xref: /openbmc/linux/tools/perf/bench/numa.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 
10 #include <subcmd/parse-options.h>
11 #include "../util/cloexec.h"
12 
13 #include "bench.h"
14 
15 #include <errno.h>
16 #include <sched.h>
17 #include <stdio.h>
18 #include <assert.h>
19 #include <malloc.h>
20 #include <signal.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/resource.h>
27 #include <sys/wait.h>
28 #include <sys/prctl.h>
29 #include <sys/types.h>
30 #include <linux/kernel.h>
31 #include <linux/time64.h>
32 #include <linux/numa.h>
33 #include <linux/zalloc.h>
34 
35 #include "../util/header.h"
36 #include "../util/mutex.h"
37 #include <numa.h>
38 #include <numaif.h>
39 
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43 
44 /*
45  * Regular printout to the terminal, suppressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48 
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54 
55 struct thread_data {
56 	int			curr_cpu;
57 	cpu_set_t		*bind_cpumask;
58 	int			bind_node;
59 	u8			*process_data;
60 	int			process_nr;
61 	int			thread_nr;
62 	int			task_nr;
63 	unsigned int		loops_done;
64 	u64			val;
65 	u64			runtime_ns;
66 	u64			system_time_ns;
67 	u64			user_time_ns;
68 	double			speed_gbs;
69 	struct mutex		*process_lock;
70 };
71 
72 /* Parameters set by options: */
73 
74 struct params {
75 	/* Startup synchronization: */
76 	bool			serialize_startup;
77 
78 	/* Task hierarchy: */
79 	int			nr_proc;
80 	int			nr_threads;
81 
82 	/* Working set sizes: */
83 	const char		*mb_global_str;
84 	const char		*mb_proc_str;
85 	const char		*mb_proc_locked_str;
86 	const char		*mb_thread_str;
87 
88 	double			mb_global;
89 	double			mb_proc;
90 	double			mb_proc_locked;
91 	double			mb_thread;
92 
93 	/* Access patterns to the working set: */
94 	bool			data_reads;
95 	bool			data_writes;
96 	bool			data_backwards;
97 	bool			data_zero_memset;
98 	bool			data_rand_walk;
99 	u32			nr_loops;
100 	u32			nr_secs;
101 	u32			sleep_usecs;
102 
103 	/* Working set initialization: */
104 	bool			init_zero;
105 	bool			init_random;
106 	bool			init_cpu0;
107 
108 	/* Misc options: */
109 	int			show_details;
110 	int			run_all;
111 	int			thp;
112 
113 	long			bytes_global;
114 	long			bytes_process;
115 	long			bytes_process_locked;
116 	long			bytes_thread;
117 
118 	int			nr_tasks;
119 	bool			show_quiet;
120 
121 	bool			show_convergence;
122 	bool			measure_convergence;
123 
124 	int			perturb_secs;
125 	int			nr_cpus;
126 	int			nr_nodes;
127 
128 	/* Affinity options -C and -N: */
129 	char			*cpu_list_str;
130 	char			*node_list_str;
131 };
132 
133 
134 /* Global, read-writable area, accessible to all processes and threads: */
135 
136 struct global_info {
137 	u8			*data;
138 
139 	struct mutex		startup_mutex;
140 	struct cond		startup_cond;
141 	int			nr_tasks_started;
142 
143 	struct mutex		start_work_mutex;
144 	struct cond		start_work_cond;
145 	int			nr_tasks_working;
146 	bool			start_work;
147 
148 	struct mutex		stop_work_mutex;
149 	u64			bytes_done;
150 
151 	struct thread_data	*threads;
152 
153 	/* Convergence latency measurement: */
154 	bool			all_converged;
155 	bool			stop_work;
156 
157 	int			print_once;
158 
159 	struct params		p;
160 };
161 
162 static struct global_info	*g = NULL;
163 
164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166 
167 struct params p0;
168 
169 static const struct option options[] = {
170 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
171 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
172 
173 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
174 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
175 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
177 
178 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
179 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
180 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
181 
182 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
183 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
184 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
185 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
187 
188 
189 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
190 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
191 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
192 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
193 
194 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
195 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
196 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
200 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
201 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202 
203 	/* Special option string parsing callbacks: */
204         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 			"bind the first N tasks to these specific cpus (the rest is unbound)",
206 			parse_cpus_opt),
207         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 			parse_nodes_opt),
210 	OPT_END()
211 };
212 
213 static const char * const bench_numa_usage[] = {
214 	"perf bench numa <options>",
215 	NULL
216 };
217 
218 static const char * const numa_usage[] = {
219 	"perf bench numa mem [<options>]",
220 	NULL
221 };
222 
223 /*
224  * To get number of numa nodes present.
225  */
226 static int nr_numa_nodes(void)
227 {
228 	int i, nr_nodes = 0;
229 
230 	for (i = 0; i < g->p.nr_nodes; i++) {
231 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 			nr_nodes++;
233 	}
234 
235 	return nr_nodes;
236 }
237 
238 /*
239  * To check if given numa node is present.
240  */
241 static int is_node_present(int node)
242 {
243 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
244 }
245 
246 /*
247  * To check given numa node has cpus.
248  */
249 static bool node_has_cpus(int node)
250 {
251 	struct bitmask *cpumask = numa_allocate_cpumask();
252 	bool ret = false; /* fall back to nocpus */
253 	int cpu;
254 
255 	BUG_ON(!cpumask);
256 	if (!numa_node_to_cpus(node, cpumask)) {
257 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258 			if (numa_bitmask_isbitset(cpumask, cpu)) {
259 				ret = true;
260 				break;
261 			}
262 		}
263 	}
264 	numa_free_cpumask(cpumask);
265 
266 	return ret;
267 }
268 
269 static cpu_set_t *bind_to_cpu(int target_cpu)
270 {
271 	int nrcpus = numa_num_possible_cpus();
272 	cpu_set_t *orig_mask, *mask;
273 	size_t size;
274 
275 	orig_mask = CPU_ALLOC(nrcpus);
276 	BUG_ON(!orig_mask);
277 	size = CPU_ALLOC_SIZE(nrcpus);
278 	CPU_ZERO_S(size, orig_mask);
279 
280 	if (sched_getaffinity(0, size, orig_mask))
281 		goto err_out;
282 
283 	mask = CPU_ALLOC(nrcpus);
284 	if (!mask)
285 		goto err_out;
286 
287 	CPU_ZERO_S(size, mask);
288 
289 	if (target_cpu == -1) {
290 		int cpu;
291 
292 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
293 			CPU_SET_S(cpu, size, mask);
294 	} else {
295 		if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
296 			goto err;
297 
298 		CPU_SET_S(target_cpu, size, mask);
299 	}
300 
301 	if (sched_setaffinity(0, size, mask))
302 		goto err;
303 
304 	return orig_mask;
305 
306 err:
307 	CPU_FREE(mask);
308 err_out:
309 	CPU_FREE(orig_mask);
310 
311 	/* BUG_ON due to failure in allocation of orig_mask/mask */
312 	BUG_ON(-1);
313 	return NULL;
314 }
315 
316 static cpu_set_t *bind_to_node(int target_node)
317 {
318 	int nrcpus = numa_num_possible_cpus();
319 	size_t size;
320 	cpu_set_t *orig_mask, *mask;
321 	int cpu;
322 
323 	orig_mask = CPU_ALLOC(nrcpus);
324 	BUG_ON(!orig_mask);
325 	size = CPU_ALLOC_SIZE(nrcpus);
326 	CPU_ZERO_S(size, orig_mask);
327 
328 	if (sched_getaffinity(0, size, orig_mask))
329 		goto err_out;
330 
331 	mask = CPU_ALLOC(nrcpus);
332 	if (!mask)
333 		goto err_out;
334 
335 	CPU_ZERO_S(size, mask);
336 
337 	if (target_node == NUMA_NO_NODE) {
338 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
339 			CPU_SET_S(cpu, size, mask);
340 	} else {
341 		struct bitmask *cpumask = numa_allocate_cpumask();
342 
343 		if (!cpumask)
344 			goto err;
345 
346 		if (!numa_node_to_cpus(target_node, cpumask)) {
347 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
348 				if (numa_bitmask_isbitset(cpumask, cpu))
349 					CPU_SET_S(cpu, size, mask);
350 			}
351 		}
352 		numa_free_cpumask(cpumask);
353 	}
354 
355 	if (sched_setaffinity(0, size, mask))
356 		goto err;
357 
358 	return orig_mask;
359 
360 err:
361 	CPU_FREE(mask);
362 err_out:
363 	CPU_FREE(orig_mask);
364 
365 	/* BUG_ON due to failure in allocation of orig_mask/mask */
366 	BUG_ON(-1);
367 	return NULL;
368 }
369 
370 static void bind_to_cpumask(cpu_set_t *mask)
371 {
372 	int ret;
373 	size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
374 
375 	ret = sched_setaffinity(0, size, mask);
376 	if (ret) {
377 		CPU_FREE(mask);
378 		BUG_ON(ret);
379 	}
380 }
381 
382 static void mempol_restore(void)
383 {
384 	int ret;
385 
386 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
387 
388 	BUG_ON(ret);
389 }
390 
391 static void bind_to_memnode(int node)
392 {
393 	struct bitmask *node_mask;
394 	int ret;
395 
396 	if (node == NUMA_NO_NODE)
397 		return;
398 
399 	node_mask = numa_allocate_nodemask();
400 	BUG_ON(!node_mask);
401 
402 	numa_bitmask_clearall(node_mask);
403 	numa_bitmask_setbit(node_mask, node);
404 
405 	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
406 	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
407 
408 	numa_bitmask_free(node_mask);
409 	BUG_ON(ret);
410 }
411 
412 #define HPSIZE (2*1024*1024)
413 
414 #define set_taskname(fmt...)				\
415 do {							\
416 	char name[20];					\
417 							\
418 	snprintf(name, 20, fmt);			\
419 	prctl(PR_SET_NAME, name);			\
420 } while (0)
421 
422 static u8 *alloc_data(ssize_t bytes0, int map_flags,
423 		      int init_zero, int init_cpu0, int thp, int init_random)
424 {
425 	cpu_set_t *orig_mask = NULL;
426 	ssize_t bytes;
427 	u8 *buf;
428 	int ret;
429 
430 	if (!bytes0)
431 		return NULL;
432 
433 	/* Allocate and initialize all memory on CPU#0: */
434 	if (init_cpu0) {
435 		int node = numa_node_of_cpu(0);
436 
437 		orig_mask = bind_to_node(node);
438 		bind_to_memnode(node);
439 	}
440 
441 	bytes = bytes0 + HPSIZE;
442 
443 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
444 	BUG_ON(buf == (void *)-1);
445 
446 	if (map_flags == MAP_PRIVATE) {
447 		if (thp > 0) {
448 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
449 			if (ret && !g->print_once) {
450 				g->print_once = 1;
451 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
452 			}
453 		}
454 		if (thp < 0) {
455 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
456 			if (ret && !g->print_once) {
457 				g->print_once = 1;
458 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
459 			}
460 		}
461 	}
462 
463 	if (init_zero) {
464 		bzero(buf, bytes);
465 	} else {
466 		/* Initialize random contents, different in each word: */
467 		if (init_random) {
468 			u64 *wbuf = (void *)buf;
469 			long off = rand();
470 			long i;
471 
472 			for (i = 0; i < bytes/8; i++)
473 				wbuf[i] = i + off;
474 		}
475 	}
476 
477 	/* Align to 2MB boundary: */
478 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
479 
480 	/* Restore affinity: */
481 	if (init_cpu0) {
482 		bind_to_cpumask(orig_mask);
483 		CPU_FREE(orig_mask);
484 		mempol_restore();
485 	}
486 
487 	return buf;
488 }
489 
490 static void free_data(void *data, ssize_t bytes)
491 {
492 	int ret;
493 
494 	if (!data)
495 		return;
496 
497 	ret = munmap(data, bytes);
498 	BUG_ON(ret);
499 }
500 
501 /*
502  * Create a shared memory buffer that can be shared between processes, zeroed:
503  */
504 static void * zalloc_shared_data(ssize_t bytes)
505 {
506 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
507 }
508 
509 /*
510  * Create a shared memory buffer that can be shared between processes:
511  */
512 static void * setup_shared_data(ssize_t bytes)
513 {
514 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
515 }
516 
517 /*
518  * Allocate process-local memory - this will either be shared between
519  * threads of this process, or only be accessed by this thread:
520  */
521 static void * setup_private_data(ssize_t bytes)
522 {
523 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
524 }
525 
526 static int parse_cpu_list(const char *arg)
527 {
528 	p0.cpu_list_str = strdup(arg);
529 
530 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
531 
532 	return 0;
533 }
534 
535 static int parse_setup_cpu_list(void)
536 {
537 	struct thread_data *td;
538 	char *str0, *str;
539 	int t;
540 
541 	if (!g->p.cpu_list_str)
542 		return 0;
543 
544 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
545 
546 	str0 = str = strdup(g->p.cpu_list_str);
547 	t = 0;
548 
549 	BUG_ON(!str);
550 
551 	tprintf("# binding tasks to CPUs:\n");
552 	tprintf("#  ");
553 
554 	while (true) {
555 		int bind_cpu, bind_cpu_0, bind_cpu_1;
556 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
557 		int bind_len;
558 		int step;
559 		int mul;
560 
561 		tok = strsep(&str, ",");
562 		if (!tok)
563 			break;
564 
565 		tok_end = strstr(tok, "-");
566 
567 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
568 		if (!tok_end) {
569 			/* Single CPU specified: */
570 			bind_cpu_0 = bind_cpu_1 = atol(tok);
571 		} else {
572 			/* CPU range specified (for example: "5-11"): */
573 			bind_cpu_0 = atol(tok);
574 			bind_cpu_1 = atol(tok_end + 1);
575 		}
576 
577 		step = 1;
578 		tok_step = strstr(tok, "#");
579 		if (tok_step) {
580 			step = atol(tok_step + 1);
581 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
582 		}
583 
584 		/*
585 		 * Mask length.
586 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
587 		 * where the _4 means the next 4 CPUs are allowed.
588 		 */
589 		bind_len = 1;
590 		tok_len = strstr(tok, "_");
591 		if (tok_len) {
592 			bind_len = atol(tok_len + 1);
593 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
594 		}
595 
596 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
597 		mul = 1;
598 		tok_mul = strstr(tok, "x");
599 		if (tok_mul) {
600 			mul = atol(tok_mul + 1);
601 			BUG_ON(mul <= 0);
602 		}
603 
604 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
605 
606 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
607 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
608 			return -1;
609 		}
610 
611 		if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
612 			printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
613 			return -1;
614 		}
615 
616 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
617 		BUG_ON(bind_cpu_0 > bind_cpu_1);
618 
619 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
620 			size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
621 			int i;
622 
623 			for (i = 0; i < mul; i++) {
624 				int cpu;
625 
626 				if (t >= g->p.nr_tasks) {
627 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
628 					goto out;
629 				}
630 				td = g->threads + t;
631 
632 				if (t)
633 					tprintf(",");
634 				if (bind_len > 1) {
635 					tprintf("%2d/%d", bind_cpu, bind_len);
636 				} else {
637 					tprintf("%2d", bind_cpu);
638 				}
639 
640 				td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
641 				BUG_ON(!td->bind_cpumask);
642 				CPU_ZERO_S(size, td->bind_cpumask);
643 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
644 					if (cpu < 0 || cpu >= g->p.nr_cpus) {
645 						CPU_FREE(td->bind_cpumask);
646 						BUG_ON(-1);
647 					}
648 					CPU_SET_S(cpu, size, td->bind_cpumask);
649 				}
650 				t++;
651 			}
652 		}
653 	}
654 out:
655 
656 	tprintf("\n");
657 
658 	if (t < g->p.nr_tasks)
659 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
660 
661 	free(str0);
662 	return 0;
663 }
664 
665 static int parse_cpus_opt(const struct option *opt __maybe_unused,
666 			  const char *arg, int unset __maybe_unused)
667 {
668 	if (!arg)
669 		return -1;
670 
671 	return parse_cpu_list(arg);
672 }
673 
674 static int parse_node_list(const char *arg)
675 {
676 	p0.node_list_str = strdup(arg);
677 
678 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
679 
680 	return 0;
681 }
682 
683 static int parse_setup_node_list(void)
684 {
685 	struct thread_data *td;
686 	char *str0, *str;
687 	int t;
688 
689 	if (!g->p.node_list_str)
690 		return 0;
691 
692 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
693 
694 	str0 = str = strdup(g->p.node_list_str);
695 	t = 0;
696 
697 	BUG_ON(!str);
698 
699 	tprintf("# binding tasks to NODEs:\n");
700 	tprintf("# ");
701 
702 	while (true) {
703 		int bind_node, bind_node_0, bind_node_1;
704 		char *tok, *tok_end, *tok_step, *tok_mul;
705 		int step;
706 		int mul;
707 
708 		tok = strsep(&str, ",");
709 		if (!tok)
710 			break;
711 
712 		tok_end = strstr(tok, "-");
713 
714 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
715 		if (!tok_end) {
716 			/* Single NODE specified: */
717 			bind_node_0 = bind_node_1 = atol(tok);
718 		} else {
719 			/* NODE range specified (for example: "5-11"): */
720 			bind_node_0 = atol(tok);
721 			bind_node_1 = atol(tok_end + 1);
722 		}
723 
724 		step = 1;
725 		tok_step = strstr(tok, "#");
726 		if (tok_step) {
727 			step = atol(tok_step + 1);
728 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
729 		}
730 
731 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
732 		mul = 1;
733 		tok_mul = strstr(tok, "x");
734 		if (tok_mul) {
735 			mul = atol(tok_mul + 1);
736 			BUG_ON(mul <= 0);
737 		}
738 
739 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
740 
741 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
742 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
743 			return -1;
744 		}
745 
746 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
747 		BUG_ON(bind_node_0 > bind_node_1);
748 
749 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
750 			int i;
751 
752 			for (i = 0; i < mul; i++) {
753 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
754 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
755 					goto out;
756 				}
757 				td = g->threads + t;
758 
759 				if (!t)
760 					tprintf(" %2d", bind_node);
761 				else
762 					tprintf(",%2d", bind_node);
763 
764 				td->bind_node = bind_node;
765 				t++;
766 			}
767 		}
768 	}
769 out:
770 
771 	tprintf("\n");
772 
773 	if (t < g->p.nr_tasks)
774 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
775 
776 	free(str0);
777 	return 0;
778 }
779 
780 static int parse_nodes_opt(const struct option *opt __maybe_unused,
781 			  const char *arg, int unset __maybe_unused)
782 {
783 	if (!arg)
784 		return -1;
785 
786 	return parse_node_list(arg);
787 }
788 
789 static inline uint32_t lfsr_32(uint32_t lfsr)
790 {
791 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
792 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
793 }
794 
795 /*
796  * Make sure there's real data dependency to RAM (when read
797  * accesses are enabled), so the compiler, the CPU and the
798  * kernel (KSM, zero page, etc.) cannot optimize away RAM
799  * accesses:
800  */
801 static inline u64 access_data(u64 *data, u64 val)
802 {
803 	if (g->p.data_reads)
804 		val += *data;
805 	if (g->p.data_writes)
806 		*data = val + 1;
807 	return val;
808 }
809 
810 /*
811  * The worker process does two types of work, a forwards going
812  * loop and a backwards going loop.
813  *
814  * We do this so that on multiprocessor systems we do not create
815  * a 'train' of processing, with highly synchronized processes,
816  * skewing the whole benchmark.
817  */
818 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
819 {
820 	long words = bytes/sizeof(u64);
821 	u64 *data = (void *)__data;
822 	long chunk_0, chunk_1;
823 	u64 *d0, *d, *d1;
824 	long off;
825 	long i;
826 
827 	BUG_ON(!data && words);
828 	BUG_ON(data && !words);
829 
830 	if (!data)
831 		return val;
832 
833 	/* Very simple memset() work variant: */
834 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
835 		bzero(data, bytes);
836 		return val;
837 	}
838 
839 	/* Spread out by PID/TID nr and by loop nr: */
840 	chunk_0 = words/nr_max;
841 	chunk_1 = words/g->p.nr_loops;
842 	off = nr*chunk_0 + loop*chunk_1;
843 
844 	while (off >= words)
845 		off -= words;
846 
847 	if (g->p.data_rand_walk) {
848 		u32 lfsr = nr + loop + val;
849 		int j;
850 
851 		for (i = 0; i < words/1024; i++) {
852 			long start, end;
853 
854 			lfsr = lfsr_32(lfsr);
855 
856 			start = lfsr % words;
857 			end = min(start + 1024, words-1);
858 
859 			if (g->p.data_zero_memset) {
860 				bzero(data + start, (end-start) * sizeof(u64));
861 			} else {
862 				for (j = start; j < end; j++)
863 					val = access_data(data + j, val);
864 			}
865 		}
866 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
867 		/* Process data forwards: */
868 
869 		d0 = data + off;
870 		d  = data + off + 1;
871 		d1 = data + words;
872 
873 		for (;;) {
874 			if (unlikely(d >= d1))
875 				d = data;
876 			if (unlikely(d == d0))
877 				break;
878 
879 			val = access_data(d, val);
880 
881 			d++;
882 		}
883 	} else {
884 		/* Process data backwards: */
885 
886 		d0 = data + off;
887 		d  = data + off - 1;
888 		d1 = data + words;
889 
890 		for (;;) {
891 			if (unlikely(d < data))
892 				d = data + words-1;
893 			if (unlikely(d == d0))
894 				break;
895 
896 			val = access_data(d, val);
897 
898 			d--;
899 		}
900 	}
901 
902 	return val;
903 }
904 
905 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
906 {
907 	unsigned int cpu;
908 
909 	cpu = sched_getcpu();
910 
911 	g->threads[task_nr].curr_cpu = cpu;
912 	prctl(0, bytes_worked);
913 }
914 
915 /*
916  * Count the number of nodes a process's threads
917  * are spread out on.
918  *
919  * A count of 1 means that the process is compressed
920  * to a single node. A count of g->p.nr_nodes means it's
921  * spread out on the whole system.
922  */
923 static int count_process_nodes(int process_nr)
924 {
925 	char *node_present;
926 	int nodes;
927 	int n, t;
928 
929 	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
930 	BUG_ON(!node_present);
931 	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
932 		node_present[nodes] = 0;
933 
934 	for (t = 0; t < g->p.nr_threads; t++) {
935 		struct thread_data *td;
936 		int task_nr;
937 		int node;
938 
939 		task_nr = process_nr*g->p.nr_threads + t;
940 		td = g->threads + task_nr;
941 
942 		node = numa_node_of_cpu(td->curr_cpu);
943 		if (node < 0) /* curr_cpu was likely still -1 */ {
944 			free(node_present);
945 			return 0;
946 		}
947 
948 		node_present[node] = 1;
949 	}
950 
951 	nodes = 0;
952 
953 	for (n = 0; n < g->p.nr_nodes; n++)
954 		nodes += node_present[n];
955 
956 	free(node_present);
957 	return nodes;
958 }
959 
960 /*
961  * Count the number of distinct process-threads a node contains.
962  *
963  * A count of 1 means that the node contains only a single
964  * process. If all nodes on the system contain at most one
965  * process then we are well-converged.
966  */
967 static int count_node_processes(int node)
968 {
969 	int processes = 0;
970 	int t, p;
971 
972 	for (p = 0; p < g->p.nr_proc; p++) {
973 		for (t = 0; t < g->p.nr_threads; t++) {
974 			struct thread_data *td;
975 			int task_nr;
976 			int n;
977 
978 			task_nr = p*g->p.nr_threads + t;
979 			td = g->threads + task_nr;
980 
981 			n = numa_node_of_cpu(td->curr_cpu);
982 			if (n == node) {
983 				processes++;
984 				break;
985 			}
986 		}
987 	}
988 
989 	return processes;
990 }
991 
992 static void calc_convergence_compression(int *strong)
993 {
994 	unsigned int nodes_min, nodes_max;
995 	int p;
996 
997 	nodes_min = -1;
998 	nodes_max =  0;
999 
1000 	for (p = 0; p < g->p.nr_proc; p++) {
1001 		unsigned int nodes = count_process_nodes(p);
1002 
1003 		if (!nodes) {
1004 			*strong = 0;
1005 			return;
1006 		}
1007 
1008 		nodes_min = min(nodes, nodes_min);
1009 		nodes_max = max(nodes, nodes_max);
1010 	}
1011 
1012 	/* Strong convergence: all threads compress on a single node: */
1013 	if (nodes_min == 1 && nodes_max == 1) {
1014 		*strong = 1;
1015 	} else {
1016 		*strong = 0;
1017 		tprintf(" {%d-%d}", nodes_min, nodes_max);
1018 	}
1019 }
1020 
1021 static void calc_convergence(double runtime_ns_max, double *convergence)
1022 {
1023 	unsigned int loops_done_min, loops_done_max;
1024 	int process_groups;
1025 	int *nodes;
1026 	int distance;
1027 	int nr_min;
1028 	int nr_max;
1029 	int strong;
1030 	int sum;
1031 	int nr;
1032 	int node;
1033 	int cpu;
1034 	int t;
1035 
1036 	if (!g->p.show_convergence && !g->p.measure_convergence)
1037 		return;
1038 
1039 	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1040 	BUG_ON(!nodes);
1041 	for (node = 0; node < g->p.nr_nodes; node++)
1042 		nodes[node] = 0;
1043 
1044 	loops_done_min = -1;
1045 	loops_done_max = 0;
1046 
1047 	for (t = 0; t < g->p.nr_tasks; t++) {
1048 		struct thread_data *td = g->threads + t;
1049 		unsigned int loops_done;
1050 
1051 		cpu = td->curr_cpu;
1052 
1053 		/* Not all threads have written it yet: */
1054 		if (cpu < 0)
1055 			continue;
1056 
1057 		node = numa_node_of_cpu(cpu);
1058 
1059 		nodes[node]++;
1060 
1061 		loops_done = td->loops_done;
1062 		loops_done_min = min(loops_done, loops_done_min);
1063 		loops_done_max = max(loops_done, loops_done_max);
1064 	}
1065 
1066 	nr_max = 0;
1067 	nr_min = g->p.nr_tasks;
1068 	sum = 0;
1069 
1070 	for (node = 0; node < g->p.nr_nodes; node++) {
1071 		if (!is_node_present(node))
1072 			continue;
1073 		nr = nodes[node];
1074 		nr_min = min(nr, nr_min);
1075 		nr_max = max(nr, nr_max);
1076 		sum += nr;
1077 	}
1078 	BUG_ON(nr_min > nr_max);
1079 
1080 	BUG_ON(sum > g->p.nr_tasks);
1081 
1082 	if (0 && (sum < g->p.nr_tasks)) {
1083 		free(nodes);
1084 		return;
1085 	}
1086 
1087 	/*
1088 	 * Count the number of distinct process groups present
1089 	 * on nodes - when we are converged this will decrease
1090 	 * to g->p.nr_proc:
1091 	 */
1092 	process_groups = 0;
1093 
1094 	for (node = 0; node < g->p.nr_nodes; node++) {
1095 		int processes;
1096 
1097 		if (!is_node_present(node))
1098 			continue;
1099 		processes = count_node_processes(node);
1100 		nr = nodes[node];
1101 		tprintf(" %2d/%-2d", nr, processes);
1102 
1103 		process_groups += processes;
1104 	}
1105 
1106 	distance = nr_max - nr_min;
1107 
1108 	tprintf(" [%2d/%-2d]", distance, process_groups);
1109 
1110 	tprintf(" l:%3d-%-3d (%3d)",
1111 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1112 
1113 	if (loops_done_min && loops_done_max) {
1114 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1115 
1116 		tprintf(" [%4.1f%%]", skew * 100.0);
1117 	}
1118 
1119 	calc_convergence_compression(&strong);
1120 
1121 	if (strong && process_groups == g->p.nr_proc) {
1122 		if (!*convergence) {
1123 			*convergence = runtime_ns_max;
1124 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1125 			if (g->p.measure_convergence) {
1126 				g->all_converged = true;
1127 				g->stop_work = true;
1128 			}
1129 		}
1130 	} else {
1131 		if (*convergence) {
1132 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1133 			*convergence = 0;
1134 		}
1135 		tprintf("\n");
1136 	}
1137 
1138 	free(nodes);
1139 }
1140 
1141 static void show_summary(double runtime_ns_max, int l, double *convergence)
1142 {
1143 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1144 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1145 
1146 	calc_convergence(runtime_ns_max, convergence);
1147 
1148 	if (g->p.show_details >= 0)
1149 		fflush(stdout);
1150 }
1151 
1152 static void *worker_thread(void *__tdata)
1153 {
1154 	struct thread_data *td = __tdata;
1155 	struct timeval start0, start, stop, diff;
1156 	int process_nr = td->process_nr;
1157 	int thread_nr = td->thread_nr;
1158 	unsigned long last_perturbance;
1159 	int task_nr = td->task_nr;
1160 	int details = g->p.show_details;
1161 	int first_task, last_task;
1162 	double convergence = 0;
1163 	u64 val = td->val;
1164 	double runtime_ns_max;
1165 	u8 *global_data;
1166 	u8 *process_data;
1167 	u8 *thread_data;
1168 	u64 bytes_done, secs;
1169 	long work_done;
1170 	u32 l;
1171 	struct rusage rusage;
1172 
1173 	bind_to_cpumask(td->bind_cpumask);
1174 	bind_to_memnode(td->bind_node);
1175 
1176 	set_taskname("thread %d/%d", process_nr, thread_nr);
1177 
1178 	global_data = g->data;
1179 	process_data = td->process_data;
1180 	thread_data = setup_private_data(g->p.bytes_thread);
1181 
1182 	bytes_done = 0;
1183 
1184 	last_task = 0;
1185 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1186 		last_task = 1;
1187 
1188 	first_task = 0;
1189 	if (process_nr == 0 && thread_nr == 0)
1190 		first_task = 1;
1191 
1192 	if (details >= 2) {
1193 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1194 			process_nr, thread_nr, global_data, process_data, thread_data);
1195 	}
1196 
1197 	if (g->p.serialize_startup) {
1198 		mutex_lock(&g->startup_mutex);
1199 		g->nr_tasks_started++;
1200 		/* The last thread wakes the main process. */
1201 		if (g->nr_tasks_started == g->p.nr_tasks)
1202 			cond_signal(&g->startup_cond);
1203 
1204 		mutex_unlock(&g->startup_mutex);
1205 
1206 		/* Here we will wait for the main process to start us all at once: */
1207 		mutex_lock(&g->start_work_mutex);
1208 		g->start_work = false;
1209 		g->nr_tasks_working++;
1210 		while (!g->start_work)
1211 			cond_wait(&g->start_work_cond, &g->start_work_mutex);
1212 
1213 		mutex_unlock(&g->start_work_mutex);
1214 	}
1215 
1216 	gettimeofday(&start0, NULL);
1217 
1218 	start = stop = start0;
1219 	last_perturbance = start.tv_sec;
1220 
1221 	for (l = 0; l < g->p.nr_loops; l++) {
1222 		start = stop;
1223 
1224 		if (g->stop_work)
1225 			break;
1226 
1227 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1228 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1229 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1230 
1231 		if (g->p.sleep_usecs) {
1232 			mutex_lock(td->process_lock);
1233 			usleep(g->p.sleep_usecs);
1234 			mutex_unlock(td->process_lock);
1235 		}
1236 		/*
1237 		 * Amount of work to be done under a process-global lock:
1238 		 */
1239 		if (g->p.bytes_process_locked) {
1240 			mutex_lock(td->process_lock);
1241 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1242 			mutex_unlock(td->process_lock);
1243 		}
1244 
1245 		work_done = g->p.bytes_global + g->p.bytes_process +
1246 			    g->p.bytes_process_locked + g->p.bytes_thread;
1247 
1248 		update_curr_cpu(task_nr, work_done);
1249 		bytes_done += work_done;
1250 
1251 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1252 			continue;
1253 
1254 		td->loops_done = l;
1255 
1256 		gettimeofday(&stop, NULL);
1257 
1258 		/* Check whether our max runtime timed out: */
1259 		if (g->p.nr_secs) {
1260 			timersub(&stop, &start0, &diff);
1261 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1262 				g->stop_work = true;
1263 				break;
1264 			}
1265 		}
1266 
1267 		/* Update the summary at most once per second: */
1268 		if (start.tv_sec == stop.tv_sec)
1269 			continue;
1270 
1271 		/*
1272 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1273 		 * by migrating to CPU#0:
1274 		 */
1275 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1276 			cpu_set_t *orig_mask;
1277 			int target_cpu;
1278 			int this_cpu;
1279 
1280 			last_perturbance = stop.tv_sec;
1281 
1282 			/*
1283 			 * Depending on where we are running, move into
1284 			 * the other half of the system, to create some
1285 			 * real disturbance:
1286 			 */
1287 			this_cpu = g->threads[task_nr].curr_cpu;
1288 			if (this_cpu < g->p.nr_cpus/2)
1289 				target_cpu = g->p.nr_cpus-1;
1290 			else
1291 				target_cpu = 0;
1292 
1293 			orig_mask = bind_to_cpu(target_cpu);
1294 
1295 			/* Here we are running on the target CPU already */
1296 			if (details >= 1)
1297 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1298 
1299 			bind_to_cpumask(orig_mask);
1300 			CPU_FREE(orig_mask);
1301 		}
1302 
1303 		if (details >= 3) {
1304 			timersub(&stop, &start, &diff);
1305 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1306 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1307 
1308 			if (details >= 0) {
1309 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1310 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1311 			}
1312 			fflush(stdout);
1313 		}
1314 		if (!last_task)
1315 			continue;
1316 
1317 		timersub(&stop, &start0, &diff);
1318 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1319 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1320 
1321 		show_summary(runtime_ns_max, l, &convergence);
1322 	}
1323 
1324 	gettimeofday(&stop, NULL);
1325 	timersub(&stop, &start0, &diff);
1326 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1327 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1328 	secs = td->runtime_ns / NSEC_PER_SEC;
1329 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1330 
1331 	getrusage(RUSAGE_THREAD, &rusage);
1332 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1333 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1334 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1335 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1336 
1337 	free_data(thread_data, g->p.bytes_thread);
1338 
1339 	mutex_lock(&g->stop_work_mutex);
1340 	g->bytes_done += bytes_done;
1341 	mutex_unlock(&g->stop_work_mutex);
1342 
1343 	return NULL;
1344 }
1345 
1346 /*
1347  * A worker process starts a couple of threads:
1348  */
1349 static void worker_process(int process_nr)
1350 {
1351 	struct mutex process_lock;
1352 	struct thread_data *td;
1353 	pthread_t *pthreads;
1354 	u8 *process_data;
1355 	int task_nr;
1356 	int ret;
1357 	int t;
1358 
1359 	mutex_init(&process_lock);
1360 	set_taskname("process %d", process_nr);
1361 
1362 	/*
1363 	 * Pick up the memory policy and the CPU binding of our first thread,
1364 	 * so that we initialize memory accordingly:
1365 	 */
1366 	task_nr = process_nr*g->p.nr_threads;
1367 	td = g->threads + task_nr;
1368 
1369 	bind_to_memnode(td->bind_node);
1370 	bind_to_cpumask(td->bind_cpumask);
1371 
1372 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1373 	process_data = setup_private_data(g->p.bytes_process);
1374 
1375 	if (g->p.show_details >= 3) {
1376 		printf(" # process %2d global mem: %p, process mem: %p\n",
1377 			process_nr, g->data, process_data);
1378 	}
1379 
1380 	for (t = 0; t < g->p.nr_threads; t++) {
1381 		task_nr = process_nr*g->p.nr_threads + t;
1382 		td = g->threads + task_nr;
1383 
1384 		td->process_data = process_data;
1385 		td->process_nr   = process_nr;
1386 		td->thread_nr    = t;
1387 		td->task_nr	 = task_nr;
1388 		td->val          = rand();
1389 		td->curr_cpu	 = -1;
1390 		td->process_lock = &process_lock;
1391 
1392 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1393 		BUG_ON(ret);
1394 	}
1395 
1396 	for (t = 0; t < g->p.nr_threads; t++) {
1397                 ret = pthread_join(pthreads[t], NULL);
1398 		BUG_ON(ret);
1399 	}
1400 
1401 	free_data(process_data, g->p.bytes_process);
1402 	free(pthreads);
1403 }
1404 
1405 static void print_summary(void)
1406 {
1407 	if (g->p.show_details < 0)
1408 		return;
1409 
1410 	printf("\n ###\n");
1411 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1412 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1413 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1414 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1415 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1416 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1417 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1418 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1419 
1420 	printf(" ###\n");
1421 
1422 	printf("\n ###\n"); fflush(stdout);
1423 }
1424 
1425 static void init_thread_data(void)
1426 {
1427 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1428 	int t;
1429 
1430 	g->threads = zalloc_shared_data(size);
1431 
1432 	for (t = 0; t < g->p.nr_tasks; t++) {
1433 		struct thread_data *td = g->threads + t;
1434 		size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1435 		int cpu;
1436 
1437 		/* Allow all nodes by default: */
1438 		td->bind_node = NUMA_NO_NODE;
1439 
1440 		/* Allow all CPUs by default: */
1441 		td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1442 		BUG_ON(!td->bind_cpumask);
1443 		CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1444 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1445 			CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1446 	}
1447 }
1448 
1449 static void deinit_thread_data(void)
1450 {
1451 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1452 	int t;
1453 
1454 	/* Free the bind_cpumask allocated for thread_data */
1455 	for (t = 0; t < g->p.nr_tasks; t++) {
1456 		struct thread_data *td = g->threads + t;
1457 		CPU_FREE(td->bind_cpumask);
1458 	}
1459 
1460 	free_data(g->threads, size);
1461 }
1462 
1463 static int init(void)
1464 {
1465 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1466 
1467 	/* Copy over options: */
1468 	g->p = p0;
1469 
1470 	g->p.nr_cpus = numa_num_configured_cpus();
1471 
1472 	g->p.nr_nodes = numa_max_node() + 1;
1473 
1474 	/* char array in count_process_nodes(): */
1475 	BUG_ON(g->p.nr_nodes < 0);
1476 
1477 	if (g->p.show_quiet && !g->p.show_details)
1478 		g->p.show_details = -1;
1479 
1480 	/* Some memory should be specified: */
1481 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1482 		return -1;
1483 
1484 	if (g->p.mb_global_str) {
1485 		g->p.mb_global = atof(g->p.mb_global_str);
1486 		BUG_ON(g->p.mb_global < 0);
1487 	}
1488 
1489 	if (g->p.mb_proc_str) {
1490 		g->p.mb_proc = atof(g->p.mb_proc_str);
1491 		BUG_ON(g->p.mb_proc < 0);
1492 	}
1493 
1494 	if (g->p.mb_proc_locked_str) {
1495 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1496 		BUG_ON(g->p.mb_proc_locked < 0);
1497 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1498 	}
1499 
1500 	if (g->p.mb_thread_str) {
1501 		g->p.mb_thread = atof(g->p.mb_thread_str);
1502 		BUG_ON(g->p.mb_thread < 0);
1503 	}
1504 
1505 	BUG_ON(g->p.nr_threads <= 0);
1506 	BUG_ON(g->p.nr_proc <= 0);
1507 
1508 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1509 
1510 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1511 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1512 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1513 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1514 
1515 	g->data = setup_shared_data(g->p.bytes_global);
1516 
1517 	/* Startup serialization: */
1518 	mutex_init_pshared(&g->start_work_mutex);
1519 	cond_init_pshared(&g->start_work_cond);
1520 	mutex_init_pshared(&g->startup_mutex);
1521 	cond_init_pshared(&g->startup_cond);
1522 	mutex_init_pshared(&g->stop_work_mutex);
1523 
1524 	init_thread_data();
1525 
1526 	tprintf("#\n");
1527 	if (parse_setup_cpu_list() || parse_setup_node_list())
1528 		return -1;
1529 	tprintf("#\n");
1530 
1531 	print_summary();
1532 
1533 	return 0;
1534 }
1535 
1536 static void deinit(void)
1537 {
1538 	free_data(g->data, g->p.bytes_global);
1539 	g->data = NULL;
1540 
1541 	deinit_thread_data();
1542 
1543 	free_data(g, sizeof(*g));
1544 	g = NULL;
1545 }
1546 
1547 /*
1548  * Print a short or long result, depending on the verbosity setting:
1549  */
1550 static void print_res(const char *name, double val,
1551 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1552 {
1553 	if (!name)
1554 		name = "main,";
1555 
1556 	if (!g->p.show_quiet)
1557 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1558 	else
1559 		printf(" %14.3f %s\n", val, txt_long);
1560 }
1561 
1562 static int __bench_numa(const char *name)
1563 {
1564 	struct timeval start, stop, diff;
1565 	u64 runtime_ns_min, runtime_ns_sum;
1566 	pid_t *pids, pid, wpid;
1567 	double delta_runtime;
1568 	double runtime_avg;
1569 	double runtime_sec_max;
1570 	double runtime_sec_min;
1571 	int wait_stat;
1572 	double bytes;
1573 	int i, t, p;
1574 
1575 	if (init())
1576 		return -1;
1577 
1578 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1579 	pid = -1;
1580 
1581 	if (g->p.serialize_startup) {
1582 		tprintf(" #\n");
1583 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1584 	}
1585 
1586 	gettimeofday(&start, NULL);
1587 
1588 	for (i = 0; i < g->p.nr_proc; i++) {
1589 		pid = fork();
1590 		dprintf(" # process %2d: PID %d\n", i, pid);
1591 
1592 		BUG_ON(pid < 0);
1593 		if (!pid) {
1594 			/* Child process: */
1595 			worker_process(i);
1596 
1597 			exit(0);
1598 		}
1599 		pids[i] = pid;
1600 
1601 	}
1602 
1603 	if (g->p.serialize_startup) {
1604 		bool threads_ready = false;
1605 		double startup_sec;
1606 
1607 		/*
1608 		 * Wait for all the threads to start up. The last thread will
1609 		 * signal this process.
1610 		 */
1611 		mutex_lock(&g->startup_mutex);
1612 		while (g->nr_tasks_started != g->p.nr_tasks)
1613 			cond_wait(&g->startup_cond, &g->startup_mutex);
1614 
1615 		mutex_unlock(&g->startup_mutex);
1616 
1617 		/* Wait for all threads to be at the start_work_cond. */
1618 		while (!threads_ready) {
1619 			mutex_lock(&g->start_work_mutex);
1620 			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1621 			mutex_unlock(&g->start_work_mutex);
1622 			if (!threads_ready)
1623 				usleep(1);
1624 		}
1625 
1626 		gettimeofday(&stop, NULL);
1627 
1628 		timersub(&stop, &start, &diff);
1629 
1630 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1631 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1632 		startup_sec /= NSEC_PER_SEC;
1633 
1634 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1635 		tprintf(" #\n");
1636 
1637 		start = stop;
1638 		/* Start all threads running. */
1639 		mutex_lock(&g->start_work_mutex);
1640 		g->start_work = true;
1641 		mutex_unlock(&g->start_work_mutex);
1642 		cond_broadcast(&g->start_work_cond);
1643 	} else {
1644 		gettimeofday(&start, NULL);
1645 	}
1646 
1647 	/* Parent process: */
1648 
1649 
1650 	for (i = 0; i < g->p.nr_proc; i++) {
1651 		wpid = waitpid(pids[i], &wait_stat, 0);
1652 		BUG_ON(wpid < 0);
1653 		BUG_ON(!WIFEXITED(wait_stat));
1654 
1655 	}
1656 
1657 	runtime_ns_sum = 0;
1658 	runtime_ns_min = -1LL;
1659 
1660 	for (t = 0; t < g->p.nr_tasks; t++) {
1661 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1662 
1663 		runtime_ns_sum += thread_runtime_ns;
1664 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1665 	}
1666 
1667 	gettimeofday(&stop, NULL);
1668 	timersub(&stop, &start, &diff);
1669 
1670 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1671 
1672 	tprintf("\n ###\n");
1673 	tprintf("\n");
1674 
1675 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1676 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1677 	runtime_sec_max /= NSEC_PER_SEC;
1678 
1679 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1680 
1681 	bytes = g->bytes_done;
1682 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1683 
1684 	if (g->p.measure_convergence) {
1685 		print_res(name, runtime_sec_max,
1686 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1687 	}
1688 
1689 	print_res(name, runtime_sec_max,
1690 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1691 
1692 	print_res(name, runtime_sec_min,
1693 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1694 
1695 	print_res(name, runtime_avg,
1696 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1697 
1698 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1699 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1700 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1701 
1702 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1703 		"GB,", "data/thread",		"GB data processed, per thread");
1704 
1705 	print_res(name, bytes / 1e9,
1706 		"GB,", "data-total",		"GB data processed, total");
1707 
1708 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1709 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1710 
1711 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1712 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1713 
1714 	print_res(name, bytes / runtime_sec_max / 1e9,
1715 		"GB/sec,", "total-speed",	"GB/sec total speed");
1716 
1717 	if (g->p.show_details >= 2) {
1718 		char tname[14 + 2 * 11 + 1];
1719 		struct thread_data *td;
1720 		for (p = 0; p < g->p.nr_proc; p++) {
1721 			for (t = 0; t < g->p.nr_threads; t++) {
1722 				memset(tname, 0, sizeof(tname));
1723 				td = g->threads + p*g->p.nr_threads + t;
1724 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1725 				print_res(tname, td->speed_gbs,
1726 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1727 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1728 					"secs",	"thread-system-time", "system CPU time/thread");
1729 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1730 					"secs",	"thread-user-time", "user CPU time/thread");
1731 			}
1732 		}
1733 	}
1734 
1735 	free(pids);
1736 
1737 	deinit();
1738 
1739 	return 0;
1740 }
1741 
1742 #define MAX_ARGS 50
1743 
1744 static int command_size(const char **argv)
1745 {
1746 	int size = 0;
1747 
1748 	while (*argv) {
1749 		size++;
1750 		argv++;
1751 	}
1752 
1753 	BUG_ON(size >= MAX_ARGS);
1754 
1755 	return size;
1756 }
1757 
1758 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1759 {
1760 	int i;
1761 
1762 	printf("\n # Running %s \"perf bench numa", name);
1763 
1764 	for (i = 0; i < argc; i++)
1765 		printf(" %s", argv[i]);
1766 
1767 	printf("\"\n");
1768 
1769 	memset(p, 0, sizeof(*p));
1770 
1771 	/* Initialize nonzero defaults: */
1772 
1773 	p->serialize_startup		= 1;
1774 	p->data_reads			= true;
1775 	p->data_writes			= true;
1776 	p->data_backwards		= true;
1777 	p->data_rand_walk		= true;
1778 	p->nr_loops			= -1;
1779 	p->init_random			= true;
1780 	p->mb_global_str		= "1";
1781 	p->nr_proc			= 1;
1782 	p->nr_threads			= 1;
1783 	p->nr_secs			= 5;
1784 	p->run_all			= argc == 1;
1785 }
1786 
1787 static int run_bench_numa(const char *name, const char **argv)
1788 {
1789 	int argc = command_size(argv);
1790 
1791 	init_params(&p0, name, argc, argv);
1792 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1793 	if (argc)
1794 		goto err;
1795 
1796 	if (__bench_numa(name))
1797 		goto err;
1798 
1799 	return 0;
1800 
1801 err:
1802 	return -1;
1803 }
1804 
1805 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1806 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1807 
1808 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1809 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1810 
1811 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1812 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1813 
1814 /*
1815  * The built-in test-suite executed by "perf bench numa -a".
1816  *
1817  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1818  */
1819 static const char *tests[][MAX_ARGS] = {
1820    /* Basic single-stream NUMA bandwidth measurements: */
1821    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1822 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1823    { "RAM-bw-local-NOTHP,",
1824 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1825 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1826    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1827 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1828 
1829    /* 2-stream NUMA bandwidth measurements: */
1830    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1831 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1832    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1833 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1834 
1835    /* Cross-stream NUMA bandwidth measurement: */
1836    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1837 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1838 
1839    /* Convergence latency measurements: */
1840    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1841    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1842    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1843    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1844    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1845    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1846    { " 4x4-convergence-NOTHP,",
1847 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1848    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1849    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1850    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1851    { " 8x4-convergence-NOTHP,",
1852 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1853    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1854    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1855    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1856    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1857    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1858 
1859    /* Various NUMA process/thread layout bandwidth measurements: */
1860    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1861    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1862    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1863    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1864    { " 8x1-bw-process-NOTHP,",
1865 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1866    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1867 
1868    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1869    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1870    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1871    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1872 
1873    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1874    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1875    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1876    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1877    { " 4x8-bw-process-NOTHP,",
1878 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1879    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1880    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1881 
1882    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1883    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1884 
1885    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1886    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1887    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1888    { "numa01-bw-thread-NOTHP,",
1889 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1890 };
1891 
1892 static int bench_all(void)
1893 {
1894 	int nr = ARRAY_SIZE(tests);
1895 	int ret;
1896 	int i;
1897 
1898 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1899 	BUG_ON(ret < 0);
1900 
1901 	for (i = 0; i < nr; i++) {
1902 		run_bench_numa(tests[i][0], tests[i] + 1);
1903 	}
1904 
1905 	printf("\n");
1906 
1907 	return 0;
1908 }
1909 
1910 int bench_numa(int argc, const char **argv)
1911 {
1912 	init_params(&p0, "main,", argc, argv);
1913 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1914 	if (argc)
1915 		goto err;
1916 
1917 	if (p0.run_all)
1918 		return bench_all();
1919 
1920 	if (__bench_numa(NULL))
1921 		goto err;
1922 
1923 	return 0;
1924 
1925 err:
1926 	usage_with_options(numa_usage, options);
1927 	return -1;
1928 }
1929