xref: /openbmc/linux/tools/perf/bench/numa.c (revision f7d84fa7)
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6 
7 #include <inttypes.h>
8 /* For the CLR_() macros */
9 #include <pthread.h>
10 
11 #include "../perf.h"
12 #include "../builtin.h"
13 #include "../util/util.h"
14 #include <subcmd/parse-options.h>
15 #include "../util/cloexec.h"
16 
17 #include "bench.h"
18 
19 #include <errno.h>
20 #include <sched.h>
21 #include <stdio.h>
22 #include <assert.h>
23 #include <malloc.h>
24 #include <signal.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <sys/mman.h>
29 #include <sys/time.h>
30 #include <sys/resource.h>
31 #include <sys/wait.h>
32 #include <sys/prctl.h>
33 #include <sys/types.h>
34 #include <linux/kernel.h>
35 #include <linux/time64.h>
36 
37 #include <numa.h>
38 #include <numaif.h>
39 
40 /*
41  * Regular printout to the terminal, supressed if -q is specified:
42  */
43 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
44 
45 /*
46  * Debug printf:
47  */
48 #undef dprintf
49 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
50 
51 struct thread_data {
52 	int			curr_cpu;
53 	cpu_set_t		bind_cpumask;
54 	int			bind_node;
55 	u8			*process_data;
56 	int			process_nr;
57 	int			thread_nr;
58 	int			task_nr;
59 	unsigned int		loops_done;
60 	u64			val;
61 	u64			runtime_ns;
62 	u64			system_time_ns;
63 	u64			user_time_ns;
64 	double			speed_gbs;
65 	pthread_mutex_t		*process_lock;
66 };
67 
68 /* Parameters set by options: */
69 
70 struct params {
71 	/* Startup synchronization: */
72 	bool			serialize_startup;
73 
74 	/* Task hierarchy: */
75 	int			nr_proc;
76 	int			nr_threads;
77 
78 	/* Working set sizes: */
79 	const char		*mb_global_str;
80 	const char		*mb_proc_str;
81 	const char		*mb_proc_locked_str;
82 	const char		*mb_thread_str;
83 
84 	double			mb_global;
85 	double			mb_proc;
86 	double			mb_proc_locked;
87 	double			mb_thread;
88 
89 	/* Access patterns to the working set: */
90 	bool			data_reads;
91 	bool			data_writes;
92 	bool			data_backwards;
93 	bool			data_zero_memset;
94 	bool			data_rand_walk;
95 	u32			nr_loops;
96 	u32			nr_secs;
97 	u32			sleep_usecs;
98 
99 	/* Working set initialization: */
100 	bool			init_zero;
101 	bool			init_random;
102 	bool			init_cpu0;
103 
104 	/* Misc options: */
105 	int			show_details;
106 	int			run_all;
107 	int			thp;
108 
109 	long			bytes_global;
110 	long			bytes_process;
111 	long			bytes_process_locked;
112 	long			bytes_thread;
113 
114 	int			nr_tasks;
115 	bool			show_quiet;
116 
117 	bool			show_convergence;
118 	bool			measure_convergence;
119 
120 	int			perturb_secs;
121 	int			nr_cpus;
122 	int			nr_nodes;
123 
124 	/* Affinity options -C and -N: */
125 	char			*cpu_list_str;
126 	char			*node_list_str;
127 };
128 
129 
130 /* Global, read-writable area, accessible to all processes and threads: */
131 
132 struct global_info {
133 	u8			*data;
134 
135 	pthread_mutex_t		startup_mutex;
136 	int			nr_tasks_started;
137 
138 	pthread_mutex_t		startup_done_mutex;
139 
140 	pthread_mutex_t		start_work_mutex;
141 	int			nr_tasks_working;
142 
143 	pthread_mutex_t		stop_work_mutex;
144 	u64			bytes_done;
145 
146 	struct thread_data	*threads;
147 
148 	/* Convergence latency measurement: */
149 	bool			all_converged;
150 	bool			stop_work;
151 
152 	int			print_once;
153 
154 	struct params		p;
155 };
156 
157 static struct global_info	*g = NULL;
158 
159 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
160 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
161 
162 struct params p0;
163 
164 static const struct option options[] = {
165 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
166 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
167 
168 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
169 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
170 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
171 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
172 
173 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
174 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
175 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
176 
177 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
178 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
179 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
180 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
181 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
182 
183 
184 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
185 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
186 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
187 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
188 
189 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
190 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
191 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
192 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
193 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
194 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
195 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
196 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
197 
198 	/* Special option string parsing callbacks: */
199         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
200 			"bind the first N tasks to these specific cpus (the rest is unbound)",
201 			parse_cpus_opt),
202         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
203 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
204 			parse_nodes_opt),
205 	OPT_END()
206 };
207 
208 static const char * const bench_numa_usage[] = {
209 	"perf bench numa <options>",
210 	NULL
211 };
212 
213 static const char * const numa_usage[] = {
214 	"perf bench numa mem [<options>]",
215 	NULL
216 };
217 
218 static cpu_set_t bind_to_cpu(int target_cpu)
219 {
220 	cpu_set_t orig_mask, mask;
221 	int ret;
222 
223 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
224 	BUG_ON(ret);
225 
226 	CPU_ZERO(&mask);
227 
228 	if (target_cpu == -1) {
229 		int cpu;
230 
231 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
232 			CPU_SET(cpu, &mask);
233 	} else {
234 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
235 		CPU_SET(target_cpu, &mask);
236 	}
237 
238 	ret = sched_setaffinity(0, sizeof(mask), &mask);
239 	BUG_ON(ret);
240 
241 	return orig_mask;
242 }
243 
244 static cpu_set_t bind_to_node(int target_node)
245 {
246 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
247 	cpu_set_t orig_mask, mask;
248 	int cpu;
249 	int ret;
250 
251 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
252 	BUG_ON(!cpus_per_node);
253 
254 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
255 	BUG_ON(ret);
256 
257 	CPU_ZERO(&mask);
258 
259 	if (target_node == -1) {
260 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
261 			CPU_SET(cpu, &mask);
262 	} else {
263 		int cpu_start = (target_node + 0) * cpus_per_node;
264 		int cpu_stop  = (target_node + 1) * cpus_per_node;
265 
266 		BUG_ON(cpu_stop > g->p.nr_cpus);
267 
268 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
269 			CPU_SET(cpu, &mask);
270 	}
271 
272 	ret = sched_setaffinity(0, sizeof(mask), &mask);
273 	BUG_ON(ret);
274 
275 	return orig_mask;
276 }
277 
278 static void bind_to_cpumask(cpu_set_t mask)
279 {
280 	int ret;
281 
282 	ret = sched_setaffinity(0, sizeof(mask), &mask);
283 	BUG_ON(ret);
284 }
285 
286 static void mempol_restore(void)
287 {
288 	int ret;
289 
290 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
291 
292 	BUG_ON(ret);
293 }
294 
295 static void bind_to_memnode(int node)
296 {
297 	unsigned long nodemask;
298 	int ret;
299 
300 	if (node == -1)
301 		return;
302 
303 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
304 	nodemask = 1L << node;
305 
306 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
307 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
308 
309 	BUG_ON(ret);
310 }
311 
312 #define HPSIZE (2*1024*1024)
313 
314 #define set_taskname(fmt...)				\
315 do {							\
316 	char name[20];					\
317 							\
318 	snprintf(name, 20, fmt);			\
319 	prctl(PR_SET_NAME, name);			\
320 } while (0)
321 
322 static u8 *alloc_data(ssize_t bytes0, int map_flags,
323 		      int init_zero, int init_cpu0, int thp, int init_random)
324 {
325 	cpu_set_t orig_mask;
326 	ssize_t bytes;
327 	u8 *buf;
328 	int ret;
329 
330 	if (!bytes0)
331 		return NULL;
332 
333 	/* Allocate and initialize all memory on CPU#0: */
334 	if (init_cpu0) {
335 		orig_mask = bind_to_node(0);
336 		bind_to_memnode(0);
337 	}
338 
339 	bytes = bytes0 + HPSIZE;
340 
341 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
342 	BUG_ON(buf == (void *)-1);
343 
344 	if (map_flags == MAP_PRIVATE) {
345 		if (thp > 0) {
346 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
347 			if (ret && !g->print_once) {
348 				g->print_once = 1;
349 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
350 			}
351 		}
352 		if (thp < 0) {
353 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
354 			if (ret && !g->print_once) {
355 				g->print_once = 1;
356 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
357 			}
358 		}
359 	}
360 
361 	if (init_zero) {
362 		bzero(buf, bytes);
363 	} else {
364 		/* Initialize random contents, different in each word: */
365 		if (init_random) {
366 			u64 *wbuf = (void *)buf;
367 			long off = rand();
368 			long i;
369 
370 			for (i = 0; i < bytes/8; i++)
371 				wbuf[i] = i + off;
372 		}
373 	}
374 
375 	/* Align to 2MB boundary: */
376 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
377 
378 	/* Restore affinity: */
379 	if (init_cpu0) {
380 		bind_to_cpumask(orig_mask);
381 		mempol_restore();
382 	}
383 
384 	return buf;
385 }
386 
387 static void free_data(void *data, ssize_t bytes)
388 {
389 	int ret;
390 
391 	if (!data)
392 		return;
393 
394 	ret = munmap(data, bytes);
395 	BUG_ON(ret);
396 }
397 
398 /*
399  * Create a shared memory buffer that can be shared between processes, zeroed:
400  */
401 static void * zalloc_shared_data(ssize_t bytes)
402 {
403 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
404 }
405 
406 /*
407  * Create a shared memory buffer that can be shared between processes:
408  */
409 static void * setup_shared_data(ssize_t bytes)
410 {
411 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
412 }
413 
414 /*
415  * Allocate process-local memory - this will either be shared between
416  * threads of this process, or only be accessed by this thread:
417  */
418 static void * setup_private_data(ssize_t bytes)
419 {
420 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
421 }
422 
423 /*
424  * Return a process-shared (global) mutex:
425  */
426 static void init_global_mutex(pthread_mutex_t *mutex)
427 {
428 	pthread_mutexattr_t attr;
429 
430 	pthread_mutexattr_init(&attr);
431 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
432 	pthread_mutex_init(mutex, &attr);
433 }
434 
435 static int parse_cpu_list(const char *arg)
436 {
437 	p0.cpu_list_str = strdup(arg);
438 
439 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
440 
441 	return 0;
442 }
443 
444 static int parse_setup_cpu_list(void)
445 {
446 	struct thread_data *td;
447 	char *str0, *str;
448 	int t;
449 
450 	if (!g->p.cpu_list_str)
451 		return 0;
452 
453 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
454 
455 	str0 = str = strdup(g->p.cpu_list_str);
456 	t = 0;
457 
458 	BUG_ON(!str);
459 
460 	tprintf("# binding tasks to CPUs:\n");
461 	tprintf("#  ");
462 
463 	while (true) {
464 		int bind_cpu, bind_cpu_0, bind_cpu_1;
465 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
466 		int bind_len;
467 		int step;
468 		int mul;
469 
470 		tok = strsep(&str, ",");
471 		if (!tok)
472 			break;
473 
474 		tok_end = strstr(tok, "-");
475 
476 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
477 		if (!tok_end) {
478 			/* Single CPU specified: */
479 			bind_cpu_0 = bind_cpu_1 = atol(tok);
480 		} else {
481 			/* CPU range specified (for example: "5-11"): */
482 			bind_cpu_0 = atol(tok);
483 			bind_cpu_1 = atol(tok_end + 1);
484 		}
485 
486 		step = 1;
487 		tok_step = strstr(tok, "#");
488 		if (tok_step) {
489 			step = atol(tok_step + 1);
490 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
491 		}
492 
493 		/*
494 		 * Mask length.
495 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
496 		 * where the _4 means the next 4 CPUs are allowed.
497 		 */
498 		bind_len = 1;
499 		tok_len = strstr(tok, "_");
500 		if (tok_len) {
501 			bind_len = atol(tok_len + 1);
502 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
503 		}
504 
505 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
506 		mul = 1;
507 		tok_mul = strstr(tok, "x");
508 		if (tok_mul) {
509 			mul = atol(tok_mul + 1);
510 			BUG_ON(mul <= 0);
511 		}
512 
513 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
514 
515 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
516 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
517 			return -1;
518 		}
519 
520 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
521 		BUG_ON(bind_cpu_0 > bind_cpu_1);
522 
523 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
524 			int i;
525 
526 			for (i = 0; i < mul; i++) {
527 				int cpu;
528 
529 				if (t >= g->p.nr_tasks) {
530 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
531 					goto out;
532 				}
533 				td = g->threads + t;
534 
535 				if (t)
536 					tprintf(",");
537 				if (bind_len > 1) {
538 					tprintf("%2d/%d", bind_cpu, bind_len);
539 				} else {
540 					tprintf("%2d", bind_cpu);
541 				}
542 
543 				CPU_ZERO(&td->bind_cpumask);
544 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
545 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
546 					CPU_SET(cpu, &td->bind_cpumask);
547 				}
548 				t++;
549 			}
550 		}
551 	}
552 out:
553 
554 	tprintf("\n");
555 
556 	if (t < g->p.nr_tasks)
557 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
558 
559 	free(str0);
560 	return 0;
561 }
562 
563 static int parse_cpus_opt(const struct option *opt __maybe_unused,
564 			  const char *arg, int unset __maybe_unused)
565 {
566 	if (!arg)
567 		return -1;
568 
569 	return parse_cpu_list(arg);
570 }
571 
572 static int parse_node_list(const char *arg)
573 {
574 	p0.node_list_str = strdup(arg);
575 
576 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
577 
578 	return 0;
579 }
580 
581 static int parse_setup_node_list(void)
582 {
583 	struct thread_data *td;
584 	char *str0, *str;
585 	int t;
586 
587 	if (!g->p.node_list_str)
588 		return 0;
589 
590 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
591 
592 	str0 = str = strdup(g->p.node_list_str);
593 	t = 0;
594 
595 	BUG_ON(!str);
596 
597 	tprintf("# binding tasks to NODEs:\n");
598 	tprintf("# ");
599 
600 	while (true) {
601 		int bind_node, bind_node_0, bind_node_1;
602 		char *tok, *tok_end, *tok_step, *tok_mul;
603 		int step;
604 		int mul;
605 
606 		tok = strsep(&str, ",");
607 		if (!tok)
608 			break;
609 
610 		tok_end = strstr(tok, "-");
611 
612 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
613 		if (!tok_end) {
614 			/* Single NODE specified: */
615 			bind_node_0 = bind_node_1 = atol(tok);
616 		} else {
617 			/* NODE range specified (for example: "5-11"): */
618 			bind_node_0 = atol(tok);
619 			bind_node_1 = atol(tok_end + 1);
620 		}
621 
622 		step = 1;
623 		tok_step = strstr(tok, "#");
624 		if (tok_step) {
625 			step = atol(tok_step + 1);
626 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
627 		}
628 
629 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
630 		mul = 1;
631 		tok_mul = strstr(tok, "x");
632 		if (tok_mul) {
633 			mul = atol(tok_mul + 1);
634 			BUG_ON(mul <= 0);
635 		}
636 
637 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
638 
639 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
640 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
641 			return -1;
642 		}
643 
644 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
645 		BUG_ON(bind_node_0 > bind_node_1);
646 
647 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
648 			int i;
649 
650 			for (i = 0; i < mul; i++) {
651 				if (t >= g->p.nr_tasks) {
652 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
653 					goto out;
654 				}
655 				td = g->threads + t;
656 
657 				if (!t)
658 					tprintf(" %2d", bind_node);
659 				else
660 					tprintf(",%2d", bind_node);
661 
662 				td->bind_node = bind_node;
663 				t++;
664 			}
665 		}
666 	}
667 out:
668 
669 	tprintf("\n");
670 
671 	if (t < g->p.nr_tasks)
672 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
673 
674 	free(str0);
675 	return 0;
676 }
677 
678 static int parse_nodes_opt(const struct option *opt __maybe_unused,
679 			  const char *arg, int unset __maybe_unused)
680 {
681 	if (!arg)
682 		return -1;
683 
684 	return parse_node_list(arg);
685 
686 	return 0;
687 }
688 
689 #define BIT(x) (1ul << x)
690 
691 static inline uint32_t lfsr_32(uint32_t lfsr)
692 {
693 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
694 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
695 }
696 
697 /*
698  * Make sure there's real data dependency to RAM (when read
699  * accesses are enabled), so the compiler, the CPU and the
700  * kernel (KSM, zero page, etc.) cannot optimize away RAM
701  * accesses:
702  */
703 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
704 {
705 	if (g->p.data_reads)
706 		val += *data;
707 	if (g->p.data_writes)
708 		*data = val + 1;
709 	return val;
710 }
711 
712 /*
713  * The worker process does two types of work, a forwards going
714  * loop and a backwards going loop.
715  *
716  * We do this so that on multiprocessor systems we do not create
717  * a 'train' of processing, with highly synchronized processes,
718  * skewing the whole benchmark.
719  */
720 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
721 {
722 	long words = bytes/sizeof(u64);
723 	u64 *data = (void *)__data;
724 	long chunk_0, chunk_1;
725 	u64 *d0, *d, *d1;
726 	long off;
727 	long i;
728 
729 	BUG_ON(!data && words);
730 	BUG_ON(data && !words);
731 
732 	if (!data)
733 		return val;
734 
735 	/* Very simple memset() work variant: */
736 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
737 		bzero(data, bytes);
738 		return val;
739 	}
740 
741 	/* Spread out by PID/TID nr and by loop nr: */
742 	chunk_0 = words/nr_max;
743 	chunk_1 = words/g->p.nr_loops;
744 	off = nr*chunk_0 + loop*chunk_1;
745 
746 	while (off >= words)
747 		off -= words;
748 
749 	if (g->p.data_rand_walk) {
750 		u32 lfsr = nr + loop + val;
751 		int j;
752 
753 		for (i = 0; i < words/1024; i++) {
754 			long start, end;
755 
756 			lfsr = lfsr_32(lfsr);
757 
758 			start = lfsr % words;
759 			end = min(start + 1024, words-1);
760 
761 			if (g->p.data_zero_memset) {
762 				bzero(data + start, (end-start) * sizeof(u64));
763 			} else {
764 				for (j = start; j < end; j++)
765 					val = access_data(data + j, val);
766 			}
767 		}
768 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
769 
770 		d0 = data + off;
771 		d  = data + off + 1;
772 		d1 = data + words;
773 
774 		/* Process data forwards: */
775 		for (;;) {
776 			if (unlikely(d >= d1))
777 				d = data;
778 			if (unlikely(d == d0))
779 				break;
780 
781 			val = access_data(d, val);
782 
783 			d++;
784 		}
785 	} else {
786 		/* Process data backwards: */
787 
788 		d0 = data + off;
789 		d  = data + off - 1;
790 		d1 = data + words;
791 
792 		/* Process data forwards: */
793 		for (;;) {
794 			if (unlikely(d < data))
795 				d = data + words-1;
796 			if (unlikely(d == d0))
797 				break;
798 
799 			val = access_data(d, val);
800 
801 			d--;
802 		}
803 	}
804 
805 	return val;
806 }
807 
808 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
809 {
810 	unsigned int cpu;
811 
812 	cpu = sched_getcpu();
813 
814 	g->threads[task_nr].curr_cpu = cpu;
815 	prctl(0, bytes_worked);
816 }
817 
818 #define MAX_NR_NODES	64
819 
820 /*
821  * Count the number of nodes a process's threads
822  * are spread out on.
823  *
824  * A count of 1 means that the process is compressed
825  * to a single node. A count of g->p.nr_nodes means it's
826  * spread out on the whole system.
827  */
828 static int count_process_nodes(int process_nr)
829 {
830 	char node_present[MAX_NR_NODES] = { 0, };
831 	int nodes;
832 	int n, t;
833 
834 	for (t = 0; t < g->p.nr_threads; t++) {
835 		struct thread_data *td;
836 		int task_nr;
837 		int node;
838 
839 		task_nr = process_nr*g->p.nr_threads + t;
840 		td = g->threads + task_nr;
841 
842 		node = numa_node_of_cpu(td->curr_cpu);
843 		if (node < 0) /* curr_cpu was likely still -1 */
844 			return 0;
845 
846 		node_present[node] = 1;
847 	}
848 
849 	nodes = 0;
850 
851 	for (n = 0; n < MAX_NR_NODES; n++)
852 		nodes += node_present[n];
853 
854 	return nodes;
855 }
856 
857 /*
858  * Count the number of distinct process-threads a node contains.
859  *
860  * A count of 1 means that the node contains only a single
861  * process. If all nodes on the system contain at most one
862  * process then we are well-converged.
863  */
864 static int count_node_processes(int node)
865 {
866 	int processes = 0;
867 	int t, p;
868 
869 	for (p = 0; p < g->p.nr_proc; p++) {
870 		for (t = 0; t < g->p.nr_threads; t++) {
871 			struct thread_data *td;
872 			int task_nr;
873 			int n;
874 
875 			task_nr = p*g->p.nr_threads + t;
876 			td = g->threads + task_nr;
877 
878 			n = numa_node_of_cpu(td->curr_cpu);
879 			if (n == node) {
880 				processes++;
881 				break;
882 			}
883 		}
884 	}
885 
886 	return processes;
887 }
888 
889 static void calc_convergence_compression(int *strong)
890 {
891 	unsigned int nodes_min, nodes_max;
892 	int p;
893 
894 	nodes_min = -1;
895 	nodes_max =  0;
896 
897 	for (p = 0; p < g->p.nr_proc; p++) {
898 		unsigned int nodes = count_process_nodes(p);
899 
900 		if (!nodes) {
901 			*strong = 0;
902 			return;
903 		}
904 
905 		nodes_min = min(nodes, nodes_min);
906 		nodes_max = max(nodes, nodes_max);
907 	}
908 
909 	/* Strong convergence: all threads compress on a single node: */
910 	if (nodes_min == 1 && nodes_max == 1) {
911 		*strong = 1;
912 	} else {
913 		*strong = 0;
914 		tprintf(" {%d-%d}", nodes_min, nodes_max);
915 	}
916 }
917 
918 static void calc_convergence(double runtime_ns_max, double *convergence)
919 {
920 	unsigned int loops_done_min, loops_done_max;
921 	int process_groups;
922 	int nodes[MAX_NR_NODES];
923 	int distance;
924 	int nr_min;
925 	int nr_max;
926 	int strong;
927 	int sum;
928 	int nr;
929 	int node;
930 	int cpu;
931 	int t;
932 
933 	if (!g->p.show_convergence && !g->p.measure_convergence)
934 		return;
935 
936 	for (node = 0; node < g->p.nr_nodes; node++)
937 		nodes[node] = 0;
938 
939 	loops_done_min = -1;
940 	loops_done_max = 0;
941 
942 	for (t = 0; t < g->p.nr_tasks; t++) {
943 		struct thread_data *td = g->threads + t;
944 		unsigned int loops_done;
945 
946 		cpu = td->curr_cpu;
947 
948 		/* Not all threads have written it yet: */
949 		if (cpu < 0)
950 			continue;
951 
952 		node = numa_node_of_cpu(cpu);
953 
954 		nodes[node]++;
955 
956 		loops_done = td->loops_done;
957 		loops_done_min = min(loops_done, loops_done_min);
958 		loops_done_max = max(loops_done, loops_done_max);
959 	}
960 
961 	nr_max = 0;
962 	nr_min = g->p.nr_tasks;
963 	sum = 0;
964 
965 	for (node = 0; node < g->p.nr_nodes; node++) {
966 		nr = nodes[node];
967 		nr_min = min(nr, nr_min);
968 		nr_max = max(nr, nr_max);
969 		sum += nr;
970 	}
971 	BUG_ON(nr_min > nr_max);
972 
973 	BUG_ON(sum > g->p.nr_tasks);
974 
975 	if (0 && (sum < g->p.nr_tasks))
976 		return;
977 
978 	/*
979 	 * Count the number of distinct process groups present
980 	 * on nodes - when we are converged this will decrease
981 	 * to g->p.nr_proc:
982 	 */
983 	process_groups = 0;
984 
985 	for (node = 0; node < g->p.nr_nodes; node++) {
986 		int processes = count_node_processes(node);
987 
988 		nr = nodes[node];
989 		tprintf(" %2d/%-2d", nr, processes);
990 
991 		process_groups += processes;
992 	}
993 
994 	distance = nr_max - nr_min;
995 
996 	tprintf(" [%2d/%-2d]", distance, process_groups);
997 
998 	tprintf(" l:%3d-%-3d (%3d)",
999 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1000 
1001 	if (loops_done_min && loops_done_max) {
1002 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1003 
1004 		tprintf(" [%4.1f%%]", skew * 100.0);
1005 	}
1006 
1007 	calc_convergence_compression(&strong);
1008 
1009 	if (strong && process_groups == g->p.nr_proc) {
1010 		if (!*convergence) {
1011 			*convergence = runtime_ns_max;
1012 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1013 			if (g->p.measure_convergence) {
1014 				g->all_converged = true;
1015 				g->stop_work = true;
1016 			}
1017 		}
1018 	} else {
1019 		if (*convergence) {
1020 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1021 			*convergence = 0;
1022 		}
1023 		tprintf("\n");
1024 	}
1025 }
1026 
1027 static void show_summary(double runtime_ns_max, int l, double *convergence)
1028 {
1029 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1030 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1031 
1032 	calc_convergence(runtime_ns_max, convergence);
1033 
1034 	if (g->p.show_details >= 0)
1035 		fflush(stdout);
1036 }
1037 
1038 static void *worker_thread(void *__tdata)
1039 {
1040 	struct thread_data *td = __tdata;
1041 	struct timeval start0, start, stop, diff;
1042 	int process_nr = td->process_nr;
1043 	int thread_nr = td->thread_nr;
1044 	unsigned long last_perturbance;
1045 	int task_nr = td->task_nr;
1046 	int details = g->p.show_details;
1047 	int first_task, last_task;
1048 	double convergence = 0;
1049 	u64 val = td->val;
1050 	double runtime_ns_max;
1051 	u8 *global_data;
1052 	u8 *process_data;
1053 	u8 *thread_data;
1054 	u64 bytes_done;
1055 	long work_done;
1056 	u32 l;
1057 	struct rusage rusage;
1058 
1059 	bind_to_cpumask(td->bind_cpumask);
1060 	bind_to_memnode(td->bind_node);
1061 
1062 	set_taskname("thread %d/%d", process_nr, thread_nr);
1063 
1064 	global_data = g->data;
1065 	process_data = td->process_data;
1066 	thread_data = setup_private_data(g->p.bytes_thread);
1067 
1068 	bytes_done = 0;
1069 
1070 	last_task = 0;
1071 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1072 		last_task = 1;
1073 
1074 	first_task = 0;
1075 	if (process_nr == 0 && thread_nr == 0)
1076 		first_task = 1;
1077 
1078 	if (details >= 2) {
1079 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1080 			process_nr, thread_nr, global_data, process_data, thread_data);
1081 	}
1082 
1083 	if (g->p.serialize_startup) {
1084 		pthread_mutex_lock(&g->startup_mutex);
1085 		g->nr_tasks_started++;
1086 		pthread_mutex_unlock(&g->startup_mutex);
1087 
1088 		/* Here we will wait for the main process to start us all at once: */
1089 		pthread_mutex_lock(&g->start_work_mutex);
1090 		g->nr_tasks_working++;
1091 
1092 		/* Last one wake the main process: */
1093 		if (g->nr_tasks_working == g->p.nr_tasks)
1094 			pthread_mutex_unlock(&g->startup_done_mutex);
1095 
1096 		pthread_mutex_unlock(&g->start_work_mutex);
1097 	}
1098 
1099 	gettimeofday(&start0, NULL);
1100 
1101 	start = stop = start0;
1102 	last_perturbance = start.tv_sec;
1103 
1104 	for (l = 0; l < g->p.nr_loops; l++) {
1105 		start = stop;
1106 
1107 		if (g->stop_work)
1108 			break;
1109 
1110 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1111 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1112 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1113 
1114 		if (g->p.sleep_usecs) {
1115 			pthread_mutex_lock(td->process_lock);
1116 			usleep(g->p.sleep_usecs);
1117 			pthread_mutex_unlock(td->process_lock);
1118 		}
1119 		/*
1120 		 * Amount of work to be done under a process-global lock:
1121 		 */
1122 		if (g->p.bytes_process_locked) {
1123 			pthread_mutex_lock(td->process_lock);
1124 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1125 			pthread_mutex_unlock(td->process_lock);
1126 		}
1127 
1128 		work_done = g->p.bytes_global + g->p.bytes_process +
1129 			    g->p.bytes_process_locked + g->p.bytes_thread;
1130 
1131 		update_curr_cpu(task_nr, work_done);
1132 		bytes_done += work_done;
1133 
1134 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1135 			continue;
1136 
1137 		td->loops_done = l;
1138 
1139 		gettimeofday(&stop, NULL);
1140 
1141 		/* Check whether our max runtime timed out: */
1142 		if (g->p.nr_secs) {
1143 			timersub(&stop, &start0, &diff);
1144 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1145 				g->stop_work = true;
1146 				break;
1147 			}
1148 		}
1149 
1150 		/* Update the summary at most once per second: */
1151 		if (start.tv_sec == stop.tv_sec)
1152 			continue;
1153 
1154 		/*
1155 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1156 		 * by migrating to CPU#0:
1157 		 */
1158 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1159 			cpu_set_t orig_mask;
1160 			int target_cpu;
1161 			int this_cpu;
1162 
1163 			last_perturbance = stop.tv_sec;
1164 
1165 			/*
1166 			 * Depending on where we are running, move into
1167 			 * the other half of the system, to create some
1168 			 * real disturbance:
1169 			 */
1170 			this_cpu = g->threads[task_nr].curr_cpu;
1171 			if (this_cpu < g->p.nr_cpus/2)
1172 				target_cpu = g->p.nr_cpus-1;
1173 			else
1174 				target_cpu = 0;
1175 
1176 			orig_mask = bind_to_cpu(target_cpu);
1177 
1178 			/* Here we are running on the target CPU already */
1179 			if (details >= 1)
1180 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1181 
1182 			bind_to_cpumask(orig_mask);
1183 		}
1184 
1185 		if (details >= 3) {
1186 			timersub(&stop, &start, &diff);
1187 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1188 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1189 
1190 			if (details >= 0) {
1191 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1192 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1193 			}
1194 			fflush(stdout);
1195 		}
1196 		if (!last_task)
1197 			continue;
1198 
1199 		timersub(&stop, &start0, &diff);
1200 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1201 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1202 
1203 		show_summary(runtime_ns_max, l, &convergence);
1204 	}
1205 
1206 	gettimeofday(&stop, NULL);
1207 	timersub(&stop, &start0, &diff);
1208 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1209 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1210 	td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1211 
1212 	getrusage(RUSAGE_THREAD, &rusage);
1213 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1214 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1215 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1216 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1217 
1218 	free_data(thread_data, g->p.bytes_thread);
1219 
1220 	pthread_mutex_lock(&g->stop_work_mutex);
1221 	g->bytes_done += bytes_done;
1222 	pthread_mutex_unlock(&g->stop_work_mutex);
1223 
1224 	return NULL;
1225 }
1226 
1227 /*
1228  * A worker process starts a couple of threads:
1229  */
1230 static void worker_process(int process_nr)
1231 {
1232 	pthread_mutex_t process_lock;
1233 	struct thread_data *td;
1234 	pthread_t *pthreads;
1235 	u8 *process_data;
1236 	int task_nr;
1237 	int ret;
1238 	int t;
1239 
1240 	pthread_mutex_init(&process_lock, NULL);
1241 	set_taskname("process %d", process_nr);
1242 
1243 	/*
1244 	 * Pick up the memory policy and the CPU binding of our first thread,
1245 	 * so that we initialize memory accordingly:
1246 	 */
1247 	task_nr = process_nr*g->p.nr_threads;
1248 	td = g->threads + task_nr;
1249 
1250 	bind_to_memnode(td->bind_node);
1251 	bind_to_cpumask(td->bind_cpumask);
1252 
1253 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1254 	process_data = setup_private_data(g->p.bytes_process);
1255 
1256 	if (g->p.show_details >= 3) {
1257 		printf(" # process %2d global mem: %p, process mem: %p\n",
1258 			process_nr, g->data, process_data);
1259 	}
1260 
1261 	for (t = 0; t < g->p.nr_threads; t++) {
1262 		task_nr = process_nr*g->p.nr_threads + t;
1263 		td = g->threads + task_nr;
1264 
1265 		td->process_data = process_data;
1266 		td->process_nr   = process_nr;
1267 		td->thread_nr    = t;
1268 		td->task_nr	 = task_nr;
1269 		td->val          = rand();
1270 		td->curr_cpu	 = -1;
1271 		td->process_lock = &process_lock;
1272 
1273 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1274 		BUG_ON(ret);
1275 	}
1276 
1277 	for (t = 0; t < g->p.nr_threads; t++) {
1278                 ret = pthread_join(pthreads[t], NULL);
1279 		BUG_ON(ret);
1280 	}
1281 
1282 	free_data(process_data, g->p.bytes_process);
1283 	free(pthreads);
1284 }
1285 
1286 static void print_summary(void)
1287 {
1288 	if (g->p.show_details < 0)
1289 		return;
1290 
1291 	printf("\n ###\n");
1292 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1293 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1294 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1295 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1296 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1297 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1298 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1299 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1300 
1301 	printf(" ###\n");
1302 
1303 	printf("\n ###\n"); fflush(stdout);
1304 }
1305 
1306 static void init_thread_data(void)
1307 {
1308 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1309 	int t;
1310 
1311 	g->threads = zalloc_shared_data(size);
1312 
1313 	for (t = 0; t < g->p.nr_tasks; t++) {
1314 		struct thread_data *td = g->threads + t;
1315 		int cpu;
1316 
1317 		/* Allow all nodes by default: */
1318 		td->bind_node = -1;
1319 
1320 		/* Allow all CPUs by default: */
1321 		CPU_ZERO(&td->bind_cpumask);
1322 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1323 			CPU_SET(cpu, &td->bind_cpumask);
1324 	}
1325 }
1326 
1327 static void deinit_thread_data(void)
1328 {
1329 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1330 
1331 	free_data(g->threads, size);
1332 }
1333 
1334 static int init(void)
1335 {
1336 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1337 
1338 	/* Copy over options: */
1339 	g->p = p0;
1340 
1341 	g->p.nr_cpus = numa_num_configured_cpus();
1342 
1343 	g->p.nr_nodes = numa_max_node() + 1;
1344 
1345 	/* char array in count_process_nodes(): */
1346 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1347 
1348 	if (g->p.show_quiet && !g->p.show_details)
1349 		g->p.show_details = -1;
1350 
1351 	/* Some memory should be specified: */
1352 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1353 		return -1;
1354 
1355 	if (g->p.mb_global_str) {
1356 		g->p.mb_global = atof(g->p.mb_global_str);
1357 		BUG_ON(g->p.mb_global < 0);
1358 	}
1359 
1360 	if (g->p.mb_proc_str) {
1361 		g->p.mb_proc = atof(g->p.mb_proc_str);
1362 		BUG_ON(g->p.mb_proc < 0);
1363 	}
1364 
1365 	if (g->p.mb_proc_locked_str) {
1366 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1367 		BUG_ON(g->p.mb_proc_locked < 0);
1368 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1369 	}
1370 
1371 	if (g->p.mb_thread_str) {
1372 		g->p.mb_thread = atof(g->p.mb_thread_str);
1373 		BUG_ON(g->p.mb_thread < 0);
1374 	}
1375 
1376 	BUG_ON(g->p.nr_threads <= 0);
1377 	BUG_ON(g->p.nr_proc <= 0);
1378 
1379 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1380 
1381 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1382 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1383 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1384 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1385 
1386 	g->data = setup_shared_data(g->p.bytes_global);
1387 
1388 	/* Startup serialization: */
1389 	init_global_mutex(&g->start_work_mutex);
1390 	init_global_mutex(&g->startup_mutex);
1391 	init_global_mutex(&g->startup_done_mutex);
1392 	init_global_mutex(&g->stop_work_mutex);
1393 
1394 	init_thread_data();
1395 
1396 	tprintf("#\n");
1397 	if (parse_setup_cpu_list() || parse_setup_node_list())
1398 		return -1;
1399 	tprintf("#\n");
1400 
1401 	print_summary();
1402 
1403 	return 0;
1404 }
1405 
1406 static void deinit(void)
1407 {
1408 	free_data(g->data, g->p.bytes_global);
1409 	g->data = NULL;
1410 
1411 	deinit_thread_data();
1412 
1413 	free_data(g, sizeof(*g));
1414 	g = NULL;
1415 }
1416 
1417 /*
1418  * Print a short or long result, depending on the verbosity setting:
1419  */
1420 static void print_res(const char *name, double val,
1421 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1422 {
1423 	if (!name)
1424 		name = "main,";
1425 
1426 	if (!g->p.show_quiet)
1427 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1428 	else
1429 		printf(" %14.3f %s\n", val, txt_long);
1430 }
1431 
1432 static int __bench_numa(const char *name)
1433 {
1434 	struct timeval start, stop, diff;
1435 	u64 runtime_ns_min, runtime_ns_sum;
1436 	pid_t *pids, pid, wpid;
1437 	double delta_runtime;
1438 	double runtime_avg;
1439 	double runtime_sec_max;
1440 	double runtime_sec_min;
1441 	int wait_stat;
1442 	double bytes;
1443 	int i, t, p;
1444 
1445 	if (init())
1446 		return -1;
1447 
1448 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1449 	pid = -1;
1450 
1451 	/* All threads try to acquire it, this way we can wait for them to start up: */
1452 	pthread_mutex_lock(&g->start_work_mutex);
1453 
1454 	if (g->p.serialize_startup) {
1455 		tprintf(" #\n");
1456 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1457 	}
1458 
1459 	gettimeofday(&start, NULL);
1460 
1461 	for (i = 0; i < g->p.nr_proc; i++) {
1462 		pid = fork();
1463 		dprintf(" # process %2d: PID %d\n", i, pid);
1464 
1465 		BUG_ON(pid < 0);
1466 		if (!pid) {
1467 			/* Child process: */
1468 			worker_process(i);
1469 
1470 			exit(0);
1471 		}
1472 		pids[i] = pid;
1473 
1474 	}
1475 	/* Wait for all the threads to start up: */
1476 	while (g->nr_tasks_started != g->p.nr_tasks)
1477 		usleep(USEC_PER_MSEC);
1478 
1479 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1480 
1481 	if (g->p.serialize_startup) {
1482 		double startup_sec;
1483 
1484 		pthread_mutex_lock(&g->startup_done_mutex);
1485 
1486 		/* This will start all threads: */
1487 		pthread_mutex_unlock(&g->start_work_mutex);
1488 
1489 		/* This mutex is locked - the last started thread will wake us: */
1490 		pthread_mutex_lock(&g->startup_done_mutex);
1491 
1492 		gettimeofday(&stop, NULL);
1493 
1494 		timersub(&stop, &start, &diff);
1495 
1496 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1497 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1498 		startup_sec /= NSEC_PER_SEC;
1499 
1500 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1501 		tprintf(" #\n");
1502 
1503 		start = stop;
1504 		pthread_mutex_unlock(&g->startup_done_mutex);
1505 	} else {
1506 		gettimeofday(&start, NULL);
1507 	}
1508 
1509 	/* Parent process: */
1510 
1511 
1512 	for (i = 0; i < g->p.nr_proc; i++) {
1513 		wpid = waitpid(pids[i], &wait_stat, 0);
1514 		BUG_ON(wpid < 0);
1515 		BUG_ON(!WIFEXITED(wait_stat));
1516 
1517 	}
1518 
1519 	runtime_ns_sum = 0;
1520 	runtime_ns_min = -1LL;
1521 
1522 	for (t = 0; t < g->p.nr_tasks; t++) {
1523 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1524 
1525 		runtime_ns_sum += thread_runtime_ns;
1526 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1527 	}
1528 
1529 	gettimeofday(&stop, NULL);
1530 	timersub(&stop, &start, &diff);
1531 
1532 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1533 
1534 	tprintf("\n ###\n");
1535 	tprintf("\n");
1536 
1537 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1538 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1539 	runtime_sec_max /= NSEC_PER_SEC;
1540 
1541 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1542 
1543 	bytes = g->bytes_done;
1544 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1545 
1546 	if (g->p.measure_convergence) {
1547 		print_res(name, runtime_sec_max,
1548 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1549 	}
1550 
1551 	print_res(name, runtime_sec_max,
1552 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1553 
1554 	print_res(name, runtime_sec_min,
1555 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1556 
1557 	print_res(name, runtime_avg,
1558 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1559 
1560 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1561 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1562 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1563 
1564 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1565 		"GB,", "data/thread",		"GB data processed, per thread");
1566 
1567 	print_res(name, bytes / 1e9,
1568 		"GB,", "data-total",		"GB data processed, total");
1569 
1570 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1571 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1572 
1573 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1574 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1575 
1576 	print_res(name, bytes / runtime_sec_max / 1e9,
1577 		"GB/sec,", "total-speed",	"GB/sec total speed");
1578 
1579 	if (g->p.show_details >= 2) {
1580 		char tname[14 + 2 * 10 + 1];
1581 		struct thread_data *td;
1582 		for (p = 0; p < g->p.nr_proc; p++) {
1583 			for (t = 0; t < g->p.nr_threads; t++) {
1584 				memset(tname, 0, sizeof(tname));
1585 				td = g->threads + p*g->p.nr_threads + t;
1586 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1587 				print_res(tname, td->speed_gbs,
1588 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1589 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1590 					"secs",	"thread-system-time", "system CPU time/thread");
1591 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1592 					"secs",	"thread-user-time", "user CPU time/thread");
1593 			}
1594 		}
1595 	}
1596 
1597 	free(pids);
1598 
1599 	deinit();
1600 
1601 	return 0;
1602 }
1603 
1604 #define MAX_ARGS 50
1605 
1606 static int command_size(const char **argv)
1607 {
1608 	int size = 0;
1609 
1610 	while (*argv) {
1611 		size++;
1612 		argv++;
1613 	}
1614 
1615 	BUG_ON(size >= MAX_ARGS);
1616 
1617 	return size;
1618 }
1619 
1620 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1621 {
1622 	int i;
1623 
1624 	printf("\n # Running %s \"perf bench numa", name);
1625 
1626 	for (i = 0; i < argc; i++)
1627 		printf(" %s", argv[i]);
1628 
1629 	printf("\"\n");
1630 
1631 	memset(p, 0, sizeof(*p));
1632 
1633 	/* Initialize nonzero defaults: */
1634 
1635 	p->serialize_startup		= 1;
1636 	p->data_reads			= true;
1637 	p->data_writes			= true;
1638 	p->data_backwards		= true;
1639 	p->data_rand_walk		= true;
1640 	p->nr_loops			= -1;
1641 	p->init_random			= true;
1642 	p->mb_global_str		= "1";
1643 	p->nr_proc			= 1;
1644 	p->nr_threads			= 1;
1645 	p->nr_secs			= 5;
1646 	p->run_all			= argc == 1;
1647 }
1648 
1649 static int run_bench_numa(const char *name, const char **argv)
1650 {
1651 	int argc = command_size(argv);
1652 
1653 	init_params(&p0, name, argc, argv);
1654 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1655 	if (argc)
1656 		goto err;
1657 
1658 	if (__bench_numa(name))
1659 		goto err;
1660 
1661 	return 0;
1662 
1663 err:
1664 	return -1;
1665 }
1666 
1667 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1668 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1669 
1670 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1671 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1672 
1673 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1674 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1675 
1676 /*
1677  * The built-in test-suite executed by "perf bench numa -a".
1678  *
1679  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1680  */
1681 static const char *tests[][MAX_ARGS] = {
1682    /* Basic single-stream NUMA bandwidth measurements: */
1683    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1685    { "RAM-bw-local-NOTHP,",
1686 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1687 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1688    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1689 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1690 
1691    /* 2-stream NUMA bandwidth measurements: */
1692    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1693 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1694    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1695 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1696 
1697    /* Cross-stream NUMA bandwidth measurement: */
1698    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1699 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1700 
1701    /* Convergence latency measurements: */
1702    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1703    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1704    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1705    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1706    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1707    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1708    { " 4x4-convergence-NOTHP,",
1709 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1710    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1711    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1712    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1713    { " 8x4-convergence-NOTHP,",
1714 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1715    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1716    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1717    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1718    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1719    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1720 
1721    /* Various NUMA process/thread layout bandwidth measurements: */
1722    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1723    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1724    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1725    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1726    { " 8x1-bw-process-NOTHP,",
1727 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1728    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1729 
1730    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1731    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1732    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1733    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1734 
1735    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1736    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1737    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1738    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1739    { " 4x8-bw-thread-NOTHP,",
1740 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1741    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1742    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1743 
1744    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1745    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1746 
1747    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1748    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1749    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1750    { "numa01-bw-thread-NOTHP,",
1751 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1752 };
1753 
1754 static int bench_all(void)
1755 {
1756 	int nr = ARRAY_SIZE(tests);
1757 	int ret;
1758 	int i;
1759 
1760 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1761 	BUG_ON(ret < 0);
1762 
1763 	for (i = 0; i < nr; i++) {
1764 		run_bench_numa(tests[i][0], tests[i] + 1);
1765 	}
1766 
1767 	printf("\n");
1768 
1769 	return 0;
1770 }
1771 
1772 int bench_numa(int argc, const char **argv)
1773 {
1774 	init_params(&p0, "main,", argc, argv);
1775 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1776 	if (argc)
1777 		goto err;
1778 
1779 	if (p0.run_all)
1780 		return bench_all();
1781 
1782 	if (__bench_numa(NULL))
1783 		goto err;
1784 
1785 	return 0;
1786 
1787 err:
1788 	usage_with_options(numa_usage, options);
1789 	return -1;
1790 }
1791