1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 #include "perf-sys.h" 5 6 #include "util/cpumap.h" 7 #include "util/evlist.h" 8 #include "util/evsel.h" 9 #include "util/evsel_fprintf.h" 10 #include "util/symbol.h" 11 #include "util/thread.h" 12 #include "util/header.h" 13 #include "util/session.h" 14 #include "util/tool.h" 15 #include "util/cloexec.h" 16 #include "util/thread_map.h" 17 #include "util/color.h" 18 #include "util/stat.h" 19 #include "util/string2.h" 20 #include "util/callchain.h" 21 #include "util/time-utils.h" 22 23 #include <subcmd/pager.h> 24 #include <subcmd/parse-options.h> 25 #include "util/trace-event.h" 26 27 #include "util/debug.h" 28 #include "util/event.h" 29 30 #include <linux/kernel.h> 31 #include <linux/log2.h> 32 #include <linux/zalloc.h> 33 #include <sys/prctl.h> 34 #include <sys/resource.h> 35 #include <inttypes.h> 36 37 #include <errno.h> 38 #include <semaphore.h> 39 #include <pthread.h> 40 #include <math.h> 41 #include <api/fs/fs.h> 42 #include <perf/cpumap.h> 43 #include <linux/time64.h> 44 #include <linux/err.h> 45 46 #include <linux/ctype.h> 47 48 #define PR_SET_NAME 15 /* Set process name */ 49 #define MAX_CPUS 4096 50 #define COMM_LEN 20 51 #define SYM_LEN 129 52 #define MAX_PID 1024000 53 54 static const char *cpu_list; 55 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 56 57 struct sched_atom; 58 59 struct task_desc { 60 unsigned long nr; 61 unsigned long pid; 62 char comm[COMM_LEN]; 63 64 unsigned long nr_events; 65 unsigned long curr_event; 66 struct sched_atom **atoms; 67 68 pthread_t thread; 69 sem_t sleep_sem; 70 71 sem_t ready_for_work; 72 sem_t work_done_sem; 73 74 u64 cpu_usage; 75 }; 76 77 enum sched_event_type { 78 SCHED_EVENT_RUN, 79 SCHED_EVENT_SLEEP, 80 SCHED_EVENT_WAKEUP, 81 SCHED_EVENT_MIGRATION, 82 }; 83 84 struct sched_atom { 85 enum sched_event_type type; 86 int specific_wait; 87 u64 timestamp; 88 u64 duration; 89 unsigned long nr; 90 sem_t *wait_sem; 91 struct task_desc *wakee; 92 }; 93 94 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 95 96 /* task state bitmask, copied from include/linux/sched.h */ 97 #define TASK_RUNNING 0 98 #define TASK_INTERRUPTIBLE 1 99 #define TASK_UNINTERRUPTIBLE 2 100 #define __TASK_STOPPED 4 101 #define __TASK_TRACED 8 102 /* in tsk->exit_state */ 103 #define EXIT_DEAD 16 104 #define EXIT_ZOMBIE 32 105 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 106 /* in tsk->state again */ 107 #define TASK_DEAD 64 108 #define TASK_WAKEKILL 128 109 #define TASK_WAKING 256 110 #define TASK_PARKED 512 111 112 enum thread_state { 113 THREAD_SLEEPING = 0, 114 THREAD_WAIT_CPU, 115 THREAD_SCHED_IN, 116 THREAD_IGNORE 117 }; 118 119 struct work_atom { 120 struct list_head list; 121 enum thread_state state; 122 u64 sched_out_time; 123 u64 wake_up_time; 124 u64 sched_in_time; 125 u64 runtime; 126 }; 127 128 struct work_atoms { 129 struct list_head work_list; 130 struct thread *thread; 131 struct rb_node node; 132 u64 max_lat; 133 u64 max_lat_start; 134 u64 max_lat_end; 135 u64 total_lat; 136 u64 nb_atoms; 137 u64 total_runtime; 138 int num_merged; 139 }; 140 141 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 142 143 struct perf_sched; 144 145 struct trace_sched_handler { 146 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 147 struct perf_sample *sample, struct machine *machine); 148 149 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 150 struct perf_sample *sample, struct machine *machine); 151 152 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 153 struct perf_sample *sample, struct machine *machine); 154 155 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 156 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 157 struct machine *machine); 158 159 int (*migrate_task_event)(struct perf_sched *sched, 160 struct evsel *evsel, 161 struct perf_sample *sample, 162 struct machine *machine); 163 }; 164 165 #define COLOR_PIDS PERF_COLOR_BLUE 166 #define COLOR_CPUS PERF_COLOR_BG_RED 167 168 struct perf_sched_map { 169 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 170 int *comp_cpus; 171 bool comp; 172 struct perf_thread_map *color_pids; 173 const char *color_pids_str; 174 struct perf_cpu_map *color_cpus; 175 const char *color_cpus_str; 176 struct perf_cpu_map *cpus; 177 const char *cpus_str; 178 }; 179 180 struct perf_sched { 181 struct perf_tool tool; 182 const char *sort_order; 183 unsigned long nr_tasks; 184 struct task_desc **pid_to_task; 185 struct task_desc **tasks; 186 const struct trace_sched_handler *tp_handler; 187 pthread_mutex_t start_work_mutex; 188 pthread_mutex_t work_done_wait_mutex; 189 int profile_cpu; 190 /* 191 * Track the current task - that way we can know whether there's any 192 * weird events, such as a task being switched away that is not current. 193 */ 194 int max_cpu; 195 u32 curr_pid[MAX_CPUS]; 196 struct thread *curr_thread[MAX_CPUS]; 197 char next_shortname1; 198 char next_shortname2; 199 unsigned int replay_repeat; 200 unsigned long nr_run_events; 201 unsigned long nr_sleep_events; 202 unsigned long nr_wakeup_events; 203 unsigned long nr_sleep_corrections; 204 unsigned long nr_run_events_optimized; 205 unsigned long targetless_wakeups; 206 unsigned long multitarget_wakeups; 207 unsigned long nr_runs; 208 unsigned long nr_timestamps; 209 unsigned long nr_unordered_timestamps; 210 unsigned long nr_context_switch_bugs; 211 unsigned long nr_events; 212 unsigned long nr_lost_chunks; 213 unsigned long nr_lost_events; 214 u64 run_measurement_overhead; 215 u64 sleep_measurement_overhead; 216 u64 start_time; 217 u64 cpu_usage; 218 u64 runavg_cpu_usage; 219 u64 parent_cpu_usage; 220 u64 runavg_parent_cpu_usage; 221 u64 sum_runtime; 222 u64 sum_fluct; 223 u64 run_avg; 224 u64 all_runtime; 225 u64 all_count; 226 u64 cpu_last_switched[MAX_CPUS]; 227 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 228 struct list_head sort_list, cmp_pid; 229 bool force; 230 bool skip_merge; 231 struct perf_sched_map map; 232 233 /* options for timehist command */ 234 bool summary; 235 bool summary_only; 236 bool idle_hist; 237 bool show_callchain; 238 unsigned int max_stack; 239 bool show_cpu_visual; 240 bool show_wakeups; 241 bool show_next; 242 bool show_migrations; 243 bool show_state; 244 u64 skipped_samples; 245 const char *time_str; 246 struct perf_time_interval ptime; 247 struct perf_time_interval hist_time; 248 }; 249 250 /* per thread run time data */ 251 struct thread_runtime { 252 u64 last_time; /* time of previous sched in/out event */ 253 u64 dt_run; /* run time */ 254 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 255 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 256 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 257 u64 dt_delay; /* time between wakeup and sched-in */ 258 u64 ready_to_run; /* time of wakeup */ 259 260 struct stats run_stats; 261 u64 total_run_time; 262 u64 total_sleep_time; 263 u64 total_iowait_time; 264 u64 total_preempt_time; 265 u64 total_delay_time; 266 267 int last_state; 268 269 char shortname[3]; 270 bool comm_changed; 271 272 u64 migrations; 273 }; 274 275 /* per event run time data */ 276 struct evsel_runtime { 277 u64 *last_time; /* time this event was last seen per cpu */ 278 u32 ncpu; /* highest cpu slot allocated */ 279 }; 280 281 /* per cpu idle time data */ 282 struct idle_thread_runtime { 283 struct thread_runtime tr; 284 struct thread *last_thread; 285 struct rb_root_cached sorted_root; 286 struct callchain_root callchain; 287 struct callchain_cursor cursor; 288 }; 289 290 /* track idle times per cpu */ 291 static struct thread **idle_threads; 292 static int idle_max_cpu; 293 static char idle_comm[] = "<idle>"; 294 295 static u64 get_nsecs(void) 296 { 297 struct timespec ts; 298 299 clock_gettime(CLOCK_MONOTONIC, &ts); 300 301 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 302 } 303 304 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 305 { 306 u64 T0 = get_nsecs(), T1; 307 308 do { 309 T1 = get_nsecs(); 310 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 311 } 312 313 static void sleep_nsecs(u64 nsecs) 314 { 315 struct timespec ts; 316 317 ts.tv_nsec = nsecs % 999999999; 318 ts.tv_sec = nsecs / 999999999; 319 320 nanosleep(&ts, NULL); 321 } 322 323 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 324 { 325 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 326 int i; 327 328 for (i = 0; i < 10; i++) { 329 T0 = get_nsecs(); 330 burn_nsecs(sched, 0); 331 T1 = get_nsecs(); 332 delta = T1-T0; 333 min_delta = min(min_delta, delta); 334 } 335 sched->run_measurement_overhead = min_delta; 336 337 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 338 } 339 340 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 341 { 342 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 343 int i; 344 345 for (i = 0; i < 10; i++) { 346 T0 = get_nsecs(); 347 sleep_nsecs(10000); 348 T1 = get_nsecs(); 349 delta = T1-T0; 350 min_delta = min(min_delta, delta); 351 } 352 min_delta -= 10000; 353 sched->sleep_measurement_overhead = min_delta; 354 355 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 356 } 357 358 static struct sched_atom * 359 get_new_event(struct task_desc *task, u64 timestamp) 360 { 361 struct sched_atom *event = zalloc(sizeof(*event)); 362 unsigned long idx = task->nr_events; 363 size_t size; 364 365 event->timestamp = timestamp; 366 event->nr = idx; 367 368 task->nr_events++; 369 size = sizeof(struct sched_atom *) * task->nr_events; 370 task->atoms = realloc(task->atoms, size); 371 BUG_ON(!task->atoms); 372 373 task->atoms[idx] = event; 374 375 return event; 376 } 377 378 static struct sched_atom *last_event(struct task_desc *task) 379 { 380 if (!task->nr_events) 381 return NULL; 382 383 return task->atoms[task->nr_events - 1]; 384 } 385 386 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 387 u64 timestamp, u64 duration) 388 { 389 struct sched_atom *event, *curr_event = last_event(task); 390 391 /* 392 * optimize an existing RUN event by merging this one 393 * to it: 394 */ 395 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 396 sched->nr_run_events_optimized++; 397 curr_event->duration += duration; 398 return; 399 } 400 401 event = get_new_event(task, timestamp); 402 403 event->type = SCHED_EVENT_RUN; 404 event->duration = duration; 405 406 sched->nr_run_events++; 407 } 408 409 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 410 u64 timestamp, struct task_desc *wakee) 411 { 412 struct sched_atom *event, *wakee_event; 413 414 event = get_new_event(task, timestamp); 415 event->type = SCHED_EVENT_WAKEUP; 416 event->wakee = wakee; 417 418 wakee_event = last_event(wakee); 419 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 420 sched->targetless_wakeups++; 421 return; 422 } 423 if (wakee_event->wait_sem) { 424 sched->multitarget_wakeups++; 425 return; 426 } 427 428 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 429 sem_init(wakee_event->wait_sem, 0, 0); 430 wakee_event->specific_wait = 1; 431 event->wait_sem = wakee_event->wait_sem; 432 433 sched->nr_wakeup_events++; 434 } 435 436 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 437 u64 timestamp, u64 task_state __maybe_unused) 438 { 439 struct sched_atom *event = get_new_event(task, timestamp); 440 441 event->type = SCHED_EVENT_SLEEP; 442 443 sched->nr_sleep_events++; 444 } 445 446 static struct task_desc *register_pid(struct perf_sched *sched, 447 unsigned long pid, const char *comm) 448 { 449 struct task_desc *task; 450 static int pid_max; 451 452 if (sched->pid_to_task == NULL) { 453 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 454 pid_max = MAX_PID; 455 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 456 } 457 if (pid >= (unsigned long)pid_max) { 458 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 459 sizeof(struct task_desc *))) == NULL); 460 while (pid >= (unsigned long)pid_max) 461 sched->pid_to_task[pid_max++] = NULL; 462 } 463 464 task = sched->pid_to_task[pid]; 465 466 if (task) 467 return task; 468 469 task = zalloc(sizeof(*task)); 470 task->pid = pid; 471 task->nr = sched->nr_tasks; 472 strcpy(task->comm, comm); 473 /* 474 * every task starts in sleeping state - this gets ignored 475 * if there's no wakeup pointing to this sleep state: 476 */ 477 add_sched_event_sleep(sched, task, 0, 0); 478 479 sched->pid_to_task[pid] = task; 480 sched->nr_tasks++; 481 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 482 BUG_ON(!sched->tasks); 483 sched->tasks[task->nr] = task; 484 485 if (verbose > 0) 486 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 487 488 return task; 489 } 490 491 492 static void print_task_traces(struct perf_sched *sched) 493 { 494 struct task_desc *task; 495 unsigned long i; 496 497 for (i = 0; i < sched->nr_tasks; i++) { 498 task = sched->tasks[i]; 499 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 500 task->nr, task->comm, task->pid, task->nr_events); 501 } 502 } 503 504 static void add_cross_task_wakeups(struct perf_sched *sched) 505 { 506 struct task_desc *task1, *task2; 507 unsigned long i, j; 508 509 for (i = 0; i < sched->nr_tasks; i++) { 510 task1 = sched->tasks[i]; 511 j = i + 1; 512 if (j == sched->nr_tasks) 513 j = 0; 514 task2 = sched->tasks[j]; 515 add_sched_event_wakeup(sched, task1, 0, task2); 516 } 517 } 518 519 static void perf_sched__process_event(struct perf_sched *sched, 520 struct sched_atom *atom) 521 { 522 int ret = 0; 523 524 switch (atom->type) { 525 case SCHED_EVENT_RUN: 526 burn_nsecs(sched, atom->duration); 527 break; 528 case SCHED_EVENT_SLEEP: 529 if (atom->wait_sem) 530 ret = sem_wait(atom->wait_sem); 531 BUG_ON(ret); 532 break; 533 case SCHED_EVENT_WAKEUP: 534 if (atom->wait_sem) 535 ret = sem_post(atom->wait_sem); 536 BUG_ON(ret); 537 break; 538 case SCHED_EVENT_MIGRATION: 539 break; 540 default: 541 BUG_ON(1); 542 } 543 } 544 545 static u64 get_cpu_usage_nsec_parent(void) 546 { 547 struct rusage ru; 548 u64 sum; 549 int err; 550 551 err = getrusage(RUSAGE_SELF, &ru); 552 BUG_ON(err); 553 554 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 555 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 556 557 return sum; 558 } 559 560 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 561 { 562 struct perf_event_attr attr; 563 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 564 int fd; 565 struct rlimit limit; 566 bool need_privilege = false; 567 568 memset(&attr, 0, sizeof(attr)); 569 570 attr.type = PERF_TYPE_SOFTWARE; 571 attr.config = PERF_COUNT_SW_TASK_CLOCK; 572 573 force_again: 574 fd = sys_perf_event_open(&attr, 0, -1, -1, 575 perf_event_open_cloexec_flag()); 576 577 if (fd < 0) { 578 if (errno == EMFILE) { 579 if (sched->force) { 580 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 581 limit.rlim_cur += sched->nr_tasks - cur_task; 582 if (limit.rlim_cur > limit.rlim_max) { 583 limit.rlim_max = limit.rlim_cur; 584 need_privilege = true; 585 } 586 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 587 if (need_privilege && errno == EPERM) 588 strcpy(info, "Need privilege\n"); 589 } else 590 goto force_again; 591 } else 592 strcpy(info, "Have a try with -f option\n"); 593 } 594 pr_err("Error: sys_perf_event_open() syscall returned " 595 "with %d (%s)\n%s", fd, 596 str_error_r(errno, sbuf, sizeof(sbuf)), info); 597 exit(EXIT_FAILURE); 598 } 599 return fd; 600 } 601 602 static u64 get_cpu_usage_nsec_self(int fd) 603 { 604 u64 runtime; 605 int ret; 606 607 ret = read(fd, &runtime, sizeof(runtime)); 608 BUG_ON(ret != sizeof(runtime)); 609 610 return runtime; 611 } 612 613 struct sched_thread_parms { 614 struct task_desc *task; 615 struct perf_sched *sched; 616 int fd; 617 }; 618 619 static void *thread_func(void *ctx) 620 { 621 struct sched_thread_parms *parms = ctx; 622 struct task_desc *this_task = parms->task; 623 struct perf_sched *sched = parms->sched; 624 u64 cpu_usage_0, cpu_usage_1; 625 unsigned long i, ret; 626 char comm2[22]; 627 int fd = parms->fd; 628 629 zfree(&parms); 630 631 sprintf(comm2, ":%s", this_task->comm); 632 prctl(PR_SET_NAME, comm2); 633 if (fd < 0) 634 return NULL; 635 again: 636 ret = sem_post(&this_task->ready_for_work); 637 BUG_ON(ret); 638 ret = pthread_mutex_lock(&sched->start_work_mutex); 639 BUG_ON(ret); 640 ret = pthread_mutex_unlock(&sched->start_work_mutex); 641 BUG_ON(ret); 642 643 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 644 645 for (i = 0; i < this_task->nr_events; i++) { 646 this_task->curr_event = i; 647 perf_sched__process_event(sched, this_task->atoms[i]); 648 } 649 650 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 651 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 652 ret = sem_post(&this_task->work_done_sem); 653 BUG_ON(ret); 654 655 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 656 BUG_ON(ret); 657 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 658 BUG_ON(ret); 659 660 goto again; 661 } 662 663 static void create_tasks(struct perf_sched *sched) 664 { 665 struct task_desc *task; 666 pthread_attr_t attr; 667 unsigned long i; 668 int err; 669 670 err = pthread_attr_init(&attr); 671 BUG_ON(err); 672 err = pthread_attr_setstacksize(&attr, 673 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 674 BUG_ON(err); 675 err = pthread_mutex_lock(&sched->start_work_mutex); 676 BUG_ON(err); 677 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 678 BUG_ON(err); 679 for (i = 0; i < sched->nr_tasks; i++) { 680 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 681 BUG_ON(parms == NULL); 682 parms->task = task = sched->tasks[i]; 683 parms->sched = sched; 684 parms->fd = self_open_counters(sched, i); 685 sem_init(&task->sleep_sem, 0, 0); 686 sem_init(&task->ready_for_work, 0, 0); 687 sem_init(&task->work_done_sem, 0, 0); 688 task->curr_event = 0; 689 err = pthread_create(&task->thread, &attr, thread_func, parms); 690 BUG_ON(err); 691 } 692 } 693 694 static void wait_for_tasks(struct perf_sched *sched) 695 { 696 u64 cpu_usage_0, cpu_usage_1; 697 struct task_desc *task; 698 unsigned long i, ret; 699 700 sched->start_time = get_nsecs(); 701 sched->cpu_usage = 0; 702 pthread_mutex_unlock(&sched->work_done_wait_mutex); 703 704 for (i = 0; i < sched->nr_tasks; i++) { 705 task = sched->tasks[i]; 706 ret = sem_wait(&task->ready_for_work); 707 BUG_ON(ret); 708 sem_init(&task->ready_for_work, 0, 0); 709 } 710 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 711 BUG_ON(ret); 712 713 cpu_usage_0 = get_cpu_usage_nsec_parent(); 714 715 pthread_mutex_unlock(&sched->start_work_mutex); 716 717 for (i = 0; i < sched->nr_tasks; i++) { 718 task = sched->tasks[i]; 719 ret = sem_wait(&task->work_done_sem); 720 BUG_ON(ret); 721 sem_init(&task->work_done_sem, 0, 0); 722 sched->cpu_usage += task->cpu_usage; 723 task->cpu_usage = 0; 724 } 725 726 cpu_usage_1 = get_cpu_usage_nsec_parent(); 727 if (!sched->runavg_cpu_usage) 728 sched->runavg_cpu_usage = sched->cpu_usage; 729 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 730 731 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 732 if (!sched->runavg_parent_cpu_usage) 733 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 734 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 735 sched->parent_cpu_usage)/sched->replay_repeat; 736 737 ret = pthread_mutex_lock(&sched->start_work_mutex); 738 BUG_ON(ret); 739 740 for (i = 0; i < sched->nr_tasks; i++) { 741 task = sched->tasks[i]; 742 sem_init(&task->sleep_sem, 0, 0); 743 task->curr_event = 0; 744 } 745 } 746 747 static void run_one_test(struct perf_sched *sched) 748 { 749 u64 T0, T1, delta, avg_delta, fluct; 750 751 T0 = get_nsecs(); 752 wait_for_tasks(sched); 753 T1 = get_nsecs(); 754 755 delta = T1 - T0; 756 sched->sum_runtime += delta; 757 sched->nr_runs++; 758 759 avg_delta = sched->sum_runtime / sched->nr_runs; 760 if (delta < avg_delta) 761 fluct = avg_delta - delta; 762 else 763 fluct = delta - avg_delta; 764 sched->sum_fluct += fluct; 765 if (!sched->run_avg) 766 sched->run_avg = delta; 767 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 768 769 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 770 771 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 772 773 printf("cpu: %0.2f / %0.2f", 774 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 775 776 #if 0 777 /* 778 * rusage statistics done by the parent, these are less 779 * accurate than the sched->sum_exec_runtime based statistics: 780 */ 781 printf(" [%0.2f / %0.2f]", 782 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 783 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 784 #endif 785 786 printf("\n"); 787 788 if (sched->nr_sleep_corrections) 789 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 790 sched->nr_sleep_corrections = 0; 791 } 792 793 static void test_calibrations(struct perf_sched *sched) 794 { 795 u64 T0, T1; 796 797 T0 = get_nsecs(); 798 burn_nsecs(sched, NSEC_PER_MSEC); 799 T1 = get_nsecs(); 800 801 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 802 803 T0 = get_nsecs(); 804 sleep_nsecs(NSEC_PER_MSEC); 805 T1 = get_nsecs(); 806 807 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 808 } 809 810 static int 811 replay_wakeup_event(struct perf_sched *sched, 812 struct evsel *evsel, struct perf_sample *sample, 813 struct machine *machine __maybe_unused) 814 { 815 const char *comm = evsel__strval(evsel, sample, "comm"); 816 const u32 pid = evsel__intval(evsel, sample, "pid"); 817 struct task_desc *waker, *wakee; 818 819 if (verbose > 0) { 820 printf("sched_wakeup event %p\n", evsel); 821 822 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 823 } 824 825 waker = register_pid(sched, sample->tid, "<unknown>"); 826 wakee = register_pid(sched, pid, comm); 827 828 add_sched_event_wakeup(sched, waker, sample->time, wakee); 829 return 0; 830 } 831 832 static int replay_switch_event(struct perf_sched *sched, 833 struct evsel *evsel, 834 struct perf_sample *sample, 835 struct machine *machine __maybe_unused) 836 { 837 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 838 *next_comm = evsel__strval(evsel, sample, "next_comm"); 839 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 840 next_pid = evsel__intval(evsel, sample, "next_pid"); 841 const u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 842 struct task_desc *prev, __maybe_unused *next; 843 u64 timestamp0, timestamp = sample->time; 844 int cpu = sample->cpu; 845 s64 delta; 846 847 if (verbose > 0) 848 printf("sched_switch event %p\n", evsel); 849 850 if (cpu >= MAX_CPUS || cpu < 0) 851 return 0; 852 853 timestamp0 = sched->cpu_last_switched[cpu]; 854 if (timestamp0) 855 delta = timestamp - timestamp0; 856 else 857 delta = 0; 858 859 if (delta < 0) { 860 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 861 return -1; 862 } 863 864 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 865 prev_comm, prev_pid, next_comm, next_pid, delta); 866 867 prev = register_pid(sched, prev_pid, prev_comm); 868 next = register_pid(sched, next_pid, next_comm); 869 870 sched->cpu_last_switched[cpu] = timestamp; 871 872 add_sched_event_run(sched, prev, timestamp, delta); 873 add_sched_event_sleep(sched, prev, timestamp, prev_state); 874 875 return 0; 876 } 877 878 static int replay_fork_event(struct perf_sched *sched, 879 union perf_event *event, 880 struct machine *machine) 881 { 882 struct thread *child, *parent; 883 884 child = machine__findnew_thread(machine, event->fork.pid, 885 event->fork.tid); 886 parent = machine__findnew_thread(machine, event->fork.ppid, 887 event->fork.ptid); 888 889 if (child == NULL || parent == NULL) { 890 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 891 child, parent); 892 goto out_put; 893 } 894 895 if (verbose > 0) { 896 printf("fork event\n"); 897 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 898 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 899 } 900 901 register_pid(sched, parent->tid, thread__comm_str(parent)); 902 register_pid(sched, child->tid, thread__comm_str(child)); 903 out_put: 904 thread__put(child); 905 thread__put(parent); 906 return 0; 907 } 908 909 struct sort_dimension { 910 const char *name; 911 sort_fn_t cmp; 912 struct list_head list; 913 }; 914 915 /* 916 * handle runtime stats saved per thread 917 */ 918 static struct thread_runtime *thread__init_runtime(struct thread *thread) 919 { 920 struct thread_runtime *r; 921 922 r = zalloc(sizeof(struct thread_runtime)); 923 if (!r) 924 return NULL; 925 926 init_stats(&r->run_stats); 927 thread__set_priv(thread, r); 928 929 return r; 930 } 931 932 static struct thread_runtime *thread__get_runtime(struct thread *thread) 933 { 934 struct thread_runtime *tr; 935 936 tr = thread__priv(thread); 937 if (tr == NULL) { 938 tr = thread__init_runtime(thread); 939 if (tr == NULL) 940 pr_debug("Failed to malloc memory for runtime data.\n"); 941 } 942 943 return tr; 944 } 945 946 static int 947 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 948 { 949 struct sort_dimension *sort; 950 int ret = 0; 951 952 BUG_ON(list_empty(list)); 953 954 list_for_each_entry(sort, list, list) { 955 ret = sort->cmp(l, r); 956 if (ret) 957 return ret; 958 } 959 960 return ret; 961 } 962 963 static struct work_atoms * 964 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 965 struct list_head *sort_list) 966 { 967 struct rb_node *node = root->rb_root.rb_node; 968 struct work_atoms key = { .thread = thread }; 969 970 while (node) { 971 struct work_atoms *atoms; 972 int cmp; 973 974 atoms = container_of(node, struct work_atoms, node); 975 976 cmp = thread_lat_cmp(sort_list, &key, atoms); 977 if (cmp > 0) 978 node = node->rb_left; 979 else if (cmp < 0) 980 node = node->rb_right; 981 else { 982 BUG_ON(thread != atoms->thread); 983 return atoms; 984 } 985 } 986 return NULL; 987 } 988 989 static void 990 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 991 struct list_head *sort_list) 992 { 993 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 994 bool leftmost = true; 995 996 while (*new) { 997 struct work_atoms *this; 998 int cmp; 999 1000 this = container_of(*new, struct work_atoms, node); 1001 parent = *new; 1002 1003 cmp = thread_lat_cmp(sort_list, data, this); 1004 1005 if (cmp > 0) 1006 new = &((*new)->rb_left); 1007 else { 1008 new = &((*new)->rb_right); 1009 leftmost = false; 1010 } 1011 } 1012 1013 rb_link_node(&data->node, parent, new); 1014 rb_insert_color_cached(&data->node, root, leftmost); 1015 } 1016 1017 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1018 { 1019 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1020 if (!atoms) { 1021 pr_err("No memory at %s\n", __func__); 1022 return -1; 1023 } 1024 1025 atoms->thread = thread__get(thread); 1026 INIT_LIST_HEAD(&atoms->work_list); 1027 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1028 return 0; 1029 } 1030 1031 static char sched_out_state(u64 prev_state) 1032 { 1033 const char *str = TASK_STATE_TO_CHAR_STR; 1034 1035 return str[prev_state]; 1036 } 1037 1038 static int 1039 add_sched_out_event(struct work_atoms *atoms, 1040 char run_state, 1041 u64 timestamp) 1042 { 1043 struct work_atom *atom = zalloc(sizeof(*atom)); 1044 if (!atom) { 1045 pr_err("Non memory at %s", __func__); 1046 return -1; 1047 } 1048 1049 atom->sched_out_time = timestamp; 1050 1051 if (run_state == 'R') { 1052 atom->state = THREAD_WAIT_CPU; 1053 atom->wake_up_time = atom->sched_out_time; 1054 } 1055 1056 list_add_tail(&atom->list, &atoms->work_list); 1057 return 0; 1058 } 1059 1060 static void 1061 add_runtime_event(struct work_atoms *atoms, u64 delta, 1062 u64 timestamp __maybe_unused) 1063 { 1064 struct work_atom *atom; 1065 1066 BUG_ON(list_empty(&atoms->work_list)); 1067 1068 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1069 1070 atom->runtime += delta; 1071 atoms->total_runtime += delta; 1072 } 1073 1074 static void 1075 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1076 { 1077 struct work_atom *atom; 1078 u64 delta; 1079 1080 if (list_empty(&atoms->work_list)) 1081 return; 1082 1083 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1084 1085 if (atom->state != THREAD_WAIT_CPU) 1086 return; 1087 1088 if (timestamp < atom->wake_up_time) { 1089 atom->state = THREAD_IGNORE; 1090 return; 1091 } 1092 1093 atom->state = THREAD_SCHED_IN; 1094 atom->sched_in_time = timestamp; 1095 1096 delta = atom->sched_in_time - atom->wake_up_time; 1097 atoms->total_lat += delta; 1098 if (delta > atoms->max_lat) { 1099 atoms->max_lat = delta; 1100 atoms->max_lat_start = atom->wake_up_time; 1101 atoms->max_lat_end = timestamp; 1102 } 1103 atoms->nb_atoms++; 1104 } 1105 1106 static int latency_switch_event(struct perf_sched *sched, 1107 struct evsel *evsel, 1108 struct perf_sample *sample, 1109 struct machine *machine) 1110 { 1111 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1112 next_pid = evsel__intval(evsel, sample, "next_pid"); 1113 const u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 1114 struct work_atoms *out_events, *in_events; 1115 struct thread *sched_out, *sched_in; 1116 u64 timestamp0, timestamp = sample->time; 1117 int cpu = sample->cpu, err = -1; 1118 s64 delta; 1119 1120 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1121 1122 timestamp0 = sched->cpu_last_switched[cpu]; 1123 sched->cpu_last_switched[cpu] = timestamp; 1124 if (timestamp0) 1125 delta = timestamp - timestamp0; 1126 else 1127 delta = 0; 1128 1129 if (delta < 0) { 1130 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1131 return -1; 1132 } 1133 1134 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1135 sched_in = machine__findnew_thread(machine, -1, next_pid); 1136 if (sched_out == NULL || sched_in == NULL) 1137 goto out_put; 1138 1139 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1140 if (!out_events) { 1141 if (thread_atoms_insert(sched, sched_out)) 1142 goto out_put; 1143 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1144 if (!out_events) { 1145 pr_err("out-event: Internal tree error"); 1146 goto out_put; 1147 } 1148 } 1149 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1150 return -1; 1151 1152 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1153 if (!in_events) { 1154 if (thread_atoms_insert(sched, sched_in)) 1155 goto out_put; 1156 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1157 if (!in_events) { 1158 pr_err("in-event: Internal tree error"); 1159 goto out_put; 1160 } 1161 /* 1162 * Take came in we have not heard about yet, 1163 * add in an initial atom in runnable state: 1164 */ 1165 if (add_sched_out_event(in_events, 'R', timestamp)) 1166 goto out_put; 1167 } 1168 add_sched_in_event(in_events, timestamp); 1169 err = 0; 1170 out_put: 1171 thread__put(sched_out); 1172 thread__put(sched_in); 1173 return err; 1174 } 1175 1176 static int latency_runtime_event(struct perf_sched *sched, 1177 struct evsel *evsel, 1178 struct perf_sample *sample, 1179 struct machine *machine) 1180 { 1181 const u32 pid = evsel__intval(evsel, sample, "pid"); 1182 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1183 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1184 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1185 u64 timestamp = sample->time; 1186 int cpu = sample->cpu, err = -1; 1187 1188 if (thread == NULL) 1189 return -1; 1190 1191 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1192 if (!atoms) { 1193 if (thread_atoms_insert(sched, thread)) 1194 goto out_put; 1195 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1196 if (!atoms) { 1197 pr_err("in-event: Internal tree error"); 1198 goto out_put; 1199 } 1200 if (add_sched_out_event(atoms, 'R', timestamp)) 1201 goto out_put; 1202 } 1203 1204 add_runtime_event(atoms, runtime, timestamp); 1205 err = 0; 1206 out_put: 1207 thread__put(thread); 1208 return err; 1209 } 1210 1211 static int latency_wakeup_event(struct perf_sched *sched, 1212 struct evsel *evsel, 1213 struct perf_sample *sample, 1214 struct machine *machine) 1215 { 1216 const u32 pid = evsel__intval(evsel, sample, "pid"); 1217 struct work_atoms *atoms; 1218 struct work_atom *atom; 1219 struct thread *wakee; 1220 u64 timestamp = sample->time; 1221 int err = -1; 1222 1223 wakee = machine__findnew_thread(machine, -1, pid); 1224 if (wakee == NULL) 1225 return -1; 1226 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1227 if (!atoms) { 1228 if (thread_atoms_insert(sched, wakee)) 1229 goto out_put; 1230 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1231 if (!atoms) { 1232 pr_err("wakeup-event: Internal tree error"); 1233 goto out_put; 1234 } 1235 if (add_sched_out_event(atoms, 'S', timestamp)) 1236 goto out_put; 1237 } 1238 1239 BUG_ON(list_empty(&atoms->work_list)); 1240 1241 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1242 1243 /* 1244 * As we do not guarantee the wakeup event happens when 1245 * task is out of run queue, also may happen when task is 1246 * on run queue and wakeup only change ->state to TASK_RUNNING, 1247 * then we should not set the ->wake_up_time when wake up a 1248 * task which is on run queue. 1249 * 1250 * You WILL be missing events if you've recorded only 1251 * one CPU, or are only looking at only one, so don't 1252 * skip in this case. 1253 */ 1254 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1255 goto out_ok; 1256 1257 sched->nr_timestamps++; 1258 if (atom->sched_out_time > timestamp) { 1259 sched->nr_unordered_timestamps++; 1260 goto out_ok; 1261 } 1262 1263 atom->state = THREAD_WAIT_CPU; 1264 atom->wake_up_time = timestamp; 1265 out_ok: 1266 err = 0; 1267 out_put: 1268 thread__put(wakee); 1269 return err; 1270 } 1271 1272 static int latency_migrate_task_event(struct perf_sched *sched, 1273 struct evsel *evsel, 1274 struct perf_sample *sample, 1275 struct machine *machine) 1276 { 1277 const u32 pid = evsel__intval(evsel, sample, "pid"); 1278 u64 timestamp = sample->time; 1279 struct work_atoms *atoms; 1280 struct work_atom *atom; 1281 struct thread *migrant; 1282 int err = -1; 1283 1284 /* 1285 * Only need to worry about migration when profiling one CPU. 1286 */ 1287 if (sched->profile_cpu == -1) 1288 return 0; 1289 1290 migrant = machine__findnew_thread(machine, -1, pid); 1291 if (migrant == NULL) 1292 return -1; 1293 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1294 if (!atoms) { 1295 if (thread_atoms_insert(sched, migrant)) 1296 goto out_put; 1297 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1298 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1299 if (!atoms) { 1300 pr_err("migration-event: Internal tree error"); 1301 goto out_put; 1302 } 1303 if (add_sched_out_event(atoms, 'R', timestamp)) 1304 goto out_put; 1305 } 1306 1307 BUG_ON(list_empty(&atoms->work_list)); 1308 1309 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1310 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1311 1312 sched->nr_timestamps++; 1313 1314 if (atom->sched_out_time > timestamp) 1315 sched->nr_unordered_timestamps++; 1316 err = 0; 1317 out_put: 1318 thread__put(migrant); 1319 return err; 1320 } 1321 1322 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1323 { 1324 int i; 1325 int ret; 1326 u64 avg; 1327 char max_lat_start[32], max_lat_end[32]; 1328 1329 if (!work_list->nb_atoms) 1330 return; 1331 /* 1332 * Ignore idle threads: 1333 */ 1334 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1335 return; 1336 1337 sched->all_runtime += work_list->total_runtime; 1338 sched->all_count += work_list->nb_atoms; 1339 1340 if (work_list->num_merged > 1) 1341 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1342 else 1343 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1344 1345 for (i = 0; i < 24 - ret; i++) 1346 printf(" "); 1347 1348 avg = work_list->total_lat / work_list->nb_atoms; 1349 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1350 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1351 1352 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1353 (double)work_list->total_runtime / NSEC_PER_MSEC, 1354 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1355 (double)work_list->max_lat / NSEC_PER_MSEC, 1356 max_lat_start, max_lat_end); 1357 } 1358 1359 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1360 { 1361 if (l->thread == r->thread) 1362 return 0; 1363 if (l->thread->tid < r->thread->tid) 1364 return -1; 1365 if (l->thread->tid > r->thread->tid) 1366 return 1; 1367 return (int)(l->thread - r->thread); 1368 } 1369 1370 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1371 { 1372 u64 avgl, avgr; 1373 1374 if (!l->nb_atoms) 1375 return -1; 1376 1377 if (!r->nb_atoms) 1378 return 1; 1379 1380 avgl = l->total_lat / l->nb_atoms; 1381 avgr = r->total_lat / r->nb_atoms; 1382 1383 if (avgl < avgr) 1384 return -1; 1385 if (avgl > avgr) 1386 return 1; 1387 1388 return 0; 1389 } 1390 1391 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1392 { 1393 if (l->max_lat < r->max_lat) 1394 return -1; 1395 if (l->max_lat > r->max_lat) 1396 return 1; 1397 1398 return 0; 1399 } 1400 1401 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1402 { 1403 if (l->nb_atoms < r->nb_atoms) 1404 return -1; 1405 if (l->nb_atoms > r->nb_atoms) 1406 return 1; 1407 1408 return 0; 1409 } 1410 1411 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1412 { 1413 if (l->total_runtime < r->total_runtime) 1414 return -1; 1415 if (l->total_runtime > r->total_runtime) 1416 return 1; 1417 1418 return 0; 1419 } 1420 1421 static int sort_dimension__add(const char *tok, struct list_head *list) 1422 { 1423 size_t i; 1424 static struct sort_dimension avg_sort_dimension = { 1425 .name = "avg", 1426 .cmp = avg_cmp, 1427 }; 1428 static struct sort_dimension max_sort_dimension = { 1429 .name = "max", 1430 .cmp = max_cmp, 1431 }; 1432 static struct sort_dimension pid_sort_dimension = { 1433 .name = "pid", 1434 .cmp = pid_cmp, 1435 }; 1436 static struct sort_dimension runtime_sort_dimension = { 1437 .name = "runtime", 1438 .cmp = runtime_cmp, 1439 }; 1440 static struct sort_dimension switch_sort_dimension = { 1441 .name = "switch", 1442 .cmp = switch_cmp, 1443 }; 1444 struct sort_dimension *available_sorts[] = { 1445 &pid_sort_dimension, 1446 &avg_sort_dimension, 1447 &max_sort_dimension, 1448 &switch_sort_dimension, 1449 &runtime_sort_dimension, 1450 }; 1451 1452 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1453 if (!strcmp(available_sorts[i]->name, tok)) { 1454 list_add_tail(&available_sorts[i]->list, list); 1455 1456 return 0; 1457 } 1458 } 1459 1460 return -1; 1461 } 1462 1463 static void perf_sched__sort_lat(struct perf_sched *sched) 1464 { 1465 struct rb_node *node; 1466 struct rb_root_cached *root = &sched->atom_root; 1467 again: 1468 for (;;) { 1469 struct work_atoms *data; 1470 node = rb_first_cached(root); 1471 if (!node) 1472 break; 1473 1474 rb_erase_cached(node, root); 1475 data = rb_entry(node, struct work_atoms, node); 1476 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1477 } 1478 if (root == &sched->atom_root) { 1479 root = &sched->merged_atom_root; 1480 goto again; 1481 } 1482 } 1483 1484 static int process_sched_wakeup_event(struct perf_tool *tool, 1485 struct evsel *evsel, 1486 struct perf_sample *sample, 1487 struct machine *machine) 1488 { 1489 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1490 1491 if (sched->tp_handler->wakeup_event) 1492 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1493 1494 return 0; 1495 } 1496 1497 union map_priv { 1498 void *ptr; 1499 bool color; 1500 }; 1501 1502 static bool thread__has_color(struct thread *thread) 1503 { 1504 union map_priv priv = { 1505 .ptr = thread__priv(thread), 1506 }; 1507 1508 return priv.color; 1509 } 1510 1511 static struct thread* 1512 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1513 { 1514 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1515 union map_priv priv = { 1516 .color = false, 1517 }; 1518 1519 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1520 return thread; 1521 1522 if (thread_map__has(sched->map.color_pids, tid)) 1523 priv.color = true; 1524 1525 thread__set_priv(thread, priv.ptr); 1526 return thread; 1527 } 1528 1529 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1530 struct perf_sample *sample, struct machine *machine) 1531 { 1532 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1533 struct thread *sched_in; 1534 struct thread_runtime *tr; 1535 int new_shortname; 1536 u64 timestamp0, timestamp = sample->time; 1537 s64 delta; 1538 int i, this_cpu = sample->cpu; 1539 int cpus_nr; 1540 bool new_cpu = false; 1541 const char *color = PERF_COLOR_NORMAL; 1542 char stimestamp[32]; 1543 1544 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1545 1546 if (this_cpu > sched->max_cpu) 1547 sched->max_cpu = this_cpu; 1548 1549 if (sched->map.comp) { 1550 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1551 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { 1552 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1553 new_cpu = true; 1554 } 1555 } else 1556 cpus_nr = sched->max_cpu; 1557 1558 timestamp0 = sched->cpu_last_switched[this_cpu]; 1559 sched->cpu_last_switched[this_cpu] = timestamp; 1560 if (timestamp0) 1561 delta = timestamp - timestamp0; 1562 else 1563 delta = 0; 1564 1565 if (delta < 0) { 1566 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1567 return -1; 1568 } 1569 1570 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1571 if (sched_in == NULL) 1572 return -1; 1573 1574 tr = thread__get_runtime(sched_in); 1575 if (tr == NULL) { 1576 thread__put(sched_in); 1577 return -1; 1578 } 1579 1580 sched->curr_thread[this_cpu] = thread__get(sched_in); 1581 1582 printf(" "); 1583 1584 new_shortname = 0; 1585 if (!tr->shortname[0]) { 1586 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1587 /* 1588 * Don't allocate a letter-number for swapper:0 1589 * as a shortname. Instead, we use '.' for it. 1590 */ 1591 tr->shortname[0] = '.'; 1592 tr->shortname[1] = ' '; 1593 } else { 1594 tr->shortname[0] = sched->next_shortname1; 1595 tr->shortname[1] = sched->next_shortname2; 1596 1597 if (sched->next_shortname1 < 'Z') { 1598 sched->next_shortname1++; 1599 } else { 1600 sched->next_shortname1 = 'A'; 1601 if (sched->next_shortname2 < '9') 1602 sched->next_shortname2++; 1603 else 1604 sched->next_shortname2 = '0'; 1605 } 1606 } 1607 new_shortname = 1; 1608 } 1609 1610 for (i = 0; i < cpus_nr; i++) { 1611 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; 1612 struct thread *curr_thread = sched->curr_thread[cpu]; 1613 struct thread_runtime *curr_tr; 1614 const char *pid_color = color; 1615 const char *cpu_color = color; 1616 1617 if (curr_thread && thread__has_color(curr_thread)) 1618 pid_color = COLOR_PIDS; 1619 1620 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) 1621 continue; 1622 1623 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) 1624 cpu_color = COLOR_CPUS; 1625 1626 if (cpu != this_cpu) 1627 color_fprintf(stdout, color, " "); 1628 else 1629 color_fprintf(stdout, cpu_color, "*"); 1630 1631 if (sched->curr_thread[cpu]) { 1632 curr_tr = thread__get_runtime(sched->curr_thread[cpu]); 1633 if (curr_tr == NULL) { 1634 thread__put(sched_in); 1635 return -1; 1636 } 1637 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1638 } else 1639 color_fprintf(stdout, color, " "); 1640 } 1641 1642 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) 1643 goto out; 1644 1645 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1646 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1647 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) { 1648 const char *pid_color = color; 1649 1650 if (thread__has_color(sched_in)) 1651 pid_color = COLOR_PIDS; 1652 1653 color_fprintf(stdout, pid_color, "%s => %s:%d", 1654 tr->shortname, thread__comm_str(sched_in), sched_in->tid); 1655 tr->comm_changed = false; 1656 } 1657 1658 if (sched->map.comp && new_cpu) 1659 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1660 1661 out: 1662 color_fprintf(stdout, color, "\n"); 1663 1664 thread__put(sched_in); 1665 1666 return 0; 1667 } 1668 1669 static int process_sched_switch_event(struct perf_tool *tool, 1670 struct evsel *evsel, 1671 struct perf_sample *sample, 1672 struct machine *machine) 1673 { 1674 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1675 int this_cpu = sample->cpu, err = 0; 1676 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1677 next_pid = evsel__intval(evsel, sample, "next_pid"); 1678 1679 if (sched->curr_pid[this_cpu] != (u32)-1) { 1680 /* 1681 * Are we trying to switch away a PID that is 1682 * not current? 1683 */ 1684 if (sched->curr_pid[this_cpu] != prev_pid) 1685 sched->nr_context_switch_bugs++; 1686 } 1687 1688 if (sched->tp_handler->switch_event) 1689 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1690 1691 sched->curr_pid[this_cpu] = next_pid; 1692 return err; 1693 } 1694 1695 static int process_sched_runtime_event(struct perf_tool *tool, 1696 struct evsel *evsel, 1697 struct perf_sample *sample, 1698 struct machine *machine) 1699 { 1700 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1701 1702 if (sched->tp_handler->runtime_event) 1703 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1704 1705 return 0; 1706 } 1707 1708 static int perf_sched__process_fork_event(struct perf_tool *tool, 1709 union perf_event *event, 1710 struct perf_sample *sample, 1711 struct machine *machine) 1712 { 1713 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1714 1715 /* run the fork event through the perf machineruy */ 1716 perf_event__process_fork(tool, event, sample, machine); 1717 1718 /* and then run additional processing needed for this command */ 1719 if (sched->tp_handler->fork_event) 1720 return sched->tp_handler->fork_event(sched, event, machine); 1721 1722 return 0; 1723 } 1724 1725 static int process_sched_migrate_task_event(struct perf_tool *tool, 1726 struct evsel *evsel, 1727 struct perf_sample *sample, 1728 struct machine *machine) 1729 { 1730 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1731 1732 if (sched->tp_handler->migrate_task_event) 1733 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1734 1735 return 0; 1736 } 1737 1738 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1739 struct evsel *evsel, 1740 struct perf_sample *sample, 1741 struct machine *machine); 1742 1743 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1744 union perf_event *event __maybe_unused, 1745 struct perf_sample *sample, 1746 struct evsel *evsel, 1747 struct machine *machine) 1748 { 1749 int err = 0; 1750 1751 if (evsel->handler != NULL) { 1752 tracepoint_handler f = evsel->handler; 1753 err = f(tool, evsel, sample, machine); 1754 } 1755 1756 return err; 1757 } 1758 1759 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, 1760 union perf_event *event, 1761 struct perf_sample *sample, 1762 struct machine *machine) 1763 { 1764 struct thread *thread; 1765 struct thread_runtime *tr; 1766 int err; 1767 1768 err = perf_event__process_comm(tool, event, sample, machine); 1769 if (err) 1770 return err; 1771 1772 thread = machine__find_thread(machine, sample->pid, sample->tid); 1773 if (!thread) { 1774 pr_err("Internal error: can't find thread\n"); 1775 return -1; 1776 } 1777 1778 tr = thread__get_runtime(thread); 1779 if (tr == NULL) { 1780 thread__put(thread); 1781 return -1; 1782 } 1783 1784 tr->comm_changed = true; 1785 thread__put(thread); 1786 1787 return 0; 1788 } 1789 1790 static int perf_sched__read_events(struct perf_sched *sched) 1791 { 1792 const struct evsel_str_handler handlers[] = { 1793 { "sched:sched_switch", process_sched_switch_event, }, 1794 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1795 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1796 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1797 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1798 }; 1799 struct perf_session *session; 1800 struct perf_data data = { 1801 .path = input_name, 1802 .mode = PERF_DATA_MODE_READ, 1803 .force = sched->force, 1804 }; 1805 int rc = -1; 1806 1807 session = perf_session__new(&data, false, &sched->tool); 1808 if (IS_ERR(session)) { 1809 pr_debug("Error creating perf session"); 1810 return PTR_ERR(session); 1811 } 1812 1813 symbol__init(&session->header.env); 1814 1815 if (perf_session__set_tracepoints_handlers(session, handlers)) 1816 goto out_delete; 1817 1818 if (perf_session__has_traces(session, "record -R")) { 1819 int err = perf_session__process_events(session); 1820 if (err) { 1821 pr_err("Failed to process events, error %d", err); 1822 goto out_delete; 1823 } 1824 1825 sched->nr_events = session->evlist->stats.nr_events[0]; 1826 sched->nr_lost_events = session->evlist->stats.total_lost; 1827 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1828 } 1829 1830 rc = 0; 1831 out_delete: 1832 perf_session__delete(session); 1833 return rc; 1834 } 1835 1836 /* 1837 * scheduling times are printed as msec.usec 1838 */ 1839 static inline void print_sched_time(unsigned long long nsecs, int width) 1840 { 1841 unsigned long msecs; 1842 unsigned long usecs; 1843 1844 msecs = nsecs / NSEC_PER_MSEC; 1845 nsecs -= msecs * NSEC_PER_MSEC; 1846 usecs = nsecs / NSEC_PER_USEC; 1847 printf("%*lu.%03lu ", width, msecs, usecs); 1848 } 1849 1850 /* 1851 * returns runtime data for event, allocating memory for it the 1852 * first time it is used. 1853 */ 1854 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1855 { 1856 struct evsel_runtime *r = evsel->priv; 1857 1858 if (r == NULL) { 1859 r = zalloc(sizeof(struct evsel_runtime)); 1860 evsel->priv = r; 1861 } 1862 1863 return r; 1864 } 1865 1866 /* 1867 * save last time event was seen per cpu 1868 */ 1869 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 1870 { 1871 struct evsel_runtime *r = evsel__get_runtime(evsel); 1872 1873 if (r == NULL) 1874 return; 1875 1876 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1877 int i, n = __roundup_pow_of_two(cpu+1); 1878 void *p = r->last_time; 1879 1880 p = realloc(r->last_time, n * sizeof(u64)); 1881 if (!p) 1882 return; 1883 1884 r->last_time = p; 1885 for (i = r->ncpu; i < n; ++i) 1886 r->last_time[i] = (u64) 0; 1887 1888 r->ncpu = n; 1889 } 1890 1891 r->last_time[cpu] = timestamp; 1892 } 1893 1894 /* returns last time this event was seen on the given cpu */ 1895 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 1896 { 1897 struct evsel_runtime *r = evsel__get_runtime(evsel); 1898 1899 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1900 return 0; 1901 1902 return r->last_time[cpu]; 1903 } 1904 1905 static int comm_width = 30; 1906 1907 static char *timehist_get_commstr(struct thread *thread) 1908 { 1909 static char str[32]; 1910 const char *comm = thread__comm_str(thread); 1911 pid_t tid = thread->tid; 1912 pid_t pid = thread->pid_; 1913 int n; 1914 1915 if (pid == 0) 1916 n = scnprintf(str, sizeof(str), "%s", comm); 1917 1918 else if (tid != pid) 1919 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1920 1921 else 1922 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1923 1924 if (n > comm_width) 1925 comm_width = n; 1926 1927 return str; 1928 } 1929 1930 static void timehist_header(struct perf_sched *sched) 1931 { 1932 u32 ncpus = sched->max_cpu + 1; 1933 u32 i, j; 1934 1935 printf("%15s %6s ", "time", "cpu"); 1936 1937 if (sched->show_cpu_visual) { 1938 printf(" "); 1939 for (i = 0, j = 0; i < ncpus; ++i) { 1940 printf("%x", j++); 1941 if (j > 15) 1942 j = 0; 1943 } 1944 printf(" "); 1945 } 1946 1947 printf(" %-*s %9s %9s %9s", comm_width, 1948 "task name", "wait time", "sch delay", "run time"); 1949 1950 if (sched->show_state) 1951 printf(" %s", "state"); 1952 1953 printf("\n"); 1954 1955 /* 1956 * units row 1957 */ 1958 printf("%15s %-6s ", "", ""); 1959 1960 if (sched->show_cpu_visual) 1961 printf(" %*s ", ncpus, ""); 1962 1963 printf(" %-*s %9s %9s %9s", comm_width, 1964 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 1965 1966 if (sched->show_state) 1967 printf(" %5s", ""); 1968 1969 printf("\n"); 1970 1971 /* 1972 * separator 1973 */ 1974 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 1975 1976 if (sched->show_cpu_visual) 1977 printf(" %.*s ", ncpus, graph_dotted_line); 1978 1979 printf(" %.*s %.9s %.9s %.9s", comm_width, 1980 graph_dotted_line, graph_dotted_line, graph_dotted_line, 1981 graph_dotted_line); 1982 1983 if (sched->show_state) 1984 printf(" %.5s", graph_dotted_line); 1985 1986 printf("\n"); 1987 } 1988 1989 static char task_state_char(struct thread *thread, int state) 1990 { 1991 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 1992 unsigned bit = state ? ffs(state) : 0; 1993 1994 /* 'I' for idle */ 1995 if (thread->tid == 0) 1996 return 'I'; 1997 1998 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 1999 } 2000 2001 static void timehist_print_sample(struct perf_sched *sched, 2002 struct evsel *evsel, 2003 struct perf_sample *sample, 2004 struct addr_location *al, 2005 struct thread *thread, 2006 u64 t, int state) 2007 { 2008 struct thread_runtime *tr = thread__priv(thread); 2009 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2010 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2011 u32 max_cpus = sched->max_cpu + 1; 2012 char tstr[64]; 2013 char nstr[30]; 2014 u64 wait_time; 2015 2016 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2017 return; 2018 2019 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2020 printf("%15s [%04d] ", tstr, sample->cpu); 2021 2022 if (sched->show_cpu_visual) { 2023 u32 i; 2024 char c; 2025 2026 printf(" "); 2027 for (i = 0; i < max_cpus; ++i) { 2028 /* flag idle times with 'i'; others are sched events */ 2029 if (i == sample->cpu) 2030 c = (thread->tid == 0) ? 'i' : 's'; 2031 else 2032 c = ' '; 2033 printf("%c", c); 2034 } 2035 printf(" "); 2036 } 2037 2038 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2039 2040 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2041 print_sched_time(wait_time, 6); 2042 2043 print_sched_time(tr->dt_delay, 6); 2044 print_sched_time(tr->dt_run, 6); 2045 2046 if (sched->show_state) 2047 printf(" %5c ", task_state_char(thread, state)); 2048 2049 if (sched->show_next) { 2050 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2051 printf(" %-*s", comm_width, nstr); 2052 } 2053 2054 if (sched->show_wakeups && !sched->show_next) 2055 printf(" %-*s", comm_width, ""); 2056 2057 if (thread->tid == 0) 2058 goto out; 2059 2060 if (sched->show_callchain) 2061 printf(" "); 2062 2063 sample__fprintf_sym(sample, al, 0, 2064 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2065 EVSEL__PRINT_CALLCHAIN_ARROW | 2066 EVSEL__PRINT_SKIP_IGNORED, 2067 &callchain_cursor, symbol_conf.bt_stop_list, stdout); 2068 2069 out: 2070 printf("\n"); 2071 } 2072 2073 /* 2074 * Explanation of delta-time stats: 2075 * 2076 * t = time of current schedule out event 2077 * tprev = time of previous sched out event 2078 * also time of schedule-in event for current task 2079 * last_time = time of last sched change event for current task 2080 * (i.e, time process was last scheduled out) 2081 * ready_to_run = time of wakeup for current task 2082 * 2083 * -----|------------|------------|------------|------ 2084 * last ready tprev t 2085 * time to run 2086 * 2087 * |-------- dt_wait --------| 2088 * |- dt_delay -|-- dt_run --| 2089 * 2090 * dt_run = run time of current task 2091 * dt_wait = time between last schedule out event for task and tprev 2092 * represents time spent off the cpu 2093 * dt_delay = time between wakeup and schedule-in of task 2094 */ 2095 2096 static void timehist_update_runtime_stats(struct thread_runtime *r, 2097 u64 t, u64 tprev) 2098 { 2099 r->dt_delay = 0; 2100 r->dt_sleep = 0; 2101 r->dt_iowait = 0; 2102 r->dt_preempt = 0; 2103 r->dt_run = 0; 2104 2105 if (tprev) { 2106 r->dt_run = t - tprev; 2107 if (r->ready_to_run) { 2108 if (r->ready_to_run > tprev) 2109 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2110 else 2111 r->dt_delay = tprev - r->ready_to_run; 2112 } 2113 2114 if (r->last_time > tprev) 2115 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2116 else if (r->last_time) { 2117 u64 dt_wait = tprev - r->last_time; 2118 2119 if (r->last_state == TASK_RUNNING) 2120 r->dt_preempt = dt_wait; 2121 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2122 r->dt_iowait = dt_wait; 2123 else 2124 r->dt_sleep = dt_wait; 2125 } 2126 } 2127 2128 update_stats(&r->run_stats, r->dt_run); 2129 2130 r->total_run_time += r->dt_run; 2131 r->total_delay_time += r->dt_delay; 2132 r->total_sleep_time += r->dt_sleep; 2133 r->total_iowait_time += r->dt_iowait; 2134 r->total_preempt_time += r->dt_preempt; 2135 } 2136 2137 static bool is_idle_sample(struct perf_sample *sample, 2138 struct evsel *evsel) 2139 { 2140 /* pid 0 == swapper == idle task */ 2141 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0) 2142 return evsel__intval(evsel, sample, "prev_pid") == 0; 2143 2144 return sample->pid == 0; 2145 } 2146 2147 static void save_task_callchain(struct perf_sched *sched, 2148 struct perf_sample *sample, 2149 struct evsel *evsel, 2150 struct machine *machine) 2151 { 2152 struct callchain_cursor *cursor = &callchain_cursor; 2153 struct thread *thread; 2154 2155 /* want main thread for process - has maps */ 2156 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2157 if (thread == NULL) { 2158 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2159 return; 2160 } 2161 2162 if (!sched->show_callchain || sample->callchain == NULL) 2163 return; 2164 2165 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2166 NULL, NULL, sched->max_stack + 2) != 0) { 2167 if (verbose > 0) 2168 pr_err("Failed to resolve callchain. Skipping\n"); 2169 2170 return; 2171 } 2172 2173 callchain_cursor_commit(cursor); 2174 2175 while (true) { 2176 struct callchain_cursor_node *node; 2177 struct symbol *sym; 2178 2179 node = callchain_cursor_current(cursor); 2180 if (node == NULL) 2181 break; 2182 2183 sym = node->ms.sym; 2184 if (sym) { 2185 if (!strcmp(sym->name, "schedule") || 2186 !strcmp(sym->name, "__schedule") || 2187 !strcmp(sym->name, "preempt_schedule")) 2188 sym->ignore = 1; 2189 } 2190 2191 callchain_cursor_advance(cursor); 2192 } 2193 } 2194 2195 static int init_idle_thread(struct thread *thread) 2196 { 2197 struct idle_thread_runtime *itr; 2198 2199 thread__set_comm(thread, idle_comm, 0); 2200 2201 itr = zalloc(sizeof(*itr)); 2202 if (itr == NULL) 2203 return -ENOMEM; 2204 2205 init_stats(&itr->tr.run_stats); 2206 callchain_init(&itr->callchain); 2207 callchain_cursor_reset(&itr->cursor); 2208 thread__set_priv(thread, itr); 2209 2210 return 0; 2211 } 2212 2213 /* 2214 * Track idle stats per cpu by maintaining a local thread 2215 * struct for the idle task on each cpu. 2216 */ 2217 static int init_idle_threads(int ncpu) 2218 { 2219 int i, ret; 2220 2221 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2222 if (!idle_threads) 2223 return -ENOMEM; 2224 2225 idle_max_cpu = ncpu; 2226 2227 /* allocate the actual thread struct if needed */ 2228 for (i = 0; i < ncpu; ++i) { 2229 idle_threads[i] = thread__new(0, 0); 2230 if (idle_threads[i] == NULL) 2231 return -ENOMEM; 2232 2233 ret = init_idle_thread(idle_threads[i]); 2234 if (ret < 0) 2235 return ret; 2236 } 2237 2238 return 0; 2239 } 2240 2241 static void free_idle_threads(void) 2242 { 2243 int i; 2244 2245 if (idle_threads == NULL) 2246 return; 2247 2248 for (i = 0; i < idle_max_cpu; ++i) { 2249 if ((idle_threads[i])) 2250 thread__delete(idle_threads[i]); 2251 } 2252 2253 free(idle_threads); 2254 } 2255 2256 static struct thread *get_idle_thread(int cpu) 2257 { 2258 /* 2259 * expand/allocate array of pointers to local thread 2260 * structs if needed 2261 */ 2262 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2263 int i, j = __roundup_pow_of_two(cpu+1); 2264 void *p; 2265 2266 p = realloc(idle_threads, j * sizeof(struct thread *)); 2267 if (!p) 2268 return NULL; 2269 2270 idle_threads = (struct thread **) p; 2271 for (i = idle_max_cpu; i < j; ++i) 2272 idle_threads[i] = NULL; 2273 2274 idle_max_cpu = j; 2275 } 2276 2277 /* allocate a new thread struct if needed */ 2278 if (idle_threads[cpu] == NULL) { 2279 idle_threads[cpu] = thread__new(0, 0); 2280 2281 if (idle_threads[cpu]) { 2282 if (init_idle_thread(idle_threads[cpu]) < 0) 2283 return NULL; 2284 } 2285 } 2286 2287 return idle_threads[cpu]; 2288 } 2289 2290 static void save_idle_callchain(struct perf_sched *sched, 2291 struct idle_thread_runtime *itr, 2292 struct perf_sample *sample) 2293 { 2294 if (!sched->show_callchain || sample->callchain == NULL) 2295 return; 2296 2297 callchain_cursor__copy(&itr->cursor, &callchain_cursor); 2298 } 2299 2300 static struct thread *timehist_get_thread(struct perf_sched *sched, 2301 struct perf_sample *sample, 2302 struct machine *machine, 2303 struct evsel *evsel) 2304 { 2305 struct thread *thread; 2306 2307 if (is_idle_sample(sample, evsel)) { 2308 thread = get_idle_thread(sample->cpu); 2309 if (thread == NULL) 2310 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2311 2312 } else { 2313 /* there were samples with tid 0 but non-zero pid */ 2314 thread = machine__findnew_thread(machine, sample->pid, 2315 sample->tid ?: sample->pid); 2316 if (thread == NULL) { 2317 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2318 sample->tid); 2319 } 2320 2321 save_task_callchain(sched, sample, evsel, machine); 2322 if (sched->idle_hist) { 2323 struct thread *idle; 2324 struct idle_thread_runtime *itr; 2325 2326 idle = get_idle_thread(sample->cpu); 2327 if (idle == NULL) { 2328 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2329 return NULL; 2330 } 2331 2332 itr = thread__priv(idle); 2333 if (itr == NULL) 2334 return NULL; 2335 2336 itr->last_thread = thread; 2337 2338 /* copy task callchain when entering to idle */ 2339 if (evsel__intval(evsel, sample, "next_pid") == 0) 2340 save_idle_callchain(sched, itr, sample); 2341 } 2342 } 2343 2344 return thread; 2345 } 2346 2347 static bool timehist_skip_sample(struct perf_sched *sched, 2348 struct thread *thread, 2349 struct evsel *evsel, 2350 struct perf_sample *sample) 2351 { 2352 bool rc = false; 2353 2354 if (thread__is_filtered(thread)) { 2355 rc = true; 2356 sched->skipped_samples++; 2357 } 2358 2359 if (sched->idle_hist) { 2360 if (strcmp(evsel__name(evsel), "sched:sched_switch")) 2361 rc = true; 2362 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2363 evsel__intval(evsel, sample, "next_pid") != 0) 2364 rc = true; 2365 } 2366 2367 return rc; 2368 } 2369 2370 static void timehist_print_wakeup_event(struct perf_sched *sched, 2371 struct evsel *evsel, 2372 struct perf_sample *sample, 2373 struct machine *machine, 2374 struct thread *awakened) 2375 { 2376 struct thread *thread; 2377 char tstr[64]; 2378 2379 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2380 if (thread == NULL) 2381 return; 2382 2383 /* show wakeup unless both awakee and awaker are filtered */ 2384 if (timehist_skip_sample(sched, thread, evsel, sample) && 2385 timehist_skip_sample(sched, awakened, evsel, sample)) { 2386 return; 2387 } 2388 2389 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2390 printf("%15s [%04d] ", tstr, sample->cpu); 2391 if (sched->show_cpu_visual) 2392 printf(" %*s ", sched->max_cpu + 1, ""); 2393 2394 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2395 2396 /* dt spacer */ 2397 printf(" %9s %9s %9s ", "", "", ""); 2398 2399 printf("awakened: %s", timehist_get_commstr(awakened)); 2400 2401 printf("\n"); 2402 } 2403 2404 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused, 2405 union perf_event *event __maybe_unused, 2406 struct evsel *evsel __maybe_unused, 2407 struct perf_sample *sample __maybe_unused, 2408 struct machine *machine __maybe_unused) 2409 { 2410 return 0; 2411 } 2412 2413 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2414 union perf_event *event __maybe_unused, 2415 struct evsel *evsel, 2416 struct perf_sample *sample, 2417 struct machine *machine) 2418 { 2419 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2420 struct thread *thread; 2421 struct thread_runtime *tr = NULL; 2422 /* want pid of awakened task not pid in sample */ 2423 const u32 pid = evsel__intval(evsel, sample, "pid"); 2424 2425 thread = machine__findnew_thread(machine, 0, pid); 2426 if (thread == NULL) 2427 return -1; 2428 2429 tr = thread__get_runtime(thread); 2430 if (tr == NULL) 2431 return -1; 2432 2433 if (tr->ready_to_run == 0) 2434 tr->ready_to_run = sample->time; 2435 2436 /* show wakeups if requested */ 2437 if (sched->show_wakeups && 2438 !perf_time__skip_sample(&sched->ptime, sample->time)) 2439 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2440 2441 return 0; 2442 } 2443 2444 static void timehist_print_migration_event(struct perf_sched *sched, 2445 struct evsel *evsel, 2446 struct perf_sample *sample, 2447 struct machine *machine, 2448 struct thread *migrated) 2449 { 2450 struct thread *thread; 2451 char tstr[64]; 2452 u32 max_cpus = sched->max_cpu + 1; 2453 u32 ocpu, dcpu; 2454 2455 if (sched->summary_only) 2456 return; 2457 2458 max_cpus = sched->max_cpu + 1; 2459 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2460 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2461 2462 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2463 if (thread == NULL) 2464 return; 2465 2466 if (timehist_skip_sample(sched, thread, evsel, sample) && 2467 timehist_skip_sample(sched, migrated, evsel, sample)) { 2468 return; 2469 } 2470 2471 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2472 printf("%15s [%04d] ", tstr, sample->cpu); 2473 2474 if (sched->show_cpu_visual) { 2475 u32 i; 2476 char c; 2477 2478 printf(" "); 2479 for (i = 0; i < max_cpus; ++i) { 2480 c = (i == sample->cpu) ? 'm' : ' '; 2481 printf("%c", c); 2482 } 2483 printf(" "); 2484 } 2485 2486 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2487 2488 /* dt spacer */ 2489 printf(" %9s %9s %9s ", "", "", ""); 2490 2491 printf("migrated: %s", timehist_get_commstr(migrated)); 2492 printf(" cpu %d => %d", ocpu, dcpu); 2493 2494 printf("\n"); 2495 } 2496 2497 static int timehist_migrate_task_event(struct perf_tool *tool, 2498 union perf_event *event __maybe_unused, 2499 struct evsel *evsel, 2500 struct perf_sample *sample, 2501 struct machine *machine) 2502 { 2503 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2504 struct thread *thread; 2505 struct thread_runtime *tr = NULL; 2506 /* want pid of migrated task not pid in sample */ 2507 const u32 pid = evsel__intval(evsel, sample, "pid"); 2508 2509 thread = machine__findnew_thread(machine, 0, pid); 2510 if (thread == NULL) 2511 return -1; 2512 2513 tr = thread__get_runtime(thread); 2514 if (tr == NULL) 2515 return -1; 2516 2517 tr->migrations++; 2518 2519 /* show migrations if requested */ 2520 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2521 2522 return 0; 2523 } 2524 2525 static int timehist_sched_change_event(struct perf_tool *tool, 2526 union perf_event *event, 2527 struct evsel *evsel, 2528 struct perf_sample *sample, 2529 struct machine *machine) 2530 { 2531 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2532 struct perf_time_interval *ptime = &sched->ptime; 2533 struct addr_location al; 2534 struct thread *thread; 2535 struct thread_runtime *tr = NULL; 2536 u64 tprev, t = sample->time; 2537 int rc = 0; 2538 int state = evsel__intval(evsel, sample, "prev_state"); 2539 2540 if (machine__resolve(machine, &al, sample) < 0) { 2541 pr_err("problem processing %d event. skipping it\n", 2542 event->header.type); 2543 rc = -1; 2544 goto out; 2545 } 2546 2547 thread = timehist_get_thread(sched, sample, machine, evsel); 2548 if (thread == NULL) { 2549 rc = -1; 2550 goto out; 2551 } 2552 2553 if (timehist_skip_sample(sched, thread, evsel, sample)) 2554 goto out; 2555 2556 tr = thread__get_runtime(thread); 2557 if (tr == NULL) { 2558 rc = -1; 2559 goto out; 2560 } 2561 2562 tprev = evsel__get_time(evsel, sample->cpu); 2563 2564 /* 2565 * If start time given: 2566 * - sample time is under window user cares about - skip sample 2567 * - tprev is under window user cares about - reset to start of window 2568 */ 2569 if (ptime->start && ptime->start > t) 2570 goto out; 2571 2572 if (tprev && ptime->start > tprev) 2573 tprev = ptime->start; 2574 2575 /* 2576 * If end time given: 2577 * - previous sched event is out of window - we are done 2578 * - sample time is beyond window user cares about - reset it 2579 * to close out stats for time window interest 2580 */ 2581 if (ptime->end) { 2582 if (tprev > ptime->end) 2583 goto out; 2584 2585 if (t > ptime->end) 2586 t = ptime->end; 2587 } 2588 2589 if (!sched->idle_hist || thread->tid == 0) { 2590 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2591 timehist_update_runtime_stats(tr, t, tprev); 2592 2593 if (sched->idle_hist) { 2594 struct idle_thread_runtime *itr = (void *)tr; 2595 struct thread_runtime *last_tr; 2596 2597 BUG_ON(thread->tid != 0); 2598 2599 if (itr->last_thread == NULL) 2600 goto out; 2601 2602 /* add current idle time as last thread's runtime */ 2603 last_tr = thread__get_runtime(itr->last_thread); 2604 if (last_tr == NULL) 2605 goto out; 2606 2607 timehist_update_runtime_stats(last_tr, t, tprev); 2608 /* 2609 * remove delta time of last thread as it's not updated 2610 * and otherwise it will show an invalid value next 2611 * time. we only care total run time and run stat. 2612 */ 2613 last_tr->dt_run = 0; 2614 last_tr->dt_delay = 0; 2615 last_tr->dt_sleep = 0; 2616 last_tr->dt_iowait = 0; 2617 last_tr->dt_preempt = 0; 2618 2619 if (itr->cursor.nr) 2620 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2621 2622 itr->last_thread = NULL; 2623 } 2624 } 2625 2626 if (!sched->summary_only) 2627 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2628 2629 out: 2630 if (sched->hist_time.start == 0 && t >= ptime->start) 2631 sched->hist_time.start = t; 2632 if (ptime->end == 0 || t <= ptime->end) 2633 sched->hist_time.end = t; 2634 2635 if (tr) { 2636 /* time of this sched_switch event becomes last time task seen */ 2637 tr->last_time = sample->time; 2638 2639 /* last state is used to determine where to account wait time */ 2640 tr->last_state = state; 2641 2642 /* sched out event for task so reset ready to run time */ 2643 tr->ready_to_run = 0; 2644 } 2645 2646 evsel__save_time(evsel, sample->time, sample->cpu); 2647 2648 return rc; 2649 } 2650 2651 static int timehist_sched_switch_event(struct perf_tool *tool, 2652 union perf_event *event, 2653 struct evsel *evsel, 2654 struct perf_sample *sample, 2655 struct machine *machine __maybe_unused) 2656 { 2657 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2658 } 2659 2660 static int process_lost(struct perf_tool *tool __maybe_unused, 2661 union perf_event *event, 2662 struct perf_sample *sample, 2663 struct machine *machine __maybe_unused) 2664 { 2665 char tstr[64]; 2666 2667 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2668 printf("%15s ", tstr); 2669 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2670 2671 return 0; 2672 } 2673 2674 2675 static void print_thread_runtime(struct thread *t, 2676 struct thread_runtime *r) 2677 { 2678 double mean = avg_stats(&r->run_stats); 2679 float stddev; 2680 2681 printf("%*s %5d %9" PRIu64 " ", 2682 comm_width, timehist_get_commstr(t), t->ppid, 2683 (u64) r->run_stats.n); 2684 2685 print_sched_time(r->total_run_time, 8); 2686 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2687 print_sched_time(r->run_stats.min, 6); 2688 printf(" "); 2689 print_sched_time((u64) mean, 6); 2690 printf(" "); 2691 print_sched_time(r->run_stats.max, 6); 2692 printf(" "); 2693 printf("%5.2f", stddev); 2694 printf(" %5" PRIu64, r->migrations); 2695 printf("\n"); 2696 } 2697 2698 static void print_thread_waittime(struct thread *t, 2699 struct thread_runtime *r) 2700 { 2701 printf("%*s %5d %9" PRIu64 " ", 2702 comm_width, timehist_get_commstr(t), t->ppid, 2703 (u64) r->run_stats.n); 2704 2705 print_sched_time(r->total_run_time, 8); 2706 print_sched_time(r->total_sleep_time, 6); 2707 printf(" "); 2708 print_sched_time(r->total_iowait_time, 6); 2709 printf(" "); 2710 print_sched_time(r->total_preempt_time, 6); 2711 printf(" "); 2712 print_sched_time(r->total_delay_time, 6); 2713 printf("\n"); 2714 } 2715 2716 struct total_run_stats { 2717 struct perf_sched *sched; 2718 u64 sched_count; 2719 u64 task_count; 2720 u64 total_run_time; 2721 }; 2722 2723 static int __show_thread_runtime(struct thread *t, void *priv) 2724 { 2725 struct total_run_stats *stats = priv; 2726 struct thread_runtime *r; 2727 2728 if (thread__is_filtered(t)) 2729 return 0; 2730 2731 r = thread__priv(t); 2732 if (r && r->run_stats.n) { 2733 stats->task_count++; 2734 stats->sched_count += r->run_stats.n; 2735 stats->total_run_time += r->total_run_time; 2736 2737 if (stats->sched->show_state) 2738 print_thread_waittime(t, r); 2739 else 2740 print_thread_runtime(t, r); 2741 } 2742 2743 return 0; 2744 } 2745 2746 static int show_thread_runtime(struct thread *t, void *priv) 2747 { 2748 if (t->dead) 2749 return 0; 2750 2751 return __show_thread_runtime(t, priv); 2752 } 2753 2754 static int show_deadthread_runtime(struct thread *t, void *priv) 2755 { 2756 if (!t->dead) 2757 return 0; 2758 2759 return __show_thread_runtime(t, priv); 2760 } 2761 2762 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2763 { 2764 const char *sep = " <- "; 2765 struct callchain_list *chain; 2766 size_t ret = 0; 2767 char bf[1024]; 2768 bool first; 2769 2770 if (node == NULL) 2771 return 0; 2772 2773 ret = callchain__fprintf_folded(fp, node->parent); 2774 first = (ret == 0); 2775 2776 list_for_each_entry(chain, &node->val, list) { 2777 if (chain->ip >= PERF_CONTEXT_MAX) 2778 continue; 2779 if (chain->ms.sym && chain->ms.sym->ignore) 2780 continue; 2781 ret += fprintf(fp, "%s%s", first ? "" : sep, 2782 callchain_list__sym_name(chain, bf, sizeof(bf), 2783 false)); 2784 first = false; 2785 } 2786 2787 return ret; 2788 } 2789 2790 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2791 { 2792 size_t ret = 0; 2793 FILE *fp = stdout; 2794 struct callchain_node *chain; 2795 struct rb_node *rb_node = rb_first_cached(root); 2796 2797 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2798 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2799 graph_dotted_line); 2800 2801 while (rb_node) { 2802 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2803 rb_node = rb_next(rb_node); 2804 2805 ret += fprintf(fp, " "); 2806 print_sched_time(chain->hit, 12); 2807 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2808 ret += fprintf(fp, " %8d ", chain->count); 2809 ret += callchain__fprintf_folded(fp, chain); 2810 ret += fprintf(fp, "\n"); 2811 } 2812 2813 return ret; 2814 } 2815 2816 static void timehist_print_summary(struct perf_sched *sched, 2817 struct perf_session *session) 2818 { 2819 struct machine *m = &session->machines.host; 2820 struct total_run_stats totals; 2821 u64 task_count; 2822 struct thread *t; 2823 struct thread_runtime *r; 2824 int i; 2825 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2826 2827 memset(&totals, 0, sizeof(totals)); 2828 totals.sched = sched; 2829 2830 if (sched->idle_hist) { 2831 printf("\nIdle-time summary\n"); 2832 printf("%*s parent sched-out ", comm_width, "comm"); 2833 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2834 } else if (sched->show_state) { 2835 printf("\nWait-time summary\n"); 2836 printf("%*s parent sched-in ", comm_width, "comm"); 2837 printf(" run-time sleep iowait preempt delay\n"); 2838 } else { 2839 printf("\nRuntime summary\n"); 2840 printf("%*s parent sched-in ", comm_width, "comm"); 2841 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2842 } 2843 printf("%*s (count) ", comm_width, ""); 2844 printf(" (msec) (msec) (msec) (msec) %s\n", 2845 sched->show_state ? "(msec)" : "%"); 2846 printf("%.117s\n", graph_dotted_line); 2847 2848 machine__for_each_thread(m, show_thread_runtime, &totals); 2849 task_count = totals.task_count; 2850 if (!task_count) 2851 printf("<no still running tasks>\n"); 2852 2853 printf("\nTerminated tasks:\n"); 2854 machine__for_each_thread(m, show_deadthread_runtime, &totals); 2855 if (task_count == totals.task_count) 2856 printf("<no terminated tasks>\n"); 2857 2858 /* CPU idle stats not tracked when samples were skipped */ 2859 if (sched->skipped_samples && !sched->idle_hist) 2860 return; 2861 2862 printf("\nIdle stats:\n"); 2863 for (i = 0; i < idle_max_cpu; ++i) { 2864 if (cpu_list && !test_bit(i, cpu_bitmap)) 2865 continue; 2866 2867 t = idle_threads[i]; 2868 if (!t) 2869 continue; 2870 2871 r = thread__priv(t); 2872 if (r && r->run_stats.n) { 2873 totals.sched_count += r->run_stats.n; 2874 printf(" CPU %2d idle for ", i); 2875 print_sched_time(r->total_run_time, 6); 2876 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2877 } else 2878 printf(" CPU %2d idle entire time window\n", i); 2879 } 2880 2881 if (sched->idle_hist && sched->show_callchain) { 2882 callchain_param.mode = CHAIN_FOLDED; 2883 callchain_param.value = CCVAL_PERIOD; 2884 2885 callchain_register_param(&callchain_param); 2886 2887 printf("\nIdle stats by callchain:\n"); 2888 for (i = 0; i < idle_max_cpu; ++i) { 2889 struct idle_thread_runtime *itr; 2890 2891 t = idle_threads[i]; 2892 if (!t) 2893 continue; 2894 2895 itr = thread__priv(t); 2896 if (itr == NULL) 2897 continue; 2898 2899 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 2900 0, &callchain_param); 2901 2902 printf(" CPU %2d:", i); 2903 print_sched_time(itr->tr.total_run_time, 6); 2904 printf(" msec\n"); 2905 timehist_print_idlehist_callchain(&itr->sorted_root); 2906 printf("\n"); 2907 } 2908 } 2909 2910 printf("\n" 2911 " Total number of unique tasks: %" PRIu64 "\n" 2912 "Total number of context switches: %" PRIu64 "\n", 2913 totals.task_count, totals.sched_count); 2914 2915 printf(" Total run time (msec): "); 2916 print_sched_time(totals.total_run_time, 2); 2917 printf("\n"); 2918 2919 printf(" Total scheduling time (msec): "); 2920 print_sched_time(hist_time, 2); 2921 printf(" (x %d)\n", sched->max_cpu); 2922 } 2923 2924 typedef int (*sched_handler)(struct perf_tool *tool, 2925 union perf_event *event, 2926 struct evsel *evsel, 2927 struct perf_sample *sample, 2928 struct machine *machine); 2929 2930 static int perf_timehist__process_sample(struct perf_tool *tool, 2931 union perf_event *event, 2932 struct perf_sample *sample, 2933 struct evsel *evsel, 2934 struct machine *machine) 2935 { 2936 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2937 int err = 0; 2938 int this_cpu = sample->cpu; 2939 2940 if (this_cpu > sched->max_cpu) 2941 sched->max_cpu = this_cpu; 2942 2943 if (evsel->handler != NULL) { 2944 sched_handler f = evsel->handler; 2945 2946 err = f(tool, event, evsel, sample, machine); 2947 } 2948 2949 return err; 2950 } 2951 2952 static int timehist_check_attr(struct perf_sched *sched, 2953 struct evlist *evlist) 2954 { 2955 struct evsel *evsel; 2956 struct evsel_runtime *er; 2957 2958 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 2959 er = evsel__get_runtime(evsel); 2960 if (er == NULL) { 2961 pr_err("Failed to allocate memory for evsel runtime data\n"); 2962 return -1; 2963 } 2964 2965 if (sched->show_callchain && !evsel__has_callchain(evsel)) { 2966 pr_info("Samples do not have callchains.\n"); 2967 sched->show_callchain = 0; 2968 symbol_conf.use_callchain = 0; 2969 } 2970 } 2971 2972 return 0; 2973 } 2974 2975 static int perf_sched__timehist(struct perf_sched *sched) 2976 { 2977 struct evsel_str_handler handlers[] = { 2978 { "sched:sched_switch", timehist_sched_switch_event, }, 2979 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 2980 { "sched:sched_waking", timehist_sched_wakeup_event, }, 2981 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 2982 }; 2983 const struct evsel_str_handler migrate_handlers[] = { 2984 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 2985 }; 2986 struct perf_data data = { 2987 .path = input_name, 2988 .mode = PERF_DATA_MODE_READ, 2989 .force = sched->force, 2990 }; 2991 2992 struct perf_session *session; 2993 struct evlist *evlist; 2994 int err = -1; 2995 2996 /* 2997 * event handlers for timehist option 2998 */ 2999 sched->tool.sample = perf_timehist__process_sample; 3000 sched->tool.mmap = perf_event__process_mmap; 3001 sched->tool.comm = perf_event__process_comm; 3002 sched->tool.exit = perf_event__process_exit; 3003 sched->tool.fork = perf_event__process_fork; 3004 sched->tool.lost = process_lost; 3005 sched->tool.attr = perf_event__process_attr; 3006 sched->tool.tracing_data = perf_event__process_tracing_data; 3007 sched->tool.build_id = perf_event__process_build_id; 3008 3009 sched->tool.ordered_events = true; 3010 sched->tool.ordering_requires_timestamps = true; 3011 3012 symbol_conf.use_callchain = sched->show_callchain; 3013 3014 session = perf_session__new(&data, false, &sched->tool); 3015 if (IS_ERR(session)) 3016 return PTR_ERR(session); 3017 3018 if (cpu_list) { 3019 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3020 if (err < 0) 3021 goto out; 3022 } 3023 3024 evlist = session->evlist; 3025 3026 symbol__init(&session->header.env); 3027 3028 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3029 pr_err("Invalid time string\n"); 3030 return -EINVAL; 3031 } 3032 3033 if (timehist_check_attr(sched, evlist) != 0) 3034 goto out; 3035 3036 setup_pager(); 3037 3038 /* prefer sched_waking if it is captured */ 3039 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3040 handlers[1].handler = timehist_sched_wakeup_ignore; 3041 3042 /* setup per-evsel handlers */ 3043 if (perf_session__set_tracepoints_handlers(session, handlers)) 3044 goto out; 3045 3046 /* sched_switch event at a minimum needs to exist */ 3047 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3048 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3049 goto out; 3050 } 3051 3052 if (sched->show_migrations && 3053 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3054 goto out; 3055 3056 /* pre-allocate struct for per-CPU idle stats */ 3057 sched->max_cpu = session->header.env.nr_cpus_online; 3058 if (sched->max_cpu == 0) 3059 sched->max_cpu = 4; 3060 if (init_idle_threads(sched->max_cpu)) 3061 goto out; 3062 3063 /* summary_only implies summary option, but don't overwrite summary if set */ 3064 if (sched->summary_only) 3065 sched->summary = sched->summary_only; 3066 3067 if (!sched->summary_only) 3068 timehist_header(sched); 3069 3070 err = perf_session__process_events(session); 3071 if (err) { 3072 pr_err("Failed to process events, error %d", err); 3073 goto out; 3074 } 3075 3076 sched->nr_events = evlist->stats.nr_events[0]; 3077 sched->nr_lost_events = evlist->stats.total_lost; 3078 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3079 3080 if (sched->summary) 3081 timehist_print_summary(sched, session); 3082 3083 out: 3084 free_idle_threads(); 3085 perf_session__delete(session); 3086 3087 return err; 3088 } 3089 3090 3091 static void print_bad_events(struct perf_sched *sched) 3092 { 3093 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3094 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3095 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3096 sched->nr_unordered_timestamps, sched->nr_timestamps); 3097 } 3098 if (sched->nr_lost_events && sched->nr_events) { 3099 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3100 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3101 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3102 } 3103 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3104 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3105 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3106 sched->nr_context_switch_bugs, sched->nr_timestamps); 3107 if (sched->nr_lost_events) 3108 printf(" (due to lost events?)"); 3109 printf("\n"); 3110 } 3111 } 3112 3113 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3114 { 3115 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3116 struct work_atoms *this; 3117 const char *comm = thread__comm_str(data->thread), *this_comm; 3118 bool leftmost = true; 3119 3120 while (*new) { 3121 int cmp; 3122 3123 this = container_of(*new, struct work_atoms, node); 3124 parent = *new; 3125 3126 this_comm = thread__comm_str(this->thread); 3127 cmp = strcmp(comm, this_comm); 3128 if (cmp > 0) { 3129 new = &((*new)->rb_left); 3130 } else if (cmp < 0) { 3131 new = &((*new)->rb_right); 3132 leftmost = false; 3133 } else { 3134 this->num_merged++; 3135 this->total_runtime += data->total_runtime; 3136 this->nb_atoms += data->nb_atoms; 3137 this->total_lat += data->total_lat; 3138 list_splice(&data->work_list, &this->work_list); 3139 if (this->max_lat < data->max_lat) { 3140 this->max_lat = data->max_lat; 3141 this->max_lat_start = data->max_lat_start; 3142 this->max_lat_end = data->max_lat_end; 3143 } 3144 zfree(&data); 3145 return; 3146 } 3147 } 3148 3149 data->num_merged++; 3150 rb_link_node(&data->node, parent, new); 3151 rb_insert_color_cached(&data->node, root, leftmost); 3152 } 3153 3154 static void perf_sched__merge_lat(struct perf_sched *sched) 3155 { 3156 struct work_atoms *data; 3157 struct rb_node *node; 3158 3159 if (sched->skip_merge) 3160 return; 3161 3162 while ((node = rb_first_cached(&sched->atom_root))) { 3163 rb_erase_cached(node, &sched->atom_root); 3164 data = rb_entry(node, struct work_atoms, node); 3165 __merge_work_atoms(&sched->merged_atom_root, data); 3166 } 3167 } 3168 3169 static int perf_sched__lat(struct perf_sched *sched) 3170 { 3171 struct rb_node *next; 3172 3173 setup_pager(); 3174 3175 if (perf_sched__read_events(sched)) 3176 return -1; 3177 3178 perf_sched__merge_lat(sched); 3179 perf_sched__sort_lat(sched); 3180 3181 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3182 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3183 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3184 3185 next = rb_first_cached(&sched->sorted_atom_root); 3186 3187 while (next) { 3188 struct work_atoms *work_list; 3189 3190 work_list = rb_entry(next, struct work_atoms, node); 3191 output_lat_thread(sched, work_list); 3192 next = rb_next(next); 3193 thread__zput(work_list->thread); 3194 } 3195 3196 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3197 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3198 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3199 3200 printf(" ---------------------------------------------------\n"); 3201 3202 print_bad_events(sched); 3203 printf("\n"); 3204 3205 return 0; 3206 } 3207 3208 static int setup_map_cpus(struct perf_sched *sched) 3209 { 3210 struct perf_cpu_map *map; 3211 3212 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 3213 3214 if (sched->map.comp) { 3215 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int)); 3216 if (!sched->map.comp_cpus) 3217 return -1; 3218 } 3219 3220 if (!sched->map.cpus_str) 3221 return 0; 3222 3223 map = perf_cpu_map__new(sched->map.cpus_str); 3224 if (!map) { 3225 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3226 return -1; 3227 } 3228 3229 sched->map.cpus = map; 3230 return 0; 3231 } 3232 3233 static int setup_color_pids(struct perf_sched *sched) 3234 { 3235 struct perf_thread_map *map; 3236 3237 if (!sched->map.color_pids_str) 3238 return 0; 3239 3240 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3241 if (!map) { 3242 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3243 return -1; 3244 } 3245 3246 sched->map.color_pids = map; 3247 return 0; 3248 } 3249 3250 static int setup_color_cpus(struct perf_sched *sched) 3251 { 3252 struct perf_cpu_map *map; 3253 3254 if (!sched->map.color_cpus_str) 3255 return 0; 3256 3257 map = perf_cpu_map__new(sched->map.color_cpus_str); 3258 if (!map) { 3259 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3260 return -1; 3261 } 3262 3263 sched->map.color_cpus = map; 3264 return 0; 3265 } 3266 3267 static int perf_sched__map(struct perf_sched *sched) 3268 { 3269 if (setup_map_cpus(sched)) 3270 return -1; 3271 3272 if (setup_color_pids(sched)) 3273 return -1; 3274 3275 if (setup_color_cpus(sched)) 3276 return -1; 3277 3278 setup_pager(); 3279 if (perf_sched__read_events(sched)) 3280 return -1; 3281 print_bad_events(sched); 3282 return 0; 3283 } 3284 3285 static int perf_sched__replay(struct perf_sched *sched) 3286 { 3287 unsigned long i; 3288 3289 calibrate_run_measurement_overhead(sched); 3290 calibrate_sleep_measurement_overhead(sched); 3291 3292 test_calibrations(sched); 3293 3294 if (perf_sched__read_events(sched)) 3295 return -1; 3296 3297 printf("nr_run_events: %ld\n", sched->nr_run_events); 3298 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3299 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3300 3301 if (sched->targetless_wakeups) 3302 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3303 if (sched->multitarget_wakeups) 3304 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3305 if (sched->nr_run_events_optimized) 3306 printf("run atoms optimized: %ld\n", 3307 sched->nr_run_events_optimized); 3308 3309 print_task_traces(sched); 3310 add_cross_task_wakeups(sched); 3311 3312 create_tasks(sched); 3313 printf("------------------------------------------------------------\n"); 3314 for (i = 0; i < sched->replay_repeat; i++) 3315 run_one_test(sched); 3316 3317 return 0; 3318 } 3319 3320 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3321 const char * const usage_msg[]) 3322 { 3323 char *tmp, *tok, *str = strdup(sched->sort_order); 3324 3325 for (tok = strtok_r(str, ", ", &tmp); 3326 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3327 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3328 usage_with_options_msg(usage_msg, options, 3329 "Unknown --sort key: `%s'", tok); 3330 } 3331 } 3332 3333 free(str); 3334 3335 sort_dimension__add("pid", &sched->cmp_pid); 3336 } 3337 3338 static int __cmd_record(int argc, const char **argv) 3339 { 3340 unsigned int rec_argc, i, j; 3341 const char **rec_argv; 3342 const char * const record_args[] = { 3343 "record", 3344 "-a", 3345 "-R", 3346 "-m", "1024", 3347 "-c", "1", 3348 "-e", "sched:sched_switch", 3349 "-e", "sched:sched_stat_wait", 3350 "-e", "sched:sched_stat_sleep", 3351 "-e", "sched:sched_stat_iowait", 3352 "-e", "sched:sched_stat_runtime", 3353 "-e", "sched:sched_process_fork", 3354 "-e", "sched:sched_wakeup_new", 3355 "-e", "sched:sched_migrate_task", 3356 }; 3357 struct tep_event *waking_event; 3358 3359 /* 3360 * +2 for either "-e", "sched:sched_wakeup" or 3361 * "-e", "sched:sched_waking" 3362 */ 3363 rec_argc = ARRAY_SIZE(record_args) + 2 + argc - 1; 3364 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3365 3366 if (rec_argv == NULL) 3367 return -ENOMEM; 3368 3369 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3370 rec_argv[i] = strdup(record_args[i]); 3371 3372 rec_argv[i++] = "-e"; 3373 waking_event = trace_event__tp_format("sched", "sched_waking"); 3374 if (!IS_ERR(waking_event)) 3375 rec_argv[i++] = strdup("sched:sched_waking"); 3376 else 3377 rec_argv[i++] = strdup("sched:sched_wakeup"); 3378 3379 for (j = 1; j < (unsigned int)argc; j++, i++) 3380 rec_argv[i] = argv[j]; 3381 3382 BUG_ON(i != rec_argc); 3383 3384 return cmd_record(i, rec_argv); 3385 } 3386 3387 int cmd_sched(int argc, const char **argv) 3388 { 3389 static const char default_sort_order[] = "avg, max, switch, runtime"; 3390 struct perf_sched sched = { 3391 .tool = { 3392 .sample = perf_sched__process_tracepoint_sample, 3393 .comm = perf_sched__process_comm, 3394 .namespaces = perf_event__process_namespaces, 3395 .lost = perf_event__process_lost, 3396 .fork = perf_sched__process_fork_event, 3397 .ordered_events = true, 3398 }, 3399 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3400 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3401 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 3402 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 3403 .sort_order = default_sort_order, 3404 .replay_repeat = 10, 3405 .profile_cpu = -1, 3406 .next_shortname1 = 'A', 3407 .next_shortname2 = '0', 3408 .skip_merge = 0, 3409 .show_callchain = 1, 3410 .max_stack = 5, 3411 }; 3412 const struct option sched_options[] = { 3413 OPT_STRING('i', "input", &input_name, "file", 3414 "input file name"), 3415 OPT_INCR('v', "verbose", &verbose, 3416 "be more verbose (show symbol address, etc)"), 3417 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3418 "dump raw trace in ASCII"), 3419 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3420 OPT_END() 3421 }; 3422 const struct option latency_options[] = { 3423 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3424 "sort by key(s): runtime, switch, avg, max"), 3425 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3426 "CPU to profile on"), 3427 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3428 "latency stats per pid instead of per comm"), 3429 OPT_PARENT(sched_options) 3430 }; 3431 const struct option replay_options[] = { 3432 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3433 "repeat the workload replay N times (-1: infinite)"), 3434 OPT_PARENT(sched_options) 3435 }; 3436 const struct option map_options[] = { 3437 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3438 "map output in compact mode"), 3439 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3440 "highlight given pids in map"), 3441 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3442 "highlight given CPUs in map"), 3443 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3444 "display given CPUs in map"), 3445 OPT_PARENT(sched_options) 3446 }; 3447 const struct option timehist_options[] = { 3448 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3449 "file", "vmlinux pathname"), 3450 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3451 "file", "kallsyms pathname"), 3452 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3453 "Display call chains if present (default on)"), 3454 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3455 "Maximum number of functions to display backtrace."), 3456 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3457 "Look for files with symbols relative to this directory"), 3458 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3459 "Show only syscall summary with statistics"), 3460 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3461 "Show all syscalls and summary with statistics"), 3462 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3463 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3464 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3465 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3466 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3467 OPT_STRING(0, "time", &sched.time_str, "str", 3468 "Time span for analysis (start,stop)"), 3469 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3470 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3471 "analyze events only for given process id(s)"), 3472 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3473 "analyze events only for given thread id(s)"), 3474 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3475 OPT_PARENT(sched_options) 3476 }; 3477 3478 const char * const latency_usage[] = { 3479 "perf sched latency [<options>]", 3480 NULL 3481 }; 3482 const char * const replay_usage[] = { 3483 "perf sched replay [<options>]", 3484 NULL 3485 }; 3486 const char * const map_usage[] = { 3487 "perf sched map [<options>]", 3488 NULL 3489 }; 3490 const char * const timehist_usage[] = { 3491 "perf sched timehist [<options>]", 3492 NULL 3493 }; 3494 const char *const sched_subcommands[] = { "record", "latency", "map", 3495 "replay", "script", 3496 "timehist", NULL }; 3497 const char *sched_usage[] = { 3498 NULL, 3499 NULL 3500 }; 3501 struct trace_sched_handler lat_ops = { 3502 .wakeup_event = latency_wakeup_event, 3503 .switch_event = latency_switch_event, 3504 .runtime_event = latency_runtime_event, 3505 .migrate_task_event = latency_migrate_task_event, 3506 }; 3507 struct trace_sched_handler map_ops = { 3508 .switch_event = map_switch_event, 3509 }; 3510 struct trace_sched_handler replay_ops = { 3511 .wakeup_event = replay_wakeup_event, 3512 .switch_event = replay_switch_event, 3513 .fork_event = replay_fork_event, 3514 }; 3515 unsigned int i; 3516 3517 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 3518 sched.curr_pid[i] = -1; 3519 3520 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3521 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3522 if (!argc) 3523 usage_with_options(sched_usage, sched_options); 3524 3525 /* 3526 * Aliased to 'perf script' for now: 3527 */ 3528 if (!strcmp(argv[0], "script")) 3529 return cmd_script(argc, argv); 3530 3531 if (!strncmp(argv[0], "rec", 3)) { 3532 return __cmd_record(argc, argv); 3533 } else if (!strncmp(argv[0], "lat", 3)) { 3534 sched.tp_handler = &lat_ops; 3535 if (argc > 1) { 3536 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3537 if (argc) 3538 usage_with_options(latency_usage, latency_options); 3539 } 3540 setup_sorting(&sched, latency_options, latency_usage); 3541 return perf_sched__lat(&sched); 3542 } else if (!strcmp(argv[0], "map")) { 3543 if (argc) { 3544 argc = parse_options(argc, argv, map_options, map_usage, 0); 3545 if (argc) 3546 usage_with_options(map_usage, map_options); 3547 } 3548 sched.tp_handler = &map_ops; 3549 setup_sorting(&sched, latency_options, latency_usage); 3550 return perf_sched__map(&sched); 3551 } else if (!strncmp(argv[0], "rep", 3)) { 3552 sched.tp_handler = &replay_ops; 3553 if (argc) { 3554 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3555 if (argc) 3556 usage_with_options(replay_usage, replay_options); 3557 } 3558 return perf_sched__replay(&sched); 3559 } else if (!strcmp(argv[0], "timehist")) { 3560 if (argc) { 3561 argc = parse_options(argc, argv, timehist_options, 3562 timehist_usage, 0); 3563 if (argc) 3564 usage_with_options(timehist_usage, timehist_options); 3565 } 3566 if ((sched.show_wakeups || sched.show_next) && 3567 sched.summary_only) { 3568 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3569 parse_options_usage(timehist_usage, timehist_options, "s", true); 3570 if (sched.show_wakeups) 3571 parse_options_usage(NULL, timehist_options, "w", true); 3572 if (sched.show_next) 3573 parse_options_usage(NULL, timehist_options, "n", true); 3574 return -EINVAL; 3575 } 3576 3577 return perf_sched__timehist(&sched); 3578 } else { 3579 usage_with_options(sched_usage, sched_options); 3580 } 3581 3582 return 0; 3583 } 3584