } 692 693 static void destroy_tasks(struct perf_sched *sched) 694 UNLOCK_FUNCTION(sched->start_work_mutex) 695 UNLOCK_FUNCTION(sched->work_done_wait_mutex) 696 { 697 struct task_desc *task; 698 unsigned long i; 699 int err; 700 701 mutex_unlock(&sched->start_work_mutex); 702 mutex_unlock(&sched->work_done_wait_mutex); 703 /* Get rid of threads so they won't be upset by mutex destrunction */ 704 for (i = 0; i < sched->nr_tasks; i++) { 705 task = sched->tasks[i]; 706 err = pthread_join(task->thread, NULL); 707 BUG_ON(err); 708 sem_destroy(&task->sleep_sem); 709 sem_destroy(&task->ready_for_work); 710 sem_destroy(&task->work_done_sem); 711 } 712 } 713 714 static void wait_for_tasks(struct perf_sched *sched) 715 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 716 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 717 { 718 u64 cpu_usage_0, cpu_usage_1; 719 struct task_desc *task; 720 unsigned long i, ret; 721 722 sched->start_time = get_nsecs(); 723 sched->cpu_usage = 0; 724 mutex_unlock(&sched->work_done_wait_mutex); 725 726 for (i = 0; i < sched->nr_tasks; i++) { 727 task = sched->tasks[i]; 728 ret = sem_wait(&task->ready_for_work); 729 BUG_ON(ret); 730 sem_init(&task->ready_for_work, 0, 0); 731 } 732 mutex_lock(&sched->work_done_wait_mutex); 733 734 cpu_usage_0 = get_cpu_usage_nsec_parent(); 735 736 mutex_unlock(&sched->start_work_mutex); 737 738 for (i = 0; i < sched->nr_tasks; i++) { 739 task = sched->tasks[i]; 740 ret = sem_wait(&task->work_done_sem); 741 BUG_ON(ret); 742 sem_init(&task->work_done_sem, 0, 0); 743 sched->cpu_usage += task->cpu_usage; 744 task->cpu_usage = 0; 745 } 746 747 cpu_usage_1 = get_cpu_usage_nsec_parent(); 748 if (!sched->runavg_cpu_usage) 749 sched->runavg_cpu_usage = sched->cpu_usage; 750 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 751 752 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 753 if (!sched->runavg_parent_cpu_usage) 754 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 755 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 756 sched->parent_cpu_usage)/sched->replay_repeat; 757 758 mutex_lock(&sched->start_work_mutex); 759 760 for (i = 0; i < sched->nr_tasks; i++) { 761 task = sched->tasks[i]; 762 sem_init(&task->sleep_sem, 0, 0); 763 task->curr_event = 0; 764 } 765 } 766 767 static void run_one_test(struct perf_sched *sched) 768 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 769 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 770 { 771 u64 T0, T1, delta, avg_delta, fluct; 772 773 T0 = get_nsecs(); 774 wait_for_tasks(sched); 775 T1 = get_nsecs(); 776 777 delta = T1 - T0; 778 sched->sum_runtime += delta; 779 sched->nr_runs++; 780 781 avg_delta = sched->sum_runtime / sched->nr_runs; 782 if (delta < avg_delta) 783 fluct = avg_delta - delta; 784 else 785 fluct = delta - avg_delta; 786 sched->sum_fluct += fluct; 787 if (!sched->run_avg) 788 sched->run_avg = delta; 789 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 790 791 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 792 793 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 794 795 printf("cpu: %0.2f / %0.2f", 796 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 797 798 #if 0 799 /* 800 * rusage statistics done by the parent, these are less 801 * accurate than the sched->sum_exec_runtime based statistics: 802 */ 803 printf(" [%0.2f / %0.2f]", 804 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 805 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 806 #endif 807 808 printf("\n"); 809 810 if (sched->nr_sleep_corrections) 811 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 812 sched->nr_sleep_corrections = 0; 813 } 814 815 static void test_calibrations(struct perf_sched *sched) 816 { 817 u64 T0, T1; 818 819 T0 = get_nsecs(); 820 burn_nsecs(sched, NSEC_PER_MSEC); 821 T1 = get_nsecs(); 822 823 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 824 825 T0 = get_nsecs(); 826 sleep_nsecs(NSEC_PER_MSEC); 827 T1 = get_nsecs(); 828 829 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 830 } 831 832 static int 833 replay_wakeup_event(struct perf_sched *sched, 834 struct evsel *evsel, struct perf_sample *sample, 835 struct machine *machine __maybe_unused) 836 { 837 const char *comm = evsel__strval(evsel, sample, "comm"); 838 const u32 pid = evsel__intval(evsel, sample, "pid"); 839 struct task_desc *waker, *wakee; 840 841 if (verbose > 0) { 842 printf("sched_wakeup event %p\n", evsel); 843 844 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 845 } 846 847 waker = register_pid(sched, sample->tid, "<unknown>"); 848 wakee = register_pid(sched, pid, comm); 849 850 add_sched_event_wakeup(sched, waker, sample->time, wakee); 851 return 0; 852 } 853 854 static int replay_switch_event(struct perf_sched *sched, 855 struct evsel *evsel, 856 struct perf_sample *sample, 857 struct machine *machine __maybe_unused) 858 { 859 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 860 *next_comm = evsel__strval(evsel, sample, "next_comm"); 861 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 862 next_pid = evsel__intval(evsel, sample, "next_pid"); 863 const u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 864 struct task_desc *prev, __maybe_unused *next; 865 u64 timestamp0, timestamp = sample->time; 866 int cpu = sample->cpu; 867 s64 delta; 868 869 if (verbose > 0) 870 printf("sched_switch event %p\n", evsel); 871 872 if (cpu >= MAX_CPUS || cpu < 0) 873 return 0; 874 875 timestamp0 = sched->cpu_last_switched[cpu]; 876 if (timestamp0) 877 delta = timestamp - timestamp0; 878 else 879 delta = 0; 880 881 if (delta < 0) { 882 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 883 return -1; 884 } 885 886 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 887 prev_comm, prev_pid, next_comm, next_pid, delta); 888 889 prev = register_pid(sched, prev_pid, prev_comm); 890 next = register_pid(sched, next_pid, next_comm); 891 892 sched->cpu_last_switched[cpu] = timestamp; 893 894 add_sched_event_run(sched, prev, timestamp, delta); 895 add_sched_event_sleep(sched, prev, timestamp, prev_state); 896 897 return 0; 898 } 899 900 static int replay_fork_event(struct perf_sched *sched, 901 union perf_event *event, 902 struct machine *machine) 903 { 904 struct thread *child, *parent; 905 906 child = machine__findnew_thread(machine, event->fork.pid, 907 event->fork.tid); 908 parent = machine__findnew_thread(machine, event->fork.ppid, 909 event->fork.ptid); 910 911 if (child == NULL || parent == NULL) { 912 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 913 child, parent); 914 goto out_put; 915 } 916 917 if (verbose > 0) { 918 printf("fork event\n"); 919 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 920 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 921 } 922 923 register_pid(sched, parent->tid, thread__comm_str(parent)); 924 register_pid(sched, child->tid, thread__comm_str(child)); 925 out_put: 926 thread__put(child); 927 thread__put(parent); 928 return 0; 929 } 930 931 struct sort_dimension { 932 const char *name; 933 sort_fn_t cmp; 934 struct list_head list; 935 }; 936 937 /* 938 * handle runtime stats saved per thread 939 */ 940 static struct thread_runtime *thread__init_runtime(struct thread *thread) 941 { 942 struct thread_runtime *r; 943 944 r = zalloc(sizeof(struct thread_runtime)); 945 if (!r) 946 return NULL; 947 948 init_stats(&r->run_stats); 949 thread__set_priv(thread, r); 950 951 return r; 952 } 953 954 static struct thread_runtime *thread__get_runtime(struct thread *thread) 955 { 956 struct thread_runtime *tr; 957 958 tr = thread__priv(thread); 959 if (tr == NULL) { 960 tr = thread__init_runtime(thread); 961 if (tr == NULL) 962 pr_debug("Failed to malloc memory for runtime data.\n"); 963 } 964 965 return tr; 966 } 967 968 static int 969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 970 { 971 struct sort_dimension *sort; 972 int ret = 0; 973 974 BUG_ON(list_empty(list)); 975 976 list_for_each_entry(sort, list, list) { 977 ret = sort->cmp(l, r); 978 if (ret) 979 return ret; 980 } 981 982 return ret; 983 } 984 985 static struct work_atoms * 986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 987 struct list_head *sort_list) 988 { 989 struct rb_node *node = root->rb_root.rb_node; 990 struct work_atoms key = { .thread = thread }; 991 992 while (node) { 993 struct work_atoms *atoms; 994 int cmp; 995 996 atoms = container_of(node, struct work_atoms, node); 997 998 cmp = thread_lat_cmp(sort_list, &key, atoms); 999 if (cmp > 0) 1000 node = node->rb_left; 1001 else if (cmp < 0) 1002 node = node->rb_right; 1003 else { 1004 BUG_ON(thread != atoms->thread); 1005 return atoms; 1006 } 1007 } 1008 return NULL; 1009 } 1010 1011 static void 1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 1013 struct list_head *sort_list) 1014 { 1015 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 1016 bool leftmost = true; 1017 1018 while (*new) { 1019 struct work_atoms *this; 1020 int cmp; 1021 1022 this = container_of(*new, struct work_atoms, node); 1023 parent = *new; 1024 1025 cmp = thread_lat_cmp(sort_list, data, this); 1026 1027 if (cmp > 0) 1028 new = &((*new)->rb_left); 1029 else { 1030 new = &((*new)->rb_right); 1031 leftmost = false; 1032 } 1033 } 1034 1035 rb_link_node(&data->node, parent, new); 1036 rb_insert_color_cached(&data->node, root, leftmost); 1037 } 1038 1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1040 { 1041 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1042 if (!atoms) { 1043 pr_err("No memory at %s\n", __func__); 1044 return -1; 1045 } 1046 1047 atoms->thread = thread__get(thread); 1048 INIT_LIST_HEAD(&atoms->work_list); 1049 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1050 return 0; 1051 } 1052 1053 static char sched_out_state(u64 prev_state) 1054 { 1055 const char *str = TASK_STATE_TO_CHAR_STR; 1056 1057 return str[prev_state]; 1058 } 1059 1060 static int 1061 add_sched_out_event(struct work_atoms *atoms, 1062 char run_state, 1063 u64 timestamp) 1064 { 1065 struct work_atom *atom = zalloc(sizeof(*atom)); 1066 if (!atom) { 1067 pr_err("Non memory at %s", __func__); 1068 return -1; 1069 } 1070 1071 atom->sched_out_time = timestamp; 1072 1073 if (run_state == 'R') { 1074 atom->state = THREAD_WAIT_CPU; 1075 atom->wake_up_time = atom->sched_out_time; 1076 } 1077 1078 list_add_tail(&atom->list, &atoms->work_list); 1079 return 0; 1080 } 1081 1082 static void 1083 add_runtime_event(struct work_atoms *atoms, u64 delta, 1084 u64 timestamp __maybe_unused) 1085 { 1086 struct work_atom *atom; 1087 1088 BUG_ON(list_empty(&atoms->work_list)); 1089 1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1091 1092 atom->runtime += delta; 1093 atoms->total_runtime += delta; 1094 } 1095 1096 static void 1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1098 { 1099 struct work_atom *atom; 1100 u64 delta; 1101 1102 if (list_empty(&atoms->work_list)) 1103 return; 1104 1105 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1106 1107 if (atom->state != THREAD_WAIT_CPU) 1108 return; 1109 1110 if (timestamp < atom->wake_up_time) { 1111 atom->state = THREAD_IGNORE; 1112 return; 1113 } 1114 1115 atom->state = THREAD_SCHED_IN; 1116 atom->sched_in_time = timestamp; 1117 1118 delta = atom->sched_in_time - atom->wake_up_time; 1119 atoms->total_lat += delta; 1120 if (delta > atoms->max_lat) { 1121 atoms->max_lat = delta; 1122 atoms->max_lat_start = atom->wake_up_time; 1123 atoms->max_lat_end = timestamp; 1124 } 1125 atoms->nb_atoms++; 1126 } 1127 1128 static int latency_switch_event(struct perf_sched *sched, 1129 struct evsel *evsel, 1130 struct perf_sample *sample, 1131 struct machine *machine) 1132 { 1133 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1134 next_pid = evsel__intval(evsel, sample, "next_pid"); 1135 const u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 1136 struct work_atoms *out_events, *in_events; 1137 struct thread *sched_out, *sched_in; 1138 u64 timestamp0, timestamp = sample->time; 1139 int cpu = sample->cpu, err = -1; 1140 s64 delta; 1141 1142 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1143 1144 timestamp0 = sched->cpu_last_switched[cpu]; 1145 sched->cpu_last_switched[cpu] = timestamp; 1146 if (timestamp0) 1147 delta = timestamp - timestamp0; 1148 else 1149 delta = 0; 1150 1151 if (delta < 0) { 1152 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1153 return -1; 1154 } 1155 1156 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1157 sched_in = machine__findnew_thread(machine, -1, next_pid); 1158 if (sched_out == NULL || sched_in == NULL) 1159 goto out_put; 1160 1161 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1162 if (!out_events) { 1163 if (thread_atoms_insert(sched, sched_out)) 1164 goto out_put; 1165 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1166 if (!out_events) { 1167 pr_err("out-event: Internal tree error"); 1168 goto out_put; 1169 } 1170 } 1171 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1172 return -1; 1173 1174 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1175 if (!in_events) { 1176 if (thread_atoms_insert(sched, sched_in)) 1177 goto out_put; 1178 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1179 if (!in_events) { 1180 pr_err("in-event: Internal tree error"); 1181 goto out_put; 1182 } 1183 /* 1184 * Take came in we have not heard about yet, 1185 * add in an initial atom in runnable state: 1186 */ 1187 if (add_sched_out_event(in_events, 'R', timestamp)) 1188 goto out_put; 1189 } 1190 add_sched_in_event(in_events, timestamp); 1191 err = 0; 1192 out_put: 1193 thread__put(sched_out); 1194 thread__put(sched_in); 1195 return err; 1196 } 1197 1198 static int latency_runtime_event(struct perf_sched *sched, 1199 struct evsel *evsel, 1200 struct perf_sample *sample, 1201 struct machine *machine) 1202 { 1203 const u32 pid = evsel__intval(evsel, sample, "pid"); 1204 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1205 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1206 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1207 u64 timestamp = sample->time; 1208 int cpu = sample->cpu, err = -1; 1209 1210 if (thread == NULL) 1211 return -1; 1212 1213 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1214 if (!atoms) { 1215 if (thread_atoms_insert(sched, thread)) 1216 goto out_put; 1217 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1218 if (!atoms) { 1219 pr_err("in-event: Internal tree error"); 1220 goto out_put; 1221 } 1222 if (add_sched_out_event(atoms, 'R', timestamp)) 1223 goto out_put; 1224 } 1225 1226 add_runtime_event(atoms, runtime, timestamp); 1227 err = 0; 1228 out_put: 1229 thread__put(thread); 1230 return err; 1231 } 1232 1233 static int latency_wakeup_event(struct perf_sched *sched, 1234 struct evsel *evsel, 1235 struct perf_sample *sample, 1236 struct machine *machine) 1237 { 1238 const u32 pid = evsel__intval(evsel, sample, "pid"); 1239 struct work_atoms *atoms; 1240 struct work_atom *atom; 1241 struct thread *wakee; 1242 u64 timestamp = sample->time; 1243 int err = -1; 1244 1245 wakee = machine__findnew_thread(machine, -1, pid); 1246 if (wakee == NULL) 1247 return -1; 1248 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1249 if (!atoms) { 1250 if (thread_atoms_insert(sched, wakee)) 1251 goto out_put; 1252 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1253 if (!atoms) { 1254 pr_err("wakeup-event: Internal tree error"); 1255 goto out_put; 1256 } 1257 if (add_sched_out_event(atoms, 'S', timestamp)) 1258 goto out_put; 1259 } 1260 1261 BUG_ON(list_empty(&atoms->work_list)); 1262 1263 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1264 1265 /* 1266 * As we do not guarantee the wakeup event happens when 1267 * task is out of run queue, also may happen when task is 1268 * on run queue and wakeup only change ->state to TASK_RUNNING, 1269 * then we should not set the ->wake_up_time when wake up a 1270 * task which is on run queue. 1271 * 1272 * You WILL be missing events if you've recorded only 1273 * one CPU, or are only looking at only one, so don't 1274 * skip in this case. 1275 */ 1276 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1277 goto out_ok; 1278 1279 sched->nr_timestamps++; 1280 if (atom->sched_out_time > timestamp) { 1281 sched->nr_unordered_timestamps++; 1282 goto out_ok; 1283 } 1284 1285 atom->state = THREAD_WAIT_CPU; 1286 atom->wake_up_time = timestamp; 1287 out_ok: 1288 err = 0; 1289 out_put: 1290 thread__put(wakee); 1291 return err; 1292 } 1293 1294 static int latency_migrate_task_event(struct perf_sched *sched, 1295 struct evsel *evsel, 1296 struct perf_sample *sample, 1297 struct machine *machine) 1298 { 1299 const u32 pid = evsel__intval(evsel, sample, "pid"); 1300 u64 timestamp = sample->time; 1301 struct work_atoms *atoms; 1302 struct work_atom *atom; 1303 struct thread *migrant; 1304 int err = -1; 1305 1306 /* 1307 * Only need to worry about migration when profiling one CPU. 1308 */ 1309 if (sched->profile_cpu == -1) 1310 return 0; 1311 1312 migrant = machine__findnew_thread(machine, -1, pid); 1313 if (migrant == NULL) 1314 return -1; 1315 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1316 if (!atoms) { 1317 if (thread_atoms_insert(sched, migrant)) 1318 goto out_put; 1319 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1320 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1321 if (!atoms) { 1322 pr_err("migration-event: Internal tree error"); 1323 goto out_put; 1324 } 1325 if (add_sched_out_event(atoms, 'R', timestamp)) 1326 goto out_put; 1327 } 1328 1329 BUG_ON(list_empty(&atoms->work_list)); 1330 1331 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1332 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1333 1334 sched->nr_timestamps++; 1335 1336 if (atom->sched_out_time > timestamp) 1337 sched->nr_unordered_timestamps++; 1338 err = 0; 1339 out_put: 1340 thread__put(migrant); 1341 return err; 1342 } 1343 1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1345 { 1346 int i; 1347 int ret; 1348 u64 avg; 1349 char max_lat_start[32], max_lat_end[32]; 1350 1351 if (!work_list->nb_atoms) 1352 return; 1353 /* 1354 * Ignore idle threads: 1355 */ 1356 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1357 return; 1358 1359 sched->all_runtime += work_list->total_runtime; 1360 sched->all_count += work_list->nb_atoms; 1361 1362 if (work_list->num_merged > 1) 1363 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1364 else 1365 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1366 1367 for (i = 0; i < 24 - ret; i++) 1368 printf(" "); 1369 1370 avg = work_list->total_lat / work_list->nb_atoms; 1371 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1372 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1373 1374 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1375 (double)work_list->total_runtime / NSEC_PER_MSEC, 1376 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1377 (double)work_list->max_lat / NSEC_PER_MSEC, 1378 max_lat_start, max_lat_end); 1379 } 1380 1381 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1382 { 1383 if (l->thread == r->thread) 1384 return 0; 1385 if (l->thread->tid < r->thread->tid) 1386 return -1; 1387 if (l->thread->tid > r->thread->tid) 1388 return 1; 1389 return (int)(l->thread - r->thread); 1390 } 1391 1392 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1393 { 1394 u64 avgl, avgr; 1395 1396 if (!l->nb_atoms) 1397 return -1; 1398 1399 if (!r->nb_atoms) 1400 return 1; 1401 1402 avgl = l->total_lat / l->nb_atoms; 1403 avgr = r->total_lat / r->nb_atoms; 1404 1405 if (avgl < avgr) 1406 return -1; 1407 if (avgl > avgr) 1408 return 1; 1409 1410 return 0; 1411 } 1412 1413 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1414 { 1415 if (l->max_lat < r->max_lat) 1416 return -1; 1417 if (l->max_lat > r->max_lat) 1418 return 1; 1419 1420 return 0; 1421 } 1422 1423 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1424 { 1425 if (l->nb_atoms < r->nb_atoms) 1426 return -1; 1427 if (l->nb_atoms > r->nb_atoms) 1428 return 1; 1429 1430 return 0; 1431 } 1432 1433 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1434 { 1435 if (l->total_runtime < r->total_runtime) 1436 return -1; 1437 if (l->total_runtime > r->total_runtime) 1438 return 1; 1439 1440 return 0; 1441 } 1442 1443 static int sort_dimension__add(const char *tok, struct list_head *list) 1444 { 1445 size_t i; 1446 static struct sort_dimension avg_sort_dimension = { 1447 .name = "avg", 1448 .cmp = avg_cmp, 1449 }; 1450 static struct sort_dimension max_sort_dimension = { 1451 .name = "max", 1452 .cmp = max_cmp, 1453 }; 1454 static struct sort_dimension pid_sort_dimension = { 1455 .name = "pid", 1456 .cmp = pid_cmp, 1457 }; 1458 static struct sort_dimension runtime_sort_dimension = { 1459 .name = "runtime", 1460 .cmp = runtime_cmp, 1461 }; 1462 static struct sort_dimension switch_sort_dimension = { 1463 .name = "switch", 1464 .cmp = switch_cmp, 1465 }; 1466 struct sort_dimension *available_sorts[] = { 1467 &pid_sort_dimension, 1468 &avg_sort_dimension, 1469 &max_sort_dimension, 1470 &switch_sort_dimension, 1471 &runtime_sort_dimension, 1472 }; 1473 1474 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1475 if (!strcmp(available_sorts[i]->name, tok)) { 1476 list_add_tail(&available_sorts[i]->list, list); 1477 1478 return 0; 1479 } 1480 } 1481 1482 return -1; 1483 } 1484 1485 static void perf_sched__sort_lat(struct perf_sched *sched) 1486 { 1487 struct rb_node *node; 1488 struct rb_root_cached *root = &sched->atom_root; 1489 again: 1490 for (;;) { 1491 struct work_atoms *data; 1492 node = rb_first_cached(root); 1493 if (!node) 1494 break; 1495 1496 rb_erase_cached(node, root); 1497 data = rb_entry(node, struct work_atoms, node); 1498 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1499 } 1500 if (root == &sched->atom_root) { 1501 root = &sched->merged_atom_root; 1502 goto again; 1503 } 1504 } 1505 1506 static int process_sched_wakeup_event(struct perf_tool *tool, 1507 struct evsel *evsel, 1508 struct perf_sample *sample, 1509 struct machine *machine) 1510 { 1511 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1512 1513 if (sched->tp_handler->wakeup_event) 1514 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1515 1516 return 0; 1517 } 1518 1519 union map_priv { 1520 void *ptr; 1521 bool color; 1522 }; 1523 1524 static bool thread__has_color(struct thread *thread) 1525 { 1526 union map_priv priv = { 1527 .ptr = thread__priv(thread), 1528 }; 1529 1530 return priv.color; 1531 } 1532 1533 static struct thread* 1534 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1535 { 1536 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1537 union map_priv priv = { 1538 .color = false, 1539 }; 1540 1541 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1542 return thread; 1543 1544 if (thread_map__has(sched->map.color_pids, tid)) 1545 priv.color = true; 1546 1547 thread__set_priv(thread, priv.ptr); 1548 return thread; 1549 } 1550 1551 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1552 struct perf_sample *sample, struct machine *machine) 1553 { 1554 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1555 struct thread *sched_in; 1556 struct thread_runtime *tr; 1557 int new_shortname; 1558 u64 timestamp0, timestamp = sample->time; 1559 s64 delta; 1560 int i; 1561 struct perf_cpu this_cpu = { 1562 .cpu = sample->cpu, 1563 }; 1564 int cpus_nr; 1565 bool new_cpu = false; 1566 const char *color = PERF_COLOR_NORMAL; 1567 char stimestamp[32]; 1568 1569 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); 1570 1571 if (this_cpu.cpu > sched->max_cpu.cpu) 1572 sched->max_cpu = this_cpu; 1573 1574 if (sched->map.comp) { 1575 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1576 if (!test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { 1577 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1578 new_cpu = true; 1579 } 1580 } else 1581 cpus_nr = sched->max_cpu.cpu; 1582 1583 timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; 1584 sched->cpu_last_switched[this_cpu.cpu] = timestamp; 1585 if (timestamp0) 1586 delta = timestamp - timestamp0; 1587 else 1588 delta = 0; 1589 1590 if (delta < 0) { 1591 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1592 return -1; 1593 } 1594 1595 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1596 if (sched_in == NULL) 1597 return -1; 1598 1599 tr = thread__get_runtime(sched_in); 1600 if (tr == NULL) { 1601 thread__put(sched_in); 1602 return -1; 1603 } 1604 1605 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); 1606 1607 printf(" "); 1608 1609 new_shortname = 0; 1610 if (!tr->shortname[0]) { 1611 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1612 /* 1613 * Don't allocate a letter-number for swapper:0 1614 * as a shortname. Instead, we use '.' for it. 1615 */ 1616 tr->shortname[0] = '.'; 1617 tr->shortname[1] = ' '; 1618 } else { 1619 tr->shortname[0] = sched->next_shortname1; 1620 tr->shortname[1] = sched->next_shortname2; 1621 1622 if (sched->next_shortname1 < 'Z') { 1623 sched->next_shortname1++; 1624 } else { 1625 sched->next_shortname1 = 'A'; 1626 if (sched->next_shortname2 < '9') 1627 sched->next_shortname2++; 1628 else 1629 sched->next_shortname2 = '0'; 1630 } 1631 } 1632 new_shortname = 1; 1633 } 1634 1635 for (i = 0; i < cpus_nr; i++) { 1636 struct perf_cpu cpu = { 1637 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, 1638 }; 1639 struct thread *curr_thread = sched->curr_thread[cpu.cpu]; 1640 struct thread_runtime *curr_tr; 1641 const char *pid_color = color; 1642 const char *cpu_color = color; 1643 1644 if (curr_thread && thread__has_color(curr_thread)) 1645 pid_color = COLOR_PIDS; 1646 1647 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu)) 1648 continue; 1649 1650 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) 1651 cpu_color = COLOR_CPUS; 1652 1653 if (cpu.cpu != this_cpu.cpu) 1654 color_fprintf(stdout, color, " "); 1655 else 1656 color_fprintf(stdout, cpu_color, "*"); 1657 1658 if (sched->curr_thread[cpu.cpu]) { 1659 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); 1660 if (curr_tr == NULL) { 1661 thread__put(sched_in); 1662 return -1; 1663 } 1664 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1665 } else 1666 color_fprintf(stdout, color, " "); 1667 } 1668 1669 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) 1670 goto out; 1671 1672 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1673 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1674 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) { 1675 const char *pid_color = color; 1676 1677 if (thread__has_color(sched_in)) 1678 pid_color = COLOR_PIDS; 1679 1680 color_fprintf(stdout, pid_color, "%s => %s:%d", 1681 tr->shortname, thread__comm_str(sched_in), sched_in->tid); 1682 tr->comm_changed = false; 1683 } 1684 1685 if (sched->map.comp && new_cpu) 1686 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1687 1688 out: 1689 color_fprintf(stdout, color, "\n"); 1690 1691 thread__put(sched_in); 1692 1693 return 0; 1694 } 1695 1696 static int process_sched_switch_event(struct perf_tool *tool, 1697 struct evsel *evsel, 1698 struct perf_sample *sample, 1699 struct machine *machine) 1700 { 1701 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1702 int this_cpu = sample->cpu, err = 0; 1703 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1704 next_pid = evsel__intval(evsel, sample, "next_pid"); 1705 1706 if (sched->curr_pid[this_cpu] != (u32)-1) { 1707 /* 1708 * Are we trying to switch away a PID that is 1709 * not current? 1710 */ 1711 if (sched->curr_pid[this_cpu] != prev_pid) 1712 sched->nr_context_switch_bugs++; 1713 } 1714 1715 if (sched->tp_handler->switch_event) 1716 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1717 1718 sched->curr_pid[this_cpu] = next_pid; 1719 return err; 1720 } 1721 1722 static int process_sched_runtime_event(struct perf_tool *tool, 1723 struct evsel *evsel, 1724 struct perf_sample *sample, 1725 struct machine *machine) 1726 { 1727 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1728 1729 if (sched->tp_handler->runtime_event) 1730 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1731 1732 return 0; 1733 } 1734 1735 static int perf_sched__process_fork_event(struct perf_tool *tool, 1736 union perf_event *event, 1737 struct perf_sample *sample, 1738 struct machine *machine) 1739 { 1740 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1741 1742 /* run the fork event through the perf machinery */ 1743 perf_event__process_fork(tool, event, sample, machine); 1744 1745 /* and then run additional processing needed for this command */ 1746 if (sched->tp_handler->fork_event) 1747 return sched->tp_handler->fork_event(sched, event, machine); 1748 1749 return 0; 1750 } 1751 1752 static int process_sched_migrate_task_event(struct perf_tool *tool, 1753 struct evsel *evsel, 1754 struct perf_sample *sample, 1755 struct machine *machine) 1756 { 1757 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1758 1759 if (sched->tp_handler->migrate_task_event) 1760 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1761 1762 return 0; 1763 } 1764 1765 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1766 struct evsel *evsel, 1767 struct perf_sample *sample, 1768 struct machine *machine); 1769 1770 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1771 union perf_event *event __maybe_unused, 1772 struct perf_sample *sample, 1773 struct evsel *evsel, 1774 struct machine *machine) 1775 { 1776 int err = 0; 1777 1778 if (evsel->handler != NULL) { 1779 tracepoint_handler f = evsel->handler; 1780 err = f(tool, evsel, sample, machine); 1781 } 1782 1783 return err; 1784 } 1785 1786 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, 1787 union perf_event *event, 1788 struct perf_sample *sample, 1789 struct machine *machine) 1790 { 1791 struct thread *thread; 1792 struct thread_runtime *tr; 1793 int err; 1794 1795 err = perf_event__process_comm(tool, event, sample, machine); 1796 if (err) 1797 return err; 1798 1799 thread = machine__find_thread(machine, sample->pid, sample->tid); 1800 if (!thread) { 1801 pr_err("Internal error: can't find thread\n"); 1802 return -1; 1803 } 1804 1805 tr = thread__get_runtime(thread); 1806 if (tr == NULL) { 1807 thread__put(thread); 1808 return -1; 1809 } 1810 1811 tr->comm_changed = true; 1812 thread__put(thread); 1813 1814 return 0; 1815 } 1816 1817 static int perf_sched__read_events(struct perf_sched *sched) 1818 { 1819 const struct evsel_str_handler handlers[] = { 1820 { "sched:sched_switch", process_sched_switch_event, }, 1821 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1822 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1823 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1824 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1825 }; 1826 struct perf_session *session; 1827 struct perf_data data = { 1828 .path = input_name, 1829 .mode = PERF_DATA_MODE_READ, 1830 .force = sched->force, 1831 }; 1832 int rc = -1; 1833 1834 session = perf_session__new(&data, &sched->tool); 1835 if (IS_ERR(session)) { 1836 pr_debug("Error creating perf session"); 1837 return PTR_ERR(session); 1838 } 1839 1840 symbol__init(&session->header.env); 1841 1842 if (perf_session__set_tracepoints_handlers(session, handlers)) 1843 goto out_delete; 1844 1845 if (perf_session__has_traces(session, "record -R")) { 1846 int err = perf_session__process_events(session); 1847 if (err) { 1848 pr_err("Failed to process events, error %d", err); 1849 goto out_delete; 1850 } 1851 1852 sched->nr_events = session->evlist->stats.nr_events[0]; 1853 sched->nr_lost_events = session->evlist->stats.total_lost; 1854 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1855 } 1856 1857 rc = 0; 1858 out_delete: 1859 perf_session__delete(session); 1860 return rc; 1861 } 1862 1863 /* 1864 * scheduling times are printed as msec.usec 1865 */ 1866 static inline void print_sched_time(unsigned long long nsecs, int width) 1867 { 1868 unsigned long msecs; 1869 unsigned long usecs; 1870 1871 msecs = nsecs / NSEC_PER_MSEC; 1872 nsecs -= msecs * NSEC_PER_MSEC; 1873 usecs = nsecs / NSEC_PER_USEC; 1874 printf("%*lu.%03lu ", width, msecs, usecs); 1875 } 1876 1877 /* 1878 * returns runtime data for event, allocating memory for it the 1879 * first time it is used. 1880 */ 1881 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1882 { 1883 struct evsel_runtime *r = evsel->priv; 1884 1885 if (r == NULL) { 1886 r = zalloc(sizeof(struct evsel_runtime)); 1887 evsel->priv = r; 1888 } 1889 1890 return r; 1891 } 1892 1893 /* 1894 * save last time event was seen per cpu 1895 */ 1896 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 1897 { 1898 struct evsel_runtime *r = evsel__get_runtime(evsel); 1899 1900 if (r == NULL) 1901 return; 1902 1903 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1904 int i, n = __roundup_pow_of_two(cpu+1); 1905 void *p = r->last_time; 1906 1907 p = realloc(r->last_time, n * sizeof(u64)); 1908 if (!p) 1909 return; 1910 1911 r->last_time = p; 1912 for (i = r->ncpu; i < n; ++i) 1913 r->last_time[i] = (u64) 0; 1914 1915 r->ncpu = n; 1916 } 1917 1918 r->last_time[cpu] = timestamp; 1919 } 1920 1921 /* returns last time this event was seen on the given cpu */ 1922 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 1923 { 1924 struct evsel_runtime *r = evsel__get_runtime(evsel); 1925 1926 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1927 return 0; 1928 1929 return r->last_time[cpu]; 1930 } 1931 1932 static int comm_width = 30; 1933 1934 static char *timehist_get_commstr(struct thread *thread) 1935 { 1936 static char str[32]; 1937 const char *comm = thread__comm_str(thread); 1938 pid_t tid = thread->tid; 1939 pid_t pid = thread->pid_; 1940 int n; 1941 1942 if (pid == 0) 1943 n = scnprintf(str, sizeof(str), "%s", comm); 1944 1945 else if (tid != pid) 1946 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1947 1948 else 1949 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1950 1951 if (n > comm_width) 1952 comm_width = n; 1953 1954 return str; 1955 } 1956 1957 static void timehist_header(struct perf_sched *sched) 1958 { 1959 u32 ncpus = sched->max_cpu.cpu + 1; 1960 u32 i, j; 1961 1962 printf("%15s %6s ", "time", "cpu"); 1963 1964 if (sched->show_cpu_visual) { 1965 printf(" "); 1966 for (i = 0, j = 0; i < ncpus; ++i) { 1967 printf("%x", j++); 1968 if (j > 15) 1969 j = 0; 1970 } 1971 printf(" "); 1972 } 1973 1974 printf(" %-*s %9s %9s %9s", comm_width, 1975 "task name", "wait time", "sch delay", "run time"); 1976 1977 if (sched->show_state) 1978 printf(" %s", "state"); 1979 1980 printf("\n"); 1981 1982 /* 1983 * units row 1984 */ 1985 printf("%15s %-6s ", "", ""); 1986 1987 if (sched->show_cpu_visual) 1988 printf(" %*s ", ncpus, ""); 1989 1990 printf(" %-*s %9s %9s %9s", comm_width, 1991 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 1992 1993 if (sched->show_state) 1994 printf(" %5s", ""); 1995 1996 printf("\n"); 1997 1998 /* 1999 * separator 2000 */ 2001 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 2002 2003 if (sched->show_cpu_visual) 2004 printf(" %.*s ", ncpus, graph_dotted_line); 2005 2006 printf(" %.*s %.9s %.9s %.9s", comm_width, 2007 graph_dotted_line, graph_dotted_line, graph_dotted_line, 2008 graph_dotted_line); 2009 2010 if (sched->show_state) 2011 printf(" %.5s", graph_dotted_line); 2012 2013 printf("\n"); 2014 } 2015 2016 static char task_state_char(struct thread *thread, int state) 2017 { 2018 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 2019 unsigned bit = state ? ffs(state) : 0; 2020 2021 /* 'I' for idle */ 2022 if (thread->tid == 0) 2023 return 'I'; 2024 2025 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 2026 } 2027 2028 static void timehist_print_sample(struct perf_sched *sched, 2029 struct evsel *evsel, 2030 struct perf_sample *sample, 2031 struct addr_location *al, 2032 struct thread *thread, 2033 u64 t, int state) 2034 { 2035 struct thread_runtime *tr = thread__priv(thread); 2036 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2037 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2038 u32 max_cpus = sched->max_cpu.cpu + 1; 2039 char tstr[64]; 2040 char nstr[30]; 2041 u64 wait_time; 2042 2043 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2044 return; 2045 2046 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2047 printf("%15s [%04d] ", tstr, sample->cpu); 2048 2049 if (sched->show_cpu_visual) { 2050 u32 i; 2051 char c; 2052 2053 printf(" "); 2054 for (i = 0; i < max_cpus; ++i) { 2055 /* flag idle times with 'i'; others are sched events */ 2056 if (i == sample->cpu) 2057 c = (thread->tid == 0) ? 'i' : 's'; 2058 else 2059 c = ' '; 2060 printf("%c", c); 2061 } 2062 printf(" "); 2063 } 2064 2065 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2066 2067 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2068 print_sched_time(wait_time, 6); 2069 2070 print_sched_time(tr->dt_delay, 6); 2071 print_sched_time(tr->dt_run, 6); 2072 2073 if (sched->show_state) 2074 printf(" %5c ", task_state_char(thread, state)); 2075 2076 if (sched->show_next) { 2077 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2078 printf(" %-*s", comm_width, nstr); 2079 } 2080 2081 if (sched->show_wakeups && !sched->show_next) 2082 printf(" %-*s", comm_width, ""); 2083 2084 if (thread->tid == 0) 2085 goto out; 2086 2087 if (sched->show_callchain) 2088 printf(" "); 2089 2090 sample__fprintf_sym(sample, al, 0, 2091 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2092 EVSEL__PRINT_CALLCHAIN_ARROW | 2093 EVSEL__PRINT_SKIP_IGNORED, 2094 &callchain_cursor, symbol_conf.bt_stop_list, stdout); 2095 2096 out: 2097 printf("\n"); 2098 } 2099 2100 /* 2101 * Explanation of delta-time stats: 2102 * 2103 * t = time of current schedule out event 2104 * tprev = time of previous sched out event 2105 * also time of schedule-in event for current task 2106 * last_time = time of last sched change event for current task 2107 * (i.e, time process was last scheduled out) 2108 * ready_to_run = time of wakeup for current task 2109 * 2110 * -----|------------|------------|------------|------ 2111 * last ready tprev t 2112 * time to run 2113 * 2114 * |-------- dt_wait --------| 2115 * |- dt_delay -|-- dt_run --| 2116 * 2117 * dt_run = run time of current task 2118 * dt_wait = time between last schedule out event for task and tprev 2119 * represents time spent off the cpu 2120 * dt_delay = time between wakeup and schedule-in of task 2121 */ 2122 2123 static void timehist_update_runtime_stats(struct thread_runtime *r, 2124 u64 t, u64 tprev) 2125 { 2126 r->dt_delay = 0; 2127 r->dt_sleep = 0; 2128 r->dt_iowait = 0; 2129 r->dt_preempt = 0; 2130 r->dt_run = 0; 2131 2132 if (tprev) { 2133 r->dt_run = t - tprev; 2134 if (r->ready_to_run) { 2135 if (r->ready_to_run > tprev) 2136 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2137 else 2138 r->dt_delay = tprev - r->ready_to_run; 2139 } 2140 2141 if (r->last_time > tprev) 2142 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2143 else if (r->last_time) { 2144 u64 dt_wait = tprev - r->last_time; 2145 2146 if (r->last_state == TASK_RUNNING) 2147 r->dt_preempt = dt_wait; 2148 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2149 r->dt_iowait = dt_wait; 2150 else 2151 r->dt_sleep = dt_wait; 2152 } 2153 } 2154 2155 update_stats(&r->run_stats, r->dt_run); 2156 2157 r->total_run_time += r->dt_run; 2158 r->total_delay_time += r->dt_delay; 2159 r->total_sleep_time += r->dt_sleep; 2160 r->total_iowait_time += r->dt_iowait; 2161 r->total_preempt_time += r->dt_preempt; 2162 } 2163 2164 static bool is_idle_sample(struct perf_sample *sample, 2165 struct evsel *evsel) 2166 { 2167 /* pid 0 == swapper == idle task */ 2168 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0) 2169 return evsel__intval(evsel, sample, "prev_pid") == 0; 2170 2171 return sample->pid == 0; 2172 } 2173 2174 static void save_task_callchain(struct perf_sched *sched, 2175 struct perf_sample *sample, 2176 struct evsel *evsel, 2177 struct machine *machine) 2178 { 2179 struct callchain_cursor *cursor = &callchain_cursor; 2180 struct thread *thread; 2181 2182 /* want main thread for process - has maps */ 2183 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2184 if (thread == NULL) { 2185 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2186 return; 2187 } 2188 2189 if (!sched->show_callchain || sample->callchain == NULL) 2190 return; 2191 2192 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2193 NULL, NULL, sched->max_stack + 2) != 0) { 2194 if (verbose > 0) 2195 pr_err("Failed to resolve callchain. Skipping\n"); 2196 2197 return; 2198 } 2199 2200 callchain_cursor_commit(cursor); 2201 2202 while (true) { 2203 struct callchain_cursor_node *node; 2204 struct symbol *sym; 2205 2206 node = callchain_cursor_current(cursor); 2207 if (node == NULL) 2208 break; 2209 2210 sym = node->ms.sym; 2211 if (sym) { 2212 if (!strcmp(sym->name, "schedule") || 2213 !strcmp(sym->name, "__schedule") || 2214 !strcmp(sym->name, "preempt_schedule")) 2215 sym->ignore = 1; 2216 } 2217 2218 callchain_cursor_advance(cursor); 2219 } 2220 } 2221 2222 static int init_idle_thread(struct thread *thread) 2223 { 2224 struct idle_thread_runtime *itr; 2225 2226 thread__set_comm(thread, idle_comm, 0); 2227 2228 itr = zalloc(sizeof(*itr)); 2229 if (itr == NULL) 2230 return -ENOMEM; 2231 2232 init_stats(&itr->tr.run_stats); 2233 callchain_init(&itr->callchain); 2234 callchain_cursor_reset(&itr->cursor); 2235 thread__set_priv(thread, itr); 2236 2237 return 0; 2238 } 2239 2240 /* 2241 * Track idle stats per cpu by maintaining a local thread 2242 * struct for the idle task on each cpu. 2243 */ 2244 static int init_idle_threads(int ncpu) 2245 { 2246 int i, ret; 2247 2248 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2249 if (!idle_threads) 2250 return -ENOMEM; 2251 2252 idle_max_cpu = ncpu; 2253 2254 /* allocate the actual thread struct if needed */ 2255 for (i = 0; i < ncpu; ++i) { 2256 idle_threads[i] = thread__new(0, 0); 2257 if (idle_threads[i] == NULL) 2258 return -ENOMEM; 2259 2260 ret = init_idle_thread(idle_threads[i]); 2261 if (ret < 0) 2262 return ret; 2263 } 2264 2265 return 0; 2266 } 2267 2268 static void free_idle_threads(void) 2269 { 2270 int i; 2271 2272 if (idle_threads == NULL) 2273 return; 2274 2275 for (i = 0; i < idle_max_cpu; ++i) { 2276 if ((idle_threads[i])) 2277 thread__delete(idle_threads[i]); 2278 } 2279 2280 free(idle_threads); 2281 } 2282 2283 static struct thread *get_idle_thread(int cpu) 2284 { 2285 /* 2286 * expand/allocate array of pointers to local thread 2287 * structs if needed 2288 */ 2289 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2290 int i, j = __roundup_pow_of_two(cpu+1); 2291 void *p; 2292 2293 p = realloc(idle_threads, j * sizeof(struct thread *)); 2294 if (!p) 2295 return NULL; 2296 2297 idle_threads = (struct thread **) p; 2298 for (i = idle_max_cpu; i < j; ++i) 2299 idle_threads[i] = NULL; 2300 2301 idle_max_cpu = j; 2302 } 2303 2304 /* allocate a new thread struct if needed */ 2305 if (idle_threads[cpu] == NULL) { 2306 idle_threads[cpu] = thread__new(0, 0); 2307 2308 if (idle_threads[cpu]) { 2309 if (init_idle_thread(idle_threads[cpu]) < 0) 2310 return NULL; 2311 } 2312 } 2313 2314 return idle_threads[cpu]; 2315 } 2316 2317 static void save_idle_callchain(struct perf_sched *sched, 2318 struct idle_thread_runtime *itr, 2319 struct perf_sample *sample) 2320 { 2321 if (!sched->show_callchain || sample->callchain == NULL) 2322 return; 2323 2324 callchain_cursor__copy(&itr->cursor, &callchain_cursor); 2325 } 2326 2327 static struct thread *timehist_get_thread(struct perf_sched *sched, 2328 struct perf_sample *sample, 2329 struct machine *machine, 2330 struct evsel *evsel) 2331 { 2332 struct thread *thread; 2333 2334 if (is_idle_sample(sample, evsel)) { 2335 thread = get_idle_thread(sample->cpu); 2336 if (thread == NULL) 2337 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2338 2339 } else { 2340 /* there were samples with tid 0 but non-zero pid */ 2341 thread = machine__findnew_thread(machine, sample->pid, 2342 sample->tid ?: sample->pid); 2343 if (thread == NULL) { 2344 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2345 sample->tid); 2346 } 2347 2348 save_task_callchain(sched, sample, evsel, machine); 2349 if (sched->idle_hist) { 2350 struct thread *idle; 2351 struct idle_thread_runtime *itr; 2352 2353 idle = get_idle_thread(sample->cpu); 2354 if (idle == NULL) { 2355 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2356 return NULL; 2357 } 2358 2359 itr = thread__priv(idle); 2360 if (itr == NULL) 2361 return NULL; 2362 2363 itr->last_thread = thread; 2364 2365 /* copy task callchain when entering to idle */ 2366 if (evsel__intval(evsel, sample, "next_pid") == 0) 2367 save_idle_callchain(sched, itr, sample); 2368 } 2369 } 2370 2371 return thread; 2372 } 2373 2374 static bool timehist_skip_sample(struct perf_sched *sched, 2375 struct thread *thread, 2376 struct evsel *evsel, 2377 struct perf_sample *sample) 2378 { 2379 bool rc = false; 2380 2381 if (thread__is_filtered(thread)) { 2382 rc = true; 2383 sched->skipped_samples++; 2384 } 2385 2386 if (sched->idle_hist) { 2387 if (strcmp(evsel__name(evsel), "sched:sched_switch")) 2388 rc = true; 2389 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2390 evsel__intval(evsel, sample, "next_pid") != 0) 2391 rc = true; 2392 } 2393 2394 return rc; 2395 } 2396 2397 static void timehist_print_wakeup_event(struct perf_sched *sched, 2398 struct evsel *evsel, 2399 struct perf_sample *sample, 2400 struct machine *machine, 2401 struct thread *awakened) 2402 { 2403 struct thread *thread; 2404 char tstr[64]; 2405 2406 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2407 if (thread == NULL) 2408 return; 2409 2410 /* show wakeup unless both awakee and awaker are filtered */ 2411 if (timehist_skip_sample(sched, thread, evsel, sample) && 2412 timehist_skip_sample(sched, awakened, evsel, sample)) { 2413 return; 2414 } 2415 2416 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2417 printf("%15s [%04d] ", tstr, sample->cpu); 2418 if (sched->show_cpu_visual) 2419 printf(" %*s ", sched->max_cpu.cpu + 1, ""); 2420 2421 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2422 2423 /* dt spacer */ 2424 printf(" %9s %9s %9s ", "", "", ""); 2425 2426 printf("awakened: %s", timehist_get_commstr(awakened)); 2427 2428 printf("\n"); 2429 } 2430 2431 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused, 2432 union perf_event *event __maybe_unused, 2433 struct evsel *evsel __maybe_unused, 2434 struct perf_sample *sample __maybe_unused, 2435 struct machine *machine __maybe_unused) 2436 { 2437 return 0; 2438 } 2439 2440 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2441 union perf_event *event __maybe_unused, 2442 struct evsel *evsel, 2443 struct perf_sample *sample, 2444 struct machine *machine) 2445 { 2446 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2447 struct thread *thread; 2448 struct thread_runtime *tr = NULL; 2449 /* want pid of awakened task not pid in sample */ 2450 const u32 pid = evsel__intval(evsel, sample, "pid"); 2451 2452 thread = machine__findnew_thread(machine, 0, pid); 2453 if (thread == NULL) 2454 return -1; 2455 2456 tr = thread__get_runtime(thread); 2457 if (tr == NULL) 2458 return -1; 2459 2460 if (tr->ready_to_run == 0) 2461 tr->ready_to_run = sample->time; 2462 2463 /* show wakeups if requested */ 2464 if (sched->show_wakeups && 2465 !perf_time__skip_sample(&sched->ptime, sample->time)) 2466 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2467 2468 return 0; 2469 } 2470 2471 static void timehist_print_migration_event(struct perf_sched *sched, 2472 struct evsel *evsel, 2473 struct perf_sample *sample, 2474 struct machine *machine, 2475 struct thread *migrated) 2476 { 2477 struct thread *thread; 2478 char tstr[64]; 2479 u32 max_cpus; 2480 u32 ocpu, dcpu; 2481 2482 if (sched->summary_only) 2483 return; 2484 2485 max_cpus = sched->max_cpu.cpu + 1; 2486 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2487 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2488 2489 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2490 if (thread == NULL) 2491 return; 2492 2493 if (timehist_skip_sample(sched, thread, evsel, sample) && 2494 timehist_skip_sample(sched, migrated, evsel, sample)) { 2495 return; 2496 } 2497 2498 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2499 printf("%15s [%04d] ", tstr, sample->cpu); 2500 2501 if (sched->show_cpu_visual) { 2502 u32 i; 2503 char c; 2504 2505 printf(" "); 2506 for (i = 0; i < max_cpus; ++i) { 2507 c = (i == sample->cpu) ? 'm' : ' '; 2508 printf("%c", c); 2509 } 2510 printf(" "); 2511 } 2512 2513 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2514 2515 /* dt spacer */ 2516 printf(" %9s %9s %9s ", "", "", ""); 2517 2518 printf("migrated: %s", timehist_get_commstr(migrated)); 2519 printf(" cpu %d => %d", ocpu, dcpu); 2520 2521 printf("\n"); 2522 } 2523 2524 static int timehist_migrate_task_event(struct perf_tool *tool, 2525 union perf_event *event __maybe_unused, 2526 struct evsel *evsel, 2527 struct perf_sample *sample, 2528 struct machine *machine) 2529 { 2530 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2531 struct thread *thread; 2532 struct thread_runtime *tr = NULL; 2533 /* want pid of migrated task not pid in sample */ 2534 const u32 pid = evsel__intval(evsel, sample, "pid"); 2535 2536 thread = machine__findnew_thread(machine, 0, pid); 2537 if (thread == NULL) 2538 return -1; 2539 2540 tr = thread__get_runtime(thread); 2541 if (tr == NULL) 2542 return -1; 2543 2544 tr->migrations++; 2545 2546 /* show migrations if requested */ 2547 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2548 2549 return 0; 2550 } 2551 2552 static int timehist_sched_change_event(struct perf_tool *tool, 2553 union perf_event *event, 2554 struct evsel *evsel, 2555 struct perf_sample *sample, 2556 struct machine *machine) 2557 { 2558 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2559 struct perf_time_interval *ptime = &sched->ptime; 2560 struct addr_location al; 2561 struct thread *thread; 2562 struct thread_runtime *tr = NULL; 2563 u64 tprev, t = sample->time; 2564 int rc = 0; 2565 int state = evsel__intval(evsel, sample, "prev_state"); 2566 2567 if (machine__resolve(machine, &al, sample) < 0) { 2568 pr_err("problem processing %d event. skipping it\n", 2569 event->header.type); 2570 rc = -1; 2571 goto out; 2572 } 2573 2574 thread = timehist_get_thread(sched, sample, machine, evsel); 2575 if (thread == NULL) { 2576 rc = -1; 2577 goto out; 2578 } 2579 2580 if (timehist_skip_sample(sched, thread, evsel, sample)) 2581 goto out; 2582 2583 tr = thread__get_runtime(thread); 2584 if (tr == NULL) { 2585 rc = -1; 2586 goto out; 2587 } 2588 2589 tprev = evsel__get_time(evsel, sample->cpu); 2590 2591 /* 2592 * If start time given: 2593 * - sample time is under window user cares about - skip sample 2594 * - tprev is under window user cares about - reset to start of window 2595 */ 2596 if (ptime->start && ptime->start > t) 2597 goto out; 2598 2599 if (tprev && ptime->start > tprev) 2600 tprev = ptime->start; 2601 2602 /* 2603 * If end time given: 2604 * - previous sched event is out of window - we are done 2605 * - sample time is beyond window user cares about - reset it 2606 * to close out stats for time window interest 2607 */ 2608 if (ptime->end) { 2609 if (tprev > ptime->end) 2610 goto out; 2611 2612 if (t > ptime->end) 2613 t = ptime->end; 2614 } 2615 2616 if (!sched->idle_hist || thread->tid == 0) { 2617 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2618 timehist_update_runtime_stats(tr, t, tprev); 2619 2620 if (sched->idle_hist) { 2621 struct idle_thread_runtime *itr = (void *)tr; 2622 struct thread_runtime *last_tr; 2623 2624 BUG_ON(thread->tid != 0); 2625 2626 if (itr->last_thread == NULL) 2627 goto out; 2628 2629 /* add current idle time as last thread's runtime */ 2630 last_tr = thread__get_runtime(itr->last_thread); 2631 if (last_tr == NULL) 2632 goto out; 2633 2634 timehist_update_runtime_stats(last_tr, t, tprev); 2635 /* 2636 * remove delta time of last thread as it's not updated 2637 * and otherwise it will show an invalid value next 2638 * time. we only care total run time and run stat. 2639 */ 2640 last_tr->dt_run = 0; 2641 last_tr->dt_delay = 0; 2642 last_tr->dt_sleep = 0; 2643 last_tr->dt_iowait = 0; 2644 last_tr->dt_preempt = 0; 2645 2646 if (itr->cursor.nr) 2647 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2648 2649 itr->last_thread = NULL; 2650 } 2651 } 2652 2653 if (!sched->summary_only) 2654 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2655 2656 out: 2657 if (sched->hist_time.start == 0 && t >= ptime->start) 2658 sched->hist_time.start = t; 2659 if (ptime->end == 0 || t <= ptime->end) 2660 sched->hist_time.end = t; 2661 2662 if (tr) { 2663 /* time of this sched_switch event becomes last time task seen */ 2664 tr->last_time = sample->time; 2665 2666 /* last state is used to determine where to account wait time */ 2667 tr->last_state = state; 2668 2669 /* sched out event for task so reset ready to run time */ 2670 tr->ready_to_run = 0; 2671 } 2672 2673 evsel__save_time(evsel, sample->time, sample->cpu); 2674 2675 return rc; 2676 } 2677 2678 static int timehist_sched_switch_event(struct perf_tool *tool, 2679 union perf_event *event, 2680 struct evsel *evsel, 2681 struct perf_sample *sample, 2682 struct machine *machine __maybe_unused) 2683 { 2684 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2685 } 2686 2687 static int process_lost(struct perf_tool *tool __maybe_unused, 2688 union perf_event *event, 2689 struct perf_sample *sample, 2690 struct machine *machine __maybe_unused) 2691 { 2692 char tstr[64]; 2693 2694 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2695 printf("%15s ", tstr); 2696 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2697 2698 return 0; 2699 } 2700 2701 2702 static void print_thread_runtime(struct thread *t, 2703 struct thread_runtime *r) 2704 { 2705 double mean = avg_stats(&r->run_stats); 2706 float stddev; 2707 2708 printf("%*s %5d %9" PRIu64 " ", 2709 comm_width, timehist_get_commstr(t), t->ppid, 2710 (u64) r->run_stats.n); 2711 2712 print_sched_time(r->total_run_time, 8); 2713 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2714 print_sched_time(r->run_stats.min, 6); 2715 printf(" "); 2716 print_sched_time((u64) mean, 6); 2717 printf(" "); 2718 print_sched_time(r->run_stats.max, 6); 2719 printf(" "); 2720 printf("%5.2f", stddev); 2721 printf(" %5" PRIu64, r->migrations); 2722 printf("\n"); 2723 } 2724 2725 static void print_thread_waittime(struct thread *t, 2726 struct thread_runtime *r) 2727 { 2728 printf("%*s %5d %9" PRIu64 " ", 2729 comm_width, timehist_get_commstr(t), t->ppid, 2730 (u64) r->run_stats.n); 2731 2732 print_sched_time(r->total_run_time, 8); 2733 print_sched_time(r->total_sleep_time, 6); 2734 printf(" "); 2735 print_sched_time(r->total_iowait_time, 6); 2736 printf(" "); 2737 print_sched_time(r->total_preempt_time, 6); 2738 printf(" "); 2739 print_sched_time(r->total_delay_time, 6); 2740 printf("\n"); 2741 } 2742 2743 struct total_run_stats { 2744 struct perf_sched *sched; 2745 u64 sched_count; 2746 u64 task_count; 2747 u64 total_run_time; 2748 }; 2749 2750 static int __show_thread_runtime(struct thread *t, void *priv) 2751 { 2752 struct total_run_stats *stats = priv; 2753 struct thread_runtime *r; 2754 2755 if (thread__is_filtered(t)) 2756 return 0; 2757 2758 r = thread__priv(t); 2759 if (r && r->run_stats.n) { 2760 stats->task_count++; 2761 stats->sched_count += r->run_stats.n; 2762 stats->total_run_time += r->total_run_time; 2763 2764 if (stats->sched->show_state) 2765 print_thread_waittime(t, r); 2766 else 2767 print_thread_runtime(t, r); 2768 } 2769 2770 return 0; 2771 } 2772 2773 static int show_thread_runtime(struct thread *t, void *priv) 2774 { 2775 if (t->dead) 2776 return 0; 2777 2778 return __show_thread_runtime(t, priv); 2779 } 2780 2781 static int show_deadthread_runtime(struct thread *t, void *priv) 2782 { 2783 if (!t->dead) 2784 return 0; 2785 2786 return __show_thread_runtime(t, priv); 2787 } 2788 2789 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2790 { 2791 const char *sep = " <- "; 2792 struct callchain_list *chain; 2793 size_t ret = 0; 2794 char bf[1024]; 2795 bool first; 2796 2797 if (node == NULL) 2798 return 0; 2799 2800 ret = callchain__fprintf_folded(fp, node->parent); 2801 first = (ret == 0); 2802 2803 list_for_each_entry(chain, &node->val, list) { 2804 if (chain->ip >= PERF_CONTEXT_MAX) 2805 continue; 2806 if (chain->ms.sym && chain->ms.sym->ignore) 2807 continue; 2808 ret += fprintf(fp, "%s%s", first ? "" : sep, 2809 callchain_list__sym_name(chain, bf, sizeof(bf), 2810 false)); 2811 first = false; 2812 } 2813 2814 return ret; 2815 } 2816 2817 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2818 { 2819 size_t ret = 0; 2820 FILE *fp = stdout; 2821 struct callchain_node *chain; 2822 struct rb_node *rb_node = rb_first_cached(root); 2823 2824 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2825 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2826 graph_dotted_line); 2827 2828 while (rb_node) { 2829 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2830 rb_node = rb_next(rb_node); 2831 2832 ret += fprintf(fp, " "); 2833 print_sched_time(chain->hit, 12); 2834 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2835 ret += fprintf(fp, " %8d ", chain->count); 2836 ret += callchain__fprintf_folded(fp, chain); 2837 ret += fprintf(fp, "\n"); 2838 } 2839 2840 return ret; 2841 } 2842 2843 static void timehist_print_summary(struct perf_sched *sched, 2844 struct perf_session *session) 2845 { 2846 struct machine *m = &session->machines.host; 2847 struct total_run_stats totals; 2848 u64 task_count; 2849 struct thread *t; 2850 struct thread_runtime *r; 2851 int i; 2852 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2853 2854 memset(&totals, 0, sizeof(totals)); 2855 totals.sched = sched; 2856 2857 if (sched->idle_hist) { 2858 printf("\nIdle-time summary\n"); 2859 printf("%*s parent sched-out ", comm_width, "comm"); 2860 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2861 } else if (sched->show_state) { 2862 printf("\nWait-time summary\n"); 2863 printf("%*s parent sched-in ", comm_width, "comm"); 2864 printf(" run-time sleep iowait preempt delay\n"); 2865 } else { 2866 printf("\nRuntime summary\n"); 2867 printf("%*s parent sched-in ", comm_width, "comm"); 2868 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2869 } 2870 printf("%*s (count) ", comm_width, ""); 2871 printf(" (msec) (msec) (msec) (msec) %s\n", 2872 sched->show_state ? "(msec)" : "%"); 2873 printf("%.117s\n", graph_dotted_line); 2874 2875 machine__for_each_thread(m, show_thread_runtime, &totals); 2876 task_count = totals.task_count; 2877 if (!task_count) 2878 printf("<no still running tasks>\n"); 2879 2880 printf("\nTerminated tasks:\n"); 2881 machine__for_each_thread(m, show_deadthread_runtime, &totals); 2882 if (task_count == totals.task_count) 2883 printf("<no terminated tasks>\n"); 2884 2885 /* CPU idle stats not tracked when samples were skipped */ 2886 if (sched->skipped_samples && !sched->idle_hist) 2887 return; 2888 2889 printf("\nIdle stats:\n"); 2890 for (i = 0; i < idle_max_cpu; ++i) { 2891 if (cpu_list && !test_bit(i, cpu_bitmap)) 2892 continue; 2893 2894 t = idle_threads[i]; 2895 if (!t) 2896 continue; 2897 2898 r = thread__priv(t); 2899 if (r && r->run_stats.n) { 2900 totals.sched_count += r->run_stats.n; 2901 printf(" CPU %2d idle for ", i); 2902 print_sched_time(r->total_run_time, 6); 2903 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2904 } else 2905 printf(" CPU %2d idle entire time window\n", i); 2906 } 2907 2908 if (sched->idle_hist && sched->show_callchain) { 2909 callchain_param.mode = CHAIN_FOLDED; 2910 callchain_param.value = CCVAL_PERIOD; 2911 2912 callchain_register_param(&callchain_param); 2913 2914 printf("\nIdle stats by callchain:\n"); 2915 for (i = 0; i < idle_max_cpu; ++i) { 2916 struct idle_thread_runtime *itr; 2917 2918 t = idle_threads[i]; 2919 if (!t) 2920 continue; 2921 2922 itr = thread__priv(t); 2923 if (itr == NULL) 2924 continue; 2925 2926 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 2927 0, &callchain_param); 2928 2929 printf(" CPU %2d:", i); 2930 print_sched_time(itr->tr.total_run_time, 6); 2931 printf(" msec\n"); 2932 timehist_print_idlehist_callchain(&itr->sorted_root); 2933 printf("\n"); 2934 } 2935 } 2936 2937 printf("\n" 2938 " Total number of unique tasks: %" PRIu64 "\n" 2939 "Total number of context switches: %" PRIu64 "\n", 2940 totals.task_count, totals.sched_count); 2941 2942 printf(" Total run time (msec): "); 2943 print_sched_time(totals.total_run_time, 2); 2944 printf("\n"); 2945 2946 printf(" Total scheduling time (msec): "); 2947 print_sched_time(hist_time, 2); 2948 printf(" (x %d)\n", sched->max_cpu.cpu); 2949 } 2950 2951 typedef int (*sched_handler)(struct perf_tool *tool, 2952 union perf_event *event, 2953 struct evsel *evsel, 2954 struct perf_sample *sample, 2955 struct machine *machine); 2956 2957 static int perf_timehist__process_sample(struct perf_tool *tool, 2958 union perf_event *event, 2959 struct perf_sample *sample, 2960 struct evsel *evsel, 2961 struct machine *machine) 2962 { 2963 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2964 int err = 0; 2965 struct perf_cpu this_cpu = { 2966 .cpu = sample->cpu, 2967 }; 2968 2969 if (this_cpu.cpu > sched->max_cpu.cpu) 2970 sched->max_cpu = this_cpu; 2971 2972 if (evsel->handler != NULL) { 2973 sched_handler f = evsel->handler; 2974 2975 err = f(tool, event, evsel, sample, machine); 2976 } 2977 2978 return err; 2979 } 2980 2981 static int timehist_check_attr(struct perf_sched *sched, 2982 struct evlist *evlist) 2983 { 2984 struct evsel *evsel; 2985 struct evsel_runtime *er; 2986 2987 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 2988 er = evsel__get_runtime(evsel); 2989 if (er == NULL) { 2990 pr_err("Failed to allocate memory for evsel runtime data\n"); 2991 return -1; 2992 } 2993 2994 if (sched->show_callchain && !evsel__has_callchain(evsel)) { 2995 pr_info("Samples do not have callchains.\n"); 2996 sched->show_callchain = 0; 2997 symbol_conf.use_callchain = 0; 2998 } 2999 } 3000 3001 return 0; 3002 } 3003 3004 static int perf_sched__timehist(struct perf_sched *sched) 3005 { 3006 struct evsel_str_handler handlers[] = { 3007 { "sched:sched_switch", timehist_sched_switch_event, }, 3008 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 3009 { "sched:sched_waking", timehist_sched_wakeup_event, }, 3010 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 3011 }; 3012 const struct evsel_str_handler migrate_handlers[] = { 3013 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 3014 }; 3015 struct perf_data data = { 3016 .path = input_name, 3017 .mode = PERF_DATA_MODE_READ, 3018 .force = sched->force, 3019 }; 3020 3021 struct perf_session *session; 3022 struct evlist *evlist; 3023 int err = -1; 3024 3025 /* 3026 * event handlers for timehist option 3027 */ 3028 sched->tool.sample = perf_timehist__process_sample; 3029 sched->tool.mmap = perf_event__process_mmap; 3030 sched->tool.comm = perf_event__process_comm; 3031 sched->tool.exit = perf_event__process_exit; 3032 sched->tool.fork = perf_event__process_fork; 3033 sched->tool.lost = process_lost; 3034 sched->tool.attr = perf_event__process_attr; 3035 sched->tool.tracing_data = perf_event__process_tracing_data; 3036 sched->tool.build_id = perf_event__process_build_id; 3037 3038 sched->tool.ordered_events = true; 3039 sched->tool.ordering_requires_timestamps = true; 3040 3041 symbol_conf.use_callchain = sched->show_callchain; 3042 3043 session = perf_session__new(&data, &sched->tool); 3044 if (IS_ERR(session)) 3045 return PTR_ERR(session); 3046 3047 if (cpu_list) { 3048 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3049 if (err < 0) 3050 goto out; 3051 } 3052 3053 evlist = session->evlist; 3054 3055 symbol__init(&session->header.env); 3056 3057 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3058 pr_err("Invalid time string\n"); 3059 return -EINVAL; 3060 } 3061 3062 if (timehist_check_attr(sched, evlist) != 0) 3063 goto out; 3064 3065 setup_pager(); 3066 3067 /* prefer sched_waking if it is captured */ 3068 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3069 handlers[1].handler = timehist_sched_wakeup_ignore; 3070 3071 /* setup per-evsel handlers */ 3072 if (perf_session__set_tracepoints_handlers(session, handlers)) 3073 goto out; 3074 3075 /* sched_switch event at a minimum needs to exist */ 3076 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3077 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3078 goto out; 3079 } 3080 3081 if (sched->show_migrations && 3082 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3083 goto out; 3084 3085 /* pre-allocate struct for per-CPU idle stats */ 3086 sched->max_cpu.cpu = session->header.env.nr_cpus_online; 3087 if (sched->max_cpu.cpu == 0) 3088 sched->max_cpu.cpu = 4; 3089 if (init_idle_threads(sched->max_cpu.cpu)) 3090 goto out; 3091 3092 /* summary_only implies summary option, but don't overwrite summary if set */ 3093 if (sched->summary_only) 3094 sched->summary = sched->summary_only; 3095 3096 if (!sched->summary_only) 3097 timehist_header(sched); 3098 3099 err = perf_session__process_events(session); 3100 if (err) { 3101 pr_err("Failed to process events, error %d", err); 3102 goto out; 3103 } 3104 3105 sched->nr_events = evlist->stats.nr_events[0]; 3106 sched->nr_lost_events = evlist->stats.total_lost; 3107 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3108 3109 if (sched->summary) 3110 timehist_print_summary(sched, session); 3111 3112 out: 3113 free_idle_threads(); 3114 perf_session__delete(session); 3115 3116 return err; 3117 } 3118 3119 3120 static void print_bad_events(struct perf_sched *sched) 3121 { 3122 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3123 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3124 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3125 sched->nr_unordered_timestamps, sched->nr_timestamps); 3126 } 3127 if (sched->nr_lost_events && sched->nr_events) { 3128 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3129 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3130 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3131 } 3132 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3133 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3134 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3135 sched->nr_context_switch_bugs, sched->nr_timestamps); 3136 if (sched->nr_lost_events) 3137 printf(" (due to lost events?)"); 3138 printf("\n"); 3139 } 3140 } 3141 3142 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3143 { 3144 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3145 struct work_atoms *this; 3146 const char *comm = thread__comm_str(data->thread), *this_comm; 3147 bool leftmost = true; 3148 3149 while (*new) { 3150 int cmp; 3151 3152 this = container_of(*new, struct work_atoms, node); 3153 parent = *new; 3154 3155 this_comm = thread__comm_str(this->thread); 3156 cmp = strcmp(comm, this_comm); 3157 if (cmp > 0) { 3158 new = &((*new)->rb_left); 3159 } else if (cmp < 0) { 3160 new = &((*new)->rb_right); 3161 leftmost = false; 3162 } else { 3163 this->num_merged++; 3164 this->total_runtime += data->total_runtime; 3165 this->nb_atoms += data->nb_atoms; 3166 this->total_lat += data->total_lat; 3167 list_splice(&data->work_list, &this->work_list); 3168 if (this->max_lat < data->max_lat) { 3169 this->max_lat = data->max_lat; 3170 this->max_lat_start = data->max_lat_start; 3171 this->max_lat_end = data->max_lat_end; 3172 } 3173 zfree(&data); 3174 return; 3175 } 3176 } 3177 3178 data->num_merged++; 3179 rb_link_node(&data->node, parent, new); 3180 rb_insert_color_cached(&data->node, root, leftmost); 3181 } 3182 3183 static void perf_sched__merge_lat(struct perf_sched *sched) 3184 { 3185 struct work_atoms *data; 3186 struct rb_node *node; 3187 3188 if (sched->skip_merge) 3189 return; 3190 3191 while ((node = rb_first_cached(&sched->atom_root))) { 3192 rb_erase_cached(node, &sched->atom_root); 3193 data = rb_entry(node, struct work_atoms, node); 3194 __merge_work_atoms(&sched->merged_atom_root, data); 3195 } 3196 } 3197 3198 static int perf_sched__lat(struct perf_sched *sched) 3199 { 3200 struct rb_node *next; 3201 3202 setup_pager(); 3203 3204 if (perf_sched__read_events(sched)) 3205 return -1; 3206 3207 perf_sched__merge_lat(sched); 3208 perf_sched__sort_lat(sched); 3209 3210 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3211 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3212 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3213 3214 next = rb_first_cached(&sched->sorted_atom_root); 3215 3216 while (next) { 3217 struct work_atoms *work_list; 3218 3219 work_list = rb_entry(next, struct work_atoms, node); 3220 output_lat_thread(sched, work_list); 3221 next = rb_next(next); 3222 thread__zput(work_list->thread); 3223 } 3224 3225 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3226 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3227 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3228 3229 printf(" ---------------------------------------------------\n"); 3230 3231 print_bad_events(sched); 3232 printf("\n"); 3233 3234 return 0; 3235 } 3236 3237 static int setup_map_cpus(struct perf_sched *sched) 3238 { 3239 struct perf_cpu_map *map; 3240 3241 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); 3242 3243 if (sched->map.comp) { 3244 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); 3245 if (!sched->map.comp_cpus) 3246 return -1; 3247 } 3248 3249 if (!sched->map.cpus_str) 3250 return 0; 3251 3252 map = perf_cpu_map__new(sched->map.cpus_str); 3253 if (!map) { 3254 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3255 return -1; 3256 } 3257 3258 sched->map.cpus = map; 3259 return 0; 3260 } 3261 3262 static int setup_color_pids(struct perf_sched *sched) 3263 { 3264 struct perf_thread_map *map; 3265 3266 if (!sched->map.color_pids_str) 3267 return 0; 3268 3269 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3270 if (!map) { 3271 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3272 return -1; 3273 } 3274 3275 sched->map.color_pids = map; 3276 return 0; 3277 } 3278 3279 static int setup_color_cpus(struct perf_sched *sched) 3280 { 3281 struct perf_cpu_map *map; 3282 3283 if (!sched->map.color_cpus_str) 3284 return 0; 3285 3286 map = perf_cpu_map__new(sched->map.color_cpus_str); 3287 if (!map) { 3288 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3289 return -1; 3290 } 3291 3292 sched->map.color_cpus = map; 3293 return 0; 3294 } 3295 3296 static int perf_sched__map(struct perf_sched *sched) 3297 { 3298 if (setup_map_cpus(sched)) 3299 return -1; 3300 3301 if (setup_color_pids(sched)) 3302 return -1; 3303 3304 if (setup_color_cpus(sched)) 3305 return -1; 3306 3307 setup_pager(); 3308 if (perf_sched__read_events(sched)) 3309 return -1; 3310 print_bad_events(sched); 3311 return 0; 3312 } 3313 3314 static int perf_sched__replay(struct perf_sched *sched) 3315 { 3316 unsigned long i; 3317 3318 calibrate_run_measurement_overhead(sched); 3319 calibrate_sleep_measurement_overhead(sched); 3320 3321 test_calibrations(sched); 3322 3323 if (perf_sched__read_events(sched)) 3324 return -1; 3325 3326 printf("nr_run_events: %ld\n", sched->nr_run_events); 3327 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3328 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3329 3330 if (sched->targetless_wakeups) 3331 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3332 if (sched->multitarget_wakeups) 3333 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3334 if (sched->nr_run_events_optimized) 3335 printf("run atoms optimized: %ld\n", 3336 sched->nr_run_events_optimized); 3337 3338 print_task_traces(sched); 3339 add_cross_task_wakeups(sched); 3340 3341 sched->thread_funcs_exit = false; 3342 create_tasks(sched); 3343 printf("------------------------------------------------------------\n"); 3344 for (i = 0; i < sched->replay_repeat; i++) 3345 run_one_test(sched); 3346 3347 sched->thread_funcs_exit = true; 3348 destroy_tasks(sched); 3349 return 0; 3350 } 3351 3352 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3353 const char * const usage_msg[]) 3354 { 3355 char *tmp, *tok, *str = strdup(sched->sort_order); 3356 3357 for (tok = strtok_r(str, ", ", &tmp); 3358 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3359 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3360 usage_with_options_msg(usage_msg, options, 3361 "Unknown --sort key: `%s'", tok); 3362 } 3363 } 3364 3365 free(str); 3366 3367 sort_dimension__add("pid", &sched->cmp_pid); 3368 } 3369 3370 static bool schedstat_events_exposed(void) 3371 { 3372 /* 3373 * Select "sched:sched_stat_wait" event to check 3374 * whether schedstat tracepoints are exposed. 3375 */ 3376 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? 3377 false : true; 3378 } 3379 3380 static int __cmd_record(int argc, const char **argv) 3381 { 3382 unsigned int rec_argc, i, j; 3383 char **rec_argv; 3384 const char **rec_argv_copy; 3385 const char * const record_args[] = { 3386 "record", 3387 "-a", 3388 "-R", 3389 "-m", "1024", 3390 "-c", "1", 3391 "-e", "sched:sched_switch", 3392 "-e", "sched:sched_stat_runtime", 3393 "-e", "sched:sched_process_fork", 3394 "-e", "sched:sched_wakeup_new", 3395 "-e", "sched:sched_migrate_task", 3396 }; 3397 3398 /* 3399 * The tracepoints trace_sched_stat_{wait, sleep, iowait} 3400 * are not exposed to user if CONFIG_SCHEDSTATS is not set, 3401 * to prevent "perf sched record" execution failure, determine 3402 * whether to record schedstat events according to actual situation. 3403 */ 3404 const char * const schedstat_args[] = { 3405 "-e", "sched:sched_stat_wait", 3406 "-e", "sched:sched_stat_sleep", 3407 "-e", "sched:sched_stat_iowait", 3408 }; 3409 unsigned int schedstat_argc = schedstat_events_exposed() ? 3410 ARRAY_SIZE(schedstat_args) : 0; 3411 3412 struct tep_event *waking_event; 3413 int ret; 3414 3415 /* 3416 * +2 for either "-e", "sched:sched_wakeup" or 3417 * "-e", "sched:sched_waking" 3418 */ 3419 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; 3420 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3421 if (rec_argv == NULL) 3422 return -ENOMEM; 3423 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); 3424 if (rec_argv_copy == NULL) { 3425 free(rec_argv); 3426 return -ENOMEM; 3427 } 3428 3429 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3430 rec_argv[i] = strdup(record_args[i]); 3431 3432 rec_argv[i++] = strdup("-e"); 3433 waking_event = trace_event__tp_format("sched", "sched_waking"); 3434 if (!IS_ERR(waking_event)) 3435 rec_argv[i++] = strdup("sched:sched_waking"); 3436 else 3437 rec_argv[i++] = strdup("sched:sched_wakeup"); 3438 3439 for (j = 0; j < schedstat_argc; j++) 3440 rec_argv[i++] = strdup(schedstat_args[j]); 3441 3442 for (j = 1; j < (unsigned int)argc; j++, i++) 3443 rec_argv[i] = strdup(argv[j]); 3444 3445 BUG_ON(i != rec_argc); 3446 3447 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); 3448 ret = cmd_record(rec_argc, rec_argv_copy); 3449 3450 for (i = 0; i < rec_argc; i++) 3451 free(rec_argv[i]); 3452 free(rec_argv); 3453 free(rec_argv_copy); 3454 3455 return ret; 3456 } 3457 3458 int cmd_sched(int argc, const char **argv) 3459 { 3460 static const char default_sort_order[] = "avg, max, switch, runtime"; 3461 struct perf_sched sched = { 3462 .tool = { 3463 .sample = perf_sched__process_tracepoint_sample, 3464 .comm = perf_sched__process_comm, 3465 .namespaces = perf_event__process_namespaces, 3466 .lost = perf_event__process_lost, 3467 .fork = perf_sched__process_fork_event, 3468 .ordered_events = true, 3469 }, 3470 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3471 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3472 .sort_order = default_sort_order, 3473 .replay_repeat = 10, 3474 .profile_cpu = -1, 3475 .next_shortname1 = 'A', 3476 .next_shortname2 = '0', 3477 .skip_merge = 0, 3478 .show_callchain = 1, 3479 .max_stack = 5, 3480 }; 3481 const struct option sched_options[] = { 3482 OPT_STRING('i', "input", &input_name, "file", 3483 "input file name"), 3484 OPT_INCR('v', "verbose", &verbose, 3485 "be more verbose (show symbol address, etc)"), 3486 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3487 "dump raw trace in ASCII"), 3488 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3489 OPT_END() 3490 }; 3491 const struct option latency_options[] = { 3492 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3493 "sort by key(s): runtime, switch, avg, max"), 3494 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3495 "CPU to profile on"), 3496 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3497 "latency stats per pid instead of per comm"), 3498 OPT_PARENT(sched_options) 3499 }; 3500 const struct option replay_options[] = { 3501 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3502 "repeat the workload replay N times (-1: infinite)"), 3503 OPT_PARENT(sched_options) 3504 }; 3505 const struct option map_options[] = { 3506 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3507 "map output in compact mode"), 3508 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3509 "highlight given pids in map"), 3510 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3511 "highlight given CPUs in map"), 3512 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3513 "display given CPUs in map"), 3514 OPT_PARENT(sched_options) 3515 }; 3516 const struct option timehist_options[] = { 3517 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3518 "file", "vmlinux pathname"), 3519 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3520 "file", "kallsyms pathname"), 3521 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3522 "Display call chains if present (default on)"), 3523 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3524 "Maximum number of functions to display backtrace."), 3525 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3526 "Look for files with symbols relative to this directory"), 3527 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3528 "Show only syscall summary with statistics"), 3529 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3530 "Show all syscalls and summary with statistics"), 3531 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3532 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3533 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3534 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3535 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3536 OPT_STRING(0, "time", &sched.time_str, "str", 3537 "Time span for analysis (start,stop)"), 3538 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3539 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3540 "analyze events only for given process id(s)"), 3541 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3542 "analyze events only for given thread id(s)"), 3543 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3544 OPT_PARENT(sched_options) 3545 }; 3546 3547 const char * const latency_usage[] = { 3548 "perf sched latency [<options>]", 3549 NULL 3550 }; 3551 const char * const replay_usage[] = { 3552 "perf sched replay [<options>]", 3553 NULL 3554 }; 3555 const char * const map_usage[] = { 3556 "perf sched map [<options>]", 3557 NULL 3558 }; 3559 const char * const timehist_usage[] = { 3560 "perf sched timehist [<options>]", 3561 NULL 3562 }; 3563 const char *const sched_subcommands[] = { "record", "latency", "map", 3564 "replay", "script", 3565 "timehist", NULL }; 3566 const char *sched_usage[] = { 3567 NULL, 3568 NULL 3569 }; 3570 struct trace_sched_handler lat_ops = { 3571 .wakeup_event = latency_wakeup_event, 3572 .switch_event = latency_switch_event, 3573 .runtime_event = latency_runtime_event, 3574 .migrate_task_event = latency_migrate_task_event, 3575 }; 3576 struct trace_sched_handler map_ops = { 3577 .switch_event = map_switch_event, 3578 }; 3579 struct trace_sched_handler replay_ops = { 3580 .wakeup_event = replay_wakeup_event, 3581 .switch_event = replay_switch_event, 3582 .fork_event = replay_fork_event, 3583 }; 3584 unsigned int i; 3585 int ret = 0; 3586 3587 mutex_init(&sched.start_work_mutex); 3588 mutex_init(&sched.work_done_wait_mutex); 3589 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 3590 sched.curr_pid[i] = -1; 3591 3592 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3593 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3594 if (!argc) 3595 usage_with_options(sched_usage, sched_options); 3596 3597 /* 3598 * Aliased to 'perf script' for now: 3599 */ 3600 if (!strcmp(argv[0], "script")) { 3601 ret = cmd_script(argc, argv); 3602 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 3603 ret = __cmd_record(argc, argv); 3604 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { 3605 sched.tp_handler = &lat_ops; 3606 if (argc > 1) { 3607 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3608 if (argc) 3609 usage_with_options(latency_usage, latency_options); 3610 } 3611 setup_sorting(&sched, latency_options, latency_usage); 3612 ret = perf_sched__lat(&sched); 3613 } else if (!strcmp(argv[0], "map")) { 3614 if (argc) { 3615 argc = parse_options(argc, argv, map_options, map_usage, 0); 3616 if (argc) 3617 usage_with_options(map_usage, map_options); 3618 } 3619 sched.tp_handler = &map_ops; 3620 setup_sorting(&sched, latency_options, latency_usage); 3621 ret = perf_sched__map(&sched); 3622 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { 3623 sched.tp_handler = &replay_ops; 3624 if (argc) { 3625 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3626 if (argc) 3627 usage_with_options(replay_usage, replay_options); 3628 } 3629 ret = perf_sched__replay(&sched); 3630 } else if (!strcmp(argv[0], "timehist")) { 3631 if (argc) { 3632 argc = parse_options(argc, argv, timehist_options, 3633 timehist_usage, 0); 3634 if (argc) 3635 usage_with_options(timehist_usage, timehist_options); 3636 } 3637 if ((sched.show_wakeups || sched.show_next) && 3638 sched.summary_only) { 3639 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3640 parse_options_usage(timehist_usage, timehist_options, "s", true); 3641 if (sched.show_wakeups) 3642 parse_options_usage(NULL, timehist_options, "w", true); 3643 if (sched.show_next) 3644 parse_options_usage(NULL, timehist_options, "n", true); 3645 ret = -EINVAL; 3646 goto out; 3647 } 3648 ret = symbol__validate_sym_arguments(); 3649 if (ret) 3650 goto out; 3651 3652 ret = perf_sched__timehist(&sched); 3653 } else { 3654 usage_with_options(sched_usage, sched_options); 3655 } 3656 3657 out: 3658 mutex_destroy(&sched.start_work_mutex); 3659 mutex_destroy(&sched.work_done_wait_mutex); 3660 3661 return ret; 3662 } 3663