xref: /openbmc/linux/tools/perf/builtin-sched.c (revision 4bdf0bb7)
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12 
13 #include "util/debug.h"
14 
15 #include <sys/types.h>
16 #include <sys/prctl.h>
17 
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21 
22 static char			const *input_name = "perf.data";
23 static int			input;
24 static unsigned long		page_size;
25 static unsigned long		mmap_window = 32;
26 
27 static unsigned long		total_comm = 0;
28 
29 static struct rb_root		threads;
30 static struct thread		*last_match;
31 
32 static struct perf_header	*header;
33 static u64			sample_type;
34 
35 static char			default_sort_order[] = "avg, max, switch, runtime";
36 static char			*sort_order = default_sort_order;
37 
38 #define PR_SET_NAME		15               /* Set process name */
39 #define MAX_CPUS		4096
40 
41 #define BUG_ON(x)		assert(!(x))
42 
43 static u64			run_measurement_overhead;
44 static u64			sleep_measurement_overhead;
45 
46 #define COMM_LEN		20
47 #define SYM_LEN			129
48 
49 #define MAX_PID			65536
50 
51 static unsigned long		nr_tasks;
52 
53 struct sched_atom;
54 
55 struct task_desc {
56 	unsigned long		nr;
57 	unsigned long		pid;
58 	char			comm[COMM_LEN];
59 
60 	unsigned long		nr_events;
61 	unsigned long		curr_event;
62 	struct sched_atom	**atoms;
63 
64 	pthread_t		thread;
65 	sem_t			sleep_sem;
66 
67 	sem_t			ready_for_work;
68 	sem_t			work_done_sem;
69 
70 	u64			cpu_usage;
71 };
72 
73 enum sched_event_type {
74 	SCHED_EVENT_RUN,
75 	SCHED_EVENT_SLEEP,
76 	SCHED_EVENT_WAKEUP,
77 };
78 
79 struct sched_atom {
80 	enum sched_event_type	type;
81 	u64			timestamp;
82 	u64			duration;
83 	unsigned long		nr;
84 	int			specific_wait;
85 	sem_t			*wait_sem;
86 	struct task_desc	*wakee;
87 };
88 
89 static struct task_desc		*pid_to_task[MAX_PID];
90 
91 static struct task_desc		**tasks;
92 
93 static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64			start_time;
95 
96 static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97 
98 static unsigned long		nr_run_events;
99 static unsigned long		nr_sleep_events;
100 static unsigned long		nr_wakeup_events;
101 
102 static unsigned long		nr_sleep_corrections;
103 static unsigned long		nr_run_events_optimized;
104 
105 static unsigned long		targetless_wakeups;
106 static unsigned long		multitarget_wakeups;
107 
108 static u64			cpu_usage;
109 static u64			runavg_cpu_usage;
110 static u64			parent_cpu_usage;
111 static u64			runavg_parent_cpu_usage;
112 
113 static unsigned long		nr_runs;
114 static u64			sum_runtime;
115 static u64			sum_fluct;
116 static u64			run_avg;
117 
118 static unsigned long		replay_repeat = 10;
119 static unsigned long		nr_timestamps;
120 static unsigned long		nr_unordered_timestamps;
121 static unsigned long		nr_state_machine_bugs;
122 static unsigned long		nr_context_switch_bugs;
123 static unsigned long		nr_events;
124 static unsigned long		nr_lost_chunks;
125 static unsigned long		nr_lost_events;
126 
127 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
128 
129 enum thread_state {
130 	THREAD_SLEEPING = 0,
131 	THREAD_WAIT_CPU,
132 	THREAD_SCHED_IN,
133 	THREAD_IGNORE
134 };
135 
136 struct work_atom {
137 	struct list_head	list;
138 	enum thread_state	state;
139 	u64			sched_out_time;
140 	u64			wake_up_time;
141 	u64			sched_in_time;
142 	u64			runtime;
143 };
144 
145 struct work_atoms {
146 	struct list_head	work_list;
147 	struct thread		*thread;
148 	struct rb_node		node;
149 	u64			max_lat;
150 	u64			total_lat;
151 	u64			nb_atoms;
152 	u64			total_runtime;
153 };
154 
155 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
156 
157 static struct rb_root		atom_root, sorted_atom_root;
158 
159 static u64			all_runtime;
160 static u64			all_count;
161 
162 
163 static u64 get_nsecs(void)
164 {
165 	struct timespec ts;
166 
167 	clock_gettime(CLOCK_MONOTONIC, &ts);
168 
169 	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
170 }
171 
172 static void burn_nsecs(u64 nsecs)
173 {
174 	u64 T0 = get_nsecs(), T1;
175 
176 	do {
177 		T1 = get_nsecs();
178 	} while (T1 + run_measurement_overhead < T0 + nsecs);
179 }
180 
181 static void sleep_nsecs(u64 nsecs)
182 {
183 	struct timespec ts;
184 
185 	ts.tv_nsec = nsecs % 999999999;
186 	ts.tv_sec = nsecs / 999999999;
187 
188 	nanosleep(&ts, NULL);
189 }
190 
191 static void calibrate_run_measurement_overhead(void)
192 {
193 	u64 T0, T1, delta, min_delta = 1000000000ULL;
194 	int i;
195 
196 	for (i = 0; i < 10; i++) {
197 		T0 = get_nsecs();
198 		burn_nsecs(0);
199 		T1 = get_nsecs();
200 		delta = T1-T0;
201 		min_delta = min(min_delta, delta);
202 	}
203 	run_measurement_overhead = min_delta;
204 
205 	printf("run measurement overhead: %Ld nsecs\n", min_delta);
206 }
207 
208 static void calibrate_sleep_measurement_overhead(void)
209 {
210 	u64 T0, T1, delta, min_delta = 1000000000ULL;
211 	int i;
212 
213 	for (i = 0; i < 10; i++) {
214 		T0 = get_nsecs();
215 		sleep_nsecs(10000);
216 		T1 = get_nsecs();
217 		delta = T1-T0;
218 		min_delta = min(min_delta, delta);
219 	}
220 	min_delta -= 10000;
221 	sleep_measurement_overhead = min_delta;
222 
223 	printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
224 }
225 
226 static struct sched_atom *
227 get_new_event(struct task_desc *task, u64 timestamp)
228 {
229 	struct sched_atom *event = calloc(1, sizeof(*event));
230 	unsigned long idx = task->nr_events;
231 	size_t size;
232 
233 	event->timestamp = timestamp;
234 	event->nr = idx;
235 
236 	task->nr_events++;
237 	size = sizeof(struct sched_atom *) * task->nr_events;
238 	task->atoms = realloc(task->atoms, size);
239 	BUG_ON(!task->atoms);
240 
241 	task->atoms[idx] = event;
242 
243 	return event;
244 }
245 
246 static struct sched_atom *last_event(struct task_desc *task)
247 {
248 	if (!task->nr_events)
249 		return NULL;
250 
251 	return task->atoms[task->nr_events - 1];
252 }
253 
254 static void
255 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
256 {
257 	struct sched_atom *event, *curr_event = last_event(task);
258 
259 	/*
260 	 * optimize an existing RUN event by merging this one
261 	 * to it:
262 	 */
263 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
264 		nr_run_events_optimized++;
265 		curr_event->duration += duration;
266 		return;
267 	}
268 
269 	event = get_new_event(task, timestamp);
270 
271 	event->type = SCHED_EVENT_RUN;
272 	event->duration = duration;
273 
274 	nr_run_events++;
275 }
276 
277 static void
278 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
279 		       struct task_desc *wakee)
280 {
281 	struct sched_atom *event, *wakee_event;
282 
283 	event = get_new_event(task, timestamp);
284 	event->type = SCHED_EVENT_WAKEUP;
285 	event->wakee = wakee;
286 
287 	wakee_event = last_event(wakee);
288 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
289 		targetless_wakeups++;
290 		return;
291 	}
292 	if (wakee_event->wait_sem) {
293 		multitarget_wakeups++;
294 		return;
295 	}
296 
297 	wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
298 	sem_init(wakee_event->wait_sem, 0, 0);
299 	wakee_event->specific_wait = 1;
300 	event->wait_sem = wakee_event->wait_sem;
301 
302 	nr_wakeup_events++;
303 }
304 
305 static void
306 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
307 		      u64 task_state __used)
308 {
309 	struct sched_atom *event = get_new_event(task, timestamp);
310 
311 	event->type = SCHED_EVENT_SLEEP;
312 
313 	nr_sleep_events++;
314 }
315 
316 static struct task_desc *register_pid(unsigned long pid, const char *comm)
317 {
318 	struct task_desc *task;
319 
320 	BUG_ON(pid >= MAX_PID);
321 
322 	task = pid_to_task[pid];
323 
324 	if (task)
325 		return task;
326 
327 	task = calloc(1, sizeof(*task));
328 	task->pid = pid;
329 	task->nr = nr_tasks;
330 	strcpy(task->comm, comm);
331 	/*
332 	 * every task starts in sleeping state - this gets ignored
333 	 * if there's no wakeup pointing to this sleep state:
334 	 */
335 	add_sched_event_sleep(task, 0, 0);
336 
337 	pid_to_task[pid] = task;
338 	nr_tasks++;
339 	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
340 	BUG_ON(!tasks);
341 	tasks[task->nr] = task;
342 
343 	if (verbose)
344 		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
345 
346 	return task;
347 }
348 
349 
350 static void print_task_traces(void)
351 {
352 	struct task_desc *task;
353 	unsigned long i;
354 
355 	for (i = 0; i < nr_tasks; i++) {
356 		task = tasks[i];
357 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
358 			task->nr, task->comm, task->pid, task->nr_events);
359 	}
360 }
361 
362 static void add_cross_task_wakeups(void)
363 {
364 	struct task_desc *task1, *task2;
365 	unsigned long i, j;
366 
367 	for (i = 0; i < nr_tasks; i++) {
368 		task1 = tasks[i];
369 		j = i + 1;
370 		if (j == nr_tasks)
371 			j = 0;
372 		task2 = tasks[j];
373 		add_sched_event_wakeup(task1, 0, task2);
374 	}
375 }
376 
377 static void
378 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
379 {
380 	int ret = 0;
381 	u64 now;
382 	long long delta;
383 
384 	now = get_nsecs();
385 	delta = start_time + atom->timestamp - now;
386 
387 	switch (atom->type) {
388 		case SCHED_EVENT_RUN:
389 			burn_nsecs(atom->duration);
390 			break;
391 		case SCHED_EVENT_SLEEP:
392 			if (atom->wait_sem)
393 				ret = sem_wait(atom->wait_sem);
394 			BUG_ON(ret);
395 			break;
396 		case SCHED_EVENT_WAKEUP:
397 			if (atom->wait_sem)
398 				ret = sem_post(atom->wait_sem);
399 			BUG_ON(ret);
400 			break;
401 		default:
402 			BUG_ON(1);
403 	}
404 }
405 
406 static u64 get_cpu_usage_nsec_parent(void)
407 {
408 	struct rusage ru;
409 	u64 sum;
410 	int err;
411 
412 	err = getrusage(RUSAGE_SELF, &ru);
413 	BUG_ON(err);
414 
415 	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
416 	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
417 
418 	return sum;
419 }
420 
421 static u64 get_cpu_usage_nsec_self(void)
422 {
423 	char filename [] = "/proc/1234567890/sched";
424 	unsigned long msecs, nsecs;
425 	char *line = NULL;
426 	u64 total = 0;
427 	size_t len = 0;
428 	ssize_t chars;
429 	FILE *file;
430 	int ret;
431 
432 	sprintf(filename, "/proc/%d/sched", getpid());
433 	file = fopen(filename, "r");
434 	BUG_ON(!file);
435 
436 	while ((chars = getline(&line, &len, file)) != -1) {
437 		ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
438 			&msecs, &nsecs);
439 		if (ret == 2) {
440 			total = msecs*1e6 + nsecs;
441 			break;
442 		}
443 	}
444 	if (line)
445 		free(line);
446 	fclose(file);
447 
448 	return total;
449 }
450 
451 static void *thread_func(void *ctx)
452 {
453 	struct task_desc *this_task = ctx;
454 	u64 cpu_usage_0, cpu_usage_1;
455 	unsigned long i, ret;
456 	char comm2[22];
457 
458 	sprintf(comm2, ":%s", this_task->comm);
459 	prctl(PR_SET_NAME, comm2);
460 
461 again:
462 	ret = sem_post(&this_task->ready_for_work);
463 	BUG_ON(ret);
464 	ret = pthread_mutex_lock(&start_work_mutex);
465 	BUG_ON(ret);
466 	ret = pthread_mutex_unlock(&start_work_mutex);
467 	BUG_ON(ret);
468 
469 	cpu_usage_0 = get_cpu_usage_nsec_self();
470 
471 	for (i = 0; i < this_task->nr_events; i++) {
472 		this_task->curr_event = i;
473 		process_sched_event(this_task, this_task->atoms[i]);
474 	}
475 
476 	cpu_usage_1 = get_cpu_usage_nsec_self();
477 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
478 
479 	ret = sem_post(&this_task->work_done_sem);
480 	BUG_ON(ret);
481 
482 	ret = pthread_mutex_lock(&work_done_wait_mutex);
483 	BUG_ON(ret);
484 	ret = pthread_mutex_unlock(&work_done_wait_mutex);
485 	BUG_ON(ret);
486 
487 	goto again;
488 }
489 
490 static void create_tasks(void)
491 {
492 	struct task_desc *task;
493 	pthread_attr_t attr;
494 	unsigned long i;
495 	int err;
496 
497 	err = pthread_attr_init(&attr);
498 	BUG_ON(err);
499 	err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
500 	BUG_ON(err);
501 	err = pthread_mutex_lock(&start_work_mutex);
502 	BUG_ON(err);
503 	err = pthread_mutex_lock(&work_done_wait_mutex);
504 	BUG_ON(err);
505 	for (i = 0; i < nr_tasks; i++) {
506 		task = tasks[i];
507 		sem_init(&task->sleep_sem, 0, 0);
508 		sem_init(&task->ready_for_work, 0, 0);
509 		sem_init(&task->work_done_sem, 0, 0);
510 		task->curr_event = 0;
511 		err = pthread_create(&task->thread, &attr, thread_func, task);
512 		BUG_ON(err);
513 	}
514 }
515 
516 static void wait_for_tasks(void)
517 {
518 	u64 cpu_usage_0, cpu_usage_1;
519 	struct task_desc *task;
520 	unsigned long i, ret;
521 
522 	start_time = get_nsecs();
523 	cpu_usage = 0;
524 	pthread_mutex_unlock(&work_done_wait_mutex);
525 
526 	for (i = 0; i < nr_tasks; i++) {
527 		task = tasks[i];
528 		ret = sem_wait(&task->ready_for_work);
529 		BUG_ON(ret);
530 		sem_init(&task->ready_for_work, 0, 0);
531 	}
532 	ret = pthread_mutex_lock(&work_done_wait_mutex);
533 	BUG_ON(ret);
534 
535 	cpu_usage_0 = get_cpu_usage_nsec_parent();
536 
537 	pthread_mutex_unlock(&start_work_mutex);
538 
539 	for (i = 0; i < nr_tasks; i++) {
540 		task = tasks[i];
541 		ret = sem_wait(&task->work_done_sem);
542 		BUG_ON(ret);
543 		sem_init(&task->work_done_sem, 0, 0);
544 		cpu_usage += task->cpu_usage;
545 		task->cpu_usage = 0;
546 	}
547 
548 	cpu_usage_1 = get_cpu_usage_nsec_parent();
549 	if (!runavg_cpu_usage)
550 		runavg_cpu_usage = cpu_usage;
551 	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
552 
553 	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
554 	if (!runavg_parent_cpu_usage)
555 		runavg_parent_cpu_usage = parent_cpu_usage;
556 	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
557 				   parent_cpu_usage)/10;
558 
559 	ret = pthread_mutex_lock(&start_work_mutex);
560 	BUG_ON(ret);
561 
562 	for (i = 0; i < nr_tasks; i++) {
563 		task = tasks[i];
564 		sem_init(&task->sleep_sem, 0, 0);
565 		task->curr_event = 0;
566 	}
567 }
568 
569 static void run_one_test(void)
570 {
571 	u64 T0, T1, delta, avg_delta, fluct, std_dev;
572 
573 	T0 = get_nsecs();
574 	wait_for_tasks();
575 	T1 = get_nsecs();
576 
577 	delta = T1 - T0;
578 	sum_runtime += delta;
579 	nr_runs++;
580 
581 	avg_delta = sum_runtime / nr_runs;
582 	if (delta < avg_delta)
583 		fluct = avg_delta - delta;
584 	else
585 		fluct = delta - avg_delta;
586 	sum_fluct += fluct;
587 	std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
588 	if (!run_avg)
589 		run_avg = delta;
590 	run_avg = (run_avg*9 + delta)/10;
591 
592 	printf("#%-3ld: %0.3f, ",
593 		nr_runs, (double)delta/1000000.0);
594 
595 	printf("ravg: %0.2f, ",
596 		(double)run_avg/1e6);
597 
598 	printf("cpu: %0.2f / %0.2f",
599 		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
600 
601 #if 0
602 	/*
603 	 * rusage statistics done by the parent, these are less
604 	 * accurate than the sum_exec_runtime based statistics:
605 	 */
606 	printf(" [%0.2f / %0.2f]",
607 		(double)parent_cpu_usage/1e6,
608 		(double)runavg_parent_cpu_usage/1e6);
609 #endif
610 
611 	printf("\n");
612 
613 	if (nr_sleep_corrections)
614 		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
615 	nr_sleep_corrections = 0;
616 }
617 
618 static void test_calibrations(void)
619 {
620 	u64 T0, T1;
621 
622 	T0 = get_nsecs();
623 	burn_nsecs(1e6);
624 	T1 = get_nsecs();
625 
626 	printf("the run test took %Ld nsecs\n", T1-T0);
627 
628 	T0 = get_nsecs();
629 	sleep_nsecs(1e6);
630 	T1 = get_nsecs();
631 
632 	printf("the sleep test took %Ld nsecs\n", T1-T0);
633 }
634 
635 static int
636 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
637 {
638 	struct thread *thread;
639 
640 	thread = threads__findnew(event->comm.pid, &threads, &last_match);
641 
642 	dump_printf("%p [%p]: perf_event_comm: %s:%d\n",
643 		(void *)(offset + head),
644 		(void *)(long)(event->header.size),
645 		event->comm.comm, event->comm.pid);
646 
647 	if (thread == NULL ||
648 	    thread__set_comm(thread, event->comm.comm)) {
649 		dump_printf("problem processing perf_event_comm, skipping event.\n");
650 		return -1;
651 	}
652 	total_comm++;
653 
654 	return 0;
655 }
656 
657 
658 struct raw_event_sample {
659 	u32 size;
660 	char data[0];
661 };
662 
663 #define FILL_FIELD(ptr, field, event, data)	\
664 	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
665 
666 #define FILL_ARRAY(ptr, array, event, data)			\
667 do {								\
668 	void *__array = raw_field_ptr(event, #array, data);	\
669 	memcpy(ptr.array, __array, sizeof(ptr.array));	\
670 } while(0)
671 
672 #define FILL_COMMON_FIELDS(ptr, event, data)			\
673 do {								\
674 	FILL_FIELD(ptr, common_type, event, data);		\
675 	FILL_FIELD(ptr, common_flags, event, data);		\
676 	FILL_FIELD(ptr, common_preempt_count, event, data);	\
677 	FILL_FIELD(ptr, common_pid, event, data);		\
678 	FILL_FIELD(ptr, common_tgid, event, data);		\
679 } while (0)
680 
681 
682 
683 struct trace_switch_event {
684 	u32 size;
685 
686 	u16 common_type;
687 	u8 common_flags;
688 	u8 common_preempt_count;
689 	u32 common_pid;
690 	u32 common_tgid;
691 
692 	char prev_comm[16];
693 	u32 prev_pid;
694 	u32 prev_prio;
695 	u64 prev_state;
696 	char next_comm[16];
697 	u32 next_pid;
698 	u32 next_prio;
699 };
700 
701 struct trace_runtime_event {
702 	u32 size;
703 
704 	u16 common_type;
705 	u8 common_flags;
706 	u8 common_preempt_count;
707 	u32 common_pid;
708 	u32 common_tgid;
709 
710 	char comm[16];
711 	u32 pid;
712 	u64 runtime;
713 	u64 vruntime;
714 };
715 
716 struct trace_wakeup_event {
717 	u32 size;
718 
719 	u16 common_type;
720 	u8 common_flags;
721 	u8 common_preempt_count;
722 	u32 common_pid;
723 	u32 common_tgid;
724 
725 	char comm[16];
726 	u32 pid;
727 
728 	u32 prio;
729 	u32 success;
730 	u32 cpu;
731 };
732 
733 struct trace_fork_event {
734 	u32 size;
735 
736 	u16 common_type;
737 	u8 common_flags;
738 	u8 common_preempt_count;
739 	u32 common_pid;
740 	u32 common_tgid;
741 
742 	char parent_comm[16];
743 	u32 parent_pid;
744 	char child_comm[16];
745 	u32 child_pid;
746 };
747 
748 struct trace_sched_handler {
749 	void (*switch_event)(struct trace_switch_event *,
750 			     struct event *,
751 			     int cpu,
752 			     u64 timestamp,
753 			     struct thread *thread);
754 
755 	void (*runtime_event)(struct trace_runtime_event *,
756 			      struct event *,
757 			      int cpu,
758 			      u64 timestamp,
759 			      struct thread *thread);
760 
761 	void (*wakeup_event)(struct trace_wakeup_event *,
762 			     struct event *,
763 			     int cpu,
764 			     u64 timestamp,
765 			     struct thread *thread);
766 
767 	void (*fork_event)(struct trace_fork_event *,
768 			   struct event *,
769 			   int cpu,
770 			   u64 timestamp,
771 			   struct thread *thread);
772 };
773 
774 
775 static void
776 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
777 		    struct event *event,
778 		    int cpu __used,
779 		    u64 timestamp __used,
780 		    struct thread *thread __used)
781 {
782 	struct task_desc *waker, *wakee;
783 
784 	if (verbose) {
785 		printf("sched_wakeup event %p\n", event);
786 
787 		printf(" ... pid %d woke up %s/%d\n",
788 			wakeup_event->common_pid,
789 			wakeup_event->comm,
790 			wakeup_event->pid);
791 	}
792 
793 	waker = register_pid(wakeup_event->common_pid, "<unknown>");
794 	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
795 
796 	add_sched_event_wakeup(waker, timestamp, wakee);
797 }
798 
799 static u64 cpu_last_switched[MAX_CPUS];
800 
801 static void
802 replay_switch_event(struct trace_switch_event *switch_event,
803 		    struct event *event,
804 		    int cpu,
805 		    u64 timestamp,
806 		    struct thread *thread __used)
807 {
808 	struct task_desc *prev, *next;
809 	u64 timestamp0;
810 	s64 delta;
811 
812 	if (verbose)
813 		printf("sched_switch event %p\n", event);
814 
815 	if (cpu >= MAX_CPUS || cpu < 0)
816 		return;
817 
818 	timestamp0 = cpu_last_switched[cpu];
819 	if (timestamp0)
820 		delta = timestamp - timestamp0;
821 	else
822 		delta = 0;
823 
824 	if (delta < 0)
825 		die("hm, delta: %Ld < 0 ?\n", delta);
826 
827 	if (verbose) {
828 		printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
829 			switch_event->prev_comm, switch_event->prev_pid,
830 			switch_event->next_comm, switch_event->next_pid,
831 			delta);
832 	}
833 
834 	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
835 	next = register_pid(switch_event->next_pid, switch_event->next_comm);
836 
837 	cpu_last_switched[cpu] = timestamp;
838 
839 	add_sched_event_run(prev, timestamp, delta);
840 	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
841 }
842 
843 
844 static void
845 replay_fork_event(struct trace_fork_event *fork_event,
846 		  struct event *event,
847 		  int cpu __used,
848 		  u64 timestamp __used,
849 		  struct thread *thread __used)
850 {
851 	if (verbose) {
852 		printf("sched_fork event %p\n", event);
853 		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
854 		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
855 	}
856 	register_pid(fork_event->parent_pid, fork_event->parent_comm);
857 	register_pid(fork_event->child_pid, fork_event->child_comm);
858 }
859 
860 static struct trace_sched_handler replay_ops  = {
861 	.wakeup_event		= replay_wakeup_event,
862 	.switch_event		= replay_switch_event,
863 	.fork_event		= replay_fork_event,
864 };
865 
866 struct sort_dimension {
867 	const char		*name;
868 	sort_fn_t		cmp;
869 	struct list_head	list;
870 };
871 
872 static LIST_HEAD(cmp_pid);
873 
874 static int
875 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
876 {
877 	struct sort_dimension *sort;
878 	int ret = 0;
879 
880 	BUG_ON(list_empty(list));
881 
882 	list_for_each_entry(sort, list, list) {
883 		ret = sort->cmp(l, r);
884 		if (ret)
885 			return ret;
886 	}
887 
888 	return ret;
889 }
890 
891 static struct work_atoms *
892 thread_atoms_search(struct rb_root *root, struct thread *thread,
893 			 struct list_head *sort_list)
894 {
895 	struct rb_node *node = root->rb_node;
896 	struct work_atoms key = { .thread = thread };
897 
898 	while (node) {
899 		struct work_atoms *atoms;
900 		int cmp;
901 
902 		atoms = container_of(node, struct work_atoms, node);
903 
904 		cmp = thread_lat_cmp(sort_list, &key, atoms);
905 		if (cmp > 0)
906 			node = node->rb_left;
907 		else if (cmp < 0)
908 			node = node->rb_right;
909 		else {
910 			BUG_ON(thread != atoms->thread);
911 			return atoms;
912 		}
913 	}
914 	return NULL;
915 }
916 
917 static void
918 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
919 			 struct list_head *sort_list)
920 {
921 	struct rb_node **new = &(root->rb_node), *parent = NULL;
922 
923 	while (*new) {
924 		struct work_atoms *this;
925 		int cmp;
926 
927 		this = container_of(*new, struct work_atoms, node);
928 		parent = *new;
929 
930 		cmp = thread_lat_cmp(sort_list, data, this);
931 
932 		if (cmp > 0)
933 			new = &((*new)->rb_left);
934 		else
935 			new = &((*new)->rb_right);
936 	}
937 
938 	rb_link_node(&data->node, parent, new);
939 	rb_insert_color(&data->node, root);
940 }
941 
942 static void thread_atoms_insert(struct thread *thread)
943 {
944 	struct work_atoms *atoms;
945 
946 	atoms = calloc(sizeof(*atoms), 1);
947 	if (!atoms)
948 		die("No memory");
949 
950 	atoms->thread = thread;
951 	INIT_LIST_HEAD(&atoms->work_list);
952 	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
953 }
954 
955 static void
956 latency_fork_event(struct trace_fork_event *fork_event __used,
957 		   struct event *event __used,
958 		   int cpu __used,
959 		   u64 timestamp __used,
960 		   struct thread *thread __used)
961 {
962 	/* should insert the newcomer */
963 }
964 
965 __used
966 static char sched_out_state(struct trace_switch_event *switch_event)
967 {
968 	const char *str = TASK_STATE_TO_CHAR_STR;
969 
970 	return str[switch_event->prev_state];
971 }
972 
973 static void
974 add_sched_out_event(struct work_atoms *atoms,
975 		    char run_state,
976 		    u64 timestamp)
977 {
978 	struct work_atom *atom;
979 
980 	atom = calloc(sizeof(*atom), 1);
981 	if (!atom)
982 		die("Non memory");
983 
984 	atom->sched_out_time = timestamp;
985 
986 	if (run_state == 'R') {
987 		atom->state = THREAD_WAIT_CPU;
988 		atom->wake_up_time = atom->sched_out_time;
989 	}
990 
991 	list_add_tail(&atom->list, &atoms->work_list);
992 }
993 
994 static void
995 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
996 {
997 	struct work_atom *atom;
998 
999 	BUG_ON(list_empty(&atoms->work_list));
1000 
1001 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1002 
1003 	atom->runtime += delta;
1004 	atoms->total_runtime += delta;
1005 }
1006 
1007 static void
1008 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1009 {
1010 	struct work_atom *atom;
1011 	u64 delta;
1012 
1013 	if (list_empty(&atoms->work_list))
1014 		return;
1015 
1016 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1017 
1018 	if (atom->state != THREAD_WAIT_CPU)
1019 		return;
1020 
1021 	if (timestamp < atom->wake_up_time) {
1022 		atom->state = THREAD_IGNORE;
1023 		return;
1024 	}
1025 
1026 	atom->state = THREAD_SCHED_IN;
1027 	atom->sched_in_time = timestamp;
1028 
1029 	delta = atom->sched_in_time - atom->wake_up_time;
1030 	atoms->total_lat += delta;
1031 	if (delta > atoms->max_lat)
1032 		atoms->max_lat = delta;
1033 	atoms->nb_atoms++;
1034 }
1035 
1036 static void
1037 latency_switch_event(struct trace_switch_event *switch_event,
1038 		     struct event *event __used,
1039 		     int cpu,
1040 		     u64 timestamp,
1041 		     struct thread *thread __used)
1042 {
1043 	struct work_atoms *out_events, *in_events;
1044 	struct thread *sched_out, *sched_in;
1045 	u64 timestamp0;
1046 	s64 delta;
1047 
1048 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1049 
1050 	timestamp0 = cpu_last_switched[cpu];
1051 	cpu_last_switched[cpu] = timestamp;
1052 	if (timestamp0)
1053 		delta = timestamp - timestamp0;
1054 	else
1055 		delta = 0;
1056 
1057 	if (delta < 0)
1058 		die("hm, delta: %Ld < 0 ?\n", delta);
1059 
1060 
1061 	sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1062 	sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1063 
1064 	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1065 	if (!out_events) {
1066 		thread_atoms_insert(sched_out);
1067 		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1068 		if (!out_events)
1069 			die("out-event: Internal tree error");
1070 	}
1071 	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1072 
1073 	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1074 	if (!in_events) {
1075 		thread_atoms_insert(sched_in);
1076 		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1077 		if (!in_events)
1078 			die("in-event: Internal tree error");
1079 		/*
1080 		 * Take came in we have not heard about yet,
1081 		 * add in an initial atom in runnable state:
1082 		 */
1083 		add_sched_out_event(in_events, 'R', timestamp);
1084 	}
1085 	add_sched_in_event(in_events, timestamp);
1086 }
1087 
1088 static void
1089 latency_runtime_event(struct trace_runtime_event *runtime_event,
1090 		     struct event *event __used,
1091 		     int cpu,
1092 		     u64 timestamp,
1093 		     struct thread *this_thread __used)
1094 {
1095 	struct work_atoms *atoms;
1096 	struct thread *thread;
1097 
1098 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1099 
1100 	thread = threads__findnew(runtime_event->pid, &threads, &last_match);
1101 	atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1102 	if (!atoms) {
1103 		thread_atoms_insert(thread);
1104 		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1105 		if (!atoms)
1106 			die("in-event: Internal tree error");
1107 		add_sched_out_event(atoms, 'R', timestamp);
1108 	}
1109 
1110 	add_runtime_event(atoms, runtime_event->runtime, timestamp);
1111 }
1112 
1113 static void
1114 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1115 		     struct event *__event __used,
1116 		     int cpu __used,
1117 		     u64 timestamp,
1118 		     struct thread *thread __used)
1119 {
1120 	struct work_atoms *atoms;
1121 	struct work_atom *atom;
1122 	struct thread *wakee;
1123 
1124 	/* Note for later, it may be interesting to observe the failing cases */
1125 	if (!wakeup_event->success)
1126 		return;
1127 
1128 	wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1129 	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1130 	if (!atoms) {
1131 		thread_atoms_insert(wakee);
1132 		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1133 		if (!atoms)
1134 			die("wakeup-event: Internal tree error");
1135 		add_sched_out_event(atoms, 'S', timestamp);
1136 	}
1137 
1138 	BUG_ON(list_empty(&atoms->work_list));
1139 
1140 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1141 
1142 	if (atom->state != THREAD_SLEEPING)
1143 		nr_state_machine_bugs++;
1144 
1145 	nr_timestamps++;
1146 	if (atom->sched_out_time > timestamp) {
1147 		nr_unordered_timestamps++;
1148 		return;
1149 	}
1150 
1151 	atom->state = THREAD_WAIT_CPU;
1152 	atom->wake_up_time = timestamp;
1153 }
1154 
1155 static struct trace_sched_handler lat_ops  = {
1156 	.wakeup_event		= latency_wakeup_event,
1157 	.switch_event		= latency_switch_event,
1158 	.runtime_event		= latency_runtime_event,
1159 	.fork_event		= latency_fork_event,
1160 };
1161 
1162 static void output_lat_thread(struct work_atoms *work_list)
1163 {
1164 	int i;
1165 	int ret;
1166 	u64 avg;
1167 
1168 	if (!work_list->nb_atoms)
1169 		return;
1170 	/*
1171 	 * Ignore idle threads:
1172 	 */
1173 	if (!strcmp(work_list->thread->comm, "swapper"))
1174 		return;
1175 
1176 	all_runtime += work_list->total_runtime;
1177 	all_count += work_list->nb_atoms;
1178 
1179 	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1180 
1181 	for (i = 0; i < 24 - ret; i++)
1182 		printf(" ");
1183 
1184 	avg = work_list->total_lat / work_list->nb_atoms;
1185 
1186 	printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1187 	      (double)work_list->total_runtime / 1e6,
1188 		 work_list->nb_atoms, (double)avg / 1e6,
1189 		 (double)work_list->max_lat / 1e6);
1190 }
1191 
1192 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1193 {
1194 	if (l->thread->pid < r->thread->pid)
1195 		return -1;
1196 	if (l->thread->pid > r->thread->pid)
1197 		return 1;
1198 
1199 	return 0;
1200 }
1201 
1202 static struct sort_dimension pid_sort_dimension = {
1203 	.name			= "pid",
1204 	.cmp			= pid_cmp,
1205 };
1206 
1207 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1208 {
1209 	u64 avgl, avgr;
1210 
1211 	if (!l->nb_atoms)
1212 		return -1;
1213 
1214 	if (!r->nb_atoms)
1215 		return 1;
1216 
1217 	avgl = l->total_lat / l->nb_atoms;
1218 	avgr = r->total_lat / r->nb_atoms;
1219 
1220 	if (avgl < avgr)
1221 		return -1;
1222 	if (avgl > avgr)
1223 		return 1;
1224 
1225 	return 0;
1226 }
1227 
1228 static struct sort_dimension avg_sort_dimension = {
1229 	.name			= "avg",
1230 	.cmp			= avg_cmp,
1231 };
1232 
1233 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1234 {
1235 	if (l->max_lat < r->max_lat)
1236 		return -1;
1237 	if (l->max_lat > r->max_lat)
1238 		return 1;
1239 
1240 	return 0;
1241 }
1242 
1243 static struct sort_dimension max_sort_dimension = {
1244 	.name			= "max",
1245 	.cmp			= max_cmp,
1246 };
1247 
1248 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1249 {
1250 	if (l->nb_atoms < r->nb_atoms)
1251 		return -1;
1252 	if (l->nb_atoms > r->nb_atoms)
1253 		return 1;
1254 
1255 	return 0;
1256 }
1257 
1258 static struct sort_dimension switch_sort_dimension = {
1259 	.name			= "switch",
1260 	.cmp			= switch_cmp,
1261 };
1262 
1263 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1264 {
1265 	if (l->total_runtime < r->total_runtime)
1266 		return -1;
1267 	if (l->total_runtime > r->total_runtime)
1268 		return 1;
1269 
1270 	return 0;
1271 }
1272 
1273 static struct sort_dimension runtime_sort_dimension = {
1274 	.name			= "runtime",
1275 	.cmp			= runtime_cmp,
1276 };
1277 
1278 static struct sort_dimension *available_sorts[] = {
1279 	&pid_sort_dimension,
1280 	&avg_sort_dimension,
1281 	&max_sort_dimension,
1282 	&switch_sort_dimension,
1283 	&runtime_sort_dimension,
1284 };
1285 
1286 #define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1287 
1288 static LIST_HEAD(sort_list);
1289 
1290 static int sort_dimension__add(char *tok, struct list_head *list)
1291 {
1292 	int i;
1293 
1294 	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1295 		if (!strcmp(available_sorts[i]->name, tok)) {
1296 			list_add_tail(&available_sorts[i]->list, list);
1297 
1298 			return 0;
1299 		}
1300 	}
1301 
1302 	return -1;
1303 }
1304 
1305 static void setup_sorting(void);
1306 
1307 static void sort_lat(void)
1308 {
1309 	struct rb_node *node;
1310 
1311 	for (;;) {
1312 		struct work_atoms *data;
1313 		node = rb_first(&atom_root);
1314 		if (!node)
1315 			break;
1316 
1317 		rb_erase(node, &atom_root);
1318 		data = rb_entry(node, struct work_atoms, node);
1319 		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
1320 	}
1321 }
1322 
1323 static struct trace_sched_handler *trace_handler;
1324 
1325 static void
1326 process_sched_wakeup_event(struct raw_event_sample *raw,
1327 			   struct event *event,
1328 			   int cpu __used,
1329 			   u64 timestamp __used,
1330 			   struct thread *thread __used)
1331 {
1332 	struct trace_wakeup_event wakeup_event;
1333 
1334 	FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1335 
1336 	FILL_ARRAY(wakeup_event, comm, event, raw->data);
1337 	FILL_FIELD(wakeup_event, pid, event, raw->data);
1338 	FILL_FIELD(wakeup_event, prio, event, raw->data);
1339 	FILL_FIELD(wakeup_event, success, event, raw->data);
1340 	FILL_FIELD(wakeup_event, cpu, event, raw->data);
1341 
1342 	if (trace_handler->wakeup_event)
1343 		trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1344 }
1345 
1346 /*
1347  * Track the current task - that way we can know whether there's any
1348  * weird events, such as a task being switched away that is not current.
1349  */
1350 static int max_cpu;
1351 
1352 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1353 
1354 static struct thread *curr_thread[MAX_CPUS];
1355 
1356 static char next_shortname1 = 'A';
1357 static char next_shortname2 = '0';
1358 
1359 static void
1360 map_switch_event(struct trace_switch_event *switch_event,
1361 		 struct event *event __used,
1362 		 int this_cpu,
1363 		 u64 timestamp,
1364 		 struct thread *thread __used)
1365 {
1366 	struct thread *sched_out, *sched_in;
1367 	int new_shortname;
1368 	u64 timestamp0;
1369 	s64 delta;
1370 	int cpu;
1371 
1372 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1373 
1374 	if (this_cpu > max_cpu)
1375 		max_cpu = this_cpu;
1376 
1377 	timestamp0 = cpu_last_switched[this_cpu];
1378 	cpu_last_switched[this_cpu] = timestamp;
1379 	if (timestamp0)
1380 		delta = timestamp - timestamp0;
1381 	else
1382 		delta = 0;
1383 
1384 	if (delta < 0)
1385 		die("hm, delta: %Ld < 0 ?\n", delta);
1386 
1387 
1388 	sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1389 	sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1390 
1391 	curr_thread[this_cpu] = sched_in;
1392 
1393 	printf("  ");
1394 
1395 	new_shortname = 0;
1396 	if (!sched_in->shortname[0]) {
1397 		sched_in->shortname[0] = next_shortname1;
1398 		sched_in->shortname[1] = next_shortname2;
1399 
1400 		if (next_shortname1 < 'Z') {
1401 			next_shortname1++;
1402 		} else {
1403 			next_shortname1='A';
1404 			if (next_shortname2 < '9') {
1405 				next_shortname2++;
1406 			} else {
1407 				next_shortname2='0';
1408 			}
1409 		}
1410 		new_shortname = 1;
1411 	}
1412 
1413 	for (cpu = 0; cpu <= max_cpu; cpu++) {
1414 		if (cpu != this_cpu)
1415 			printf(" ");
1416 		else
1417 			printf("*");
1418 
1419 		if (curr_thread[cpu]) {
1420 			if (curr_thread[cpu]->pid)
1421 				printf("%2s ", curr_thread[cpu]->shortname);
1422 			else
1423 				printf(".  ");
1424 		} else
1425 			printf("   ");
1426 	}
1427 
1428 	printf("  %12.6f secs ", (double)timestamp/1e9);
1429 	if (new_shortname) {
1430 		printf("%s => %s:%d\n",
1431 			sched_in->shortname, sched_in->comm, sched_in->pid);
1432 	} else {
1433 		printf("\n");
1434 	}
1435 }
1436 
1437 
1438 static void
1439 process_sched_switch_event(struct raw_event_sample *raw,
1440 			   struct event *event,
1441 			   int this_cpu,
1442 			   u64 timestamp __used,
1443 			   struct thread *thread __used)
1444 {
1445 	struct trace_switch_event switch_event;
1446 
1447 	FILL_COMMON_FIELDS(switch_event, event, raw->data);
1448 
1449 	FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1450 	FILL_FIELD(switch_event, prev_pid, event, raw->data);
1451 	FILL_FIELD(switch_event, prev_prio, event, raw->data);
1452 	FILL_FIELD(switch_event, prev_state, event, raw->data);
1453 	FILL_ARRAY(switch_event, next_comm, event, raw->data);
1454 	FILL_FIELD(switch_event, next_pid, event, raw->data);
1455 	FILL_FIELD(switch_event, next_prio, event, raw->data);
1456 
1457 	if (curr_pid[this_cpu] != (u32)-1) {
1458 		/*
1459 		 * Are we trying to switch away a PID that is
1460 		 * not current?
1461 		 */
1462 		if (curr_pid[this_cpu] != switch_event.prev_pid)
1463 			nr_context_switch_bugs++;
1464 	}
1465 	if (trace_handler->switch_event)
1466 		trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1467 
1468 	curr_pid[this_cpu] = switch_event.next_pid;
1469 }
1470 
1471 static void
1472 process_sched_runtime_event(struct raw_event_sample *raw,
1473 			   struct event *event,
1474 			   int cpu __used,
1475 			   u64 timestamp __used,
1476 			   struct thread *thread __used)
1477 {
1478 	struct trace_runtime_event runtime_event;
1479 
1480 	FILL_ARRAY(runtime_event, comm, event, raw->data);
1481 	FILL_FIELD(runtime_event, pid, event, raw->data);
1482 	FILL_FIELD(runtime_event, runtime, event, raw->data);
1483 	FILL_FIELD(runtime_event, vruntime, event, raw->data);
1484 
1485 	if (trace_handler->runtime_event)
1486 		trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1487 }
1488 
1489 static void
1490 process_sched_fork_event(struct raw_event_sample *raw,
1491 			 struct event *event,
1492 			 int cpu __used,
1493 			 u64 timestamp __used,
1494 			 struct thread *thread __used)
1495 {
1496 	struct trace_fork_event fork_event;
1497 
1498 	FILL_COMMON_FIELDS(fork_event, event, raw->data);
1499 
1500 	FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1501 	FILL_FIELD(fork_event, parent_pid, event, raw->data);
1502 	FILL_ARRAY(fork_event, child_comm, event, raw->data);
1503 	FILL_FIELD(fork_event, child_pid, event, raw->data);
1504 
1505 	if (trace_handler->fork_event)
1506 		trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1507 }
1508 
1509 static void
1510 process_sched_exit_event(struct event *event,
1511 			 int cpu __used,
1512 			 u64 timestamp __used,
1513 			 struct thread *thread __used)
1514 {
1515 	if (verbose)
1516 		printf("sched_exit event %p\n", event);
1517 }
1518 
1519 static void
1520 process_raw_event(event_t *raw_event __used, void *more_data,
1521 		  int cpu, u64 timestamp, struct thread *thread)
1522 {
1523 	struct raw_event_sample *raw = more_data;
1524 	struct event *event;
1525 	int type;
1526 
1527 	type = trace_parse_common_type(raw->data);
1528 	event = trace_find_event(type);
1529 
1530 	if (!strcmp(event->name, "sched_switch"))
1531 		process_sched_switch_event(raw, event, cpu, timestamp, thread);
1532 	if (!strcmp(event->name, "sched_stat_runtime"))
1533 		process_sched_runtime_event(raw, event, cpu, timestamp, thread);
1534 	if (!strcmp(event->name, "sched_wakeup"))
1535 		process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1536 	if (!strcmp(event->name, "sched_wakeup_new"))
1537 		process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1538 	if (!strcmp(event->name, "sched_process_fork"))
1539 		process_sched_fork_event(raw, event, cpu, timestamp, thread);
1540 	if (!strcmp(event->name, "sched_process_exit"))
1541 		process_sched_exit_event(event, cpu, timestamp, thread);
1542 }
1543 
1544 static int
1545 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1546 {
1547 	char level;
1548 	int show = 0;
1549 	struct dso *dso = NULL;
1550 	struct thread *thread;
1551 	u64 ip = event->ip.ip;
1552 	u64 timestamp = -1;
1553 	u32 cpu = -1;
1554 	u64 period = 1;
1555 	void *more_data = event->ip.__more_data;
1556 	int cpumode;
1557 
1558 	thread = threads__findnew(event->ip.pid, &threads, &last_match);
1559 
1560 	if (sample_type & PERF_SAMPLE_TIME) {
1561 		timestamp = *(u64 *)more_data;
1562 		more_data += sizeof(u64);
1563 	}
1564 
1565 	if (sample_type & PERF_SAMPLE_CPU) {
1566 		cpu = *(u32 *)more_data;
1567 		more_data += sizeof(u32);
1568 		more_data += sizeof(u32); /* reserved */
1569 	}
1570 
1571 	if (sample_type & PERF_SAMPLE_PERIOD) {
1572 		period = *(u64 *)more_data;
1573 		more_data += sizeof(u64);
1574 	}
1575 
1576 	dump_printf("%p [%p]: PERF_RECORD_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1577 		(void *)(offset + head),
1578 		(void *)(long)(event->header.size),
1579 		event->header.misc,
1580 		event->ip.pid, event->ip.tid,
1581 		(void *)(long)ip,
1582 		(long long)period);
1583 
1584 	dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1585 
1586 	if (thread == NULL) {
1587 		eprintf("problem processing %d event, skipping it.\n",
1588 			event->header.type);
1589 		return -1;
1590 	}
1591 
1592 	cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1593 
1594 	if (cpumode == PERF_RECORD_MISC_KERNEL) {
1595 		show = SHOW_KERNEL;
1596 		level = 'k';
1597 
1598 		dso = kernel_dso;
1599 
1600 		dump_printf(" ...... dso: %s\n", dso->name);
1601 
1602 	} else if (cpumode == PERF_RECORD_MISC_USER) {
1603 
1604 		show = SHOW_USER;
1605 		level = '.';
1606 
1607 	} else {
1608 		show = SHOW_HV;
1609 		level = 'H';
1610 
1611 		dso = hypervisor_dso;
1612 
1613 		dump_printf(" ...... dso: [hypervisor]\n");
1614 	}
1615 
1616 	if (sample_type & PERF_SAMPLE_RAW)
1617 		process_raw_event(event, more_data, cpu, timestamp, thread);
1618 
1619 	return 0;
1620 }
1621 
1622 static int
1623 process_event(event_t *event, unsigned long offset, unsigned long head)
1624 {
1625 	trace_event(event);
1626 
1627 	nr_events++;
1628 	switch (event->header.type) {
1629 	case PERF_RECORD_MMAP:
1630 		return 0;
1631 	case PERF_RECORD_LOST:
1632 		nr_lost_chunks++;
1633 		nr_lost_events += event->lost.lost;
1634 		return 0;
1635 
1636 	case PERF_RECORD_COMM:
1637 		return process_comm_event(event, offset, head);
1638 
1639 	case PERF_RECORD_EXIT ... PERF_RECORD_READ:
1640 		return 0;
1641 
1642 	case PERF_RECORD_SAMPLE:
1643 		return process_sample_event(event, offset, head);
1644 
1645 	case PERF_RECORD_MAX:
1646 	default:
1647 		return -1;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static int read_events(void)
1654 {
1655 	int ret, rc = EXIT_FAILURE;
1656 	unsigned long offset = 0;
1657 	unsigned long head = 0;
1658 	struct stat perf_stat;
1659 	event_t *event;
1660 	uint32_t size;
1661 	char *buf;
1662 
1663 	trace_report();
1664 	register_idle_thread(&threads, &last_match);
1665 
1666 	input = open(input_name, O_RDONLY);
1667 	if (input < 0) {
1668 		perror("failed to open file");
1669 		exit(-1);
1670 	}
1671 
1672 	ret = fstat(input, &perf_stat);
1673 	if (ret < 0) {
1674 		perror("failed to stat file");
1675 		exit(-1);
1676 	}
1677 
1678 	if (!perf_stat.st_size) {
1679 		fprintf(stderr, "zero-sized file, nothing to do!\n");
1680 		exit(0);
1681 	}
1682 	header = perf_header__read(input);
1683 	head = header->data_offset;
1684 	sample_type = perf_header__sample_type(header);
1685 
1686 	if (!(sample_type & PERF_SAMPLE_RAW))
1687 		die("No trace sample to read. Did you call perf record "
1688 		    "without -R?");
1689 
1690 	if (load_kernel() < 0) {
1691 		perror("failed to load kernel symbols");
1692 		return EXIT_FAILURE;
1693 	}
1694 
1695 remap:
1696 	buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1697 			   MAP_SHARED, input, offset);
1698 	if (buf == MAP_FAILED) {
1699 		perror("failed to mmap file");
1700 		exit(-1);
1701 	}
1702 
1703 more:
1704 	event = (event_t *)(buf + head);
1705 
1706 	size = event->header.size;
1707 	if (!size)
1708 		size = 8;
1709 
1710 	if (head + event->header.size >= page_size * mmap_window) {
1711 		unsigned long shift = page_size * (head / page_size);
1712 		int res;
1713 
1714 		res = munmap(buf, page_size * mmap_window);
1715 		assert(res == 0);
1716 
1717 		offset += shift;
1718 		head -= shift;
1719 		goto remap;
1720 	}
1721 
1722 	size = event->header.size;
1723 
1724 
1725 	if (!size || process_event(event, offset, head) < 0) {
1726 
1727 		/*
1728 		 * assume we lost track of the stream, check alignment, and
1729 		 * increment a single u64 in the hope to catch on again 'soon'.
1730 		 */
1731 
1732 		if (unlikely(head & 7))
1733 			head &= ~7ULL;
1734 
1735 		size = 8;
1736 	}
1737 
1738 	head += size;
1739 
1740 	if (offset + head < (unsigned long)perf_stat.st_size)
1741 		goto more;
1742 
1743 	rc = EXIT_SUCCESS;
1744 	close(input);
1745 
1746 	return rc;
1747 }
1748 
1749 static void print_bad_events(void)
1750 {
1751 	if (nr_unordered_timestamps && nr_timestamps) {
1752 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1753 			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1754 			nr_unordered_timestamps, nr_timestamps);
1755 	}
1756 	if (nr_lost_events && nr_events) {
1757 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1758 			(double)nr_lost_events/(double)nr_events*100.0,
1759 			nr_lost_events, nr_events, nr_lost_chunks);
1760 	}
1761 	if (nr_state_machine_bugs && nr_timestamps) {
1762 		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1763 			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1764 			nr_state_machine_bugs, nr_timestamps);
1765 		if (nr_lost_events)
1766 			printf(" (due to lost events?)");
1767 		printf("\n");
1768 	}
1769 	if (nr_context_switch_bugs && nr_timestamps) {
1770 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1771 			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1772 			nr_context_switch_bugs, nr_timestamps);
1773 		if (nr_lost_events)
1774 			printf(" (due to lost events?)");
1775 		printf("\n");
1776 	}
1777 }
1778 
1779 static void __cmd_lat(void)
1780 {
1781 	struct rb_node *next;
1782 
1783 	setup_pager();
1784 	read_events();
1785 	sort_lat();
1786 
1787 	printf("\n -----------------------------------------------------------------------------------------\n");
1788 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms |\n");
1789 	printf(" -----------------------------------------------------------------------------------------\n");
1790 
1791 	next = rb_first(&sorted_atom_root);
1792 
1793 	while (next) {
1794 		struct work_atoms *work_list;
1795 
1796 		work_list = rb_entry(next, struct work_atoms, node);
1797 		output_lat_thread(work_list);
1798 		next = rb_next(next);
1799 	}
1800 
1801 	printf(" -----------------------------------------------------------------------------------------\n");
1802 	printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1803 		(double)all_runtime/1e6, all_count);
1804 
1805 	printf(" ---------------------------------------------------\n");
1806 
1807 	print_bad_events();
1808 	printf("\n");
1809 
1810 }
1811 
1812 static struct trace_sched_handler map_ops  = {
1813 	.wakeup_event		= NULL,
1814 	.switch_event		= map_switch_event,
1815 	.runtime_event		= NULL,
1816 	.fork_event		= NULL,
1817 };
1818 
1819 static void __cmd_map(void)
1820 {
1821 	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1822 
1823 	setup_pager();
1824 	read_events();
1825 	print_bad_events();
1826 }
1827 
1828 static void __cmd_replay(void)
1829 {
1830 	unsigned long i;
1831 
1832 	calibrate_run_measurement_overhead();
1833 	calibrate_sleep_measurement_overhead();
1834 
1835 	test_calibrations();
1836 
1837 	read_events();
1838 
1839 	printf("nr_run_events:        %ld\n", nr_run_events);
1840 	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1841 	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1842 
1843 	if (targetless_wakeups)
1844 		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1845 	if (multitarget_wakeups)
1846 		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1847 	if (nr_run_events_optimized)
1848 		printf("run atoms optimized: %ld\n",
1849 			nr_run_events_optimized);
1850 
1851 	print_task_traces();
1852 	add_cross_task_wakeups();
1853 
1854 	create_tasks();
1855 	printf("------------------------------------------------------------\n");
1856 	for (i = 0; i < replay_repeat; i++)
1857 		run_one_test();
1858 }
1859 
1860 
1861 static const char * const sched_usage[] = {
1862 	"perf sched [<options>] {record|latency|map|replay|trace}",
1863 	NULL
1864 };
1865 
1866 static const struct option sched_options[] = {
1867 	OPT_STRING('i', "input", &input_name, "file",
1868 		    "input file name"),
1869 	OPT_BOOLEAN('v', "verbose", &verbose,
1870 		    "be more verbose (show symbol address, etc)"),
1871 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1872 		    "dump raw trace in ASCII"),
1873 	OPT_END()
1874 };
1875 
1876 static const char * const latency_usage[] = {
1877 	"perf sched latency [<options>]",
1878 	NULL
1879 };
1880 
1881 static const struct option latency_options[] = {
1882 	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1883 		   "sort by key(s): runtime, switch, avg, max"),
1884 	OPT_BOOLEAN('v', "verbose", &verbose,
1885 		    "be more verbose (show symbol address, etc)"),
1886 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1887 		    "dump raw trace in ASCII"),
1888 	OPT_END()
1889 };
1890 
1891 static const char * const replay_usage[] = {
1892 	"perf sched replay [<options>]",
1893 	NULL
1894 };
1895 
1896 static const struct option replay_options[] = {
1897 	OPT_INTEGER('r', "repeat", &replay_repeat,
1898 		    "repeat the workload replay N times (-1: infinite)"),
1899 	OPT_BOOLEAN('v', "verbose", &verbose,
1900 		    "be more verbose (show symbol address, etc)"),
1901 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1902 		    "dump raw trace in ASCII"),
1903 	OPT_END()
1904 };
1905 
1906 static void setup_sorting(void)
1907 {
1908 	char *tmp, *tok, *str = strdup(sort_order);
1909 
1910 	for (tok = strtok_r(str, ", ", &tmp);
1911 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1912 		if (sort_dimension__add(tok, &sort_list) < 0) {
1913 			error("Unknown --sort key: `%s'", tok);
1914 			usage_with_options(latency_usage, latency_options);
1915 		}
1916 	}
1917 
1918 	free(str);
1919 
1920 	sort_dimension__add((char *)"pid", &cmp_pid);
1921 }
1922 
1923 static const char *record_args[] = {
1924 	"record",
1925 	"-a",
1926 	"-R",
1927 	"-M",
1928 	"-f",
1929 	"-m", "1024",
1930 	"-c", "1",
1931 	"-e", "sched:sched_switch:r",
1932 	"-e", "sched:sched_stat_wait:r",
1933 	"-e", "sched:sched_stat_sleep:r",
1934 	"-e", "sched:sched_stat_iowait:r",
1935 	"-e", "sched:sched_stat_runtime:r",
1936 	"-e", "sched:sched_process_exit:r",
1937 	"-e", "sched:sched_process_fork:r",
1938 	"-e", "sched:sched_wakeup:r",
1939 	"-e", "sched:sched_migrate_task:r",
1940 };
1941 
1942 static int __cmd_record(int argc, const char **argv)
1943 {
1944 	unsigned int rec_argc, i, j;
1945 	const char **rec_argv;
1946 
1947 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1948 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1949 
1950 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1951 		rec_argv[i] = strdup(record_args[i]);
1952 
1953 	for (j = 1; j < (unsigned int)argc; j++, i++)
1954 		rec_argv[i] = argv[j];
1955 
1956 	BUG_ON(i != rec_argc);
1957 
1958 	return cmd_record(i, rec_argv, NULL);
1959 }
1960 
1961 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1962 {
1963 	symbol__init();
1964 	page_size = getpagesize();
1965 
1966 	argc = parse_options(argc, argv, sched_options, sched_usage,
1967 			     PARSE_OPT_STOP_AT_NON_OPTION);
1968 	if (!argc)
1969 		usage_with_options(sched_usage, sched_options);
1970 
1971 	if (!strncmp(argv[0], "rec", 3)) {
1972 		return __cmd_record(argc, argv);
1973 	} else if (!strncmp(argv[0], "lat", 3)) {
1974 		trace_handler = &lat_ops;
1975 		if (argc > 1) {
1976 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1977 			if (argc)
1978 				usage_with_options(latency_usage, latency_options);
1979 		}
1980 		setup_sorting();
1981 		__cmd_lat();
1982 	} else if (!strcmp(argv[0], "map")) {
1983 		trace_handler = &map_ops;
1984 		setup_sorting();
1985 		__cmd_map();
1986 	} else if (!strncmp(argv[0], "rep", 3)) {
1987 		trace_handler = &replay_ops;
1988 		if (argc) {
1989 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1990 			if (argc)
1991 				usage_with_options(replay_usage, replay_options);
1992 		}
1993 		__cmd_replay();
1994 	} else if (!strcmp(argv[0], "trace")) {
1995 		/*
1996 		 * Aliased to 'perf trace' for now:
1997 		 */
1998 		return cmd_trace(argc, argv, prefix);
1999 	} else {
2000 		usage_with_options(sched_usage, sched_options);
2001 	}
2002 
2003 	return 0;
2004 }
2005