1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 #include <inttypes.h> 8 /* For the CLR_() macros */ 9 #include <pthread.h> 10 11 #include "../perf.h" 12 #include "../builtin.h" 13 #include "../util/util.h" 14 #include <subcmd/parse-options.h> 15 #include "../util/cloexec.h" 16 17 #include "bench.h" 18 19 #include <errno.h> 20 #include <sched.h> 21 #include <stdio.h> 22 #include <assert.h> 23 #include <malloc.h> 24 #include <signal.h> 25 #include <stdlib.h> 26 #include <string.h> 27 #include <unistd.h> 28 #include <sys/mman.h> 29 #include <sys/time.h> 30 #include <sys/resource.h> 31 #include <sys/wait.h> 32 #include <sys/prctl.h> 33 #include <sys/types.h> 34 #include <linux/kernel.h> 35 #include <linux/time64.h> 36 37 #include <numa.h> 38 #include <numaif.h> 39 40 /* 41 * Regular printout to the terminal, supressed if -q is specified: 42 */ 43 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 44 45 /* 46 * Debug printf: 47 */ 48 #undef dprintf 49 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 50 51 struct thread_data { 52 int curr_cpu; 53 cpu_set_t bind_cpumask; 54 int bind_node; 55 u8 *process_data; 56 int process_nr; 57 int thread_nr; 58 int task_nr; 59 unsigned int loops_done; 60 u64 val; 61 u64 runtime_ns; 62 u64 system_time_ns; 63 u64 user_time_ns; 64 double speed_gbs; 65 pthread_mutex_t *process_lock; 66 }; 67 68 /* Parameters set by options: */ 69 70 struct params { 71 /* Startup synchronization: */ 72 bool serialize_startup; 73 74 /* Task hierarchy: */ 75 int nr_proc; 76 int nr_threads; 77 78 /* Working set sizes: */ 79 const char *mb_global_str; 80 const char *mb_proc_str; 81 const char *mb_proc_locked_str; 82 const char *mb_thread_str; 83 84 double mb_global; 85 double mb_proc; 86 double mb_proc_locked; 87 double mb_thread; 88 89 /* Access patterns to the working set: */ 90 bool data_reads; 91 bool data_writes; 92 bool data_backwards; 93 bool data_zero_memset; 94 bool data_rand_walk; 95 u32 nr_loops; 96 u32 nr_secs; 97 u32 sleep_usecs; 98 99 /* Working set initialization: */ 100 bool init_zero; 101 bool init_random; 102 bool init_cpu0; 103 104 /* Misc options: */ 105 int show_details; 106 int run_all; 107 int thp; 108 109 long bytes_global; 110 long bytes_process; 111 long bytes_process_locked; 112 long bytes_thread; 113 114 int nr_tasks; 115 bool show_quiet; 116 117 bool show_convergence; 118 bool measure_convergence; 119 120 int perturb_secs; 121 int nr_cpus; 122 int nr_nodes; 123 124 /* Affinity options -C and -N: */ 125 char *cpu_list_str; 126 char *node_list_str; 127 }; 128 129 130 /* Global, read-writable area, accessible to all processes and threads: */ 131 132 struct global_info { 133 u8 *data; 134 135 pthread_mutex_t startup_mutex; 136 int nr_tasks_started; 137 138 pthread_mutex_t startup_done_mutex; 139 140 pthread_mutex_t start_work_mutex; 141 int nr_tasks_working; 142 143 pthread_mutex_t stop_work_mutex; 144 u64 bytes_done; 145 146 struct thread_data *threads; 147 148 /* Convergence latency measurement: */ 149 bool all_converged; 150 bool stop_work; 151 152 int print_once; 153 154 struct params p; 155 }; 156 157 static struct global_info *g = NULL; 158 159 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 160 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 161 162 struct params p0; 163 164 static const struct option options[] = { 165 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 166 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 167 168 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 169 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 170 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 171 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 172 173 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 174 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 175 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 176 177 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 178 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 179 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 180 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 181 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 182 183 184 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 185 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 186 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 187 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 188 189 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 190 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 191 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 192 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 193 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 194 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 195 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 196 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 197 198 /* Special option string parsing callbacks: */ 199 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 200 "bind the first N tasks to these specific cpus (the rest is unbound)", 201 parse_cpus_opt), 202 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 203 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 204 parse_nodes_opt), 205 OPT_END() 206 }; 207 208 static const char * const bench_numa_usage[] = { 209 "perf bench numa <options>", 210 NULL 211 }; 212 213 static const char * const numa_usage[] = { 214 "perf bench numa mem [<options>]", 215 NULL 216 }; 217 218 static cpu_set_t bind_to_cpu(int target_cpu) 219 { 220 cpu_set_t orig_mask, mask; 221 int ret; 222 223 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 224 BUG_ON(ret); 225 226 CPU_ZERO(&mask); 227 228 if (target_cpu == -1) { 229 int cpu; 230 231 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 232 CPU_SET(cpu, &mask); 233 } else { 234 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 235 CPU_SET(target_cpu, &mask); 236 } 237 238 ret = sched_setaffinity(0, sizeof(mask), &mask); 239 BUG_ON(ret); 240 241 return orig_mask; 242 } 243 244 static cpu_set_t bind_to_node(int target_node) 245 { 246 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 247 cpu_set_t orig_mask, mask; 248 int cpu; 249 int ret; 250 251 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 252 BUG_ON(!cpus_per_node); 253 254 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 255 BUG_ON(ret); 256 257 CPU_ZERO(&mask); 258 259 if (target_node == -1) { 260 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 261 CPU_SET(cpu, &mask); 262 } else { 263 int cpu_start = (target_node + 0) * cpus_per_node; 264 int cpu_stop = (target_node + 1) * cpus_per_node; 265 266 BUG_ON(cpu_stop > g->p.nr_cpus); 267 268 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 269 CPU_SET(cpu, &mask); 270 } 271 272 ret = sched_setaffinity(0, sizeof(mask), &mask); 273 BUG_ON(ret); 274 275 return orig_mask; 276 } 277 278 static void bind_to_cpumask(cpu_set_t mask) 279 { 280 int ret; 281 282 ret = sched_setaffinity(0, sizeof(mask), &mask); 283 BUG_ON(ret); 284 } 285 286 static void mempol_restore(void) 287 { 288 int ret; 289 290 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 291 292 BUG_ON(ret); 293 } 294 295 static void bind_to_memnode(int node) 296 { 297 unsigned long nodemask; 298 int ret; 299 300 if (node == -1) 301 return; 302 303 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 304 nodemask = 1L << node; 305 306 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 307 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 308 309 BUG_ON(ret); 310 } 311 312 #define HPSIZE (2*1024*1024) 313 314 #define set_taskname(fmt...) \ 315 do { \ 316 char name[20]; \ 317 \ 318 snprintf(name, 20, fmt); \ 319 prctl(PR_SET_NAME, name); \ 320 } while (0) 321 322 static u8 *alloc_data(ssize_t bytes0, int map_flags, 323 int init_zero, int init_cpu0, int thp, int init_random) 324 { 325 cpu_set_t orig_mask; 326 ssize_t bytes; 327 u8 *buf; 328 int ret; 329 330 if (!bytes0) 331 return NULL; 332 333 /* Allocate and initialize all memory on CPU#0: */ 334 if (init_cpu0) { 335 orig_mask = bind_to_node(0); 336 bind_to_memnode(0); 337 } 338 339 bytes = bytes0 + HPSIZE; 340 341 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 342 BUG_ON(buf == (void *)-1); 343 344 if (map_flags == MAP_PRIVATE) { 345 if (thp > 0) { 346 ret = madvise(buf, bytes, MADV_HUGEPAGE); 347 if (ret && !g->print_once) { 348 g->print_once = 1; 349 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 350 } 351 } 352 if (thp < 0) { 353 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 354 if (ret && !g->print_once) { 355 g->print_once = 1; 356 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 357 } 358 } 359 } 360 361 if (init_zero) { 362 bzero(buf, bytes); 363 } else { 364 /* Initialize random contents, different in each word: */ 365 if (init_random) { 366 u64 *wbuf = (void *)buf; 367 long off = rand(); 368 long i; 369 370 for (i = 0; i < bytes/8; i++) 371 wbuf[i] = i + off; 372 } 373 } 374 375 /* Align to 2MB boundary: */ 376 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 377 378 /* Restore affinity: */ 379 if (init_cpu0) { 380 bind_to_cpumask(orig_mask); 381 mempol_restore(); 382 } 383 384 return buf; 385 } 386 387 static void free_data(void *data, ssize_t bytes) 388 { 389 int ret; 390 391 if (!data) 392 return; 393 394 ret = munmap(data, bytes); 395 BUG_ON(ret); 396 } 397 398 /* 399 * Create a shared memory buffer that can be shared between processes, zeroed: 400 */ 401 static void * zalloc_shared_data(ssize_t bytes) 402 { 403 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 404 } 405 406 /* 407 * Create a shared memory buffer that can be shared between processes: 408 */ 409 static void * setup_shared_data(ssize_t bytes) 410 { 411 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 412 } 413 414 /* 415 * Allocate process-local memory - this will either be shared between 416 * threads of this process, or only be accessed by this thread: 417 */ 418 static void * setup_private_data(ssize_t bytes) 419 { 420 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 421 } 422 423 /* 424 * Return a process-shared (global) mutex: 425 */ 426 static void init_global_mutex(pthread_mutex_t *mutex) 427 { 428 pthread_mutexattr_t attr; 429 430 pthread_mutexattr_init(&attr); 431 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 432 pthread_mutex_init(mutex, &attr); 433 } 434 435 static int parse_cpu_list(const char *arg) 436 { 437 p0.cpu_list_str = strdup(arg); 438 439 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 440 441 return 0; 442 } 443 444 static int parse_setup_cpu_list(void) 445 { 446 struct thread_data *td; 447 char *str0, *str; 448 int t; 449 450 if (!g->p.cpu_list_str) 451 return 0; 452 453 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 454 455 str0 = str = strdup(g->p.cpu_list_str); 456 t = 0; 457 458 BUG_ON(!str); 459 460 tprintf("# binding tasks to CPUs:\n"); 461 tprintf("# "); 462 463 while (true) { 464 int bind_cpu, bind_cpu_0, bind_cpu_1; 465 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 466 int bind_len; 467 int step; 468 int mul; 469 470 tok = strsep(&str, ","); 471 if (!tok) 472 break; 473 474 tok_end = strstr(tok, "-"); 475 476 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 477 if (!tok_end) { 478 /* Single CPU specified: */ 479 bind_cpu_0 = bind_cpu_1 = atol(tok); 480 } else { 481 /* CPU range specified (for example: "5-11"): */ 482 bind_cpu_0 = atol(tok); 483 bind_cpu_1 = atol(tok_end + 1); 484 } 485 486 step = 1; 487 tok_step = strstr(tok, "#"); 488 if (tok_step) { 489 step = atol(tok_step + 1); 490 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 491 } 492 493 /* 494 * Mask length. 495 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 496 * where the _4 means the next 4 CPUs are allowed. 497 */ 498 bind_len = 1; 499 tok_len = strstr(tok, "_"); 500 if (tok_len) { 501 bind_len = atol(tok_len + 1); 502 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 503 } 504 505 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 506 mul = 1; 507 tok_mul = strstr(tok, "x"); 508 if (tok_mul) { 509 mul = atol(tok_mul + 1); 510 BUG_ON(mul <= 0); 511 } 512 513 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 514 515 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 516 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 517 return -1; 518 } 519 520 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 521 BUG_ON(bind_cpu_0 > bind_cpu_1); 522 523 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 524 int i; 525 526 for (i = 0; i < mul; i++) { 527 int cpu; 528 529 if (t >= g->p.nr_tasks) { 530 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 531 goto out; 532 } 533 td = g->threads + t; 534 535 if (t) 536 tprintf(","); 537 if (bind_len > 1) { 538 tprintf("%2d/%d", bind_cpu, bind_len); 539 } else { 540 tprintf("%2d", bind_cpu); 541 } 542 543 CPU_ZERO(&td->bind_cpumask); 544 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 545 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 546 CPU_SET(cpu, &td->bind_cpumask); 547 } 548 t++; 549 } 550 } 551 } 552 out: 553 554 tprintf("\n"); 555 556 if (t < g->p.nr_tasks) 557 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 558 559 free(str0); 560 return 0; 561 } 562 563 static int parse_cpus_opt(const struct option *opt __maybe_unused, 564 const char *arg, int unset __maybe_unused) 565 { 566 if (!arg) 567 return -1; 568 569 return parse_cpu_list(arg); 570 } 571 572 static int parse_node_list(const char *arg) 573 { 574 p0.node_list_str = strdup(arg); 575 576 dprintf("got NODE list: {%s}\n", p0.node_list_str); 577 578 return 0; 579 } 580 581 static int parse_setup_node_list(void) 582 { 583 struct thread_data *td; 584 char *str0, *str; 585 int t; 586 587 if (!g->p.node_list_str) 588 return 0; 589 590 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 591 592 str0 = str = strdup(g->p.node_list_str); 593 t = 0; 594 595 BUG_ON(!str); 596 597 tprintf("# binding tasks to NODEs:\n"); 598 tprintf("# "); 599 600 while (true) { 601 int bind_node, bind_node_0, bind_node_1; 602 char *tok, *tok_end, *tok_step, *tok_mul; 603 int step; 604 int mul; 605 606 tok = strsep(&str, ","); 607 if (!tok) 608 break; 609 610 tok_end = strstr(tok, "-"); 611 612 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 613 if (!tok_end) { 614 /* Single NODE specified: */ 615 bind_node_0 = bind_node_1 = atol(tok); 616 } else { 617 /* NODE range specified (for example: "5-11"): */ 618 bind_node_0 = atol(tok); 619 bind_node_1 = atol(tok_end + 1); 620 } 621 622 step = 1; 623 tok_step = strstr(tok, "#"); 624 if (tok_step) { 625 step = atol(tok_step + 1); 626 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 627 } 628 629 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 630 mul = 1; 631 tok_mul = strstr(tok, "x"); 632 if (tok_mul) { 633 mul = atol(tok_mul + 1); 634 BUG_ON(mul <= 0); 635 } 636 637 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 638 639 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 640 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 641 return -1; 642 } 643 644 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 645 BUG_ON(bind_node_0 > bind_node_1); 646 647 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 648 int i; 649 650 for (i = 0; i < mul; i++) { 651 if (t >= g->p.nr_tasks) { 652 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 653 goto out; 654 } 655 td = g->threads + t; 656 657 if (!t) 658 tprintf(" %2d", bind_node); 659 else 660 tprintf(",%2d", bind_node); 661 662 td->bind_node = bind_node; 663 t++; 664 } 665 } 666 } 667 out: 668 669 tprintf("\n"); 670 671 if (t < g->p.nr_tasks) 672 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 673 674 free(str0); 675 return 0; 676 } 677 678 static int parse_nodes_opt(const struct option *opt __maybe_unused, 679 const char *arg, int unset __maybe_unused) 680 { 681 if (!arg) 682 return -1; 683 684 return parse_node_list(arg); 685 686 return 0; 687 } 688 689 #define BIT(x) (1ul << x) 690 691 static inline uint32_t lfsr_32(uint32_t lfsr) 692 { 693 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 694 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 695 } 696 697 /* 698 * Make sure there's real data dependency to RAM (when read 699 * accesses are enabled), so the compiler, the CPU and the 700 * kernel (KSM, zero page, etc.) cannot optimize away RAM 701 * accesses: 702 */ 703 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 704 { 705 if (g->p.data_reads) 706 val += *data; 707 if (g->p.data_writes) 708 *data = val + 1; 709 return val; 710 } 711 712 /* 713 * The worker process does two types of work, a forwards going 714 * loop and a backwards going loop. 715 * 716 * We do this so that on multiprocessor systems we do not create 717 * a 'train' of processing, with highly synchronized processes, 718 * skewing the whole benchmark. 719 */ 720 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 721 { 722 long words = bytes/sizeof(u64); 723 u64 *data = (void *)__data; 724 long chunk_0, chunk_1; 725 u64 *d0, *d, *d1; 726 long off; 727 long i; 728 729 BUG_ON(!data && words); 730 BUG_ON(data && !words); 731 732 if (!data) 733 return val; 734 735 /* Very simple memset() work variant: */ 736 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 737 bzero(data, bytes); 738 return val; 739 } 740 741 /* Spread out by PID/TID nr and by loop nr: */ 742 chunk_0 = words/nr_max; 743 chunk_1 = words/g->p.nr_loops; 744 off = nr*chunk_0 + loop*chunk_1; 745 746 while (off >= words) 747 off -= words; 748 749 if (g->p.data_rand_walk) { 750 u32 lfsr = nr + loop + val; 751 int j; 752 753 for (i = 0; i < words/1024; i++) { 754 long start, end; 755 756 lfsr = lfsr_32(lfsr); 757 758 start = lfsr % words; 759 end = min(start + 1024, words-1); 760 761 if (g->p.data_zero_memset) { 762 bzero(data + start, (end-start) * sizeof(u64)); 763 } else { 764 for (j = start; j < end; j++) 765 val = access_data(data + j, val); 766 } 767 } 768 } else if (!g->p.data_backwards || (nr + loop) & 1) { 769 770 d0 = data + off; 771 d = data + off + 1; 772 d1 = data + words; 773 774 /* Process data forwards: */ 775 for (;;) { 776 if (unlikely(d >= d1)) 777 d = data; 778 if (unlikely(d == d0)) 779 break; 780 781 val = access_data(d, val); 782 783 d++; 784 } 785 } else { 786 /* Process data backwards: */ 787 788 d0 = data + off; 789 d = data + off - 1; 790 d1 = data + words; 791 792 /* Process data forwards: */ 793 for (;;) { 794 if (unlikely(d < data)) 795 d = data + words-1; 796 if (unlikely(d == d0)) 797 break; 798 799 val = access_data(d, val); 800 801 d--; 802 } 803 } 804 805 return val; 806 } 807 808 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 809 { 810 unsigned int cpu; 811 812 cpu = sched_getcpu(); 813 814 g->threads[task_nr].curr_cpu = cpu; 815 prctl(0, bytes_worked); 816 } 817 818 #define MAX_NR_NODES 64 819 820 /* 821 * Count the number of nodes a process's threads 822 * are spread out on. 823 * 824 * A count of 1 means that the process is compressed 825 * to a single node. A count of g->p.nr_nodes means it's 826 * spread out on the whole system. 827 */ 828 static int count_process_nodes(int process_nr) 829 { 830 char node_present[MAX_NR_NODES] = { 0, }; 831 int nodes; 832 int n, t; 833 834 for (t = 0; t < g->p.nr_threads; t++) { 835 struct thread_data *td; 836 int task_nr; 837 int node; 838 839 task_nr = process_nr*g->p.nr_threads + t; 840 td = g->threads + task_nr; 841 842 node = numa_node_of_cpu(td->curr_cpu); 843 if (node < 0) /* curr_cpu was likely still -1 */ 844 return 0; 845 846 node_present[node] = 1; 847 } 848 849 nodes = 0; 850 851 for (n = 0; n < MAX_NR_NODES; n++) 852 nodes += node_present[n]; 853 854 return nodes; 855 } 856 857 /* 858 * Count the number of distinct process-threads a node contains. 859 * 860 * A count of 1 means that the node contains only a single 861 * process. If all nodes on the system contain at most one 862 * process then we are well-converged. 863 */ 864 static int count_node_processes(int node) 865 { 866 int processes = 0; 867 int t, p; 868 869 for (p = 0; p < g->p.nr_proc; p++) { 870 for (t = 0; t < g->p.nr_threads; t++) { 871 struct thread_data *td; 872 int task_nr; 873 int n; 874 875 task_nr = p*g->p.nr_threads + t; 876 td = g->threads + task_nr; 877 878 n = numa_node_of_cpu(td->curr_cpu); 879 if (n == node) { 880 processes++; 881 break; 882 } 883 } 884 } 885 886 return processes; 887 } 888 889 static void calc_convergence_compression(int *strong) 890 { 891 unsigned int nodes_min, nodes_max; 892 int p; 893 894 nodes_min = -1; 895 nodes_max = 0; 896 897 for (p = 0; p < g->p.nr_proc; p++) { 898 unsigned int nodes = count_process_nodes(p); 899 900 if (!nodes) { 901 *strong = 0; 902 return; 903 } 904 905 nodes_min = min(nodes, nodes_min); 906 nodes_max = max(nodes, nodes_max); 907 } 908 909 /* Strong convergence: all threads compress on a single node: */ 910 if (nodes_min == 1 && nodes_max == 1) { 911 *strong = 1; 912 } else { 913 *strong = 0; 914 tprintf(" {%d-%d}", nodes_min, nodes_max); 915 } 916 } 917 918 static void calc_convergence(double runtime_ns_max, double *convergence) 919 { 920 unsigned int loops_done_min, loops_done_max; 921 int process_groups; 922 int nodes[MAX_NR_NODES]; 923 int distance; 924 int nr_min; 925 int nr_max; 926 int strong; 927 int sum; 928 int nr; 929 int node; 930 int cpu; 931 int t; 932 933 if (!g->p.show_convergence && !g->p.measure_convergence) 934 return; 935 936 for (node = 0; node < g->p.nr_nodes; node++) 937 nodes[node] = 0; 938 939 loops_done_min = -1; 940 loops_done_max = 0; 941 942 for (t = 0; t < g->p.nr_tasks; t++) { 943 struct thread_data *td = g->threads + t; 944 unsigned int loops_done; 945 946 cpu = td->curr_cpu; 947 948 /* Not all threads have written it yet: */ 949 if (cpu < 0) 950 continue; 951 952 node = numa_node_of_cpu(cpu); 953 954 nodes[node]++; 955 956 loops_done = td->loops_done; 957 loops_done_min = min(loops_done, loops_done_min); 958 loops_done_max = max(loops_done, loops_done_max); 959 } 960 961 nr_max = 0; 962 nr_min = g->p.nr_tasks; 963 sum = 0; 964 965 for (node = 0; node < g->p.nr_nodes; node++) { 966 nr = nodes[node]; 967 nr_min = min(nr, nr_min); 968 nr_max = max(nr, nr_max); 969 sum += nr; 970 } 971 BUG_ON(nr_min > nr_max); 972 973 BUG_ON(sum > g->p.nr_tasks); 974 975 if (0 && (sum < g->p.nr_tasks)) 976 return; 977 978 /* 979 * Count the number of distinct process groups present 980 * on nodes - when we are converged this will decrease 981 * to g->p.nr_proc: 982 */ 983 process_groups = 0; 984 985 for (node = 0; node < g->p.nr_nodes; node++) { 986 int processes = count_node_processes(node); 987 988 nr = nodes[node]; 989 tprintf(" %2d/%-2d", nr, processes); 990 991 process_groups += processes; 992 } 993 994 distance = nr_max - nr_min; 995 996 tprintf(" [%2d/%-2d]", distance, process_groups); 997 998 tprintf(" l:%3d-%-3d (%3d)", 999 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1000 1001 if (loops_done_min && loops_done_max) { 1002 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1003 1004 tprintf(" [%4.1f%%]", skew * 100.0); 1005 } 1006 1007 calc_convergence_compression(&strong); 1008 1009 if (strong && process_groups == g->p.nr_proc) { 1010 if (!*convergence) { 1011 *convergence = runtime_ns_max; 1012 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1013 if (g->p.measure_convergence) { 1014 g->all_converged = true; 1015 g->stop_work = true; 1016 } 1017 } 1018 } else { 1019 if (*convergence) { 1020 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1021 *convergence = 0; 1022 } 1023 tprintf("\n"); 1024 } 1025 } 1026 1027 static void show_summary(double runtime_ns_max, int l, double *convergence) 1028 { 1029 tprintf("\r # %5.1f%% [%.1f mins]", 1030 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1031 1032 calc_convergence(runtime_ns_max, convergence); 1033 1034 if (g->p.show_details >= 0) 1035 fflush(stdout); 1036 } 1037 1038 static void *worker_thread(void *__tdata) 1039 { 1040 struct thread_data *td = __tdata; 1041 struct timeval start0, start, stop, diff; 1042 int process_nr = td->process_nr; 1043 int thread_nr = td->thread_nr; 1044 unsigned long last_perturbance; 1045 int task_nr = td->task_nr; 1046 int details = g->p.show_details; 1047 int first_task, last_task; 1048 double convergence = 0; 1049 u64 val = td->val; 1050 double runtime_ns_max; 1051 u8 *global_data; 1052 u8 *process_data; 1053 u8 *thread_data; 1054 u64 bytes_done; 1055 long work_done; 1056 u32 l; 1057 struct rusage rusage; 1058 1059 bind_to_cpumask(td->bind_cpumask); 1060 bind_to_memnode(td->bind_node); 1061 1062 set_taskname("thread %d/%d", process_nr, thread_nr); 1063 1064 global_data = g->data; 1065 process_data = td->process_data; 1066 thread_data = setup_private_data(g->p.bytes_thread); 1067 1068 bytes_done = 0; 1069 1070 last_task = 0; 1071 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1072 last_task = 1; 1073 1074 first_task = 0; 1075 if (process_nr == 0 && thread_nr == 0) 1076 first_task = 1; 1077 1078 if (details >= 2) { 1079 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1080 process_nr, thread_nr, global_data, process_data, thread_data); 1081 } 1082 1083 if (g->p.serialize_startup) { 1084 pthread_mutex_lock(&g->startup_mutex); 1085 g->nr_tasks_started++; 1086 pthread_mutex_unlock(&g->startup_mutex); 1087 1088 /* Here we will wait for the main process to start us all at once: */ 1089 pthread_mutex_lock(&g->start_work_mutex); 1090 g->nr_tasks_working++; 1091 1092 /* Last one wake the main process: */ 1093 if (g->nr_tasks_working == g->p.nr_tasks) 1094 pthread_mutex_unlock(&g->startup_done_mutex); 1095 1096 pthread_mutex_unlock(&g->start_work_mutex); 1097 } 1098 1099 gettimeofday(&start0, NULL); 1100 1101 start = stop = start0; 1102 last_perturbance = start.tv_sec; 1103 1104 for (l = 0; l < g->p.nr_loops; l++) { 1105 start = stop; 1106 1107 if (g->stop_work) 1108 break; 1109 1110 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1111 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1112 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1113 1114 if (g->p.sleep_usecs) { 1115 pthread_mutex_lock(td->process_lock); 1116 usleep(g->p.sleep_usecs); 1117 pthread_mutex_unlock(td->process_lock); 1118 } 1119 /* 1120 * Amount of work to be done under a process-global lock: 1121 */ 1122 if (g->p.bytes_process_locked) { 1123 pthread_mutex_lock(td->process_lock); 1124 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1125 pthread_mutex_unlock(td->process_lock); 1126 } 1127 1128 work_done = g->p.bytes_global + g->p.bytes_process + 1129 g->p.bytes_process_locked + g->p.bytes_thread; 1130 1131 update_curr_cpu(task_nr, work_done); 1132 bytes_done += work_done; 1133 1134 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1135 continue; 1136 1137 td->loops_done = l; 1138 1139 gettimeofday(&stop, NULL); 1140 1141 /* Check whether our max runtime timed out: */ 1142 if (g->p.nr_secs) { 1143 timersub(&stop, &start0, &diff); 1144 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1145 g->stop_work = true; 1146 break; 1147 } 1148 } 1149 1150 /* Update the summary at most once per second: */ 1151 if (start.tv_sec == stop.tv_sec) 1152 continue; 1153 1154 /* 1155 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1156 * by migrating to CPU#0: 1157 */ 1158 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1159 cpu_set_t orig_mask; 1160 int target_cpu; 1161 int this_cpu; 1162 1163 last_perturbance = stop.tv_sec; 1164 1165 /* 1166 * Depending on where we are running, move into 1167 * the other half of the system, to create some 1168 * real disturbance: 1169 */ 1170 this_cpu = g->threads[task_nr].curr_cpu; 1171 if (this_cpu < g->p.nr_cpus/2) 1172 target_cpu = g->p.nr_cpus-1; 1173 else 1174 target_cpu = 0; 1175 1176 orig_mask = bind_to_cpu(target_cpu); 1177 1178 /* Here we are running on the target CPU already */ 1179 if (details >= 1) 1180 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1181 1182 bind_to_cpumask(orig_mask); 1183 } 1184 1185 if (details >= 3) { 1186 timersub(&stop, &start, &diff); 1187 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1188 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1189 1190 if (details >= 0) { 1191 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1192 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1193 } 1194 fflush(stdout); 1195 } 1196 if (!last_task) 1197 continue; 1198 1199 timersub(&stop, &start0, &diff); 1200 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1201 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1202 1203 show_summary(runtime_ns_max, l, &convergence); 1204 } 1205 1206 gettimeofday(&stop, NULL); 1207 timersub(&stop, &start0, &diff); 1208 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1209 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1210 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9; 1211 1212 getrusage(RUSAGE_THREAD, &rusage); 1213 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1214 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1215 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1216 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1217 1218 free_data(thread_data, g->p.bytes_thread); 1219 1220 pthread_mutex_lock(&g->stop_work_mutex); 1221 g->bytes_done += bytes_done; 1222 pthread_mutex_unlock(&g->stop_work_mutex); 1223 1224 return NULL; 1225 } 1226 1227 /* 1228 * A worker process starts a couple of threads: 1229 */ 1230 static void worker_process(int process_nr) 1231 { 1232 pthread_mutex_t process_lock; 1233 struct thread_data *td; 1234 pthread_t *pthreads; 1235 u8 *process_data; 1236 int task_nr; 1237 int ret; 1238 int t; 1239 1240 pthread_mutex_init(&process_lock, NULL); 1241 set_taskname("process %d", process_nr); 1242 1243 /* 1244 * Pick up the memory policy and the CPU binding of our first thread, 1245 * so that we initialize memory accordingly: 1246 */ 1247 task_nr = process_nr*g->p.nr_threads; 1248 td = g->threads + task_nr; 1249 1250 bind_to_memnode(td->bind_node); 1251 bind_to_cpumask(td->bind_cpumask); 1252 1253 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1254 process_data = setup_private_data(g->p.bytes_process); 1255 1256 if (g->p.show_details >= 3) { 1257 printf(" # process %2d global mem: %p, process mem: %p\n", 1258 process_nr, g->data, process_data); 1259 } 1260 1261 for (t = 0; t < g->p.nr_threads; t++) { 1262 task_nr = process_nr*g->p.nr_threads + t; 1263 td = g->threads + task_nr; 1264 1265 td->process_data = process_data; 1266 td->process_nr = process_nr; 1267 td->thread_nr = t; 1268 td->task_nr = task_nr; 1269 td->val = rand(); 1270 td->curr_cpu = -1; 1271 td->process_lock = &process_lock; 1272 1273 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1274 BUG_ON(ret); 1275 } 1276 1277 for (t = 0; t < g->p.nr_threads; t++) { 1278 ret = pthread_join(pthreads[t], NULL); 1279 BUG_ON(ret); 1280 } 1281 1282 free_data(process_data, g->p.bytes_process); 1283 free(pthreads); 1284 } 1285 1286 static void print_summary(void) 1287 { 1288 if (g->p.show_details < 0) 1289 return; 1290 1291 printf("\n ###\n"); 1292 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1293 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1294 printf(" # %5dx %5ldMB global shared mem operations\n", 1295 g->p.nr_loops, g->p.bytes_global/1024/1024); 1296 printf(" # %5dx %5ldMB process shared mem operations\n", 1297 g->p.nr_loops, g->p.bytes_process/1024/1024); 1298 printf(" # %5dx %5ldMB thread local mem operations\n", 1299 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1300 1301 printf(" ###\n"); 1302 1303 printf("\n ###\n"); fflush(stdout); 1304 } 1305 1306 static void init_thread_data(void) 1307 { 1308 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1309 int t; 1310 1311 g->threads = zalloc_shared_data(size); 1312 1313 for (t = 0; t < g->p.nr_tasks; t++) { 1314 struct thread_data *td = g->threads + t; 1315 int cpu; 1316 1317 /* Allow all nodes by default: */ 1318 td->bind_node = -1; 1319 1320 /* Allow all CPUs by default: */ 1321 CPU_ZERO(&td->bind_cpumask); 1322 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1323 CPU_SET(cpu, &td->bind_cpumask); 1324 } 1325 } 1326 1327 static void deinit_thread_data(void) 1328 { 1329 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1330 1331 free_data(g->threads, size); 1332 } 1333 1334 static int init(void) 1335 { 1336 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1337 1338 /* Copy over options: */ 1339 g->p = p0; 1340 1341 g->p.nr_cpus = numa_num_configured_cpus(); 1342 1343 g->p.nr_nodes = numa_max_node() + 1; 1344 1345 /* char array in count_process_nodes(): */ 1346 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1347 1348 if (g->p.show_quiet && !g->p.show_details) 1349 g->p.show_details = -1; 1350 1351 /* Some memory should be specified: */ 1352 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1353 return -1; 1354 1355 if (g->p.mb_global_str) { 1356 g->p.mb_global = atof(g->p.mb_global_str); 1357 BUG_ON(g->p.mb_global < 0); 1358 } 1359 1360 if (g->p.mb_proc_str) { 1361 g->p.mb_proc = atof(g->p.mb_proc_str); 1362 BUG_ON(g->p.mb_proc < 0); 1363 } 1364 1365 if (g->p.mb_proc_locked_str) { 1366 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1367 BUG_ON(g->p.mb_proc_locked < 0); 1368 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1369 } 1370 1371 if (g->p.mb_thread_str) { 1372 g->p.mb_thread = atof(g->p.mb_thread_str); 1373 BUG_ON(g->p.mb_thread < 0); 1374 } 1375 1376 BUG_ON(g->p.nr_threads <= 0); 1377 BUG_ON(g->p.nr_proc <= 0); 1378 1379 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1380 1381 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1382 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1383 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1384 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1385 1386 g->data = setup_shared_data(g->p.bytes_global); 1387 1388 /* Startup serialization: */ 1389 init_global_mutex(&g->start_work_mutex); 1390 init_global_mutex(&g->startup_mutex); 1391 init_global_mutex(&g->startup_done_mutex); 1392 init_global_mutex(&g->stop_work_mutex); 1393 1394 init_thread_data(); 1395 1396 tprintf("#\n"); 1397 if (parse_setup_cpu_list() || parse_setup_node_list()) 1398 return -1; 1399 tprintf("#\n"); 1400 1401 print_summary(); 1402 1403 return 0; 1404 } 1405 1406 static void deinit(void) 1407 { 1408 free_data(g->data, g->p.bytes_global); 1409 g->data = NULL; 1410 1411 deinit_thread_data(); 1412 1413 free_data(g, sizeof(*g)); 1414 g = NULL; 1415 } 1416 1417 /* 1418 * Print a short or long result, depending on the verbosity setting: 1419 */ 1420 static void print_res(const char *name, double val, 1421 const char *txt_unit, const char *txt_short, const char *txt_long) 1422 { 1423 if (!name) 1424 name = "main,"; 1425 1426 if (!g->p.show_quiet) 1427 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1428 else 1429 printf(" %14.3f %s\n", val, txt_long); 1430 } 1431 1432 static int __bench_numa(const char *name) 1433 { 1434 struct timeval start, stop, diff; 1435 u64 runtime_ns_min, runtime_ns_sum; 1436 pid_t *pids, pid, wpid; 1437 double delta_runtime; 1438 double runtime_avg; 1439 double runtime_sec_max; 1440 double runtime_sec_min; 1441 int wait_stat; 1442 double bytes; 1443 int i, t, p; 1444 1445 if (init()) 1446 return -1; 1447 1448 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1449 pid = -1; 1450 1451 /* All threads try to acquire it, this way we can wait for them to start up: */ 1452 pthread_mutex_lock(&g->start_work_mutex); 1453 1454 if (g->p.serialize_startup) { 1455 tprintf(" #\n"); 1456 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1457 } 1458 1459 gettimeofday(&start, NULL); 1460 1461 for (i = 0; i < g->p.nr_proc; i++) { 1462 pid = fork(); 1463 dprintf(" # process %2d: PID %d\n", i, pid); 1464 1465 BUG_ON(pid < 0); 1466 if (!pid) { 1467 /* Child process: */ 1468 worker_process(i); 1469 1470 exit(0); 1471 } 1472 pids[i] = pid; 1473 1474 } 1475 /* Wait for all the threads to start up: */ 1476 while (g->nr_tasks_started != g->p.nr_tasks) 1477 usleep(USEC_PER_MSEC); 1478 1479 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1480 1481 if (g->p.serialize_startup) { 1482 double startup_sec; 1483 1484 pthread_mutex_lock(&g->startup_done_mutex); 1485 1486 /* This will start all threads: */ 1487 pthread_mutex_unlock(&g->start_work_mutex); 1488 1489 /* This mutex is locked - the last started thread will wake us: */ 1490 pthread_mutex_lock(&g->startup_done_mutex); 1491 1492 gettimeofday(&stop, NULL); 1493 1494 timersub(&stop, &start, &diff); 1495 1496 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1497 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1498 startup_sec /= NSEC_PER_SEC; 1499 1500 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1501 tprintf(" #\n"); 1502 1503 start = stop; 1504 pthread_mutex_unlock(&g->startup_done_mutex); 1505 } else { 1506 gettimeofday(&start, NULL); 1507 } 1508 1509 /* Parent process: */ 1510 1511 1512 for (i = 0; i < g->p.nr_proc; i++) { 1513 wpid = waitpid(pids[i], &wait_stat, 0); 1514 BUG_ON(wpid < 0); 1515 BUG_ON(!WIFEXITED(wait_stat)); 1516 1517 } 1518 1519 runtime_ns_sum = 0; 1520 runtime_ns_min = -1LL; 1521 1522 for (t = 0; t < g->p.nr_tasks; t++) { 1523 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1524 1525 runtime_ns_sum += thread_runtime_ns; 1526 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1527 } 1528 1529 gettimeofday(&stop, NULL); 1530 timersub(&stop, &start, &diff); 1531 1532 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1533 1534 tprintf("\n ###\n"); 1535 tprintf("\n"); 1536 1537 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1538 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1539 runtime_sec_max /= NSEC_PER_SEC; 1540 1541 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1542 1543 bytes = g->bytes_done; 1544 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1545 1546 if (g->p.measure_convergence) { 1547 print_res(name, runtime_sec_max, 1548 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1549 } 1550 1551 print_res(name, runtime_sec_max, 1552 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1553 1554 print_res(name, runtime_sec_min, 1555 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1556 1557 print_res(name, runtime_avg, 1558 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1559 1560 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1561 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1562 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1563 1564 print_res(name, bytes / g->p.nr_tasks / 1e9, 1565 "GB,", "data/thread", "GB data processed, per thread"); 1566 1567 print_res(name, bytes / 1e9, 1568 "GB,", "data-total", "GB data processed, total"); 1569 1570 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1571 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1572 1573 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1574 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1575 1576 print_res(name, bytes / runtime_sec_max / 1e9, 1577 "GB/sec,", "total-speed", "GB/sec total speed"); 1578 1579 if (g->p.show_details >= 2) { 1580 char tname[14 + 2 * 10 + 1]; 1581 struct thread_data *td; 1582 for (p = 0; p < g->p.nr_proc; p++) { 1583 for (t = 0; t < g->p.nr_threads; t++) { 1584 memset(tname, 0, sizeof(tname)); 1585 td = g->threads + p*g->p.nr_threads + t; 1586 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1587 print_res(tname, td->speed_gbs, 1588 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1589 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1590 "secs", "thread-system-time", "system CPU time/thread"); 1591 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1592 "secs", "thread-user-time", "user CPU time/thread"); 1593 } 1594 } 1595 } 1596 1597 free(pids); 1598 1599 deinit(); 1600 1601 return 0; 1602 } 1603 1604 #define MAX_ARGS 50 1605 1606 static int command_size(const char **argv) 1607 { 1608 int size = 0; 1609 1610 while (*argv) { 1611 size++; 1612 argv++; 1613 } 1614 1615 BUG_ON(size >= MAX_ARGS); 1616 1617 return size; 1618 } 1619 1620 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1621 { 1622 int i; 1623 1624 printf("\n # Running %s \"perf bench numa", name); 1625 1626 for (i = 0; i < argc; i++) 1627 printf(" %s", argv[i]); 1628 1629 printf("\"\n"); 1630 1631 memset(p, 0, sizeof(*p)); 1632 1633 /* Initialize nonzero defaults: */ 1634 1635 p->serialize_startup = 1; 1636 p->data_reads = true; 1637 p->data_writes = true; 1638 p->data_backwards = true; 1639 p->data_rand_walk = true; 1640 p->nr_loops = -1; 1641 p->init_random = true; 1642 p->mb_global_str = "1"; 1643 p->nr_proc = 1; 1644 p->nr_threads = 1; 1645 p->nr_secs = 5; 1646 p->run_all = argc == 1; 1647 } 1648 1649 static int run_bench_numa(const char *name, const char **argv) 1650 { 1651 int argc = command_size(argv); 1652 1653 init_params(&p0, name, argc, argv); 1654 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1655 if (argc) 1656 goto err; 1657 1658 if (__bench_numa(name)) 1659 goto err; 1660 1661 return 0; 1662 1663 err: 1664 return -1; 1665 } 1666 1667 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1668 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1669 1670 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1671 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1672 1673 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1674 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1675 1676 /* 1677 * The built-in test-suite executed by "perf bench numa -a". 1678 * 1679 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1680 */ 1681 static const char *tests[][MAX_ARGS] = { 1682 /* Basic single-stream NUMA bandwidth measurements: */ 1683 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1684 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1685 { "RAM-bw-local-NOTHP,", 1686 "mem", "-p", "1", "-t", "1", "-P", "1024", 1687 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1688 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1689 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1690 1691 /* 2-stream NUMA bandwidth measurements: */ 1692 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1693 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1694 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1695 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1696 1697 /* Cross-stream NUMA bandwidth measurement: */ 1698 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1699 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1700 1701 /* Convergence latency measurements: */ 1702 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1703 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1704 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1705 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1706 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1707 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1708 { " 4x4-convergence-NOTHP,", 1709 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1710 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1711 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1712 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1713 { " 8x4-convergence-NOTHP,", 1714 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1715 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1716 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1717 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1718 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1719 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1720 1721 /* Various NUMA process/thread layout bandwidth measurements: */ 1722 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1723 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1724 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1725 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1726 { " 8x1-bw-process-NOTHP,", 1727 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1728 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1729 1730 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1731 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1732 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1733 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1734 1735 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1736 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1737 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1738 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1739 { " 4x8-bw-thread-NOTHP,", 1740 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1741 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1742 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1743 1744 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1745 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1746 1747 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1748 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1749 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1750 { "numa01-bw-thread-NOTHP,", 1751 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1752 }; 1753 1754 static int bench_all(void) 1755 { 1756 int nr = ARRAY_SIZE(tests); 1757 int ret; 1758 int i; 1759 1760 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1761 BUG_ON(ret < 0); 1762 1763 for (i = 0; i < nr; i++) { 1764 run_bench_numa(tests[i][0], tests[i] + 1); 1765 } 1766 1767 printf("\n"); 1768 1769 return 0; 1770 } 1771 1772 int bench_numa(int argc, const char **argv) 1773 { 1774 init_params(&p0, "main,", argc, argv); 1775 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1776 if (argc) 1777 goto err; 1778 1779 if (p0.run_all) 1780 return bench_all(); 1781 1782 if (__bench_numa(NULL)) 1783 goto err; 1784 1785 return 0; 1786 1787 err: 1788 usage_with_options(numa_usage, options); 1789 return -1; 1790 } 1791