xref: /openbmc/linux/tools/perf/builtin-sched.c (revision 86bee12f)
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 
17 #include <subcmd/parse-options.h>
18 #include "util/trace-event.h"
19 
20 #include "util/debug.h"
21 
22 #include <sys/prctl.h>
23 #include <sys/resource.h>
24 
25 #include <semaphore.h>
26 #include <pthread.h>
27 #include <math.h>
28 #include <api/fs/fs.h>
29 
30 #define PR_SET_NAME		15               /* Set process name */
31 #define MAX_CPUS		4096
32 #define COMM_LEN		20
33 #define SYM_LEN			129
34 #define MAX_PID			1024000
35 
36 struct sched_atom;
37 
38 struct task_desc {
39 	unsigned long		nr;
40 	unsigned long		pid;
41 	char			comm[COMM_LEN];
42 
43 	unsigned long		nr_events;
44 	unsigned long		curr_event;
45 	struct sched_atom	**atoms;
46 
47 	pthread_t		thread;
48 	sem_t			sleep_sem;
49 
50 	sem_t			ready_for_work;
51 	sem_t			work_done_sem;
52 
53 	u64			cpu_usage;
54 };
55 
56 enum sched_event_type {
57 	SCHED_EVENT_RUN,
58 	SCHED_EVENT_SLEEP,
59 	SCHED_EVENT_WAKEUP,
60 	SCHED_EVENT_MIGRATION,
61 };
62 
63 struct sched_atom {
64 	enum sched_event_type	type;
65 	int			specific_wait;
66 	u64			timestamp;
67 	u64			duration;
68 	unsigned long		nr;
69 	sem_t			*wait_sem;
70 	struct task_desc	*wakee;
71 };
72 
73 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
74 
75 enum thread_state {
76 	THREAD_SLEEPING = 0,
77 	THREAD_WAIT_CPU,
78 	THREAD_SCHED_IN,
79 	THREAD_IGNORE
80 };
81 
82 struct work_atom {
83 	struct list_head	list;
84 	enum thread_state	state;
85 	u64			sched_out_time;
86 	u64			wake_up_time;
87 	u64			sched_in_time;
88 	u64			runtime;
89 };
90 
91 struct work_atoms {
92 	struct list_head	work_list;
93 	struct thread		*thread;
94 	struct rb_node		node;
95 	u64			max_lat;
96 	u64			max_lat_at;
97 	u64			total_lat;
98 	u64			nb_atoms;
99 	u64			total_runtime;
100 	int			num_merged;
101 };
102 
103 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
104 
105 struct perf_sched;
106 
107 struct trace_sched_handler {
108 	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
109 			    struct perf_sample *sample, struct machine *machine);
110 
111 	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
112 			     struct perf_sample *sample, struct machine *machine);
113 
114 	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
115 			    struct perf_sample *sample, struct machine *machine);
116 
117 	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
118 	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
119 			  struct machine *machine);
120 
121 	int (*migrate_task_event)(struct perf_sched *sched,
122 				  struct perf_evsel *evsel,
123 				  struct perf_sample *sample,
124 				  struct machine *machine);
125 };
126 
127 #define COLOR_PIDS PERF_COLOR_BLUE
128 #define COLOR_CPUS PERF_COLOR_BG_RED
129 
130 struct perf_sched_map {
131 	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
132 	int			*comp_cpus;
133 	bool			 comp;
134 	struct thread_map	*color_pids;
135 	const char		*color_pids_str;
136 	struct cpu_map		*color_cpus;
137 	const char		*color_cpus_str;
138 	struct cpu_map		*cpus;
139 	const char		*cpus_str;
140 };
141 
142 struct perf_sched {
143 	struct perf_tool tool;
144 	const char	 *sort_order;
145 	unsigned long	 nr_tasks;
146 	struct task_desc **pid_to_task;
147 	struct task_desc **tasks;
148 	const struct trace_sched_handler *tp_handler;
149 	pthread_mutex_t	 start_work_mutex;
150 	pthread_mutex_t	 work_done_wait_mutex;
151 	int		 profile_cpu;
152 /*
153  * Track the current task - that way we can know whether there's any
154  * weird events, such as a task being switched away that is not current.
155  */
156 	int		 max_cpu;
157 	u32		 curr_pid[MAX_CPUS];
158 	struct thread	 *curr_thread[MAX_CPUS];
159 	char		 next_shortname1;
160 	char		 next_shortname2;
161 	unsigned int	 replay_repeat;
162 	unsigned long	 nr_run_events;
163 	unsigned long	 nr_sleep_events;
164 	unsigned long	 nr_wakeup_events;
165 	unsigned long	 nr_sleep_corrections;
166 	unsigned long	 nr_run_events_optimized;
167 	unsigned long	 targetless_wakeups;
168 	unsigned long	 multitarget_wakeups;
169 	unsigned long	 nr_runs;
170 	unsigned long	 nr_timestamps;
171 	unsigned long	 nr_unordered_timestamps;
172 	unsigned long	 nr_context_switch_bugs;
173 	unsigned long	 nr_events;
174 	unsigned long	 nr_lost_chunks;
175 	unsigned long	 nr_lost_events;
176 	u64		 run_measurement_overhead;
177 	u64		 sleep_measurement_overhead;
178 	u64		 start_time;
179 	u64		 cpu_usage;
180 	u64		 runavg_cpu_usage;
181 	u64		 parent_cpu_usage;
182 	u64		 runavg_parent_cpu_usage;
183 	u64		 sum_runtime;
184 	u64		 sum_fluct;
185 	u64		 run_avg;
186 	u64		 all_runtime;
187 	u64		 all_count;
188 	u64		 cpu_last_switched[MAX_CPUS];
189 	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
190 	struct list_head sort_list, cmp_pid;
191 	bool force;
192 	bool skip_merge;
193 	struct perf_sched_map map;
194 };
195 
196 static u64 get_nsecs(void)
197 {
198 	struct timespec ts;
199 
200 	clock_gettime(CLOCK_MONOTONIC, &ts);
201 
202 	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
203 }
204 
205 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
206 {
207 	u64 T0 = get_nsecs(), T1;
208 
209 	do {
210 		T1 = get_nsecs();
211 	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
212 }
213 
214 static void sleep_nsecs(u64 nsecs)
215 {
216 	struct timespec ts;
217 
218 	ts.tv_nsec = nsecs % 999999999;
219 	ts.tv_sec = nsecs / 999999999;
220 
221 	nanosleep(&ts, NULL);
222 }
223 
224 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
225 {
226 	u64 T0, T1, delta, min_delta = 1000000000ULL;
227 	int i;
228 
229 	for (i = 0; i < 10; i++) {
230 		T0 = get_nsecs();
231 		burn_nsecs(sched, 0);
232 		T1 = get_nsecs();
233 		delta = T1-T0;
234 		min_delta = min(min_delta, delta);
235 	}
236 	sched->run_measurement_overhead = min_delta;
237 
238 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
239 }
240 
241 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
242 {
243 	u64 T0, T1, delta, min_delta = 1000000000ULL;
244 	int i;
245 
246 	for (i = 0; i < 10; i++) {
247 		T0 = get_nsecs();
248 		sleep_nsecs(10000);
249 		T1 = get_nsecs();
250 		delta = T1-T0;
251 		min_delta = min(min_delta, delta);
252 	}
253 	min_delta -= 10000;
254 	sched->sleep_measurement_overhead = min_delta;
255 
256 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
257 }
258 
259 static struct sched_atom *
260 get_new_event(struct task_desc *task, u64 timestamp)
261 {
262 	struct sched_atom *event = zalloc(sizeof(*event));
263 	unsigned long idx = task->nr_events;
264 	size_t size;
265 
266 	event->timestamp = timestamp;
267 	event->nr = idx;
268 
269 	task->nr_events++;
270 	size = sizeof(struct sched_atom *) * task->nr_events;
271 	task->atoms = realloc(task->atoms, size);
272 	BUG_ON(!task->atoms);
273 
274 	task->atoms[idx] = event;
275 
276 	return event;
277 }
278 
279 static struct sched_atom *last_event(struct task_desc *task)
280 {
281 	if (!task->nr_events)
282 		return NULL;
283 
284 	return task->atoms[task->nr_events - 1];
285 }
286 
287 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
288 				u64 timestamp, u64 duration)
289 {
290 	struct sched_atom *event, *curr_event = last_event(task);
291 
292 	/*
293 	 * optimize an existing RUN event by merging this one
294 	 * to it:
295 	 */
296 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
297 		sched->nr_run_events_optimized++;
298 		curr_event->duration += duration;
299 		return;
300 	}
301 
302 	event = get_new_event(task, timestamp);
303 
304 	event->type = SCHED_EVENT_RUN;
305 	event->duration = duration;
306 
307 	sched->nr_run_events++;
308 }
309 
310 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
311 				   u64 timestamp, struct task_desc *wakee)
312 {
313 	struct sched_atom *event, *wakee_event;
314 
315 	event = get_new_event(task, timestamp);
316 	event->type = SCHED_EVENT_WAKEUP;
317 	event->wakee = wakee;
318 
319 	wakee_event = last_event(wakee);
320 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
321 		sched->targetless_wakeups++;
322 		return;
323 	}
324 	if (wakee_event->wait_sem) {
325 		sched->multitarget_wakeups++;
326 		return;
327 	}
328 
329 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
330 	sem_init(wakee_event->wait_sem, 0, 0);
331 	wakee_event->specific_wait = 1;
332 	event->wait_sem = wakee_event->wait_sem;
333 
334 	sched->nr_wakeup_events++;
335 }
336 
337 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
338 				  u64 timestamp, u64 task_state __maybe_unused)
339 {
340 	struct sched_atom *event = get_new_event(task, timestamp);
341 
342 	event->type = SCHED_EVENT_SLEEP;
343 
344 	sched->nr_sleep_events++;
345 }
346 
347 static struct task_desc *register_pid(struct perf_sched *sched,
348 				      unsigned long pid, const char *comm)
349 {
350 	struct task_desc *task;
351 	static int pid_max;
352 
353 	if (sched->pid_to_task == NULL) {
354 		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
355 			pid_max = MAX_PID;
356 		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
357 	}
358 	if (pid >= (unsigned long)pid_max) {
359 		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
360 			sizeof(struct task_desc *))) == NULL);
361 		while (pid >= (unsigned long)pid_max)
362 			sched->pid_to_task[pid_max++] = NULL;
363 	}
364 
365 	task = sched->pid_to_task[pid];
366 
367 	if (task)
368 		return task;
369 
370 	task = zalloc(sizeof(*task));
371 	task->pid = pid;
372 	task->nr = sched->nr_tasks;
373 	strcpy(task->comm, comm);
374 	/*
375 	 * every task starts in sleeping state - this gets ignored
376 	 * if there's no wakeup pointing to this sleep state:
377 	 */
378 	add_sched_event_sleep(sched, task, 0, 0);
379 
380 	sched->pid_to_task[pid] = task;
381 	sched->nr_tasks++;
382 	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
383 	BUG_ON(!sched->tasks);
384 	sched->tasks[task->nr] = task;
385 
386 	if (verbose)
387 		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
388 
389 	return task;
390 }
391 
392 
393 static void print_task_traces(struct perf_sched *sched)
394 {
395 	struct task_desc *task;
396 	unsigned long i;
397 
398 	for (i = 0; i < sched->nr_tasks; i++) {
399 		task = sched->tasks[i];
400 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
401 			task->nr, task->comm, task->pid, task->nr_events);
402 	}
403 }
404 
405 static void add_cross_task_wakeups(struct perf_sched *sched)
406 {
407 	struct task_desc *task1, *task2;
408 	unsigned long i, j;
409 
410 	for (i = 0; i < sched->nr_tasks; i++) {
411 		task1 = sched->tasks[i];
412 		j = i + 1;
413 		if (j == sched->nr_tasks)
414 			j = 0;
415 		task2 = sched->tasks[j];
416 		add_sched_event_wakeup(sched, task1, 0, task2);
417 	}
418 }
419 
420 static void perf_sched__process_event(struct perf_sched *sched,
421 				      struct sched_atom *atom)
422 {
423 	int ret = 0;
424 
425 	switch (atom->type) {
426 		case SCHED_EVENT_RUN:
427 			burn_nsecs(sched, atom->duration);
428 			break;
429 		case SCHED_EVENT_SLEEP:
430 			if (atom->wait_sem)
431 				ret = sem_wait(atom->wait_sem);
432 			BUG_ON(ret);
433 			break;
434 		case SCHED_EVENT_WAKEUP:
435 			if (atom->wait_sem)
436 				ret = sem_post(atom->wait_sem);
437 			BUG_ON(ret);
438 			break;
439 		case SCHED_EVENT_MIGRATION:
440 			break;
441 		default:
442 			BUG_ON(1);
443 	}
444 }
445 
446 static u64 get_cpu_usage_nsec_parent(void)
447 {
448 	struct rusage ru;
449 	u64 sum;
450 	int err;
451 
452 	err = getrusage(RUSAGE_SELF, &ru);
453 	BUG_ON(err);
454 
455 	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
456 	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
457 
458 	return sum;
459 }
460 
461 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
462 {
463 	struct perf_event_attr attr;
464 	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
465 	int fd;
466 	struct rlimit limit;
467 	bool need_privilege = false;
468 
469 	memset(&attr, 0, sizeof(attr));
470 
471 	attr.type = PERF_TYPE_SOFTWARE;
472 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
473 
474 force_again:
475 	fd = sys_perf_event_open(&attr, 0, -1, -1,
476 				 perf_event_open_cloexec_flag());
477 
478 	if (fd < 0) {
479 		if (errno == EMFILE) {
480 			if (sched->force) {
481 				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
482 				limit.rlim_cur += sched->nr_tasks - cur_task;
483 				if (limit.rlim_cur > limit.rlim_max) {
484 					limit.rlim_max = limit.rlim_cur;
485 					need_privilege = true;
486 				}
487 				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
488 					if (need_privilege && errno == EPERM)
489 						strcpy(info, "Need privilege\n");
490 				} else
491 					goto force_again;
492 			} else
493 				strcpy(info, "Have a try with -f option\n");
494 		}
495 		pr_err("Error: sys_perf_event_open() syscall returned "
496 		       "with %d (%s)\n%s", fd,
497 		       strerror_r(errno, sbuf, sizeof(sbuf)), info);
498 		exit(EXIT_FAILURE);
499 	}
500 	return fd;
501 }
502 
503 static u64 get_cpu_usage_nsec_self(int fd)
504 {
505 	u64 runtime;
506 	int ret;
507 
508 	ret = read(fd, &runtime, sizeof(runtime));
509 	BUG_ON(ret != sizeof(runtime));
510 
511 	return runtime;
512 }
513 
514 struct sched_thread_parms {
515 	struct task_desc  *task;
516 	struct perf_sched *sched;
517 	int fd;
518 };
519 
520 static void *thread_func(void *ctx)
521 {
522 	struct sched_thread_parms *parms = ctx;
523 	struct task_desc *this_task = parms->task;
524 	struct perf_sched *sched = parms->sched;
525 	u64 cpu_usage_0, cpu_usage_1;
526 	unsigned long i, ret;
527 	char comm2[22];
528 	int fd = parms->fd;
529 
530 	zfree(&parms);
531 
532 	sprintf(comm2, ":%s", this_task->comm);
533 	prctl(PR_SET_NAME, comm2);
534 	if (fd < 0)
535 		return NULL;
536 again:
537 	ret = sem_post(&this_task->ready_for_work);
538 	BUG_ON(ret);
539 	ret = pthread_mutex_lock(&sched->start_work_mutex);
540 	BUG_ON(ret);
541 	ret = pthread_mutex_unlock(&sched->start_work_mutex);
542 	BUG_ON(ret);
543 
544 	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
545 
546 	for (i = 0; i < this_task->nr_events; i++) {
547 		this_task->curr_event = i;
548 		perf_sched__process_event(sched, this_task->atoms[i]);
549 	}
550 
551 	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
552 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
553 	ret = sem_post(&this_task->work_done_sem);
554 	BUG_ON(ret);
555 
556 	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
557 	BUG_ON(ret);
558 	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
559 	BUG_ON(ret);
560 
561 	goto again;
562 }
563 
564 static void create_tasks(struct perf_sched *sched)
565 {
566 	struct task_desc *task;
567 	pthread_attr_t attr;
568 	unsigned long i;
569 	int err;
570 
571 	err = pthread_attr_init(&attr);
572 	BUG_ON(err);
573 	err = pthread_attr_setstacksize(&attr,
574 			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
575 	BUG_ON(err);
576 	err = pthread_mutex_lock(&sched->start_work_mutex);
577 	BUG_ON(err);
578 	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
579 	BUG_ON(err);
580 	for (i = 0; i < sched->nr_tasks; i++) {
581 		struct sched_thread_parms *parms = malloc(sizeof(*parms));
582 		BUG_ON(parms == NULL);
583 		parms->task = task = sched->tasks[i];
584 		parms->sched = sched;
585 		parms->fd = self_open_counters(sched, i);
586 		sem_init(&task->sleep_sem, 0, 0);
587 		sem_init(&task->ready_for_work, 0, 0);
588 		sem_init(&task->work_done_sem, 0, 0);
589 		task->curr_event = 0;
590 		err = pthread_create(&task->thread, &attr, thread_func, parms);
591 		BUG_ON(err);
592 	}
593 }
594 
595 static void wait_for_tasks(struct perf_sched *sched)
596 {
597 	u64 cpu_usage_0, cpu_usage_1;
598 	struct task_desc *task;
599 	unsigned long i, ret;
600 
601 	sched->start_time = get_nsecs();
602 	sched->cpu_usage = 0;
603 	pthread_mutex_unlock(&sched->work_done_wait_mutex);
604 
605 	for (i = 0; i < sched->nr_tasks; i++) {
606 		task = sched->tasks[i];
607 		ret = sem_wait(&task->ready_for_work);
608 		BUG_ON(ret);
609 		sem_init(&task->ready_for_work, 0, 0);
610 	}
611 	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
612 	BUG_ON(ret);
613 
614 	cpu_usage_0 = get_cpu_usage_nsec_parent();
615 
616 	pthread_mutex_unlock(&sched->start_work_mutex);
617 
618 	for (i = 0; i < sched->nr_tasks; i++) {
619 		task = sched->tasks[i];
620 		ret = sem_wait(&task->work_done_sem);
621 		BUG_ON(ret);
622 		sem_init(&task->work_done_sem, 0, 0);
623 		sched->cpu_usage += task->cpu_usage;
624 		task->cpu_usage = 0;
625 	}
626 
627 	cpu_usage_1 = get_cpu_usage_nsec_parent();
628 	if (!sched->runavg_cpu_usage)
629 		sched->runavg_cpu_usage = sched->cpu_usage;
630 	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
631 
632 	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
633 	if (!sched->runavg_parent_cpu_usage)
634 		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
635 	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
636 					 sched->parent_cpu_usage)/sched->replay_repeat;
637 
638 	ret = pthread_mutex_lock(&sched->start_work_mutex);
639 	BUG_ON(ret);
640 
641 	for (i = 0; i < sched->nr_tasks; i++) {
642 		task = sched->tasks[i];
643 		sem_init(&task->sleep_sem, 0, 0);
644 		task->curr_event = 0;
645 	}
646 }
647 
648 static void run_one_test(struct perf_sched *sched)
649 {
650 	u64 T0, T1, delta, avg_delta, fluct;
651 
652 	T0 = get_nsecs();
653 	wait_for_tasks(sched);
654 	T1 = get_nsecs();
655 
656 	delta = T1 - T0;
657 	sched->sum_runtime += delta;
658 	sched->nr_runs++;
659 
660 	avg_delta = sched->sum_runtime / sched->nr_runs;
661 	if (delta < avg_delta)
662 		fluct = avg_delta - delta;
663 	else
664 		fluct = delta - avg_delta;
665 	sched->sum_fluct += fluct;
666 	if (!sched->run_avg)
667 		sched->run_avg = delta;
668 	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
669 
670 	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
671 
672 	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
673 
674 	printf("cpu: %0.2f / %0.2f",
675 		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
676 
677 #if 0
678 	/*
679 	 * rusage statistics done by the parent, these are less
680 	 * accurate than the sched->sum_exec_runtime based statistics:
681 	 */
682 	printf(" [%0.2f / %0.2f]",
683 		(double)sched->parent_cpu_usage/1e6,
684 		(double)sched->runavg_parent_cpu_usage/1e6);
685 #endif
686 
687 	printf("\n");
688 
689 	if (sched->nr_sleep_corrections)
690 		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
691 	sched->nr_sleep_corrections = 0;
692 }
693 
694 static void test_calibrations(struct perf_sched *sched)
695 {
696 	u64 T0, T1;
697 
698 	T0 = get_nsecs();
699 	burn_nsecs(sched, 1e6);
700 	T1 = get_nsecs();
701 
702 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
703 
704 	T0 = get_nsecs();
705 	sleep_nsecs(1e6);
706 	T1 = get_nsecs();
707 
708 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
709 }
710 
711 static int
712 replay_wakeup_event(struct perf_sched *sched,
713 		    struct perf_evsel *evsel, struct perf_sample *sample,
714 		    struct machine *machine __maybe_unused)
715 {
716 	const char *comm = perf_evsel__strval(evsel, sample, "comm");
717 	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
718 	struct task_desc *waker, *wakee;
719 
720 	if (verbose) {
721 		printf("sched_wakeup event %p\n", evsel);
722 
723 		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
724 	}
725 
726 	waker = register_pid(sched, sample->tid, "<unknown>");
727 	wakee = register_pid(sched, pid, comm);
728 
729 	add_sched_event_wakeup(sched, waker, sample->time, wakee);
730 	return 0;
731 }
732 
733 static int replay_switch_event(struct perf_sched *sched,
734 			       struct perf_evsel *evsel,
735 			       struct perf_sample *sample,
736 			       struct machine *machine __maybe_unused)
737 {
738 	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
739 		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
740 	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
741 		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
742 	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
743 	struct task_desc *prev, __maybe_unused *next;
744 	u64 timestamp0, timestamp = sample->time;
745 	int cpu = sample->cpu;
746 	s64 delta;
747 
748 	if (verbose)
749 		printf("sched_switch event %p\n", evsel);
750 
751 	if (cpu >= MAX_CPUS || cpu < 0)
752 		return 0;
753 
754 	timestamp0 = sched->cpu_last_switched[cpu];
755 	if (timestamp0)
756 		delta = timestamp - timestamp0;
757 	else
758 		delta = 0;
759 
760 	if (delta < 0) {
761 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
762 		return -1;
763 	}
764 
765 	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
766 		 prev_comm, prev_pid, next_comm, next_pid, delta);
767 
768 	prev = register_pid(sched, prev_pid, prev_comm);
769 	next = register_pid(sched, next_pid, next_comm);
770 
771 	sched->cpu_last_switched[cpu] = timestamp;
772 
773 	add_sched_event_run(sched, prev, timestamp, delta);
774 	add_sched_event_sleep(sched, prev, timestamp, prev_state);
775 
776 	return 0;
777 }
778 
779 static int replay_fork_event(struct perf_sched *sched,
780 			     union perf_event *event,
781 			     struct machine *machine)
782 {
783 	struct thread *child, *parent;
784 
785 	child = machine__findnew_thread(machine, event->fork.pid,
786 					event->fork.tid);
787 	parent = machine__findnew_thread(machine, event->fork.ppid,
788 					 event->fork.ptid);
789 
790 	if (child == NULL || parent == NULL) {
791 		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
792 				 child, parent);
793 		goto out_put;
794 	}
795 
796 	if (verbose) {
797 		printf("fork event\n");
798 		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
799 		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
800 	}
801 
802 	register_pid(sched, parent->tid, thread__comm_str(parent));
803 	register_pid(sched, child->tid, thread__comm_str(child));
804 out_put:
805 	thread__put(child);
806 	thread__put(parent);
807 	return 0;
808 }
809 
810 struct sort_dimension {
811 	const char		*name;
812 	sort_fn_t		cmp;
813 	struct list_head	list;
814 };
815 
816 static int
817 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
818 {
819 	struct sort_dimension *sort;
820 	int ret = 0;
821 
822 	BUG_ON(list_empty(list));
823 
824 	list_for_each_entry(sort, list, list) {
825 		ret = sort->cmp(l, r);
826 		if (ret)
827 			return ret;
828 	}
829 
830 	return ret;
831 }
832 
833 static struct work_atoms *
834 thread_atoms_search(struct rb_root *root, struct thread *thread,
835 			 struct list_head *sort_list)
836 {
837 	struct rb_node *node = root->rb_node;
838 	struct work_atoms key = { .thread = thread };
839 
840 	while (node) {
841 		struct work_atoms *atoms;
842 		int cmp;
843 
844 		atoms = container_of(node, struct work_atoms, node);
845 
846 		cmp = thread_lat_cmp(sort_list, &key, atoms);
847 		if (cmp > 0)
848 			node = node->rb_left;
849 		else if (cmp < 0)
850 			node = node->rb_right;
851 		else {
852 			BUG_ON(thread != atoms->thread);
853 			return atoms;
854 		}
855 	}
856 	return NULL;
857 }
858 
859 static void
860 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
861 			 struct list_head *sort_list)
862 {
863 	struct rb_node **new = &(root->rb_node), *parent = NULL;
864 
865 	while (*new) {
866 		struct work_atoms *this;
867 		int cmp;
868 
869 		this = container_of(*new, struct work_atoms, node);
870 		parent = *new;
871 
872 		cmp = thread_lat_cmp(sort_list, data, this);
873 
874 		if (cmp > 0)
875 			new = &((*new)->rb_left);
876 		else
877 			new = &((*new)->rb_right);
878 	}
879 
880 	rb_link_node(&data->node, parent, new);
881 	rb_insert_color(&data->node, root);
882 }
883 
884 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
885 {
886 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
887 	if (!atoms) {
888 		pr_err("No memory at %s\n", __func__);
889 		return -1;
890 	}
891 
892 	atoms->thread = thread__get(thread);
893 	INIT_LIST_HEAD(&atoms->work_list);
894 	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
895 	return 0;
896 }
897 
898 static char sched_out_state(u64 prev_state)
899 {
900 	const char *str = TASK_STATE_TO_CHAR_STR;
901 
902 	return str[prev_state];
903 }
904 
905 static int
906 add_sched_out_event(struct work_atoms *atoms,
907 		    char run_state,
908 		    u64 timestamp)
909 {
910 	struct work_atom *atom = zalloc(sizeof(*atom));
911 	if (!atom) {
912 		pr_err("Non memory at %s", __func__);
913 		return -1;
914 	}
915 
916 	atom->sched_out_time = timestamp;
917 
918 	if (run_state == 'R') {
919 		atom->state = THREAD_WAIT_CPU;
920 		atom->wake_up_time = atom->sched_out_time;
921 	}
922 
923 	list_add_tail(&atom->list, &atoms->work_list);
924 	return 0;
925 }
926 
927 static void
928 add_runtime_event(struct work_atoms *atoms, u64 delta,
929 		  u64 timestamp __maybe_unused)
930 {
931 	struct work_atom *atom;
932 
933 	BUG_ON(list_empty(&atoms->work_list));
934 
935 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
936 
937 	atom->runtime += delta;
938 	atoms->total_runtime += delta;
939 }
940 
941 static void
942 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
943 {
944 	struct work_atom *atom;
945 	u64 delta;
946 
947 	if (list_empty(&atoms->work_list))
948 		return;
949 
950 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
951 
952 	if (atom->state != THREAD_WAIT_CPU)
953 		return;
954 
955 	if (timestamp < atom->wake_up_time) {
956 		atom->state = THREAD_IGNORE;
957 		return;
958 	}
959 
960 	atom->state = THREAD_SCHED_IN;
961 	atom->sched_in_time = timestamp;
962 
963 	delta = atom->sched_in_time - atom->wake_up_time;
964 	atoms->total_lat += delta;
965 	if (delta > atoms->max_lat) {
966 		atoms->max_lat = delta;
967 		atoms->max_lat_at = timestamp;
968 	}
969 	atoms->nb_atoms++;
970 }
971 
972 static int latency_switch_event(struct perf_sched *sched,
973 				struct perf_evsel *evsel,
974 				struct perf_sample *sample,
975 				struct machine *machine)
976 {
977 	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
978 		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
979 	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
980 	struct work_atoms *out_events, *in_events;
981 	struct thread *sched_out, *sched_in;
982 	u64 timestamp0, timestamp = sample->time;
983 	int cpu = sample->cpu, err = -1;
984 	s64 delta;
985 
986 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
987 
988 	timestamp0 = sched->cpu_last_switched[cpu];
989 	sched->cpu_last_switched[cpu] = timestamp;
990 	if (timestamp0)
991 		delta = timestamp - timestamp0;
992 	else
993 		delta = 0;
994 
995 	if (delta < 0) {
996 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
997 		return -1;
998 	}
999 
1000 	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1001 	sched_in = machine__findnew_thread(machine, -1, next_pid);
1002 	if (sched_out == NULL || sched_in == NULL)
1003 		goto out_put;
1004 
1005 	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1006 	if (!out_events) {
1007 		if (thread_atoms_insert(sched, sched_out))
1008 			goto out_put;
1009 		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1010 		if (!out_events) {
1011 			pr_err("out-event: Internal tree error");
1012 			goto out_put;
1013 		}
1014 	}
1015 	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1016 		return -1;
1017 
1018 	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1019 	if (!in_events) {
1020 		if (thread_atoms_insert(sched, sched_in))
1021 			goto out_put;
1022 		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1023 		if (!in_events) {
1024 			pr_err("in-event: Internal tree error");
1025 			goto out_put;
1026 		}
1027 		/*
1028 		 * Take came in we have not heard about yet,
1029 		 * add in an initial atom in runnable state:
1030 		 */
1031 		if (add_sched_out_event(in_events, 'R', timestamp))
1032 			goto out_put;
1033 	}
1034 	add_sched_in_event(in_events, timestamp);
1035 	err = 0;
1036 out_put:
1037 	thread__put(sched_out);
1038 	thread__put(sched_in);
1039 	return err;
1040 }
1041 
1042 static int latency_runtime_event(struct perf_sched *sched,
1043 				 struct perf_evsel *evsel,
1044 				 struct perf_sample *sample,
1045 				 struct machine *machine)
1046 {
1047 	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1048 	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1049 	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1050 	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1051 	u64 timestamp = sample->time;
1052 	int cpu = sample->cpu, err = -1;
1053 
1054 	if (thread == NULL)
1055 		return -1;
1056 
1057 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1058 	if (!atoms) {
1059 		if (thread_atoms_insert(sched, thread))
1060 			goto out_put;
1061 		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1062 		if (!atoms) {
1063 			pr_err("in-event: Internal tree error");
1064 			goto out_put;
1065 		}
1066 		if (add_sched_out_event(atoms, 'R', timestamp))
1067 			goto out_put;
1068 	}
1069 
1070 	add_runtime_event(atoms, runtime, timestamp);
1071 	err = 0;
1072 out_put:
1073 	thread__put(thread);
1074 	return err;
1075 }
1076 
1077 static int latency_wakeup_event(struct perf_sched *sched,
1078 				struct perf_evsel *evsel,
1079 				struct perf_sample *sample,
1080 				struct machine *machine)
1081 {
1082 	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1083 	struct work_atoms *atoms;
1084 	struct work_atom *atom;
1085 	struct thread *wakee;
1086 	u64 timestamp = sample->time;
1087 	int err = -1;
1088 
1089 	wakee = machine__findnew_thread(machine, -1, pid);
1090 	if (wakee == NULL)
1091 		return -1;
1092 	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1093 	if (!atoms) {
1094 		if (thread_atoms_insert(sched, wakee))
1095 			goto out_put;
1096 		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1097 		if (!atoms) {
1098 			pr_err("wakeup-event: Internal tree error");
1099 			goto out_put;
1100 		}
1101 		if (add_sched_out_event(atoms, 'S', timestamp))
1102 			goto out_put;
1103 	}
1104 
1105 	BUG_ON(list_empty(&atoms->work_list));
1106 
1107 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1108 
1109 	/*
1110 	 * As we do not guarantee the wakeup event happens when
1111 	 * task is out of run queue, also may happen when task is
1112 	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1113 	 * then we should not set the ->wake_up_time when wake up a
1114 	 * task which is on run queue.
1115 	 *
1116 	 * You WILL be missing events if you've recorded only
1117 	 * one CPU, or are only looking at only one, so don't
1118 	 * skip in this case.
1119 	 */
1120 	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1121 		goto out_ok;
1122 
1123 	sched->nr_timestamps++;
1124 	if (atom->sched_out_time > timestamp) {
1125 		sched->nr_unordered_timestamps++;
1126 		goto out_ok;
1127 	}
1128 
1129 	atom->state = THREAD_WAIT_CPU;
1130 	atom->wake_up_time = timestamp;
1131 out_ok:
1132 	err = 0;
1133 out_put:
1134 	thread__put(wakee);
1135 	return err;
1136 }
1137 
1138 static int latency_migrate_task_event(struct perf_sched *sched,
1139 				      struct perf_evsel *evsel,
1140 				      struct perf_sample *sample,
1141 				      struct machine *machine)
1142 {
1143 	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1144 	u64 timestamp = sample->time;
1145 	struct work_atoms *atoms;
1146 	struct work_atom *atom;
1147 	struct thread *migrant;
1148 	int err = -1;
1149 
1150 	/*
1151 	 * Only need to worry about migration when profiling one CPU.
1152 	 */
1153 	if (sched->profile_cpu == -1)
1154 		return 0;
1155 
1156 	migrant = machine__findnew_thread(machine, -1, pid);
1157 	if (migrant == NULL)
1158 		return -1;
1159 	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1160 	if (!atoms) {
1161 		if (thread_atoms_insert(sched, migrant))
1162 			goto out_put;
1163 		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1164 		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1165 		if (!atoms) {
1166 			pr_err("migration-event: Internal tree error");
1167 			goto out_put;
1168 		}
1169 		if (add_sched_out_event(atoms, 'R', timestamp))
1170 			goto out_put;
1171 	}
1172 
1173 	BUG_ON(list_empty(&atoms->work_list));
1174 
1175 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1176 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1177 
1178 	sched->nr_timestamps++;
1179 
1180 	if (atom->sched_out_time > timestamp)
1181 		sched->nr_unordered_timestamps++;
1182 	err = 0;
1183 out_put:
1184 	thread__put(migrant);
1185 	return err;
1186 }
1187 
1188 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1189 {
1190 	int i;
1191 	int ret;
1192 	u64 avg;
1193 
1194 	if (!work_list->nb_atoms)
1195 		return;
1196 	/*
1197 	 * Ignore idle threads:
1198 	 */
1199 	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1200 		return;
1201 
1202 	sched->all_runtime += work_list->total_runtime;
1203 	sched->all_count   += work_list->nb_atoms;
1204 
1205 	if (work_list->num_merged > 1)
1206 		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1207 	else
1208 		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1209 
1210 	for (i = 0; i < 24 - ret; i++)
1211 		printf(" ");
1212 
1213 	avg = work_list->total_lat / work_list->nb_atoms;
1214 
1215 	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1216 	      (double)work_list->total_runtime / 1e6,
1217 		 work_list->nb_atoms, (double)avg / 1e6,
1218 		 (double)work_list->max_lat / 1e6,
1219 		 (double)work_list->max_lat_at / 1e9);
1220 }
1221 
1222 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1223 {
1224 	if (l->thread == r->thread)
1225 		return 0;
1226 	if (l->thread->tid < r->thread->tid)
1227 		return -1;
1228 	if (l->thread->tid > r->thread->tid)
1229 		return 1;
1230 	return (int)(l->thread - r->thread);
1231 }
1232 
1233 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1234 {
1235 	u64 avgl, avgr;
1236 
1237 	if (!l->nb_atoms)
1238 		return -1;
1239 
1240 	if (!r->nb_atoms)
1241 		return 1;
1242 
1243 	avgl = l->total_lat / l->nb_atoms;
1244 	avgr = r->total_lat / r->nb_atoms;
1245 
1246 	if (avgl < avgr)
1247 		return -1;
1248 	if (avgl > avgr)
1249 		return 1;
1250 
1251 	return 0;
1252 }
1253 
1254 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1255 {
1256 	if (l->max_lat < r->max_lat)
1257 		return -1;
1258 	if (l->max_lat > r->max_lat)
1259 		return 1;
1260 
1261 	return 0;
1262 }
1263 
1264 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1265 {
1266 	if (l->nb_atoms < r->nb_atoms)
1267 		return -1;
1268 	if (l->nb_atoms > r->nb_atoms)
1269 		return 1;
1270 
1271 	return 0;
1272 }
1273 
1274 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1275 {
1276 	if (l->total_runtime < r->total_runtime)
1277 		return -1;
1278 	if (l->total_runtime > r->total_runtime)
1279 		return 1;
1280 
1281 	return 0;
1282 }
1283 
1284 static int sort_dimension__add(const char *tok, struct list_head *list)
1285 {
1286 	size_t i;
1287 	static struct sort_dimension avg_sort_dimension = {
1288 		.name = "avg",
1289 		.cmp  = avg_cmp,
1290 	};
1291 	static struct sort_dimension max_sort_dimension = {
1292 		.name = "max",
1293 		.cmp  = max_cmp,
1294 	};
1295 	static struct sort_dimension pid_sort_dimension = {
1296 		.name = "pid",
1297 		.cmp  = pid_cmp,
1298 	};
1299 	static struct sort_dimension runtime_sort_dimension = {
1300 		.name = "runtime",
1301 		.cmp  = runtime_cmp,
1302 	};
1303 	static struct sort_dimension switch_sort_dimension = {
1304 		.name = "switch",
1305 		.cmp  = switch_cmp,
1306 	};
1307 	struct sort_dimension *available_sorts[] = {
1308 		&pid_sort_dimension,
1309 		&avg_sort_dimension,
1310 		&max_sort_dimension,
1311 		&switch_sort_dimension,
1312 		&runtime_sort_dimension,
1313 	};
1314 
1315 	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1316 		if (!strcmp(available_sorts[i]->name, tok)) {
1317 			list_add_tail(&available_sorts[i]->list, list);
1318 
1319 			return 0;
1320 		}
1321 	}
1322 
1323 	return -1;
1324 }
1325 
1326 static void perf_sched__sort_lat(struct perf_sched *sched)
1327 {
1328 	struct rb_node *node;
1329 	struct rb_root *root = &sched->atom_root;
1330 again:
1331 	for (;;) {
1332 		struct work_atoms *data;
1333 		node = rb_first(root);
1334 		if (!node)
1335 			break;
1336 
1337 		rb_erase(node, root);
1338 		data = rb_entry(node, struct work_atoms, node);
1339 		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1340 	}
1341 	if (root == &sched->atom_root) {
1342 		root = &sched->merged_atom_root;
1343 		goto again;
1344 	}
1345 }
1346 
1347 static int process_sched_wakeup_event(struct perf_tool *tool,
1348 				      struct perf_evsel *evsel,
1349 				      struct perf_sample *sample,
1350 				      struct machine *machine)
1351 {
1352 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1353 
1354 	if (sched->tp_handler->wakeup_event)
1355 		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1356 
1357 	return 0;
1358 }
1359 
1360 union map_priv {
1361 	void	*ptr;
1362 	bool	 color;
1363 };
1364 
1365 static bool thread__has_color(struct thread *thread)
1366 {
1367 	union map_priv priv = {
1368 		.ptr = thread__priv(thread),
1369 	};
1370 
1371 	return priv.color;
1372 }
1373 
1374 static struct thread*
1375 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1376 {
1377 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1378 	union map_priv priv = {
1379 		.color = false,
1380 	};
1381 
1382 	if (!sched->map.color_pids || !thread || thread__priv(thread))
1383 		return thread;
1384 
1385 	if (thread_map__has(sched->map.color_pids, tid))
1386 		priv.color = true;
1387 
1388 	thread__set_priv(thread, priv.ptr);
1389 	return thread;
1390 }
1391 
1392 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1393 			    struct perf_sample *sample, struct machine *machine)
1394 {
1395 	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1396 	struct thread *sched_in;
1397 	int new_shortname;
1398 	u64 timestamp0, timestamp = sample->time;
1399 	s64 delta;
1400 	int i, this_cpu = sample->cpu;
1401 	int cpus_nr;
1402 	bool new_cpu = false;
1403 	const char *color = PERF_COLOR_NORMAL;
1404 
1405 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1406 
1407 	if (this_cpu > sched->max_cpu)
1408 		sched->max_cpu = this_cpu;
1409 
1410 	if (sched->map.comp) {
1411 		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1412 		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1413 			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1414 			new_cpu = true;
1415 		}
1416 	} else
1417 		cpus_nr = sched->max_cpu;
1418 
1419 	timestamp0 = sched->cpu_last_switched[this_cpu];
1420 	sched->cpu_last_switched[this_cpu] = timestamp;
1421 	if (timestamp0)
1422 		delta = timestamp - timestamp0;
1423 	else
1424 		delta = 0;
1425 
1426 	if (delta < 0) {
1427 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1428 		return -1;
1429 	}
1430 
1431 	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1432 	if (sched_in == NULL)
1433 		return -1;
1434 
1435 	sched->curr_thread[this_cpu] = thread__get(sched_in);
1436 
1437 	printf("  ");
1438 
1439 	new_shortname = 0;
1440 	if (!sched_in->shortname[0]) {
1441 		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1442 			/*
1443 			 * Don't allocate a letter-number for swapper:0
1444 			 * as a shortname. Instead, we use '.' for it.
1445 			 */
1446 			sched_in->shortname[0] = '.';
1447 			sched_in->shortname[1] = ' ';
1448 		} else {
1449 			sched_in->shortname[0] = sched->next_shortname1;
1450 			sched_in->shortname[1] = sched->next_shortname2;
1451 
1452 			if (sched->next_shortname1 < 'Z') {
1453 				sched->next_shortname1++;
1454 			} else {
1455 				sched->next_shortname1 = 'A';
1456 				if (sched->next_shortname2 < '9')
1457 					sched->next_shortname2++;
1458 				else
1459 					sched->next_shortname2 = '0';
1460 			}
1461 		}
1462 		new_shortname = 1;
1463 	}
1464 
1465 	for (i = 0; i < cpus_nr; i++) {
1466 		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1467 		struct thread *curr_thread = sched->curr_thread[cpu];
1468 		const char *pid_color = color;
1469 		const char *cpu_color = color;
1470 
1471 		if (curr_thread && thread__has_color(curr_thread))
1472 			pid_color = COLOR_PIDS;
1473 
1474 		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1475 			continue;
1476 
1477 		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1478 			cpu_color = COLOR_CPUS;
1479 
1480 		if (cpu != this_cpu)
1481 			color_fprintf(stdout, cpu_color, " ");
1482 		else
1483 			color_fprintf(stdout, cpu_color, "*");
1484 
1485 		if (sched->curr_thread[cpu])
1486 			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1487 		else
1488 			color_fprintf(stdout, color, "   ");
1489 	}
1490 
1491 	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1492 		goto out;
1493 
1494 	color_fprintf(stdout, color, "  %12.6f secs ", (double)timestamp/1e9);
1495 	if (new_shortname) {
1496 		const char *pid_color = color;
1497 
1498 		if (thread__has_color(sched_in))
1499 			pid_color = COLOR_PIDS;
1500 
1501 		color_fprintf(stdout, pid_color, "%s => %s:%d",
1502 		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1503 	}
1504 
1505 	if (sched->map.comp && new_cpu)
1506 		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1507 
1508 out:
1509 	color_fprintf(stdout, color, "\n");
1510 
1511 	thread__put(sched_in);
1512 
1513 	return 0;
1514 }
1515 
1516 static int process_sched_switch_event(struct perf_tool *tool,
1517 				      struct perf_evsel *evsel,
1518 				      struct perf_sample *sample,
1519 				      struct machine *machine)
1520 {
1521 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1522 	int this_cpu = sample->cpu, err = 0;
1523 	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1524 	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1525 
1526 	if (sched->curr_pid[this_cpu] != (u32)-1) {
1527 		/*
1528 		 * Are we trying to switch away a PID that is
1529 		 * not current?
1530 		 */
1531 		if (sched->curr_pid[this_cpu] != prev_pid)
1532 			sched->nr_context_switch_bugs++;
1533 	}
1534 
1535 	if (sched->tp_handler->switch_event)
1536 		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1537 
1538 	sched->curr_pid[this_cpu] = next_pid;
1539 	return err;
1540 }
1541 
1542 static int process_sched_runtime_event(struct perf_tool *tool,
1543 				       struct perf_evsel *evsel,
1544 				       struct perf_sample *sample,
1545 				       struct machine *machine)
1546 {
1547 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1548 
1549 	if (sched->tp_handler->runtime_event)
1550 		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1551 
1552 	return 0;
1553 }
1554 
1555 static int perf_sched__process_fork_event(struct perf_tool *tool,
1556 					  union perf_event *event,
1557 					  struct perf_sample *sample,
1558 					  struct machine *machine)
1559 {
1560 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1561 
1562 	/* run the fork event through the perf machineruy */
1563 	perf_event__process_fork(tool, event, sample, machine);
1564 
1565 	/* and then run additional processing needed for this command */
1566 	if (sched->tp_handler->fork_event)
1567 		return sched->tp_handler->fork_event(sched, event, machine);
1568 
1569 	return 0;
1570 }
1571 
1572 static int process_sched_migrate_task_event(struct perf_tool *tool,
1573 					    struct perf_evsel *evsel,
1574 					    struct perf_sample *sample,
1575 					    struct machine *machine)
1576 {
1577 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1578 
1579 	if (sched->tp_handler->migrate_task_event)
1580 		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1581 
1582 	return 0;
1583 }
1584 
1585 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1586 				  struct perf_evsel *evsel,
1587 				  struct perf_sample *sample,
1588 				  struct machine *machine);
1589 
1590 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1591 						 union perf_event *event __maybe_unused,
1592 						 struct perf_sample *sample,
1593 						 struct perf_evsel *evsel,
1594 						 struct machine *machine)
1595 {
1596 	int err = 0;
1597 
1598 	if (evsel->handler != NULL) {
1599 		tracepoint_handler f = evsel->handler;
1600 		err = f(tool, evsel, sample, machine);
1601 	}
1602 
1603 	return err;
1604 }
1605 
1606 static int perf_sched__read_events(struct perf_sched *sched)
1607 {
1608 	const struct perf_evsel_str_handler handlers[] = {
1609 		{ "sched:sched_switch",	      process_sched_switch_event, },
1610 		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1611 		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1612 		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1613 		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1614 	};
1615 	struct perf_session *session;
1616 	struct perf_data_file file = {
1617 		.path = input_name,
1618 		.mode = PERF_DATA_MODE_READ,
1619 		.force = sched->force,
1620 	};
1621 	int rc = -1;
1622 
1623 	session = perf_session__new(&file, false, &sched->tool);
1624 	if (session == NULL) {
1625 		pr_debug("No Memory for session\n");
1626 		return -1;
1627 	}
1628 
1629 	symbol__init(&session->header.env);
1630 
1631 	if (perf_session__set_tracepoints_handlers(session, handlers))
1632 		goto out_delete;
1633 
1634 	if (perf_session__has_traces(session, "record -R")) {
1635 		int err = perf_session__process_events(session);
1636 		if (err) {
1637 			pr_err("Failed to process events, error %d", err);
1638 			goto out_delete;
1639 		}
1640 
1641 		sched->nr_events      = session->evlist->stats.nr_events[0];
1642 		sched->nr_lost_events = session->evlist->stats.total_lost;
1643 		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1644 	}
1645 
1646 	rc = 0;
1647 out_delete:
1648 	perf_session__delete(session);
1649 	return rc;
1650 }
1651 
1652 static void print_bad_events(struct perf_sched *sched)
1653 {
1654 	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1655 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1656 			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1657 			sched->nr_unordered_timestamps, sched->nr_timestamps);
1658 	}
1659 	if (sched->nr_lost_events && sched->nr_events) {
1660 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1661 			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1662 			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1663 	}
1664 	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1665 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1666 			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1667 			sched->nr_context_switch_bugs, sched->nr_timestamps);
1668 		if (sched->nr_lost_events)
1669 			printf(" (due to lost events?)");
1670 		printf("\n");
1671 	}
1672 }
1673 
1674 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1675 {
1676 	struct rb_node **new = &(root->rb_node), *parent = NULL;
1677 	struct work_atoms *this;
1678 	const char *comm = thread__comm_str(data->thread), *this_comm;
1679 
1680 	while (*new) {
1681 		int cmp;
1682 
1683 		this = container_of(*new, struct work_atoms, node);
1684 		parent = *new;
1685 
1686 		this_comm = thread__comm_str(this->thread);
1687 		cmp = strcmp(comm, this_comm);
1688 		if (cmp > 0) {
1689 			new = &((*new)->rb_left);
1690 		} else if (cmp < 0) {
1691 			new = &((*new)->rb_right);
1692 		} else {
1693 			this->num_merged++;
1694 			this->total_runtime += data->total_runtime;
1695 			this->nb_atoms += data->nb_atoms;
1696 			this->total_lat += data->total_lat;
1697 			list_splice(&data->work_list, &this->work_list);
1698 			if (this->max_lat < data->max_lat) {
1699 				this->max_lat = data->max_lat;
1700 				this->max_lat_at = data->max_lat_at;
1701 			}
1702 			zfree(&data);
1703 			return;
1704 		}
1705 	}
1706 
1707 	data->num_merged++;
1708 	rb_link_node(&data->node, parent, new);
1709 	rb_insert_color(&data->node, root);
1710 }
1711 
1712 static void perf_sched__merge_lat(struct perf_sched *sched)
1713 {
1714 	struct work_atoms *data;
1715 	struct rb_node *node;
1716 
1717 	if (sched->skip_merge)
1718 		return;
1719 
1720 	while ((node = rb_first(&sched->atom_root))) {
1721 		rb_erase(node, &sched->atom_root);
1722 		data = rb_entry(node, struct work_atoms, node);
1723 		__merge_work_atoms(&sched->merged_atom_root, data);
1724 	}
1725 }
1726 
1727 static int perf_sched__lat(struct perf_sched *sched)
1728 {
1729 	struct rb_node *next;
1730 
1731 	setup_pager();
1732 
1733 	if (perf_sched__read_events(sched))
1734 		return -1;
1735 
1736 	perf_sched__merge_lat(sched);
1737 	perf_sched__sort_lat(sched);
1738 
1739 	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1740 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1741 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1742 
1743 	next = rb_first(&sched->sorted_atom_root);
1744 
1745 	while (next) {
1746 		struct work_atoms *work_list;
1747 
1748 		work_list = rb_entry(next, struct work_atoms, node);
1749 		output_lat_thread(sched, work_list);
1750 		next = rb_next(next);
1751 		thread__zput(work_list->thread);
1752 	}
1753 
1754 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1755 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1756 		(double)sched->all_runtime / 1e6, sched->all_count);
1757 
1758 	printf(" ---------------------------------------------------\n");
1759 
1760 	print_bad_events(sched);
1761 	printf("\n");
1762 
1763 	return 0;
1764 }
1765 
1766 static int setup_map_cpus(struct perf_sched *sched)
1767 {
1768 	struct cpu_map *map;
1769 
1770 	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
1771 
1772 	if (sched->map.comp) {
1773 		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
1774 		if (!sched->map.comp_cpus)
1775 			return -1;
1776 	}
1777 
1778 	if (!sched->map.cpus_str)
1779 		return 0;
1780 
1781 	map = cpu_map__new(sched->map.cpus_str);
1782 	if (!map) {
1783 		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
1784 		return -1;
1785 	}
1786 
1787 	sched->map.cpus = map;
1788 	return 0;
1789 }
1790 
1791 static int setup_color_pids(struct perf_sched *sched)
1792 {
1793 	struct thread_map *map;
1794 
1795 	if (!sched->map.color_pids_str)
1796 		return 0;
1797 
1798 	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
1799 	if (!map) {
1800 		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
1801 		return -1;
1802 	}
1803 
1804 	sched->map.color_pids = map;
1805 	return 0;
1806 }
1807 
1808 static int setup_color_cpus(struct perf_sched *sched)
1809 {
1810 	struct cpu_map *map;
1811 
1812 	if (!sched->map.color_cpus_str)
1813 		return 0;
1814 
1815 	map = cpu_map__new(sched->map.color_cpus_str);
1816 	if (!map) {
1817 		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
1818 		return -1;
1819 	}
1820 
1821 	sched->map.color_cpus = map;
1822 	return 0;
1823 }
1824 
1825 static int perf_sched__map(struct perf_sched *sched)
1826 {
1827 	if (setup_map_cpus(sched))
1828 		return -1;
1829 
1830 	if (setup_color_pids(sched))
1831 		return -1;
1832 
1833 	if (setup_color_cpus(sched))
1834 		return -1;
1835 
1836 	setup_pager();
1837 	if (perf_sched__read_events(sched))
1838 		return -1;
1839 	print_bad_events(sched);
1840 	return 0;
1841 }
1842 
1843 static int perf_sched__replay(struct perf_sched *sched)
1844 {
1845 	unsigned long i;
1846 
1847 	calibrate_run_measurement_overhead(sched);
1848 	calibrate_sleep_measurement_overhead(sched);
1849 
1850 	test_calibrations(sched);
1851 
1852 	if (perf_sched__read_events(sched))
1853 		return -1;
1854 
1855 	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1856 	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1857 	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1858 
1859 	if (sched->targetless_wakeups)
1860 		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1861 	if (sched->multitarget_wakeups)
1862 		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1863 	if (sched->nr_run_events_optimized)
1864 		printf("run atoms optimized: %ld\n",
1865 			sched->nr_run_events_optimized);
1866 
1867 	print_task_traces(sched);
1868 	add_cross_task_wakeups(sched);
1869 
1870 	create_tasks(sched);
1871 	printf("------------------------------------------------------------\n");
1872 	for (i = 0; i < sched->replay_repeat; i++)
1873 		run_one_test(sched);
1874 
1875 	return 0;
1876 }
1877 
1878 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1879 			  const char * const usage_msg[])
1880 {
1881 	char *tmp, *tok, *str = strdup(sched->sort_order);
1882 
1883 	for (tok = strtok_r(str, ", ", &tmp);
1884 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1885 		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1886 			usage_with_options_msg(usage_msg, options,
1887 					"Unknown --sort key: `%s'", tok);
1888 		}
1889 	}
1890 
1891 	free(str);
1892 
1893 	sort_dimension__add("pid", &sched->cmp_pid);
1894 }
1895 
1896 static int __cmd_record(int argc, const char **argv)
1897 {
1898 	unsigned int rec_argc, i, j;
1899 	const char **rec_argv;
1900 	const char * const record_args[] = {
1901 		"record",
1902 		"-a",
1903 		"-R",
1904 		"-m", "1024",
1905 		"-c", "1",
1906 		"-e", "sched:sched_switch",
1907 		"-e", "sched:sched_stat_wait",
1908 		"-e", "sched:sched_stat_sleep",
1909 		"-e", "sched:sched_stat_iowait",
1910 		"-e", "sched:sched_stat_runtime",
1911 		"-e", "sched:sched_process_fork",
1912 		"-e", "sched:sched_wakeup",
1913 		"-e", "sched:sched_wakeup_new",
1914 		"-e", "sched:sched_migrate_task",
1915 	};
1916 
1917 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1918 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1919 
1920 	if (rec_argv == NULL)
1921 		return -ENOMEM;
1922 
1923 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1924 		rec_argv[i] = strdup(record_args[i]);
1925 
1926 	for (j = 1; j < (unsigned int)argc; j++, i++)
1927 		rec_argv[i] = argv[j];
1928 
1929 	BUG_ON(i != rec_argc);
1930 
1931 	return cmd_record(i, rec_argv, NULL);
1932 }
1933 
1934 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1935 {
1936 	const char default_sort_order[] = "avg, max, switch, runtime";
1937 	struct perf_sched sched = {
1938 		.tool = {
1939 			.sample		 = perf_sched__process_tracepoint_sample,
1940 			.comm		 = perf_event__process_comm,
1941 			.lost		 = perf_event__process_lost,
1942 			.fork		 = perf_sched__process_fork_event,
1943 			.ordered_events = true,
1944 		},
1945 		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1946 		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1947 		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1948 		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1949 		.sort_order	      = default_sort_order,
1950 		.replay_repeat	      = 10,
1951 		.profile_cpu	      = -1,
1952 		.next_shortname1      = 'A',
1953 		.next_shortname2      = '0',
1954 		.skip_merge           = 0,
1955 	};
1956 	const struct option latency_options[] = {
1957 	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1958 		   "sort by key(s): runtime, switch, avg, max"),
1959 	OPT_INCR('v', "verbose", &verbose,
1960 		    "be more verbose (show symbol address, etc)"),
1961 	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1962 		    "CPU to profile on"),
1963 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1964 		    "dump raw trace in ASCII"),
1965 	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1966 		    "latency stats per pid instead of per comm"),
1967 	OPT_END()
1968 	};
1969 	const struct option replay_options[] = {
1970 	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1971 		     "repeat the workload replay N times (-1: infinite)"),
1972 	OPT_INCR('v', "verbose", &verbose,
1973 		    "be more verbose (show symbol address, etc)"),
1974 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1975 		    "dump raw trace in ASCII"),
1976 	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1977 	OPT_END()
1978 	};
1979 	const struct option sched_options[] = {
1980 	OPT_STRING('i', "input", &input_name, "file",
1981 		    "input file name"),
1982 	OPT_INCR('v', "verbose", &verbose,
1983 		    "be more verbose (show symbol address, etc)"),
1984 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1985 		    "dump raw trace in ASCII"),
1986 	OPT_END()
1987 	};
1988 	const struct option map_options[] = {
1989 	OPT_BOOLEAN(0, "compact", &sched.map.comp,
1990 		    "map output in compact mode"),
1991 	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
1992 		   "highlight given pids in map"),
1993 	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
1994                     "highlight given CPUs in map"),
1995 	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
1996                     "display given CPUs in map"),
1997 	OPT_END()
1998 	};
1999 	const char * const latency_usage[] = {
2000 		"perf sched latency [<options>]",
2001 		NULL
2002 	};
2003 	const char * const replay_usage[] = {
2004 		"perf sched replay [<options>]",
2005 		NULL
2006 	};
2007 	const char * const map_usage[] = {
2008 		"perf sched map [<options>]",
2009 		NULL
2010 	};
2011 	const char *const sched_subcommands[] = { "record", "latency", "map",
2012 						  "replay", "script", NULL };
2013 	const char *sched_usage[] = {
2014 		NULL,
2015 		NULL
2016 	};
2017 	struct trace_sched_handler lat_ops  = {
2018 		.wakeup_event	    = latency_wakeup_event,
2019 		.switch_event	    = latency_switch_event,
2020 		.runtime_event	    = latency_runtime_event,
2021 		.migrate_task_event = latency_migrate_task_event,
2022 	};
2023 	struct trace_sched_handler map_ops  = {
2024 		.switch_event	    = map_switch_event,
2025 	};
2026 	struct trace_sched_handler replay_ops  = {
2027 		.wakeup_event	    = replay_wakeup_event,
2028 		.switch_event	    = replay_switch_event,
2029 		.fork_event	    = replay_fork_event,
2030 	};
2031 	unsigned int i;
2032 
2033 	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
2034 		sched.curr_pid[i] = -1;
2035 
2036 	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
2037 					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2038 	if (!argc)
2039 		usage_with_options(sched_usage, sched_options);
2040 
2041 	/*
2042 	 * Aliased to 'perf script' for now:
2043 	 */
2044 	if (!strcmp(argv[0], "script"))
2045 		return cmd_script(argc, argv, prefix);
2046 
2047 	if (!strncmp(argv[0], "rec", 3)) {
2048 		return __cmd_record(argc, argv);
2049 	} else if (!strncmp(argv[0], "lat", 3)) {
2050 		sched.tp_handler = &lat_ops;
2051 		if (argc > 1) {
2052 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
2053 			if (argc)
2054 				usage_with_options(latency_usage, latency_options);
2055 		}
2056 		setup_sorting(&sched, latency_options, latency_usage);
2057 		return perf_sched__lat(&sched);
2058 	} else if (!strcmp(argv[0], "map")) {
2059 		if (argc) {
2060 			argc = parse_options(argc, argv, map_options, map_usage, 0);
2061 			if (argc)
2062 				usage_with_options(map_usage, map_options);
2063 		}
2064 		sched.tp_handler = &map_ops;
2065 		setup_sorting(&sched, latency_options, latency_usage);
2066 		return perf_sched__map(&sched);
2067 	} else if (!strncmp(argv[0], "rep", 3)) {
2068 		sched.tp_handler = &replay_ops;
2069 		if (argc) {
2070 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
2071 			if (argc)
2072 				usage_with_options(replay_usage, replay_options);
2073 		}
2074 		return perf_sched__replay(&sched);
2075 	} else {
2076 		usage_with_options(sched_usage, sched_options);
2077 	}
2078 
2079 	return 0;
2080 }
2081