xref: /openbmc/linux/tools/perf/bench/numa.c (revision f276e20b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14 
15 #include "bench.h"
16 
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36 
37 #include "../util/header.h"
38 #include <numa.h>
39 #include <numaif.h>
40 
41 #ifndef RUSAGE_THREAD
42 # define RUSAGE_THREAD 1
43 #endif
44 
45 /*
46  * Regular printout to the terminal, suppressed if -q is specified:
47  */
48 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
49 
50 /*
51  * Debug printf:
52  */
53 #undef dprintf
54 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
55 
56 struct thread_data {
57 	int			curr_cpu;
58 	cpu_set_t		*bind_cpumask;
59 	int			bind_node;
60 	u8			*process_data;
61 	int			process_nr;
62 	int			thread_nr;
63 	int			task_nr;
64 	unsigned int		loops_done;
65 	u64			val;
66 	u64			runtime_ns;
67 	u64			system_time_ns;
68 	u64			user_time_ns;
69 	double			speed_gbs;
70 	pthread_mutex_t		*process_lock;
71 };
72 
73 /* Parameters set by options: */
74 
75 struct params {
76 	/* Startup synchronization: */
77 	bool			serialize_startup;
78 
79 	/* Task hierarchy: */
80 	int			nr_proc;
81 	int			nr_threads;
82 
83 	/* Working set sizes: */
84 	const char		*mb_global_str;
85 	const char		*mb_proc_str;
86 	const char		*mb_proc_locked_str;
87 	const char		*mb_thread_str;
88 
89 	double			mb_global;
90 	double			mb_proc;
91 	double			mb_proc_locked;
92 	double			mb_thread;
93 
94 	/* Access patterns to the working set: */
95 	bool			data_reads;
96 	bool			data_writes;
97 	bool			data_backwards;
98 	bool			data_zero_memset;
99 	bool			data_rand_walk;
100 	u32			nr_loops;
101 	u32			nr_secs;
102 	u32			sleep_usecs;
103 
104 	/* Working set initialization: */
105 	bool			init_zero;
106 	bool			init_random;
107 	bool			init_cpu0;
108 
109 	/* Misc options: */
110 	int			show_details;
111 	int			run_all;
112 	int			thp;
113 
114 	long			bytes_global;
115 	long			bytes_process;
116 	long			bytes_process_locked;
117 	long			bytes_thread;
118 
119 	int			nr_tasks;
120 	bool			show_quiet;
121 
122 	bool			show_convergence;
123 	bool			measure_convergence;
124 
125 	int			perturb_secs;
126 	int			nr_cpus;
127 	int			nr_nodes;
128 
129 	/* Affinity options -C and -N: */
130 	char			*cpu_list_str;
131 	char			*node_list_str;
132 };
133 
134 
135 /* Global, read-writable area, accessible to all processes and threads: */
136 
137 struct global_info {
138 	u8			*data;
139 
140 	pthread_mutex_t		startup_mutex;
141 	pthread_cond_t		startup_cond;
142 	int			nr_tasks_started;
143 
144 	pthread_mutex_t		start_work_mutex;
145 	pthread_cond_t		start_work_cond;
146 	int			nr_tasks_working;
147 	bool			start_work;
148 
149 	pthread_mutex_t		stop_work_mutex;
150 	u64			bytes_done;
151 
152 	struct thread_data	*threads;
153 
154 	/* Convergence latency measurement: */
155 	bool			all_converged;
156 	bool			stop_work;
157 
158 	int			print_once;
159 
160 	struct params		p;
161 };
162 
163 static struct global_info	*g = NULL;
164 
165 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
166 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
167 
168 struct params p0;
169 
170 static const struct option options[] = {
171 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
172 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
173 
174 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
175 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
176 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
177 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
178 
179 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
180 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
181 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
182 
183 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
184 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
185 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
186 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
187 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
188 
189 
190 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
191 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
192 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
193 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
194 
195 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
196 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
197 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
198 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
199 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
200 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
201 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
202 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
203 
204 	/* Special option string parsing callbacks: */
205         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
206 			"bind the first N tasks to these specific cpus (the rest is unbound)",
207 			parse_cpus_opt),
208         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
209 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
210 			parse_nodes_opt),
211 	OPT_END()
212 };
213 
214 static const char * const bench_numa_usage[] = {
215 	"perf bench numa <options>",
216 	NULL
217 };
218 
219 static const char * const numa_usage[] = {
220 	"perf bench numa mem [<options>]",
221 	NULL
222 };
223 
224 /*
225  * To get number of numa nodes present.
226  */
227 static int nr_numa_nodes(void)
228 {
229 	int i, nr_nodes = 0;
230 
231 	for (i = 0; i < g->p.nr_nodes; i++) {
232 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
233 			nr_nodes++;
234 	}
235 
236 	return nr_nodes;
237 }
238 
239 /*
240  * To check if given numa node is present.
241  */
242 static int is_node_present(int node)
243 {
244 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
245 }
246 
247 /*
248  * To check given numa node has cpus.
249  */
250 static bool node_has_cpus(int node)
251 {
252 	struct bitmask *cpumask = numa_allocate_cpumask();
253 	bool ret = false; /* fall back to nocpus */
254 	int cpu;
255 
256 	BUG_ON(!cpumask);
257 	if (!numa_node_to_cpus(node, cpumask)) {
258 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
259 			if (numa_bitmask_isbitset(cpumask, cpu)) {
260 				ret = true;
261 				break;
262 			}
263 		}
264 	}
265 	numa_free_cpumask(cpumask);
266 
267 	return ret;
268 }
269 
270 static cpu_set_t *bind_to_cpu(int target_cpu)
271 {
272 	int nrcpus = numa_num_possible_cpus();
273 	cpu_set_t *orig_mask, *mask;
274 	size_t size;
275 
276 	orig_mask = CPU_ALLOC(nrcpus);
277 	BUG_ON(!orig_mask);
278 	size = CPU_ALLOC_SIZE(nrcpus);
279 	CPU_ZERO_S(size, orig_mask);
280 
281 	if (sched_getaffinity(0, size, orig_mask))
282 		goto err_out;
283 
284 	mask = CPU_ALLOC(nrcpus);
285 	if (!mask)
286 		goto err_out;
287 
288 	CPU_ZERO_S(size, mask);
289 
290 	if (target_cpu == -1) {
291 		int cpu;
292 
293 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
294 			CPU_SET_S(cpu, size, mask);
295 	} else {
296 		if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
297 			goto err;
298 
299 		CPU_SET_S(target_cpu, size, mask);
300 	}
301 
302 	if (sched_setaffinity(0, size, mask))
303 		goto err;
304 
305 	return orig_mask;
306 
307 err:
308 	CPU_FREE(mask);
309 err_out:
310 	CPU_FREE(orig_mask);
311 
312 	/* BUG_ON due to failure in allocation of orig_mask/mask */
313 	BUG_ON(-1);
314 	return NULL;
315 }
316 
317 static cpu_set_t *bind_to_node(int target_node)
318 {
319 	int nrcpus = numa_num_possible_cpus();
320 	size_t size;
321 	cpu_set_t *orig_mask, *mask;
322 	int cpu;
323 
324 	orig_mask = CPU_ALLOC(nrcpus);
325 	BUG_ON(!orig_mask);
326 	size = CPU_ALLOC_SIZE(nrcpus);
327 	CPU_ZERO_S(size, orig_mask);
328 
329 	if (sched_getaffinity(0, size, orig_mask))
330 		goto err_out;
331 
332 	mask = CPU_ALLOC(nrcpus);
333 	if (!mask)
334 		goto err_out;
335 
336 	CPU_ZERO_S(size, mask);
337 
338 	if (target_node == NUMA_NO_NODE) {
339 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
340 			CPU_SET_S(cpu, size, mask);
341 	} else {
342 		struct bitmask *cpumask = numa_allocate_cpumask();
343 
344 		if (!cpumask)
345 			goto err;
346 
347 		if (!numa_node_to_cpus(target_node, cpumask)) {
348 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
349 				if (numa_bitmask_isbitset(cpumask, cpu))
350 					CPU_SET_S(cpu, size, mask);
351 			}
352 		}
353 		numa_free_cpumask(cpumask);
354 	}
355 
356 	if (sched_setaffinity(0, size, mask))
357 		goto err;
358 
359 	return orig_mask;
360 
361 err:
362 	CPU_FREE(mask);
363 err_out:
364 	CPU_FREE(orig_mask);
365 
366 	/* BUG_ON due to failure in allocation of orig_mask/mask */
367 	BUG_ON(-1);
368 	return NULL;
369 }
370 
371 static void bind_to_cpumask(cpu_set_t *mask)
372 {
373 	int ret;
374 	size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
375 
376 	ret = sched_setaffinity(0, size, mask);
377 	if (ret) {
378 		CPU_FREE(mask);
379 		BUG_ON(ret);
380 	}
381 }
382 
383 static void mempol_restore(void)
384 {
385 	int ret;
386 
387 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
388 
389 	BUG_ON(ret);
390 }
391 
392 static void bind_to_memnode(int node)
393 {
394 	struct bitmask *node_mask;
395 	int ret;
396 
397 	if (node == NUMA_NO_NODE)
398 		return;
399 
400 	node_mask = numa_allocate_nodemask();
401 	BUG_ON(!node_mask);
402 
403 	numa_bitmask_clearall(node_mask);
404 	numa_bitmask_setbit(node_mask, node);
405 
406 	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
407 	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
408 
409 	numa_bitmask_free(node_mask);
410 	BUG_ON(ret);
411 }
412 
413 #define HPSIZE (2*1024*1024)
414 
415 #define set_taskname(fmt...)				\
416 do {							\
417 	char name[20];					\
418 							\
419 	snprintf(name, 20, fmt);			\
420 	prctl(PR_SET_NAME, name);			\
421 } while (0)
422 
423 static u8 *alloc_data(ssize_t bytes0, int map_flags,
424 		      int init_zero, int init_cpu0, int thp, int init_random)
425 {
426 	cpu_set_t *orig_mask = NULL;
427 	ssize_t bytes;
428 	u8 *buf;
429 	int ret;
430 
431 	if (!bytes0)
432 		return NULL;
433 
434 	/* Allocate and initialize all memory on CPU#0: */
435 	if (init_cpu0) {
436 		int node = numa_node_of_cpu(0);
437 
438 		orig_mask = bind_to_node(node);
439 		bind_to_memnode(node);
440 	}
441 
442 	bytes = bytes0 + HPSIZE;
443 
444 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
445 	BUG_ON(buf == (void *)-1);
446 
447 	if (map_flags == MAP_PRIVATE) {
448 		if (thp > 0) {
449 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
450 			if (ret && !g->print_once) {
451 				g->print_once = 1;
452 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
453 			}
454 		}
455 		if (thp < 0) {
456 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
457 			if (ret && !g->print_once) {
458 				g->print_once = 1;
459 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
460 			}
461 		}
462 	}
463 
464 	if (init_zero) {
465 		bzero(buf, bytes);
466 	} else {
467 		/* Initialize random contents, different in each word: */
468 		if (init_random) {
469 			u64 *wbuf = (void *)buf;
470 			long off = rand();
471 			long i;
472 
473 			for (i = 0; i < bytes/8; i++)
474 				wbuf[i] = i + off;
475 		}
476 	}
477 
478 	/* Align to 2MB boundary: */
479 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
480 
481 	/* Restore affinity: */
482 	if (init_cpu0) {
483 		bind_to_cpumask(orig_mask);
484 		CPU_FREE(orig_mask);
485 		mempol_restore();
486 	}
487 
488 	return buf;
489 }
490 
491 static void free_data(void *data, ssize_t bytes)
492 {
493 	int ret;
494 
495 	if (!data)
496 		return;
497 
498 	ret = munmap(data, bytes);
499 	BUG_ON(ret);
500 }
501 
502 /*
503  * Create a shared memory buffer that can be shared between processes, zeroed:
504  */
505 static void * zalloc_shared_data(ssize_t bytes)
506 {
507 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
508 }
509 
510 /*
511  * Create a shared memory buffer that can be shared between processes:
512  */
513 static void * setup_shared_data(ssize_t bytes)
514 {
515 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
516 }
517 
518 /*
519  * Allocate process-local memory - this will either be shared between
520  * threads of this process, or only be accessed by this thread:
521  */
522 static void * setup_private_data(ssize_t bytes)
523 {
524 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
525 }
526 
527 /*
528  * Return a process-shared (global) mutex:
529  */
530 static void init_global_mutex(pthread_mutex_t *mutex)
531 {
532 	pthread_mutexattr_t attr;
533 
534 	pthread_mutexattr_init(&attr);
535 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
536 	pthread_mutex_init(mutex, &attr);
537 }
538 
539 /*
540  * Return a process-shared (global) condition variable:
541  */
542 static void init_global_cond(pthread_cond_t *cond)
543 {
544 	pthread_condattr_t attr;
545 
546 	pthread_condattr_init(&attr);
547 	pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
548 	pthread_cond_init(cond, &attr);
549 }
550 
551 static int parse_cpu_list(const char *arg)
552 {
553 	p0.cpu_list_str = strdup(arg);
554 
555 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
556 
557 	return 0;
558 }
559 
560 static int parse_setup_cpu_list(void)
561 {
562 	struct thread_data *td;
563 	char *str0, *str;
564 	int t;
565 
566 	if (!g->p.cpu_list_str)
567 		return 0;
568 
569 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
570 
571 	str0 = str = strdup(g->p.cpu_list_str);
572 	t = 0;
573 
574 	BUG_ON(!str);
575 
576 	tprintf("# binding tasks to CPUs:\n");
577 	tprintf("#  ");
578 
579 	while (true) {
580 		int bind_cpu, bind_cpu_0, bind_cpu_1;
581 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
582 		int bind_len;
583 		int step;
584 		int mul;
585 
586 		tok = strsep(&str, ",");
587 		if (!tok)
588 			break;
589 
590 		tok_end = strstr(tok, "-");
591 
592 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
593 		if (!tok_end) {
594 			/* Single CPU specified: */
595 			bind_cpu_0 = bind_cpu_1 = atol(tok);
596 		} else {
597 			/* CPU range specified (for example: "5-11"): */
598 			bind_cpu_0 = atol(tok);
599 			bind_cpu_1 = atol(tok_end + 1);
600 		}
601 
602 		step = 1;
603 		tok_step = strstr(tok, "#");
604 		if (tok_step) {
605 			step = atol(tok_step + 1);
606 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
607 		}
608 
609 		/*
610 		 * Mask length.
611 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
612 		 * where the _4 means the next 4 CPUs are allowed.
613 		 */
614 		bind_len = 1;
615 		tok_len = strstr(tok, "_");
616 		if (tok_len) {
617 			bind_len = atol(tok_len + 1);
618 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
619 		}
620 
621 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
622 		mul = 1;
623 		tok_mul = strstr(tok, "x");
624 		if (tok_mul) {
625 			mul = atol(tok_mul + 1);
626 			BUG_ON(mul <= 0);
627 		}
628 
629 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
630 
631 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
632 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
633 			return -1;
634 		}
635 
636 		if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
637 			printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
638 			return -1;
639 		}
640 
641 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
642 		BUG_ON(bind_cpu_0 > bind_cpu_1);
643 
644 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
645 			size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
646 			int i;
647 
648 			for (i = 0; i < mul; i++) {
649 				int cpu;
650 
651 				if (t >= g->p.nr_tasks) {
652 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
653 					goto out;
654 				}
655 				td = g->threads + t;
656 
657 				if (t)
658 					tprintf(",");
659 				if (bind_len > 1) {
660 					tprintf("%2d/%d", bind_cpu, bind_len);
661 				} else {
662 					tprintf("%2d", bind_cpu);
663 				}
664 
665 				td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
666 				BUG_ON(!td->bind_cpumask);
667 				CPU_ZERO_S(size, td->bind_cpumask);
668 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
669 					if (cpu < 0 || cpu >= g->p.nr_cpus) {
670 						CPU_FREE(td->bind_cpumask);
671 						BUG_ON(-1);
672 					}
673 					CPU_SET_S(cpu, size, td->bind_cpumask);
674 				}
675 				t++;
676 			}
677 		}
678 	}
679 out:
680 
681 	tprintf("\n");
682 
683 	if (t < g->p.nr_tasks)
684 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
685 
686 	free(str0);
687 	return 0;
688 }
689 
690 static int parse_cpus_opt(const struct option *opt __maybe_unused,
691 			  const char *arg, int unset __maybe_unused)
692 {
693 	if (!arg)
694 		return -1;
695 
696 	return parse_cpu_list(arg);
697 }
698 
699 static int parse_node_list(const char *arg)
700 {
701 	p0.node_list_str = strdup(arg);
702 
703 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
704 
705 	return 0;
706 }
707 
708 static int parse_setup_node_list(void)
709 {
710 	struct thread_data *td;
711 	char *str0, *str;
712 	int t;
713 
714 	if (!g->p.node_list_str)
715 		return 0;
716 
717 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
718 
719 	str0 = str = strdup(g->p.node_list_str);
720 	t = 0;
721 
722 	BUG_ON(!str);
723 
724 	tprintf("# binding tasks to NODEs:\n");
725 	tprintf("# ");
726 
727 	while (true) {
728 		int bind_node, bind_node_0, bind_node_1;
729 		char *tok, *tok_end, *tok_step, *tok_mul;
730 		int step;
731 		int mul;
732 
733 		tok = strsep(&str, ",");
734 		if (!tok)
735 			break;
736 
737 		tok_end = strstr(tok, "-");
738 
739 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
740 		if (!tok_end) {
741 			/* Single NODE specified: */
742 			bind_node_0 = bind_node_1 = atol(tok);
743 		} else {
744 			/* NODE range specified (for example: "5-11"): */
745 			bind_node_0 = atol(tok);
746 			bind_node_1 = atol(tok_end + 1);
747 		}
748 
749 		step = 1;
750 		tok_step = strstr(tok, "#");
751 		if (tok_step) {
752 			step = atol(tok_step + 1);
753 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
754 		}
755 
756 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
757 		mul = 1;
758 		tok_mul = strstr(tok, "x");
759 		if (tok_mul) {
760 			mul = atol(tok_mul + 1);
761 			BUG_ON(mul <= 0);
762 		}
763 
764 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
765 
766 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
767 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
768 			return -1;
769 		}
770 
771 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
772 		BUG_ON(bind_node_0 > bind_node_1);
773 
774 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
775 			int i;
776 
777 			for (i = 0; i < mul; i++) {
778 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
779 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
780 					goto out;
781 				}
782 				td = g->threads + t;
783 
784 				if (!t)
785 					tprintf(" %2d", bind_node);
786 				else
787 					tprintf(",%2d", bind_node);
788 
789 				td->bind_node = bind_node;
790 				t++;
791 			}
792 		}
793 	}
794 out:
795 
796 	tprintf("\n");
797 
798 	if (t < g->p.nr_tasks)
799 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
800 
801 	free(str0);
802 	return 0;
803 }
804 
805 static int parse_nodes_opt(const struct option *opt __maybe_unused,
806 			  const char *arg, int unset __maybe_unused)
807 {
808 	if (!arg)
809 		return -1;
810 
811 	return parse_node_list(arg);
812 }
813 
814 static inline uint32_t lfsr_32(uint32_t lfsr)
815 {
816 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
817 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
818 }
819 
820 /*
821  * Make sure there's real data dependency to RAM (when read
822  * accesses are enabled), so the compiler, the CPU and the
823  * kernel (KSM, zero page, etc.) cannot optimize away RAM
824  * accesses:
825  */
826 static inline u64 access_data(u64 *data, u64 val)
827 {
828 	if (g->p.data_reads)
829 		val += *data;
830 	if (g->p.data_writes)
831 		*data = val + 1;
832 	return val;
833 }
834 
835 /*
836  * The worker process does two types of work, a forwards going
837  * loop and a backwards going loop.
838  *
839  * We do this so that on multiprocessor systems we do not create
840  * a 'train' of processing, with highly synchronized processes,
841  * skewing the whole benchmark.
842  */
843 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
844 {
845 	long words = bytes/sizeof(u64);
846 	u64 *data = (void *)__data;
847 	long chunk_0, chunk_1;
848 	u64 *d0, *d, *d1;
849 	long off;
850 	long i;
851 
852 	BUG_ON(!data && words);
853 	BUG_ON(data && !words);
854 
855 	if (!data)
856 		return val;
857 
858 	/* Very simple memset() work variant: */
859 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
860 		bzero(data, bytes);
861 		return val;
862 	}
863 
864 	/* Spread out by PID/TID nr and by loop nr: */
865 	chunk_0 = words/nr_max;
866 	chunk_1 = words/g->p.nr_loops;
867 	off = nr*chunk_0 + loop*chunk_1;
868 
869 	while (off >= words)
870 		off -= words;
871 
872 	if (g->p.data_rand_walk) {
873 		u32 lfsr = nr + loop + val;
874 		int j;
875 
876 		for (i = 0; i < words/1024; i++) {
877 			long start, end;
878 
879 			lfsr = lfsr_32(lfsr);
880 
881 			start = lfsr % words;
882 			end = min(start + 1024, words-1);
883 
884 			if (g->p.data_zero_memset) {
885 				bzero(data + start, (end-start) * sizeof(u64));
886 			} else {
887 				for (j = start; j < end; j++)
888 					val = access_data(data + j, val);
889 			}
890 		}
891 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
892 		/* Process data forwards: */
893 
894 		d0 = data + off;
895 		d  = data + off + 1;
896 		d1 = data + words;
897 
898 		for (;;) {
899 			if (unlikely(d >= d1))
900 				d = data;
901 			if (unlikely(d == d0))
902 				break;
903 
904 			val = access_data(d, val);
905 
906 			d++;
907 		}
908 	} else {
909 		/* Process data backwards: */
910 
911 		d0 = data + off;
912 		d  = data + off - 1;
913 		d1 = data + words;
914 
915 		for (;;) {
916 			if (unlikely(d < data))
917 				d = data + words-1;
918 			if (unlikely(d == d0))
919 				break;
920 
921 			val = access_data(d, val);
922 
923 			d--;
924 		}
925 	}
926 
927 	return val;
928 }
929 
930 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
931 {
932 	unsigned int cpu;
933 
934 	cpu = sched_getcpu();
935 
936 	g->threads[task_nr].curr_cpu = cpu;
937 	prctl(0, bytes_worked);
938 }
939 
940 /*
941  * Count the number of nodes a process's threads
942  * are spread out on.
943  *
944  * A count of 1 means that the process is compressed
945  * to a single node. A count of g->p.nr_nodes means it's
946  * spread out on the whole system.
947  */
948 static int count_process_nodes(int process_nr)
949 {
950 	char *node_present;
951 	int nodes;
952 	int n, t;
953 
954 	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
955 	BUG_ON(!node_present);
956 	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
957 		node_present[nodes] = 0;
958 
959 	for (t = 0; t < g->p.nr_threads; t++) {
960 		struct thread_data *td;
961 		int task_nr;
962 		int node;
963 
964 		task_nr = process_nr*g->p.nr_threads + t;
965 		td = g->threads + task_nr;
966 
967 		node = numa_node_of_cpu(td->curr_cpu);
968 		if (node < 0) /* curr_cpu was likely still -1 */ {
969 			free(node_present);
970 			return 0;
971 		}
972 
973 		node_present[node] = 1;
974 	}
975 
976 	nodes = 0;
977 
978 	for (n = 0; n < g->p.nr_nodes; n++)
979 		nodes += node_present[n];
980 
981 	free(node_present);
982 	return nodes;
983 }
984 
985 /*
986  * Count the number of distinct process-threads a node contains.
987  *
988  * A count of 1 means that the node contains only a single
989  * process. If all nodes on the system contain at most one
990  * process then we are well-converged.
991  */
992 static int count_node_processes(int node)
993 {
994 	int processes = 0;
995 	int t, p;
996 
997 	for (p = 0; p < g->p.nr_proc; p++) {
998 		for (t = 0; t < g->p.nr_threads; t++) {
999 			struct thread_data *td;
1000 			int task_nr;
1001 			int n;
1002 
1003 			task_nr = p*g->p.nr_threads + t;
1004 			td = g->threads + task_nr;
1005 
1006 			n = numa_node_of_cpu(td->curr_cpu);
1007 			if (n == node) {
1008 				processes++;
1009 				break;
1010 			}
1011 		}
1012 	}
1013 
1014 	return processes;
1015 }
1016 
1017 static void calc_convergence_compression(int *strong)
1018 {
1019 	unsigned int nodes_min, nodes_max;
1020 	int p;
1021 
1022 	nodes_min = -1;
1023 	nodes_max =  0;
1024 
1025 	for (p = 0; p < g->p.nr_proc; p++) {
1026 		unsigned int nodes = count_process_nodes(p);
1027 
1028 		if (!nodes) {
1029 			*strong = 0;
1030 			return;
1031 		}
1032 
1033 		nodes_min = min(nodes, nodes_min);
1034 		nodes_max = max(nodes, nodes_max);
1035 	}
1036 
1037 	/* Strong convergence: all threads compress on a single node: */
1038 	if (nodes_min == 1 && nodes_max == 1) {
1039 		*strong = 1;
1040 	} else {
1041 		*strong = 0;
1042 		tprintf(" {%d-%d}", nodes_min, nodes_max);
1043 	}
1044 }
1045 
1046 static void calc_convergence(double runtime_ns_max, double *convergence)
1047 {
1048 	unsigned int loops_done_min, loops_done_max;
1049 	int process_groups;
1050 	int *nodes;
1051 	int distance;
1052 	int nr_min;
1053 	int nr_max;
1054 	int strong;
1055 	int sum;
1056 	int nr;
1057 	int node;
1058 	int cpu;
1059 	int t;
1060 
1061 	if (!g->p.show_convergence && !g->p.measure_convergence)
1062 		return;
1063 
1064 	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1065 	BUG_ON(!nodes);
1066 	for (node = 0; node < g->p.nr_nodes; node++)
1067 		nodes[node] = 0;
1068 
1069 	loops_done_min = -1;
1070 	loops_done_max = 0;
1071 
1072 	for (t = 0; t < g->p.nr_tasks; t++) {
1073 		struct thread_data *td = g->threads + t;
1074 		unsigned int loops_done;
1075 
1076 		cpu = td->curr_cpu;
1077 
1078 		/* Not all threads have written it yet: */
1079 		if (cpu < 0)
1080 			continue;
1081 
1082 		node = numa_node_of_cpu(cpu);
1083 
1084 		nodes[node]++;
1085 
1086 		loops_done = td->loops_done;
1087 		loops_done_min = min(loops_done, loops_done_min);
1088 		loops_done_max = max(loops_done, loops_done_max);
1089 	}
1090 
1091 	nr_max = 0;
1092 	nr_min = g->p.nr_tasks;
1093 	sum = 0;
1094 
1095 	for (node = 0; node < g->p.nr_nodes; node++) {
1096 		if (!is_node_present(node))
1097 			continue;
1098 		nr = nodes[node];
1099 		nr_min = min(nr, nr_min);
1100 		nr_max = max(nr, nr_max);
1101 		sum += nr;
1102 	}
1103 	BUG_ON(nr_min > nr_max);
1104 
1105 	BUG_ON(sum > g->p.nr_tasks);
1106 
1107 	if (0 && (sum < g->p.nr_tasks)) {
1108 		free(nodes);
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * Count the number of distinct process groups present
1114 	 * on nodes - when we are converged this will decrease
1115 	 * to g->p.nr_proc:
1116 	 */
1117 	process_groups = 0;
1118 
1119 	for (node = 0; node < g->p.nr_nodes; node++) {
1120 		int processes;
1121 
1122 		if (!is_node_present(node))
1123 			continue;
1124 		processes = count_node_processes(node);
1125 		nr = nodes[node];
1126 		tprintf(" %2d/%-2d", nr, processes);
1127 
1128 		process_groups += processes;
1129 	}
1130 
1131 	distance = nr_max - nr_min;
1132 
1133 	tprintf(" [%2d/%-2d]", distance, process_groups);
1134 
1135 	tprintf(" l:%3d-%-3d (%3d)",
1136 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1137 
1138 	if (loops_done_min && loops_done_max) {
1139 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1140 
1141 		tprintf(" [%4.1f%%]", skew * 100.0);
1142 	}
1143 
1144 	calc_convergence_compression(&strong);
1145 
1146 	if (strong && process_groups == g->p.nr_proc) {
1147 		if (!*convergence) {
1148 			*convergence = runtime_ns_max;
1149 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1150 			if (g->p.measure_convergence) {
1151 				g->all_converged = true;
1152 				g->stop_work = true;
1153 			}
1154 		}
1155 	} else {
1156 		if (*convergence) {
1157 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1158 			*convergence = 0;
1159 		}
1160 		tprintf("\n");
1161 	}
1162 
1163 	free(nodes);
1164 }
1165 
1166 static void show_summary(double runtime_ns_max, int l, double *convergence)
1167 {
1168 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1169 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1170 
1171 	calc_convergence(runtime_ns_max, convergence);
1172 
1173 	if (g->p.show_details >= 0)
1174 		fflush(stdout);
1175 }
1176 
1177 static void *worker_thread(void *__tdata)
1178 {
1179 	struct thread_data *td = __tdata;
1180 	struct timeval start0, start, stop, diff;
1181 	int process_nr = td->process_nr;
1182 	int thread_nr = td->thread_nr;
1183 	unsigned long last_perturbance;
1184 	int task_nr = td->task_nr;
1185 	int details = g->p.show_details;
1186 	int first_task, last_task;
1187 	double convergence = 0;
1188 	u64 val = td->val;
1189 	double runtime_ns_max;
1190 	u8 *global_data;
1191 	u8 *process_data;
1192 	u8 *thread_data;
1193 	u64 bytes_done, secs;
1194 	long work_done;
1195 	u32 l;
1196 	struct rusage rusage;
1197 
1198 	bind_to_cpumask(td->bind_cpumask);
1199 	bind_to_memnode(td->bind_node);
1200 
1201 	set_taskname("thread %d/%d", process_nr, thread_nr);
1202 
1203 	global_data = g->data;
1204 	process_data = td->process_data;
1205 	thread_data = setup_private_data(g->p.bytes_thread);
1206 
1207 	bytes_done = 0;
1208 
1209 	last_task = 0;
1210 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1211 		last_task = 1;
1212 
1213 	first_task = 0;
1214 	if (process_nr == 0 && thread_nr == 0)
1215 		first_task = 1;
1216 
1217 	if (details >= 2) {
1218 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1219 			process_nr, thread_nr, global_data, process_data, thread_data);
1220 	}
1221 
1222 	if (g->p.serialize_startup) {
1223 		pthread_mutex_lock(&g->startup_mutex);
1224 		g->nr_tasks_started++;
1225 		/* The last thread wakes the main process. */
1226 		if (g->nr_tasks_started == g->p.nr_tasks)
1227 			pthread_cond_signal(&g->startup_cond);
1228 
1229 		pthread_mutex_unlock(&g->startup_mutex);
1230 
1231 		/* Here we will wait for the main process to start us all at once: */
1232 		pthread_mutex_lock(&g->start_work_mutex);
1233 		g->start_work = false;
1234 		g->nr_tasks_working++;
1235 		while (!g->start_work)
1236 			pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1237 
1238 		pthread_mutex_unlock(&g->start_work_mutex);
1239 	}
1240 
1241 	gettimeofday(&start0, NULL);
1242 
1243 	start = stop = start0;
1244 	last_perturbance = start.tv_sec;
1245 
1246 	for (l = 0; l < g->p.nr_loops; l++) {
1247 		start = stop;
1248 
1249 		if (g->stop_work)
1250 			break;
1251 
1252 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1253 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1254 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1255 
1256 		if (g->p.sleep_usecs) {
1257 			pthread_mutex_lock(td->process_lock);
1258 			usleep(g->p.sleep_usecs);
1259 			pthread_mutex_unlock(td->process_lock);
1260 		}
1261 		/*
1262 		 * Amount of work to be done under a process-global lock:
1263 		 */
1264 		if (g->p.bytes_process_locked) {
1265 			pthread_mutex_lock(td->process_lock);
1266 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1267 			pthread_mutex_unlock(td->process_lock);
1268 		}
1269 
1270 		work_done = g->p.bytes_global + g->p.bytes_process +
1271 			    g->p.bytes_process_locked + g->p.bytes_thread;
1272 
1273 		update_curr_cpu(task_nr, work_done);
1274 		bytes_done += work_done;
1275 
1276 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1277 			continue;
1278 
1279 		td->loops_done = l;
1280 
1281 		gettimeofday(&stop, NULL);
1282 
1283 		/* Check whether our max runtime timed out: */
1284 		if (g->p.nr_secs) {
1285 			timersub(&stop, &start0, &diff);
1286 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1287 				g->stop_work = true;
1288 				break;
1289 			}
1290 		}
1291 
1292 		/* Update the summary at most once per second: */
1293 		if (start.tv_sec == stop.tv_sec)
1294 			continue;
1295 
1296 		/*
1297 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1298 		 * by migrating to CPU#0:
1299 		 */
1300 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1301 			cpu_set_t *orig_mask;
1302 			int target_cpu;
1303 			int this_cpu;
1304 
1305 			last_perturbance = stop.tv_sec;
1306 
1307 			/*
1308 			 * Depending on where we are running, move into
1309 			 * the other half of the system, to create some
1310 			 * real disturbance:
1311 			 */
1312 			this_cpu = g->threads[task_nr].curr_cpu;
1313 			if (this_cpu < g->p.nr_cpus/2)
1314 				target_cpu = g->p.nr_cpus-1;
1315 			else
1316 				target_cpu = 0;
1317 
1318 			orig_mask = bind_to_cpu(target_cpu);
1319 
1320 			/* Here we are running on the target CPU already */
1321 			if (details >= 1)
1322 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1323 
1324 			bind_to_cpumask(orig_mask);
1325 			CPU_FREE(orig_mask);
1326 		}
1327 
1328 		if (details >= 3) {
1329 			timersub(&stop, &start, &diff);
1330 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1331 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1332 
1333 			if (details >= 0) {
1334 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1335 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1336 			}
1337 			fflush(stdout);
1338 		}
1339 		if (!last_task)
1340 			continue;
1341 
1342 		timersub(&stop, &start0, &diff);
1343 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1344 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1345 
1346 		show_summary(runtime_ns_max, l, &convergence);
1347 	}
1348 
1349 	gettimeofday(&stop, NULL);
1350 	timersub(&stop, &start0, &diff);
1351 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1352 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1353 	secs = td->runtime_ns / NSEC_PER_SEC;
1354 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1355 
1356 	getrusage(RUSAGE_THREAD, &rusage);
1357 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1358 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1359 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1360 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1361 
1362 	free_data(thread_data, g->p.bytes_thread);
1363 
1364 	pthread_mutex_lock(&g->stop_work_mutex);
1365 	g->bytes_done += bytes_done;
1366 	pthread_mutex_unlock(&g->stop_work_mutex);
1367 
1368 	return NULL;
1369 }
1370 
1371 /*
1372  * A worker process starts a couple of threads:
1373  */
1374 static void worker_process(int process_nr)
1375 {
1376 	pthread_mutex_t process_lock;
1377 	struct thread_data *td;
1378 	pthread_t *pthreads;
1379 	u8 *process_data;
1380 	int task_nr;
1381 	int ret;
1382 	int t;
1383 
1384 	pthread_mutex_init(&process_lock, NULL);
1385 	set_taskname("process %d", process_nr);
1386 
1387 	/*
1388 	 * Pick up the memory policy and the CPU binding of our first thread,
1389 	 * so that we initialize memory accordingly:
1390 	 */
1391 	task_nr = process_nr*g->p.nr_threads;
1392 	td = g->threads + task_nr;
1393 
1394 	bind_to_memnode(td->bind_node);
1395 	bind_to_cpumask(td->bind_cpumask);
1396 
1397 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1398 	process_data = setup_private_data(g->p.bytes_process);
1399 
1400 	if (g->p.show_details >= 3) {
1401 		printf(" # process %2d global mem: %p, process mem: %p\n",
1402 			process_nr, g->data, process_data);
1403 	}
1404 
1405 	for (t = 0; t < g->p.nr_threads; t++) {
1406 		task_nr = process_nr*g->p.nr_threads + t;
1407 		td = g->threads + task_nr;
1408 
1409 		td->process_data = process_data;
1410 		td->process_nr   = process_nr;
1411 		td->thread_nr    = t;
1412 		td->task_nr	 = task_nr;
1413 		td->val          = rand();
1414 		td->curr_cpu	 = -1;
1415 		td->process_lock = &process_lock;
1416 
1417 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1418 		BUG_ON(ret);
1419 	}
1420 
1421 	for (t = 0; t < g->p.nr_threads; t++) {
1422                 ret = pthread_join(pthreads[t], NULL);
1423 		BUG_ON(ret);
1424 	}
1425 
1426 	free_data(process_data, g->p.bytes_process);
1427 	free(pthreads);
1428 }
1429 
1430 static void print_summary(void)
1431 {
1432 	if (g->p.show_details < 0)
1433 		return;
1434 
1435 	printf("\n ###\n");
1436 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1437 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1438 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1439 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1440 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1441 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1442 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1443 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1444 
1445 	printf(" ###\n");
1446 
1447 	printf("\n ###\n"); fflush(stdout);
1448 }
1449 
1450 static void init_thread_data(void)
1451 {
1452 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1453 	int t;
1454 
1455 	g->threads = zalloc_shared_data(size);
1456 
1457 	for (t = 0; t < g->p.nr_tasks; t++) {
1458 		struct thread_data *td = g->threads + t;
1459 		size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1460 		int cpu;
1461 
1462 		/* Allow all nodes by default: */
1463 		td->bind_node = NUMA_NO_NODE;
1464 
1465 		/* Allow all CPUs by default: */
1466 		td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1467 		BUG_ON(!td->bind_cpumask);
1468 		CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1469 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1470 			CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1471 	}
1472 }
1473 
1474 static void deinit_thread_data(void)
1475 {
1476 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1477 	int t;
1478 
1479 	/* Free the bind_cpumask allocated for thread_data */
1480 	for (t = 0; t < g->p.nr_tasks; t++) {
1481 		struct thread_data *td = g->threads + t;
1482 		CPU_FREE(td->bind_cpumask);
1483 	}
1484 
1485 	free_data(g->threads, size);
1486 }
1487 
1488 static int init(void)
1489 {
1490 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1491 
1492 	/* Copy over options: */
1493 	g->p = p0;
1494 
1495 	g->p.nr_cpus = numa_num_configured_cpus();
1496 
1497 	g->p.nr_nodes = numa_max_node() + 1;
1498 
1499 	/* char array in count_process_nodes(): */
1500 	BUG_ON(g->p.nr_nodes < 0);
1501 
1502 	if (g->p.show_quiet && !g->p.show_details)
1503 		g->p.show_details = -1;
1504 
1505 	/* Some memory should be specified: */
1506 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1507 		return -1;
1508 
1509 	if (g->p.mb_global_str) {
1510 		g->p.mb_global = atof(g->p.mb_global_str);
1511 		BUG_ON(g->p.mb_global < 0);
1512 	}
1513 
1514 	if (g->p.mb_proc_str) {
1515 		g->p.mb_proc = atof(g->p.mb_proc_str);
1516 		BUG_ON(g->p.mb_proc < 0);
1517 	}
1518 
1519 	if (g->p.mb_proc_locked_str) {
1520 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1521 		BUG_ON(g->p.mb_proc_locked < 0);
1522 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1523 	}
1524 
1525 	if (g->p.mb_thread_str) {
1526 		g->p.mb_thread = atof(g->p.mb_thread_str);
1527 		BUG_ON(g->p.mb_thread < 0);
1528 	}
1529 
1530 	BUG_ON(g->p.nr_threads <= 0);
1531 	BUG_ON(g->p.nr_proc <= 0);
1532 
1533 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1534 
1535 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1536 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1537 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1538 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1539 
1540 	g->data = setup_shared_data(g->p.bytes_global);
1541 
1542 	/* Startup serialization: */
1543 	init_global_mutex(&g->start_work_mutex);
1544 	init_global_cond(&g->start_work_cond);
1545 	init_global_mutex(&g->startup_mutex);
1546 	init_global_cond(&g->startup_cond);
1547 	init_global_mutex(&g->stop_work_mutex);
1548 
1549 	init_thread_data();
1550 
1551 	tprintf("#\n");
1552 	if (parse_setup_cpu_list() || parse_setup_node_list())
1553 		return -1;
1554 	tprintf("#\n");
1555 
1556 	print_summary();
1557 
1558 	return 0;
1559 }
1560 
1561 static void deinit(void)
1562 {
1563 	free_data(g->data, g->p.bytes_global);
1564 	g->data = NULL;
1565 
1566 	deinit_thread_data();
1567 
1568 	free_data(g, sizeof(*g));
1569 	g = NULL;
1570 }
1571 
1572 /*
1573  * Print a short or long result, depending on the verbosity setting:
1574  */
1575 static void print_res(const char *name, double val,
1576 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1577 {
1578 	if (!name)
1579 		name = "main,";
1580 
1581 	if (!g->p.show_quiet)
1582 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1583 	else
1584 		printf(" %14.3f %s\n", val, txt_long);
1585 }
1586 
1587 static int __bench_numa(const char *name)
1588 {
1589 	struct timeval start, stop, diff;
1590 	u64 runtime_ns_min, runtime_ns_sum;
1591 	pid_t *pids, pid, wpid;
1592 	double delta_runtime;
1593 	double runtime_avg;
1594 	double runtime_sec_max;
1595 	double runtime_sec_min;
1596 	int wait_stat;
1597 	double bytes;
1598 	int i, t, p;
1599 
1600 	if (init())
1601 		return -1;
1602 
1603 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1604 	pid = -1;
1605 
1606 	if (g->p.serialize_startup) {
1607 		tprintf(" #\n");
1608 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1609 	}
1610 
1611 	gettimeofday(&start, NULL);
1612 
1613 	for (i = 0; i < g->p.nr_proc; i++) {
1614 		pid = fork();
1615 		dprintf(" # process %2d: PID %d\n", i, pid);
1616 
1617 		BUG_ON(pid < 0);
1618 		if (!pid) {
1619 			/* Child process: */
1620 			worker_process(i);
1621 
1622 			exit(0);
1623 		}
1624 		pids[i] = pid;
1625 
1626 	}
1627 
1628 	if (g->p.serialize_startup) {
1629 		bool threads_ready = false;
1630 		double startup_sec;
1631 
1632 		/*
1633 		 * Wait for all the threads to start up. The last thread will
1634 		 * signal this process.
1635 		 */
1636 		pthread_mutex_lock(&g->startup_mutex);
1637 		while (g->nr_tasks_started != g->p.nr_tasks)
1638 			pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1639 
1640 		pthread_mutex_unlock(&g->startup_mutex);
1641 
1642 		/* Wait for all threads to be at the start_work_cond. */
1643 		while (!threads_ready) {
1644 			pthread_mutex_lock(&g->start_work_mutex);
1645 			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1646 			pthread_mutex_unlock(&g->start_work_mutex);
1647 			if (!threads_ready)
1648 				usleep(1);
1649 		}
1650 
1651 		gettimeofday(&stop, NULL);
1652 
1653 		timersub(&stop, &start, &diff);
1654 
1655 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1656 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1657 		startup_sec /= NSEC_PER_SEC;
1658 
1659 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1660 		tprintf(" #\n");
1661 
1662 		start = stop;
1663 		/* Start all threads running. */
1664 		pthread_mutex_lock(&g->start_work_mutex);
1665 		g->start_work = true;
1666 		pthread_mutex_unlock(&g->start_work_mutex);
1667 		pthread_cond_broadcast(&g->start_work_cond);
1668 	} else {
1669 		gettimeofday(&start, NULL);
1670 	}
1671 
1672 	/* Parent process: */
1673 
1674 
1675 	for (i = 0; i < g->p.nr_proc; i++) {
1676 		wpid = waitpid(pids[i], &wait_stat, 0);
1677 		BUG_ON(wpid < 0);
1678 		BUG_ON(!WIFEXITED(wait_stat));
1679 
1680 	}
1681 
1682 	runtime_ns_sum = 0;
1683 	runtime_ns_min = -1LL;
1684 
1685 	for (t = 0; t < g->p.nr_tasks; t++) {
1686 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1687 
1688 		runtime_ns_sum += thread_runtime_ns;
1689 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1690 	}
1691 
1692 	gettimeofday(&stop, NULL);
1693 	timersub(&stop, &start, &diff);
1694 
1695 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1696 
1697 	tprintf("\n ###\n");
1698 	tprintf("\n");
1699 
1700 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1701 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1702 	runtime_sec_max /= NSEC_PER_SEC;
1703 
1704 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1705 
1706 	bytes = g->bytes_done;
1707 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1708 
1709 	if (g->p.measure_convergence) {
1710 		print_res(name, runtime_sec_max,
1711 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1712 	}
1713 
1714 	print_res(name, runtime_sec_max,
1715 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1716 
1717 	print_res(name, runtime_sec_min,
1718 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1719 
1720 	print_res(name, runtime_avg,
1721 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1722 
1723 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1724 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1725 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1726 
1727 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1728 		"GB,", "data/thread",		"GB data processed, per thread");
1729 
1730 	print_res(name, bytes / 1e9,
1731 		"GB,", "data-total",		"GB data processed, total");
1732 
1733 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1734 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1735 
1736 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1737 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1738 
1739 	print_res(name, bytes / runtime_sec_max / 1e9,
1740 		"GB/sec,", "total-speed",	"GB/sec total speed");
1741 
1742 	if (g->p.show_details >= 2) {
1743 		char tname[14 + 2 * 11 + 1];
1744 		struct thread_data *td;
1745 		for (p = 0; p < g->p.nr_proc; p++) {
1746 			for (t = 0; t < g->p.nr_threads; t++) {
1747 				memset(tname, 0, sizeof(tname));
1748 				td = g->threads + p*g->p.nr_threads + t;
1749 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1750 				print_res(tname, td->speed_gbs,
1751 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1752 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1753 					"secs",	"thread-system-time", "system CPU time/thread");
1754 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1755 					"secs",	"thread-user-time", "user CPU time/thread");
1756 			}
1757 		}
1758 	}
1759 
1760 	free(pids);
1761 
1762 	deinit();
1763 
1764 	return 0;
1765 }
1766 
1767 #define MAX_ARGS 50
1768 
1769 static int command_size(const char **argv)
1770 {
1771 	int size = 0;
1772 
1773 	while (*argv) {
1774 		size++;
1775 		argv++;
1776 	}
1777 
1778 	BUG_ON(size >= MAX_ARGS);
1779 
1780 	return size;
1781 }
1782 
1783 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1784 {
1785 	int i;
1786 
1787 	printf("\n # Running %s \"perf bench numa", name);
1788 
1789 	for (i = 0; i < argc; i++)
1790 		printf(" %s", argv[i]);
1791 
1792 	printf("\"\n");
1793 
1794 	memset(p, 0, sizeof(*p));
1795 
1796 	/* Initialize nonzero defaults: */
1797 
1798 	p->serialize_startup		= 1;
1799 	p->data_reads			= true;
1800 	p->data_writes			= true;
1801 	p->data_backwards		= true;
1802 	p->data_rand_walk		= true;
1803 	p->nr_loops			= -1;
1804 	p->init_random			= true;
1805 	p->mb_global_str		= "1";
1806 	p->nr_proc			= 1;
1807 	p->nr_threads			= 1;
1808 	p->nr_secs			= 5;
1809 	p->run_all			= argc == 1;
1810 }
1811 
1812 static int run_bench_numa(const char *name, const char **argv)
1813 {
1814 	int argc = command_size(argv);
1815 
1816 	init_params(&p0, name, argc, argv);
1817 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1818 	if (argc)
1819 		goto err;
1820 
1821 	if (__bench_numa(name))
1822 		goto err;
1823 
1824 	return 0;
1825 
1826 err:
1827 	return -1;
1828 }
1829 
1830 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1831 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1832 
1833 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1834 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1835 
1836 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1837 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1838 
1839 /*
1840  * The built-in test-suite executed by "perf bench numa -a".
1841  *
1842  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1843  */
1844 static const char *tests[][MAX_ARGS] = {
1845    /* Basic single-stream NUMA bandwidth measurements: */
1846    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1847 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1848    { "RAM-bw-local-NOTHP,",
1849 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1850 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1851    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1852 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1853 
1854    /* 2-stream NUMA bandwidth measurements: */
1855    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1856 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1857    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1858 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1859 
1860    /* Cross-stream NUMA bandwidth measurement: */
1861    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1862 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1863 
1864    /* Convergence latency measurements: */
1865    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1866    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1867    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1868    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1869    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1870    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1871    { " 4x4-convergence-NOTHP,",
1872 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1873    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1874    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1875    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1876    { " 8x4-convergence-NOTHP,",
1877 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1878    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1879    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1880    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1881    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1882    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1883 
1884    /* Various NUMA process/thread layout bandwidth measurements: */
1885    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1886    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1887    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1888    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1889    { " 8x1-bw-process-NOTHP,",
1890 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1891    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1892 
1893    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1894    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1895    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1896    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1897 
1898    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1899    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1900    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1901    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1902    { " 4x8-bw-process-NOTHP,",
1903 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1904    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1905    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1906 
1907    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1908    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1909 
1910    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1911    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1912    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1913    { "numa01-bw-thread-NOTHP,",
1914 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1915 };
1916 
1917 static int bench_all(void)
1918 {
1919 	int nr = ARRAY_SIZE(tests);
1920 	int ret;
1921 	int i;
1922 
1923 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1924 	BUG_ON(ret < 0);
1925 
1926 	for (i = 0; i < nr; i++) {
1927 		run_bench_numa(tests[i][0], tests[i] + 1);
1928 	}
1929 
1930 	printf("\n");
1931 
1932 	return 0;
1933 }
1934 
1935 int bench_numa(int argc, const char **argv)
1936 {
1937 	init_params(&p0, "main,", argc, argv);
1938 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1939 	if (argc)
1940 		goto err;
1941 
1942 	if (p0.run_all)
1943 		return bench_all();
1944 
1945 	if (__bench_numa(NULL))
1946 		goto err;
1947 
1948 	return 0;
1949 
1950 err:
1951 	usage_with_options(numa_usage, options);
1952 	return -1;
1953 }
1954