1 #include "builtin.h" 2 #include "perf.h" 3 4 #include "util/util.h" 5 #include "util/evlist.h" 6 #include "util/cache.h" 7 #include "util/evsel.h" 8 #include "util/symbol.h" 9 #include "util/thread.h" 10 #include "util/header.h" 11 #include "util/session.h" 12 #include "util/tool.h" 13 #include "util/cloexec.h" 14 15 #include <subcmd/parse-options.h> 16 #include "util/trace-event.h" 17 18 #include "util/debug.h" 19 20 #include <sys/prctl.h> 21 #include <sys/resource.h> 22 23 #include <semaphore.h> 24 #include <pthread.h> 25 #include <math.h> 26 #include <api/fs/fs.h> 27 28 #define PR_SET_NAME 15 /* Set process name */ 29 #define MAX_CPUS 4096 30 #define COMM_LEN 20 31 #define SYM_LEN 129 32 #define MAX_PID 1024000 33 34 struct sched_atom; 35 36 struct task_desc { 37 unsigned long nr; 38 unsigned long pid; 39 char comm[COMM_LEN]; 40 41 unsigned long nr_events; 42 unsigned long curr_event; 43 struct sched_atom **atoms; 44 45 pthread_t thread; 46 sem_t sleep_sem; 47 48 sem_t ready_for_work; 49 sem_t work_done_sem; 50 51 u64 cpu_usage; 52 }; 53 54 enum sched_event_type { 55 SCHED_EVENT_RUN, 56 SCHED_EVENT_SLEEP, 57 SCHED_EVENT_WAKEUP, 58 SCHED_EVENT_MIGRATION, 59 }; 60 61 struct sched_atom { 62 enum sched_event_type type; 63 int specific_wait; 64 u64 timestamp; 65 u64 duration; 66 unsigned long nr; 67 sem_t *wait_sem; 68 struct task_desc *wakee; 69 }; 70 71 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 72 73 enum thread_state { 74 THREAD_SLEEPING = 0, 75 THREAD_WAIT_CPU, 76 THREAD_SCHED_IN, 77 THREAD_IGNORE 78 }; 79 80 struct work_atom { 81 struct list_head list; 82 enum thread_state state; 83 u64 sched_out_time; 84 u64 wake_up_time; 85 u64 sched_in_time; 86 u64 runtime; 87 }; 88 89 struct work_atoms { 90 struct list_head work_list; 91 struct thread *thread; 92 struct rb_node node; 93 u64 max_lat; 94 u64 max_lat_at; 95 u64 total_lat; 96 u64 nb_atoms; 97 u64 total_runtime; 98 int num_merged; 99 }; 100 101 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 102 103 struct perf_sched; 104 105 struct trace_sched_handler { 106 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, 107 struct perf_sample *sample, struct machine *machine); 108 109 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, 110 struct perf_sample *sample, struct machine *machine); 111 112 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, 113 struct perf_sample *sample, struct machine *machine); 114 115 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 116 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 117 struct machine *machine); 118 119 int (*migrate_task_event)(struct perf_sched *sched, 120 struct perf_evsel *evsel, 121 struct perf_sample *sample, 122 struct machine *machine); 123 }; 124 125 struct perf_sched { 126 struct perf_tool tool; 127 const char *sort_order; 128 unsigned long nr_tasks; 129 struct task_desc **pid_to_task; 130 struct task_desc **tasks; 131 const struct trace_sched_handler *tp_handler; 132 pthread_mutex_t start_work_mutex; 133 pthread_mutex_t work_done_wait_mutex; 134 int profile_cpu; 135 /* 136 * Track the current task - that way we can know whether there's any 137 * weird events, such as a task being switched away that is not current. 138 */ 139 int max_cpu; 140 u32 curr_pid[MAX_CPUS]; 141 struct thread *curr_thread[MAX_CPUS]; 142 char next_shortname1; 143 char next_shortname2; 144 unsigned int replay_repeat; 145 unsigned long nr_run_events; 146 unsigned long nr_sleep_events; 147 unsigned long nr_wakeup_events; 148 unsigned long nr_sleep_corrections; 149 unsigned long nr_run_events_optimized; 150 unsigned long targetless_wakeups; 151 unsigned long multitarget_wakeups; 152 unsigned long nr_runs; 153 unsigned long nr_timestamps; 154 unsigned long nr_unordered_timestamps; 155 unsigned long nr_context_switch_bugs; 156 unsigned long nr_events; 157 unsigned long nr_lost_chunks; 158 unsigned long nr_lost_events; 159 u64 run_measurement_overhead; 160 u64 sleep_measurement_overhead; 161 u64 start_time; 162 u64 cpu_usage; 163 u64 runavg_cpu_usage; 164 u64 parent_cpu_usage; 165 u64 runavg_parent_cpu_usage; 166 u64 sum_runtime; 167 u64 sum_fluct; 168 u64 run_avg; 169 u64 all_runtime; 170 u64 all_count; 171 u64 cpu_last_switched[MAX_CPUS]; 172 struct rb_root atom_root, sorted_atom_root, merged_atom_root; 173 struct list_head sort_list, cmp_pid; 174 bool force; 175 bool skip_merge; 176 }; 177 178 static u64 get_nsecs(void) 179 { 180 struct timespec ts; 181 182 clock_gettime(CLOCK_MONOTONIC, &ts); 183 184 return ts.tv_sec * 1000000000ULL + ts.tv_nsec; 185 } 186 187 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 188 { 189 u64 T0 = get_nsecs(), T1; 190 191 do { 192 T1 = get_nsecs(); 193 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 194 } 195 196 static void sleep_nsecs(u64 nsecs) 197 { 198 struct timespec ts; 199 200 ts.tv_nsec = nsecs % 999999999; 201 ts.tv_sec = nsecs / 999999999; 202 203 nanosleep(&ts, NULL); 204 } 205 206 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 207 { 208 u64 T0, T1, delta, min_delta = 1000000000ULL; 209 int i; 210 211 for (i = 0; i < 10; i++) { 212 T0 = get_nsecs(); 213 burn_nsecs(sched, 0); 214 T1 = get_nsecs(); 215 delta = T1-T0; 216 min_delta = min(min_delta, delta); 217 } 218 sched->run_measurement_overhead = min_delta; 219 220 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 221 } 222 223 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 224 { 225 u64 T0, T1, delta, min_delta = 1000000000ULL; 226 int i; 227 228 for (i = 0; i < 10; i++) { 229 T0 = get_nsecs(); 230 sleep_nsecs(10000); 231 T1 = get_nsecs(); 232 delta = T1-T0; 233 min_delta = min(min_delta, delta); 234 } 235 min_delta -= 10000; 236 sched->sleep_measurement_overhead = min_delta; 237 238 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 239 } 240 241 static struct sched_atom * 242 get_new_event(struct task_desc *task, u64 timestamp) 243 { 244 struct sched_atom *event = zalloc(sizeof(*event)); 245 unsigned long idx = task->nr_events; 246 size_t size; 247 248 event->timestamp = timestamp; 249 event->nr = idx; 250 251 task->nr_events++; 252 size = sizeof(struct sched_atom *) * task->nr_events; 253 task->atoms = realloc(task->atoms, size); 254 BUG_ON(!task->atoms); 255 256 task->atoms[idx] = event; 257 258 return event; 259 } 260 261 static struct sched_atom *last_event(struct task_desc *task) 262 { 263 if (!task->nr_events) 264 return NULL; 265 266 return task->atoms[task->nr_events - 1]; 267 } 268 269 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 270 u64 timestamp, u64 duration) 271 { 272 struct sched_atom *event, *curr_event = last_event(task); 273 274 /* 275 * optimize an existing RUN event by merging this one 276 * to it: 277 */ 278 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 279 sched->nr_run_events_optimized++; 280 curr_event->duration += duration; 281 return; 282 } 283 284 event = get_new_event(task, timestamp); 285 286 event->type = SCHED_EVENT_RUN; 287 event->duration = duration; 288 289 sched->nr_run_events++; 290 } 291 292 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 293 u64 timestamp, struct task_desc *wakee) 294 { 295 struct sched_atom *event, *wakee_event; 296 297 event = get_new_event(task, timestamp); 298 event->type = SCHED_EVENT_WAKEUP; 299 event->wakee = wakee; 300 301 wakee_event = last_event(wakee); 302 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 303 sched->targetless_wakeups++; 304 return; 305 } 306 if (wakee_event->wait_sem) { 307 sched->multitarget_wakeups++; 308 return; 309 } 310 311 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 312 sem_init(wakee_event->wait_sem, 0, 0); 313 wakee_event->specific_wait = 1; 314 event->wait_sem = wakee_event->wait_sem; 315 316 sched->nr_wakeup_events++; 317 } 318 319 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 320 u64 timestamp, u64 task_state __maybe_unused) 321 { 322 struct sched_atom *event = get_new_event(task, timestamp); 323 324 event->type = SCHED_EVENT_SLEEP; 325 326 sched->nr_sleep_events++; 327 } 328 329 static struct task_desc *register_pid(struct perf_sched *sched, 330 unsigned long pid, const char *comm) 331 { 332 struct task_desc *task; 333 static int pid_max; 334 335 if (sched->pid_to_task == NULL) { 336 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 337 pid_max = MAX_PID; 338 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 339 } 340 if (pid >= (unsigned long)pid_max) { 341 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 342 sizeof(struct task_desc *))) == NULL); 343 while (pid >= (unsigned long)pid_max) 344 sched->pid_to_task[pid_max++] = NULL; 345 } 346 347 task = sched->pid_to_task[pid]; 348 349 if (task) 350 return task; 351 352 task = zalloc(sizeof(*task)); 353 task->pid = pid; 354 task->nr = sched->nr_tasks; 355 strcpy(task->comm, comm); 356 /* 357 * every task starts in sleeping state - this gets ignored 358 * if there's no wakeup pointing to this sleep state: 359 */ 360 add_sched_event_sleep(sched, task, 0, 0); 361 362 sched->pid_to_task[pid] = task; 363 sched->nr_tasks++; 364 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 365 BUG_ON(!sched->tasks); 366 sched->tasks[task->nr] = task; 367 368 if (verbose) 369 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 370 371 return task; 372 } 373 374 375 static void print_task_traces(struct perf_sched *sched) 376 { 377 struct task_desc *task; 378 unsigned long i; 379 380 for (i = 0; i < sched->nr_tasks; i++) { 381 task = sched->tasks[i]; 382 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 383 task->nr, task->comm, task->pid, task->nr_events); 384 } 385 } 386 387 static void add_cross_task_wakeups(struct perf_sched *sched) 388 { 389 struct task_desc *task1, *task2; 390 unsigned long i, j; 391 392 for (i = 0; i < sched->nr_tasks; i++) { 393 task1 = sched->tasks[i]; 394 j = i + 1; 395 if (j == sched->nr_tasks) 396 j = 0; 397 task2 = sched->tasks[j]; 398 add_sched_event_wakeup(sched, task1, 0, task2); 399 } 400 } 401 402 static void perf_sched__process_event(struct perf_sched *sched, 403 struct sched_atom *atom) 404 { 405 int ret = 0; 406 407 switch (atom->type) { 408 case SCHED_EVENT_RUN: 409 burn_nsecs(sched, atom->duration); 410 break; 411 case SCHED_EVENT_SLEEP: 412 if (atom->wait_sem) 413 ret = sem_wait(atom->wait_sem); 414 BUG_ON(ret); 415 break; 416 case SCHED_EVENT_WAKEUP: 417 if (atom->wait_sem) 418 ret = sem_post(atom->wait_sem); 419 BUG_ON(ret); 420 break; 421 case SCHED_EVENT_MIGRATION: 422 break; 423 default: 424 BUG_ON(1); 425 } 426 } 427 428 static u64 get_cpu_usage_nsec_parent(void) 429 { 430 struct rusage ru; 431 u64 sum; 432 int err; 433 434 err = getrusage(RUSAGE_SELF, &ru); 435 BUG_ON(err); 436 437 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; 438 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; 439 440 return sum; 441 } 442 443 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 444 { 445 struct perf_event_attr attr; 446 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 447 int fd; 448 struct rlimit limit; 449 bool need_privilege = false; 450 451 memset(&attr, 0, sizeof(attr)); 452 453 attr.type = PERF_TYPE_SOFTWARE; 454 attr.config = PERF_COUNT_SW_TASK_CLOCK; 455 456 force_again: 457 fd = sys_perf_event_open(&attr, 0, -1, -1, 458 perf_event_open_cloexec_flag()); 459 460 if (fd < 0) { 461 if (errno == EMFILE) { 462 if (sched->force) { 463 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 464 limit.rlim_cur += sched->nr_tasks - cur_task; 465 if (limit.rlim_cur > limit.rlim_max) { 466 limit.rlim_max = limit.rlim_cur; 467 need_privilege = true; 468 } 469 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 470 if (need_privilege && errno == EPERM) 471 strcpy(info, "Need privilege\n"); 472 } else 473 goto force_again; 474 } else 475 strcpy(info, "Have a try with -f option\n"); 476 } 477 pr_err("Error: sys_perf_event_open() syscall returned " 478 "with %d (%s)\n%s", fd, 479 strerror_r(errno, sbuf, sizeof(sbuf)), info); 480 exit(EXIT_FAILURE); 481 } 482 return fd; 483 } 484 485 static u64 get_cpu_usage_nsec_self(int fd) 486 { 487 u64 runtime; 488 int ret; 489 490 ret = read(fd, &runtime, sizeof(runtime)); 491 BUG_ON(ret != sizeof(runtime)); 492 493 return runtime; 494 } 495 496 struct sched_thread_parms { 497 struct task_desc *task; 498 struct perf_sched *sched; 499 int fd; 500 }; 501 502 static void *thread_func(void *ctx) 503 { 504 struct sched_thread_parms *parms = ctx; 505 struct task_desc *this_task = parms->task; 506 struct perf_sched *sched = parms->sched; 507 u64 cpu_usage_0, cpu_usage_1; 508 unsigned long i, ret; 509 char comm2[22]; 510 int fd = parms->fd; 511 512 zfree(&parms); 513 514 sprintf(comm2, ":%s", this_task->comm); 515 prctl(PR_SET_NAME, comm2); 516 if (fd < 0) 517 return NULL; 518 again: 519 ret = sem_post(&this_task->ready_for_work); 520 BUG_ON(ret); 521 ret = pthread_mutex_lock(&sched->start_work_mutex); 522 BUG_ON(ret); 523 ret = pthread_mutex_unlock(&sched->start_work_mutex); 524 BUG_ON(ret); 525 526 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 527 528 for (i = 0; i < this_task->nr_events; i++) { 529 this_task->curr_event = i; 530 perf_sched__process_event(sched, this_task->atoms[i]); 531 } 532 533 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 534 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 535 ret = sem_post(&this_task->work_done_sem); 536 BUG_ON(ret); 537 538 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 539 BUG_ON(ret); 540 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 541 BUG_ON(ret); 542 543 goto again; 544 } 545 546 static void create_tasks(struct perf_sched *sched) 547 { 548 struct task_desc *task; 549 pthread_attr_t attr; 550 unsigned long i; 551 int err; 552 553 err = pthread_attr_init(&attr); 554 BUG_ON(err); 555 err = pthread_attr_setstacksize(&attr, 556 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 557 BUG_ON(err); 558 err = pthread_mutex_lock(&sched->start_work_mutex); 559 BUG_ON(err); 560 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 561 BUG_ON(err); 562 for (i = 0; i < sched->nr_tasks; i++) { 563 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 564 BUG_ON(parms == NULL); 565 parms->task = task = sched->tasks[i]; 566 parms->sched = sched; 567 parms->fd = self_open_counters(sched, i); 568 sem_init(&task->sleep_sem, 0, 0); 569 sem_init(&task->ready_for_work, 0, 0); 570 sem_init(&task->work_done_sem, 0, 0); 571 task->curr_event = 0; 572 err = pthread_create(&task->thread, &attr, thread_func, parms); 573 BUG_ON(err); 574 } 575 } 576 577 static void wait_for_tasks(struct perf_sched *sched) 578 { 579 u64 cpu_usage_0, cpu_usage_1; 580 struct task_desc *task; 581 unsigned long i, ret; 582 583 sched->start_time = get_nsecs(); 584 sched->cpu_usage = 0; 585 pthread_mutex_unlock(&sched->work_done_wait_mutex); 586 587 for (i = 0; i < sched->nr_tasks; i++) { 588 task = sched->tasks[i]; 589 ret = sem_wait(&task->ready_for_work); 590 BUG_ON(ret); 591 sem_init(&task->ready_for_work, 0, 0); 592 } 593 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 594 BUG_ON(ret); 595 596 cpu_usage_0 = get_cpu_usage_nsec_parent(); 597 598 pthread_mutex_unlock(&sched->start_work_mutex); 599 600 for (i = 0; i < sched->nr_tasks; i++) { 601 task = sched->tasks[i]; 602 ret = sem_wait(&task->work_done_sem); 603 BUG_ON(ret); 604 sem_init(&task->work_done_sem, 0, 0); 605 sched->cpu_usage += task->cpu_usage; 606 task->cpu_usage = 0; 607 } 608 609 cpu_usage_1 = get_cpu_usage_nsec_parent(); 610 if (!sched->runavg_cpu_usage) 611 sched->runavg_cpu_usage = sched->cpu_usage; 612 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 613 614 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 615 if (!sched->runavg_parent_cpu_usage) 616 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 617 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 618 sched->parent_cpu_usage)/sched->replay_repeat; 619 620 ret = pthread_mutex_lock(&sched->start_work_mutex); 621 BUG_ON(ret); 622 623 for (i = 0; i < sched->nr_tasks; i++) { 624 task = sched->tasks[i]; 625 sem_init(&task->sleep_sem, 0, 0); 626 task->curr_event = 0; 627 } 628 } 629 630 static void run_one_test(struct perf_sched *sched) 631 { 632 u64 T0, T1, delta, avg_delta, fluct; 633 634 T0 = get_nsecs(); 635 wait_for_tasks(sched); 636 T1 = get_nsecs(); 637 638 delta = T1 - T0; 639 sched->sum_runtime += delta; 640 sched->nr_runs++; 641 642 avg_delta = sched->sum_runtime / sched->nr_runs; 643 if (delta < avg_delta) 644 fluct = avg_delta - delta; 645 else 646 fluct = delta - avg_delta; 647 sched->sum_fluct += fluct; 648 if (!sched->run_avg) 649 sched->run_avg = delta; 650 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 651 652 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0); 653 654 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6); 655 656 printf("cpu: %0.2f / %0.2f", 657 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6); 658 659 #if 0 660 /* 661 * rusage statistics done by the parent, these are less 662 * accurate than the sched->sum_exec_runtime based statistics: 663 */ 664 printf(" [%0.2f / %0.2f]", 665 (double)sched->parent_cpu_usage/1e6, 666 (double)sched->runavg_parent_cpu_usage/1e6); 667 #endif 668 669 printf("\n"); 670 671 if (sched->nr_sleep_corrections) 672 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 673 sched->nr_sleep_corrections = 0; 674 } 675 676 static void test_calibrations(struct perf_sched *sched) 677 { 678 u64 T0, T1; 679 680 T0 = get_nsecs(); 681 burn_nsecs(sched, 1e6); 682 T1 = get_nsecs(); 683 684 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 685 686 T0 = get_nsecs(); 687 sleep_nsecs(1e6); 688 T1 = get_nsecs(); 689 690 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 691 } 692 693 static int 694 replay_wakeup_event(struct perf_sched *sched, 695 struct perf_evsel *evsel, struct perf_sample *sample, 696 struct machine *machine __maybe_unused) 697 { 698 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 699 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 700 struct task_desc *waker, *wakee; 701 702 if (verbose) { 703 printf("sched_wakeup event %p\n", evsel); 704 705 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 706 } 707 708 waker = register_pid(sched, sample->tid, "<unknown>"); 709 wakee = register_pid(sched, pid, comm); 710 711 add_sched_event_wakeup(sched, waker, sample->time, wakee); 712 return 0; 713 } 714 715 static int replay_switch_event(struct perf_sched *sched, 716 struct perf_evsel *evsel, 717 struct perf_sample *sample, 718 struct machine *machine __maybe_unused) 719 { 720 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 721 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 722 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 723 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 724 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 725 struct task_desc *prev, __maybe_unused *next; 726 u64 timestamp0, timestamp = sample->time; 727 int cpu = sample->cpu; 728 s64 delta; 729 730 if (verbose) 731 printf("sched_switch event %p\n", evsel); 732 733 if (cpu >= MAX_CPUS || cpu < 0) 734 return 0; 735 736 timestamp0 = sched->cpu_last_switched[cpu]; 737 if (timestamp0) 738 delta = timestamp - timestamp0; 739 else 740 delta = 0; 741 742 if (delta < 0) { 743 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 744 return -1; 745 } 746 747 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 748 prev_comm, prev_pid, next_comm, next_pid, delta); 749 750 prev = register_pid(sched, prev_pid, prev_comm); 751 next = register_pid(sched, next_pid, next_comm); 752 753 sched->cpu_last_switched[cpu] = timestamp; 754 755 add_sched_event_run(sched, prev, timestamp, delta); 756 add_sched_event_sleep(sched, prev, timestamp, prev_state); 757 758 return 0; 759 } 760 761 static int replay_fork_event(struct perf_sched *sched, 762 union perf_event *event, 763 struct machine *machine) 764 { 765 struct thread *child, *parent; 766 767 child = machine__findnew_thread(machine, event->fork.pid, 768 event->fork.tid); 769 parent = machine__findnew_thread(machine, event->fork.ppid, 770 event->fork.ptid); 771 772 if (child == NULL || parent == NULL) { 773 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 774 child, parent); 775 goto out_put; 776 } 777 778 if (verbose) { 779 printf("fork event\n"); 780 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 781 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 782 } 783 784 register_pid(sched, parent->tid, thread__comm_str(parent)); 785 register_pid(sched, child->tid, thread__comm_str(child)); 786 out_put: 787 thread__put(child); 788 thread__put(parent); 789 return 0; 790 } 791 792 struct sort_dimension { 793 const char *name; 794 sort_fn_t cmp; 795 struct list_head list; 796 }; 797 798 static int 799 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 800 { 801 struct sort_dimension *sort; 802 int ret = 0; 803 804 BUG_ON(list_empty(list)); 805 806 list_for_each_entry(sort, list, list) { 807 ret = sort->cmp(l, r); 808 if (ret) 809 return ret; 810 } 811 812 return ret; 813 } 814 815 static struct work_atoms * 816 thread_atoms_search(struct rb_root *root, struct thread *thread, 817 struct list_head *sort_list) 818 { 819 struct rb_node *node = root->rb_node; 820 struct work_atoms key = { .thread = thread }; 821 822 while (node) { 823 struct work_atoms *atoms; 824 int cmp; 825 826 atoms = container_of(node, struct work_atoms, node); 827 828 cmp = thread_lat_cmp(sort_list, &key, atoms); 829 if (cmp > 0) 830 node = node->rb_left; 831 else if (cmp < 0) 832 node = node->rb_right; 833 else { 834 BUG_ON(thread != atoms->thread); 835 return atoms; 836 } 837 } 838 return NULL; 839 } 840 841 static void 842 __thread_latency_insert(struct rb_root *root, struct work_atoms *data, 843 struct list_head *sort_list) 844 { 845 struct rb_node **new = &(root->rb_node), *parent = NULL; 846 847 while (*new) { 848 struct work_atoms *this; 849 int cmp; 850 851 this = container_of(*new, struct work_atoms, node); 852 parent = *new; 853 854 cmp = thread_lat_cmp(sort_list, data, this); 855 856 if (cmp > 0) 857 new = &((*new)->rb_left); 858 else 859 new = &((*new)->rb_right); 860 } 861 862 rb_link_node(&data->node, parent, new); 863 rb_insert_color(&data->node, root); 864 } 865 866 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 867 { 868 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 869 if (!atoms) { 870 pr_err("No memory at %s\n", __func__); 871 return -1; 872 } 873 874 atoms->thread = thread__get(thread); 875 INIT_LIST_HEAD(&atoms->work_list); 876 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 877 return 0; 878 } 879 880 static char sched_out_state(u64 prev_state) 881 { 882 const char *str = TASK_STATE_TO_CHAR_STR; 883 884 return str[prev_state]; 885 } 886 887 static int 888 add_sched_out_event(struct work_atoms *atoms, 889 char run_state, 890 u64 timestamp) 891 { 892 struct work_atom *atom = zalloc(sizeof(*atom)); 893 if (!atom) { 894 pr_err("Non memory at %s", __func__); 895 return -1; 896 } 897 898 atom->sched_out_time = timestamp; 899 900 if (run_state == 'R') { 901 atom->state = THREAD_WAIT_CPU; 902 atom->wake_up_time = atom->sched_out_time; 903 } 904 905 list_add_tail(&atom->list, &atoms->work_list); 906 return 0; 907 } 908 909 static void 910 add_runtime_event(struct work_atoms *atoms, u64 delta, 911 u64 timestamp __maybe_unused) 912 { 913 struct work_atom *atom; 914 915 BUG_ON(list_empty(&atoms->work_list)); 916 917 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 918 919 atom->runtime += delta; 920 atoms->total_runtime += delta; 921 } 922 923 static void 924 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 925 { 926 struct work_atom *atom; 927 u64 delta; 928 929 if (list_empty(&atoms->work_list)) 930 return; 931 932 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 933 934 if (atom->state != THREAD_WAIT_CPU) 935 return; 936 937 if (timestamp < atom->wake_up_time) { 938 atom->state = THREAD_IGNORE; 939 return; 940 } 941 942 atom->state = THREAD_SCHED_IN; 943 atom->sched_in_time = timestamp; 944 945 delta = atom->sched_in_time - atom->wake_up_time; 946 atoms->total_lat += delta; 947 if (delta > atoms->max_lat) { 948 atoms->max_lat = delta; 949 atoms->max_lat_at = timestamp; 950 } 951 atoms->nb_atoms++; 952 } 953 954 static int latency_switch_event(struct perf_sched *sched, 955 struct perf_evsel *evsel, 956 struct perf_sample *sample, 957 struct machine *machine) 958 { 959 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 960 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 961 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 962 struct work_atoms *out_events, *in_events; 963 struct thread *sched_out, *sched_in; 964 u64 timestamp0, timestamp = sample->time; 965 int cpu = sample->cpu, err = -1; 966 s64 delta; 967 968 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 969 970 timestamp0 = sched->cpu_last_switched[cpu]; 971 sched->cpu_last_switched[cpu] = timestamp; 972 if (timestamp0) 973 delta = timestamp - timestamp0; 974 else 975 delta = 0; 976 977 if (delta < 0) { 978 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 979 return -1; 980 } 981 982 sched_out = machine__findnew_thread(machine, -1, prev_pid); 983 sched_in = machine__findnew_thread(machine, -1, next_pid); 984 if (sched_out == NULL || sched_in == NULL) 985 goto out_put; 986 987 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 988 if (!out_events) { 989 if (thread_atoms_insert(sched, sched_out)) 990 goto out_put; 991 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 992 if (!out_events) { 993 pr_err("out-event: Internal tree error"); 994 goto out_put; 995 } 996 } 997 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 998 return -1; 999 1000 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1001 if (!in_events) { 1002 if (thread_atoms_insert(sched, sched_in)) 1003 goto out_put; 1004 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1005 if (!in_events) { 1006 pr_err("in-event: Internal tree error"); 1007 goto out_put; 1008 } 1009 /* 1010 * Take came in we have not heard about yet, 1011 * add in an initial atom in runnable state: 1012 */ 1013 if (add_sched_out_event(in_events, 'R', timestamp)) 1014 goto out_put; 1015 } 1016 add_sched_in_event(in_events, timestamp); 1017 err = 0; 1018 out_put: 1019 thread__put(sched_out); 1020 thread__put(sched_in); 1021 return err; 1022 } 1023 1024 static int latency_runtime_event(struct perf_sched *sched, 1025 struct perf_evsel *evsel, 1026 struct perf_sample *sample, 1027 struct machine *machine) 1028 { 1029 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1030 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 1031 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1032 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1033 u64 timestamp = sample->time; 1034 int cpu = sample->cpu, err = -1; 1035 1036 if (thread == NULL) 1037 return -1; 1038 1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1040 if (!atoms) { 1041 if (thread_atoms_insert(sched, thread)) 1042 goto out_put; 1043 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1044 if (!atoms) { 1045 pr_err("in-event: Internal tree error"); 1046 goto out_put; 1047 } 1048 if (add_sched_out_event(atoms, 'R', timestamp)) 1049 goto out_put; 1050 } 1051 1052 add_runtime_event(atoms, runtime, timestamp); 1053 err = 0; 1054 out_put: 1055 thread__put(thread); 1056 return err; 1057 } 1058 1059 static int latency_wakeup_event(struct perf_sched *sched, 1060 struct perf_evsel *evsel, 1061 struct perf_sample *sample, 1062 struct machine *machine) 1063 { 1064 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1065 struct work_atoms *atoms; 1066 struct work_atom *atom; 1067 struct thread *wakee; 1068 u64 timestamp = sample->time; 1069 int err = -1; 1070 1071 wakee = machine__findnew_thread(machine, -1, pid); 1072 if (wakee == NULL) 1073 return -1; 1074 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1075 if (!atoms) { 1076 if (thread_atoms_insert(sched, wakee)) 1077 goto out_put; 1078 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1079 if (!atoms) { 1080 pr_err("wakeup-event: Internal tree error"); 1081 goto out_put; 1082 } 1083 if (add_sched_out_event(atoms, 'S', timestamp)) 1084 goto out_put; 1085 } 1086 1087 BUG_ON(list_empty(&atoms->work_list)); 1088 1089 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1090 1091 /* 1092 * As we do not guarantee the wakeup event happens when 1093 * task is out of run queue, also may happen when task is 1094 * on run queue and wakeup only change ->state to TASK_RUNNING, 1095 * then we should not set the ->wake_up_time when wake up a 1096 * task which is on run queue. 1097 * 1098 * You WILL be missing events if you've recorded only 1099 * one CPU, or are only looking at only one, so don't 1100 * skip in this case. 1101 */ 1102 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1103 goto out_ok; 1104 1105 sched->nr_timestamps++; 1106 if (atom->sched_out_time > timestamp) { 1107 sched->nr_unordered_timestamps++; 1108 goto out_ok; 1109 } 1110 1111 atom->state = THREAD_WAIT_CPU; 1112 atom->wake_up_time = timestamp; 1113 out_ok: 1114 err = 0; 1115 out_put: 1116 thread__put(wakee); 1117 return err; 1118 } 1119 1120 static int latency_migrate_task_event(struct perf_sched *sched, 1121 struct perf_evsel *evsel, 1122 struct perf_sample *sample, 1123 struct machine *machine) 1124 { 1125 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1126 u64 timestamp = sample->time; 1127 struct work_atoms *atoms; 1128 struct work_atom *atom; 1129 struct thread *migrant; 1130 int err = -1; 1131 1132 /* 1133 * Only need to worry about migration when profiling one CPU. 1134 */ 1135 if (sched->profile_cpu == -1) 1136 return 0; 1137 1138 migrant = machine__findnew_thread(machine, -1, pid); 1139 if (migrant == NULL) 1140 return -1; 1141 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1142 if (!atoms) { 1143 if (thread_atoms_insert(sched, migrant)) 1144 goto out_put; 1145 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1146 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1147 if (!atoms) { 1148 pr_err("migration-event: Internal tree error"); 1149 goto out_put; 1150 } 1151 if (add_sched_out_event(atoms, 'R', timestamp)) 1152 goto out_put; 1153 } 1154 1155 BUG_ON(list_empty(&atoms->work_list)); 1156 1157 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1158 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1159 1160 sched->nr_timestamps++; 1161 1162 if (atom->sched_out_time > timestamp) 1163 sched->nr_unordered_timestamps++; 1164 err = 0; 1165 out_put: 1166 thread__put(migrant); 1167 return err; 1168 } 1169 1170 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1171 { 1172 int i; 1173 int ret; 1174 u64 avg; 1175 1176 if (!work_list->nb_atoms) 1177 return; 1178 /* 1179 * Ignore idle threads: 1180 */ 1181 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1182 return; 1183 1184 sched->all_runtime += work_list->total_runtime; 1185 sched->all_count += work_list->nb_atoms; 1186 1187 if (work_list->num_merged > 1) 1188 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1189 else 1190 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1191 1192 for (i = 0; i < 24 - ret; i++) 1193 printf(" "); 1194 1195 avg = work_list->total_lat / work_list->nb_atoms; 1196 1197 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n", 1198 (double)work_list->total_runtime / 1e6, 1199 work_list->nb_atoms, (double)avg / 1e6, 1200 (double)work_list->max_lat / 1e6, 1201 (double)work_list->max_lat_at / 1e9); 1202 } 1203 1204 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1205 { 1206 if (l->thread == r->thread) 1207 return 0; 1208 if (l->thread->tid < r->thread->tid) 1209 return -1; 1210 if (l->thread->tid > r->thread->tid) 1211 return 1; 1212 return (int)(l->thread - r->thread); 1213 } 1214 1215 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1216 { 1217 u64 avgl, avgr; 1218 1219 if (!l->nb_atoms) 1220 return -1; 1221 1222 if (!r->nb_atoms) 1223 return 1; 1224 1225 avgl = l->total_lat / l->nb_atoms; 1226 avgr = r->total_lat / r->nb_atoms; 1227 1228 if (avgl < avgr) 1229 return -1; 1230 if (avgl > avgr) 1231 return 1; 1232 1233 return 0; 1234 } 1235 1236 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1237 { 1238 if (l->max_lat < r->max_lat) 1239 return -1; 1240 if (l->max_lat > r->max_lat) 1241 return 1; 1242 1243 return 0; 1244 } 1245 1246 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1247 { 1248 if (l->nb_atoms < r->nb_atoms) 1249 return -1; 1250 if (l->nb_atoms > r->nb_atoms) 1251 return 1; 1252 1253 return 0; 1254 } 1255 1256 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1257 { 1258 if (l->total_runtime < r->total_runtime) 1259 return -1; 1260 if (l->total_runtime > r->total_runtime) 1261 return 1; 1262 1263 return 0; 1264 } 1265 1266 static int sort_dimension__add(const char *tok, struct list_head *list) 1267 { 1268 size_t i; 1269 static struct sort_dimension avg_sort_dimension = { 1270 .name = "avg", 1271 .cmp = avg_cmp, 1272 }; 1273 static struct sort_dimension max_sort_dimension = { 1274 .name = "max", 1275 .cmp = max_cmp, 1276 }; 1277 static struct sort_dimension pid_sort_dimension = { 1278 .name = "pid", 1279 .cmp = pid_cmp, 1280 }; 1281 static struct sort_dimension runtime_sort_dimension = { 1282 .name = "runtime", 1283 .cmp = runtime_cmp, 1284 }; 1285 static struct sort_dimension switch_sort_dimension = { 1286 .name = "switch", 1287 .cmp = switch_cmp, 1288 }; 1289 struct sort_dimension *available_sorts[] = { 1290 &pid_sort_dimension, 1291 &avg_sort_dimension, 1292 &max_sort_dimension, 1293 &switch_sort_dimension, 1294 &runtime_sort_dimension, 1295 }; 1296 1297 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1298 if (!strcmp(available_sorts[i]->name, tok)) { 1299 list_add_tail(&available_sorts[i]->list, list); 1300 1301 return 0; 1302 } 1303 } 1304 1305 return -1; 1306 } 1307 1308 static void perf_sched__sort_lat(struct perf_sched *sched) 1309 { 1310 struct rb_node *node; 1311 struct rb_root *root = &sched->atom_root; 1312 again: 1313 for (;;) { 1314 struct work_atoms *data; 1315 node = rb_first(root); 1316 if (!node) 1317 break; 1318 1319 rb_erase(node, root); 1320 data = rb_entry(node, struct work_atoms, node); 1321 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1322 } 1323 if (root == &sched->atom_root) { 1324 root = &sched->merged_atom_root; 1325 goto again; 1326 } 1327 } 1328 1329 static int process_sched_wakeup_event(struct perf_tool *tool, 1330 struct perf_evsel *evsel, 1331 struct perf_sample *sample, 1332 struct machine *machine) 1333 { 1334 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1335 1336 if (sched->tp_handler->wakeup_event) 1337 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1338 1339 return 0; 1340 } 1341 1342 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, 1343 struct perf_sample *sample, struct machine *machine) 1344 { 1345 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1346 struct thread *sched_in; 1347 int new_shortname; 1348 u64 timestamp0, timestamp = sample->time; 1349 s64 delta; 1350 int cpu, this_cpu = sample->cpu; 1351 1352 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1353 1354 if (this_cpu > sched->max_cpu) 1355 sched->max_cpu = this_cpu; 1356 1357 timestamp0 = sched->cpu_last_switched[this_cpu]; 1358 sched->cpu_last_switched[this_cpu] = timestamp; 1359 if (timestamp0) 1360 delta = timestamp - timestamp0; 1361 else 1362 delta = 0; 1363 1364 if (delta < 0) { 1365 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1366 return -1; 1367 } 1368 1369 sched_in = machine__findnew_thread(machine, -1, next_pid); 1370 if (sched_in == NULL) 1371 return -1; 1372 1373 sched->curr_thread[this_cpu] = thread__get(sched_in); 1374 1375 printf(" "); 1376 1377 new_shortname = 0; 1378 if (!sched_in->shortname[0]) { 1379 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1380 /* 1381 * Don't allocate a letter-number for swapper:0 1382 * as a shortname. Instead, we use '.' for it. 1383 */ 1384 sched_in->shortname[0] = '.'; 1385 sched_in->shortname[1] = ' '; 1386 } else { 1387 sched_in->shortname[0] = sched->next_shortname1; 1388 sched_in->shortname[1] = sched->next_shortname2; 1389 1390 if (sched->next_shortname1 < 'Z') { 1391 sched->next_shortname1++; 1392 } else { 1393 sched->next_shortname1 = 'A'; 1394 if (sched->next_shortname2 < '9') 1395 sched->next_shortname2++; 1396 else 1397 sched->next_shortname2 = '0'; 1398 } 1399 } 1400 new_shortname = 1; 1401 } 1402 1403 for (cpu = 0; cpu <= sched->max_cpu; cpu++) { 1404 if (cpu != this_cpu) 1405 printf(" "); 1406 else 1407 printf("*"); 1408 1409 if (sched->curr_thread[cpu]) 1410 printf("%2s ", sched->curr_thread[cpu]->shortname); 1411 else 1412 printf(" "); 1413 } 1414 1415 printf(" %12.6f secs ", (double)timestamp/1e9); 1416 if (new_shortname) { 1417 printf("%s => %s:%d\n", 1418 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); 1419 } else { 1420 printf("\n"); 1421 } 1422 1423 thread__put(sched_in); 1424 1425 return 0; 1426 } 1427 1428 static int process_sched_switch_event(struct perf_tool *tool, 1429 struct perf_evsel *evsel, 1430 struct perf_sample *sample, 1431 struct machine *machine) 1432 { 1433 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1434 int this_cpu = sample->cpu, err = 0; 1435 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1436 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1437 1438 if (sched->curr_pid[this_cpu] != (u32)-1) { 1439 /* 1440 * Are we trying to switch away a PID that is 1441 * not current? 1442 */ 1443 if (sched->curr_pid[this_cpu] != prev_pid) 1444 sched->nr_context_switch_bugs++; 1445 } 1446 1447 if (sched->tp_handler->switch_event) 1448 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1449 1450 sched->curr_pid[this_cpu] = next_pid; 1451 return err; 1452 } 1453 1454 static int process_sched_runtime_event(struct perf_tool *tool, 1455 struct perf_evsel *evsel, 1456 struct perf_sample *sample, 1457 struct machine *machine) 1458 { 1459 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1460 1461 if (sched->tp_handler->runtime_event) 1462 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1463 1464 return 0; 1465 } 1466 1467 static int perf_sched__process_fork_event(struct perf_tool *tool, 1468 union perf_event *event, 1469 struct perf_sample *sample, 1470 struct machine *machine) 1471 { 1472 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1473 1474 /* run the fork event through the perf machineruy */ 1475 perf_event__process_fork(tool, event, sample, machine); 1476 1477 /* and then run additional processing needed for this command */ 1478 if (sched->tp_handler->fork_event) 1479 return sched->tp_handler->fork_event(sched, event, machine); 1480 1481 return 0; 1482 } 1483 1484 static int process_sched_migrate_task_event(struct perf_tool *tool, 1485 struct perf_evsel *evsel, 1486 struct perf_sample *sample, 1487 struct machine *machine) 1488 { 1489 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1490 1491 if (sched->tp_handler->migrate_task_event) 1492 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1493 1494 return 0; 1495 } 1496 1497 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1498 struct perf_evsel *evsel, 1499 struct perf_sample *sample, 1500 struct machine *machine); 1501 1502 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1503 union perf_event *event __maybe_unused, 1504 struct perf_sample *sample, 1505 struct perf_evsel *evsel, 1506 struct machine *machine) 1507 { 1508 int err = 0; 1509 1510 if (evsel->handler != NULL) { 1511 tracepoint_handler f = evsel->handler; 1512 err = f(tool, evsel, sample, machine); 1513 } 1514 1515 return err; 1516 } 1517 1518 static int perf_sched__read_events(struct perf_sched *sched) 1519 { 1520 const struct perf_evsel_str_handler handlers[] = { 1521 { "sched:sched_switch", process_sched_switch_event, }, 1522 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1523 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1524 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1525 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1526 }; 1527 struct perf_session *session; 1528 struct perf_data_file file = { 1529 .path = input_name, 1530 .mode = PERF_DATA_MODE_READ, 1531 .force = sched->force, 1532 }; 1533 int rc = -1; 1534 1535 session = perf_session__new(&file, false, &sched->tool); 1536 if (session == NULL) { 1537 pr_debug("No Memory for session\n"); 1538 return -1; 1539 } 1540 1541 symbol__init(&session->header.env); 1542 1543 if (perf_session__set_tracepoints_handlers(session, handlers)) 1544 goto out_delete; 1545 1546 if (perf_session__has_traces(session, "record -R")) { 1547 int err = perf_session__process_events(session); 1548 if (err) { 1549 pr_err("Failed to process events, error %d", err); 1550 goto out_delete; 1551 } 1552 1553 sched->nr_events = session->evlist->stats.nr_events[0]; 1554 sched->nr_lost_events = session->evlist->stats.total_lost; 1555 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1556 } 1557 1558 rc = 0; 1559 out_delete: 1560 perf_session__delete(session); 1561 return rc; 1562 } 1563 1564 static void print_bad_events(struct perf_sched *sched) 1565 { 1566 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 1567 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 1568 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 1569 sched->nr_unordered_timestamps, sched->nr_timestamps); 1570 } 1571 if (sched->nr_lost_events && sched->nr_events) { 1572 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 1573 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 1574 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 1575 } 1576 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 1577 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 1578 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 1579 sched->nr_context_switch_bugs, sched->nr_timestamps); 1580 if (sched->nr_lost_events) 1581 printf(" (due to lost events?)"); 1582 printf("\n"); 1583 } 1584 } 1585 1586 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data) 1587 { 1588 struct rb_node **new = &(root->rb_node), *parent = NULL; 1589 struct work_atoms *this; 1590 const char *comm = thread__comm_str(data->thread), *this_comm; 1591 1592 while (*new) { 1593 int cmp; 1594 1595 this = container_of(*new, struct work_atoms, node); 1596 parent = *new; 1597 1598 this_comm = thread__comm_str(this->thread); 1599 cmp = strcmp(comm, this_comm); 1600 if (cmp > 0) { 1601 new = &((*new)->rb_left); 1602 } else if (cmp < 0) { 1603 new = &((*new)->rb_right); 1604 } else { 1605 this->num_merged++; 1606 this->total_runtime += data->total_runtime; 1607 this->nb_atoms += data->nb_atoms; 1608 this->total_lat += data->total_lat; 1609 list_splice(&data->work_list, &this->work_list); 1610 if (this->max_lat < data->max_lat) { 1611 this->max_lat = data->max_lat; 1612 this->max_lat_at = data->max_lat_at; 1613 } 1614 zfree(&data); 1615 return; 1616 } 1617 } 1618 1619 data->num_merged++; 1620 rb_link_node(&data->node, parent, new); 1621 rb_insert_color(&data->node, root); 1622 } 1623 1624 static void perf_sched__merge_lat(struct perf_sched *sched) 1625 { 1626 struct work_atoms *data; 1627 struct rb_node *node; 1628 1629 if (sched->skip_merge) 1630 return; 1631 1632 while ((node = rb_first(&sched->atom_root))) { 1633 rb_erase(node, &sched->atom_root); 1634 data = rb_entry(node, struct work_atoms, node); 1635 __merge_work_atoms(&sched->merged_atom_root, data); 1636 } 1637 } 1638 1639 static int perf_sched__lat(struct perf_sched *sched) 1640 { 1641 struct rb_node *next; 1642 1643 setup_pager(); 1644 1645 if (perf_sched__read_events(sched)) 1646 return -1; 1647 1648 perf_sched__merge_lat(sched); 1649 perf_sched__sort_lat(sched); 1650 1651 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 1652 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 1653 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1654 1655 next = rb_first(&sched->sorted_atom_root); 1656 1657 while (next) { 1658 struct work_atoms *work_list; 1659 1660 work_list = rb_entry(next, struct work_atoms, node); 1661 output_lat_thread(sched, work_list); 1662 next = rb_next(next); 1663 thread__zput(work_list->thread); 1664 } 1665 1666 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1667 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 1668 (double)sched->all_runtime / 1e6, sched->all_count); 1669 1670 printf(" ---------------------------------------------------\n"); 1671 1672 print_bad_events(sched); 1673 printf("\n"); 1674 1675 return 0; 1676 } 1677 1678 static int perf_sched__map(struct perf_sched *sched) 1679 { 1680 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 1681 1682 setup_pager(); 1683 if (perf_sched__read_events(sched)) 1684 return -1; 1685 print_bad_events(sched); 1686 return 0; 1687 } 1688 1689 static int perf_sched__replay(struct perf_sched *sched) 1690 { 1691 unsigned long i; 1692 1693 calibrate_run_measurement_overhead(sched); 1694 calibrate_sleep_measurement_overhead(sched); 1695 1696 test_calibrations(sched); 1697 1698 if (perf_sched__read_events(sched)) 1699 return -1; 1700 1701 printf("nr_run_events: %ld\n", sched->nr_run_events); 1702 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 1703 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 1704 1705 if (sched->targetless_wakeups) 1706 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 1707 if (sched->multitarget_wakeups) 1708 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 1709 if (sched->nr_run_events_optimized) 1710 printf("run atoms optimized: %ld\n", 1711 sched->nr_run_events_optimized); 1712 1713 print_task_traces(sched); 1714 add_cross_task_wakeups(sched); 1715 1716 create_tasks(sched); 1717 printf("------------------------------------------------------------\n"); 1718 for (i = 0; i < sched->replay_repeat; i++) 1719 run_one_test(sched); 1720 1721 return 0; 1722 } 1723 1724 static void setup_sorting(struct perf_sched *sched, const struct option *options, 1725 const char * const usage_msg[]) 1726 { 1727 char *tmp, *tok, *str = strdup(sched->sort_order); 1728 1729 for (tok = strtok_r(str, ", ", &tmp); 1730 tok; tok = strtok_r(NULL, ", ", &tmp)) { 1731 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 1732 usage_with_options_msg(usage_msg, options, 1733 "Unknown --sort key: `%s'", tok); 1734 } 1735 } 1736 1737 free(str); 1738 1739 sort_dimension__add("pid", &sched->cmp_pid); 1740 } 1741 1742 static int __cmd_record(int argc, const char **argv) 1743 { 1744 unsigned int rec_argc, i, j; 1745 const char **rec_argv; 1746 const char * const record_args[] = { 1747 "record", 1748 "-a", 1749 "-R", 1750 "-m", "1024", 1751 "-c", "1", 1752 "-e", "sched:sched_switch", 1753 "-e", "sched:sched_stat_wait", 1754 "-e", "sched:sched_stat_sleep", 1755 "-e", "sched:sched_stat_iowait", 1756 "-e", "sched:sched_stat_runtime", 1757 "-e", "sched:sched_process_fork", 1758 "-e", "sched:sched_wakeup", 1759 "-e", "sched:sched_wakeup_new", 1760 "-e", "sched:sched_migrate_task", 1761 }; 1762 1763 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 1764 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1765 1766 if (rec_argv == NULL) 1767 return -ENOMEM; 1768 1769 for (i = 0; i < ARRAY_SIZE(record_args); i++) 1770 rec_argv[i] = strdup(record_args[i]); 1771 1772 for (j = 1; j < (unsigned int)argc; j++, i++) 1773 rec_argv[i] = argv[j]; 1774 1775 BUG_ON(i != rec_argc); 1776 1777 return cmd_record(i, rec_argv, NULL); 1778 } 1779 1780 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused) 1781 { 1782 const char default_sort_order[] = "avg, max, switch, runtime"; 1783 struct perf_sched sched = { 1784 .tool = { 1785 .sample = perf_sched__process_tracepoint_sample, 1786 .comm = perf_event__process_comm, 1787 .lost = perf_event__process_lost, 1788 .fork = perf_sched__process_fork_event, 1789 .ordered_events = true, 1790 }, 1791 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 1792 .sort_list = LIST_HEAD_INIT(sched.sort_list), 1793 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 1794 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 1795 .sort_order = default_sort_order, 1796 .replay_repeat = 10, 1797 .profile_cpu = -1, 1798 .next_shortname1 = 'A', 1799 .next_shortname2 = '0', 1800 .skip_merge = 0, 1801 }; 1802 const struct option latency_options[] = { 1803 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 1804 "sort by key(s): runtime, switch, avg, max"), 1805 OPT_INCR('v', "verbose", &verbose, 1806 "be more verbose (show symbol address, etc)"), 1807 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 1808 "CPU to profile on"), 1809 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1810 "dump raw trace in ASCII"), 1811 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 1812 "latency stats per pid instead of per comm"), 1813 OPT_END() 1814 }; 1815 const struct option replay_options[] = { 1816 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 1817 "repeat the workload replay N times (-1: infinite)"), 1818 OPT_INCR('v', "verbose", &verbose, 1819 "be more verbose (show symbol address, etc)"), 1820 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1821 "dump raw trace in ASCII"), 1822 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 1823 OPT_END() 1824 }; 1825 const struct option sched_options[] = { 1826 OPT_STRING('i', "input", &input_name, "file", 1827 "input file name"), 1828 OPT_INCR('v', "verbose", &verbose, 1829 "be more verbose (show symbol address, etc)"), 1830 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1831 "dump raw trace in ASCII"), 1832 OPT_END() 1833 }; 1834 const char * const latency_usage[] = { 1835 "perf sched latency [<options>]", 1836 NULL 1837 }; 1838 const char * const replay_usage[] = { 1839 "perf sched replay [<options>]", 1840 NULL 1841 }; 1842 const char *const sched_subcommands[] = { "record", "latency", "map", 1843 "replay", "script", NULL }; 1844 const char *sched_usage[] = { 1845 NULL, 1846 NULL 1847 }; 1848 struct trace_sched_handler lat_ops = { 1849 .wakeup_event = latency_wakeup_event, 1850 .switch_event = latency_switch_event, 1851 .runtime_event = latency_runtime_event, 1852 .migrate_task_event = latency_migrate_task_event, 1853 }; 1854 struct trace_sched_handler map_ops = { 1855 .switch_event = map_switch_event, 1856 }; 1857 struct trace_sched_handler replay_ops = { 1858 .wakeup_event = replay_wakeup_event, 1859 .switch_event = replay_switch_event, 1860 .fork_event = replay_fork_event, 1861 }; 1862 unsigned int i; 1863 1864 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 1865 sched.curr_pid[i] = -1; 1866 1867 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 1868 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 1869 if (!argc) 1870 usage_with_options(sched_usage, sched_options); 1871 1872 /* 1873 * Aliased to 'perf script' for now: 1874 */ 1875 if (!strcmp(argv[0], "script")) 1876 return cmd_script(argc, argv, prefix); 1877 1878 if (!strncmp(argv[0], "rec", 3)) { 1879 return __cmd_record(argc, argv); 1880 } else if (!strncmp(argv[0], "lat", 3)) { 1881 sched.tp_handler = &lat_ops; 1882 if (argc > 1) { 1883 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 1884 if (argc) 1885 usage_with_options(latency_usage, latency_options); 1886 } 1887 setup_sorting(&sched, latency_options, latency_usage); 1888 return perf_sched__lat(&sched); 1889 } else if (!strcmp(argv[0], "map")) { 1890 sched.tp_handler = &map_ops; 1891 setup_sorting(&sched, latency_options, latency_usage); 1892 return perf_sched__map(&sched); 1893 } else if (!strncmp(argv[0], "rep", 3)) { 1894 sched.tp_handler = &replay_ops; 1895 if (argc) { 1896 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 1897 if (argc) 1898 usage_with_options(replay_usage, replay_options); 1899 } 1900 return perf_sched__replay(&sched); 1901 } else { 1902 usage_with_options(sched_usage, sched_options); 1903 } 1904 1905 return 0; 1906 } 1907