xref: /openbmc/linux/tools/perf/bench/numa.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6 
7 /* For the CLR_() macros */
8 #include <pthread.h>
9 
10 #include "../perf.h"
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
15 
16 #include "bench.h"
17 
18 #include <errno.h>
19 #include <sched.h>
20 #include <stdio.h>
21 #include <assert.h>
22 #include <malloc.h>
23 #include <signal.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/mman.h>
28 #include <sys/time.h>
29 #include <sys/resource.h>
30 #include <sys/wait.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33 #include <linux/time64.h>
34 
35 #include <numa.h>
36 #include <numaif.h>
37 
38 /*
39  * Regular printout to the terminal, supressed if -q is specified:
40  */
41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
42 
43 /*
44  * Debug printf:
45  */
46 #undef dprintf
47 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
48 
49 struct thread_data {
50 	int			curr_cpu;
51 	cpu_set_t		bind_cpumask;
52 	int			bind_node;
53 	u8			*process_data;
54 	int			process_nr;
55 	int			thread_nr;
56 	int			task_nr;
57 	unsigned int		loops_done;
58 	u64			val;
59 	u64			runtime_ns;
60 	u64			system_time_ns;
61 	u64			user_time_ns;
62 	double			speed_gbs;
63 	pthread_mutex_t		*process_lock;
64 };
65 
66 /* Parameters set by options: */
67 
68 struct params {
69 	/* Startup synchronization: */
70 	bool			serialize_startup;
71 
72 	/* Task hierarchy: */
73 	int			nr_proc;
74 	int			nr_threads;
75 
76 	/* Working set sizes: */
77 	const char		*mb_global_str;
78 	const char		*mb_proc_str;
79 	const char		*mb_proc_locked_str;
80 	const char		*mb_thread_str;
81 
82 	double			mb_global;
83 	double			mb_proc;
84 	double			mb_proc_locked;
85 	double			mb_thread;
86 
87 	/* Access patterns to the working set: */
88 	bool			data_reads;
89 	bool			data_writes;
90 	bool			data_backwards;
91 	bool			data_zero_memset;
92 	bool			data_rand_walk;
93 	u32			nr_loops;
94 	u32			nr_secs;
95 	u32			sleep_usecs;
96 
97 	/* Working set initialization: */
98 	bool			init_zero;
99 	bool			init_random;
100 	bool			init_cpu0;
101 
102 	/* Misc options: */
103 	int			show_details;
104 	int			run_all;
105 	int			thp;
106 
107 	long			bytes_global;
108 	long			bytes_process;
109 	long			bytes_process_locked;
110 	long			bytes_thread;
111 
112 	int			nr_tasks;
113 	bool			show_quiet;
114 
115 	bool			show_convergence;
116 	bool			measure_convergence;
117 
118 	int			perturb_secs;
119 	int			nr_cpus;
120 	int			nr_nodes;
121 
122 	/* Affinity options -C and -N: */
123 	char			*cpu_list_str;
124 	char			*node_list_str;
125 };
126 
127 
128 /* Global, read-writable area, accessible to all processes and threads: */
129 
130 struct global_info {
131 	u8			*data;
132 
133 	pthread_mutex_t		startup_mutex;
134 	int			nr_tasks_started;
135 
136 	pthread_mutex_t		startup_done_mutex;
137 
138 	pthread_mutex_t		start_work_mutex;
139 	int			nr_tasks_working;
140 
141 	pthread_mutex_t		stop_work_mutex;
142 	u64			bytes_done;
143 
144 	struct thread_data	*threads;
145 
146 	/* Convergence latency measurement: */
147 	bool			all_converged;
148 	bool			stop_work;
149 
150 	int			print_once;
151 
152 	struct params		p;
153 };
154 
155 static struct global_info	*g = NULL;
156 
157 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
158 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
159 
160 struct params p0;
161 
162 static const struct option options[] = {
163 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
164 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
165 
166 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
167 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
168 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
169 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
170 
171 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
172 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
173 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
174 
175 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
176 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
177 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
178 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
179 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
180 
181 
182 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
183 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
184 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
185 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
186 
187 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
188 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
189 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
190 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
191 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
192 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
193 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
194 
195 	/* Special option string parsing callbacks: */
196         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
197 			"bind the first N tasks to these specific cpus (the rest is unbound)",
198 			parse_cpus_opt),
199         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
200 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
201 			parse_nodes_opt),
202 	OPT_END()
203 };
204 
205 static const char * const bench_numa_usage[] = {
206 	"perf bench numa <options>",
207 	NULL
208 };
209 
210 static const char * const numa_usage[] = {
211 	"perf bench numa mem [<options>]",
212 	NULL
213 };
214 
215 static cpu_set_t bind_to_cpu(int target_cpu)
216 {
217 	cpu_set_t orig_mask, mask;
218 	int ret;
219 
220 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
221 	BUG_ON(ret);
222 
223 	CPU_ZERO(&mask);
224 
225 	if (target_cpu == -1) {
226 		int cpu;
227 
228 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
229 			CPU_SET(cpu, &mask);
230 	} else {
231 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
232 		CPU_SET(target_cpu, &mask);
233 	}
234 
235 	ret = sched_setaffinity(0, sizeof(mask), &mask);
236 	BUG_ON(ret);
237 
238 	return orig_mask;
239 }
240 
241 static cpu_set_t bind_to_node(int target_node)
242 {
243 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
244 	cpu_set_t orig_mask, mask;
245 	int cpu;
246 	int ret;
247 
248 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
249 	BUG_ON(!cpus_per_node);
250 
251 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
252 	BUG_ON(ret);
253 
254 	CPU_ZERO(&mask);
255 
256 	if (target_node == -1) {
257 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
258 			CPU_SET(cpu, &mask);
259 	} else {
260 		int cpu_start = (target_node + 0) * cpus_per_node;
261 		int cpu_stop  = (target_node + 1) * cpus_per_node;
262 
263 		BUG_ON(cpu_stop > g->p.nr_cpus);
264 
265 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
266 			CPU_SET(cpu, &mask);
267 	}
268 
269 	ret = sched_setaffinity(0, sizeof(mask), &mask);
270 	BUG_ON(ret);
271 
272 	return orig_mask;
273 }
274 
275 static void bind_to_cpumask(cpu_set_t mask)
276 {
277 	int ret;
278 
279 	ret = sched_setaffinity(0, sizeof(mask), &mask);
280 	BUG_ON(ret);
281 }
282 
283 static void mempol_restore(void)
284 {
285 	int ret;
286 
287 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
288 
289 	BUG_ON(ret);
290 }
291 
292 static void bind_to_memnode(int node)
293 {
294 	unsigned long nodemask;
295 	int ret;
296 
297 	if (node == -1)
298 		return;
299 
300 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
301 	nodemask = 1L << node;
302 
303 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
304 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
305 
306 	BUG_ON(ret);
307 }
308 
309 #define HPSIZE (2*1024*1024)
310 
311 #define set_taskname(fmt...)				\
312 do {							\
313 	char name[20];					\
314 							\
315 	snprintf(name, 20, fmt);			\
316 	prctl(PR_SET_NAME, name);			\
317 } while (0)
318 
319 static u8 *alloc_data(ssize_t bytes0, int map_flags,
320 		      int init_zero, int init_cpu0, int thp, int init_random)
321 {
322 	cpu_set_t orig_mask;
323 	ssize_t bytes;
324 	u8 *buf;
325 	int ret;
326 
327 	if (!bytes0)
328 		return NULL;
329 
330 	/* Allocate and initialize all memory on CPU#0: */
331 	if (init_cpu0) {
332 		orig_mask = bind_to_node(0);
333 		bind_to_memnode(0);
334 	}
335 
336 	bytes = bytes0 + HPSIZE;
337 
338 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
339 	BUG_ON(buf == (void *)-1);
340 
341 	if (map_flags == MAP_PRIVATE) {
342 		if (thp > 0) {
343 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
344 			if (ret && !g->print_once) {
345 				g->print_once = 1;
346 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
347 			}
348 		}
349 		if (thp < 0) {
350 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
351 			if (ret && !g->print_once) {
352 				g->print_once = 1;
353 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
354 			}
355 		}
356 	}
357 
358 	if (init_zero) {
359 		bzero(buf, bytes);
360 	} else {
361 		/* Initialize random contents, different in each word: */
362 		if (init_random) {
363 			u64 *wbuf = (void *)buf;
364 			long off = rand();
365 			long i;
366 
367 			for (i = 0; i < bytes/8; i++)
368 				wbuf[i] = i + off;
369 		}
370 	}
371 
372 	/* Align to 2MB boundary: */
373 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
374 
375 	/* Restore affinity: */
376 	if (init_cpu0) {
377 		bind_to_cpumask(orig_mask);
378 		mempol_restore();
379 	}
380 
381 	return buf;
382 }
383 
384 static void free_data(void *data, ssize_t bytes)
385 {
386 	int ret;
387 
388 	if (!data)
389 		return;
390 
391 	ret = munmap(data, bytes);
392 	BUG_ON(ret);
393 }
394 
395 /*
396  * Create a shared memory buffer that can be shared between processes, zeroed:
397  */
398 static void * zalloc_shared_data(ssize_t bytes)
399 {
400 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
401 }
402 
403 /*
404  * Create a shared memory buffer that can be shared between processes:
405  */
406 static void * setup_shared_data(ssize_t bytes)
407 {
408 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410 
411 /*
412  * Allocate process-local memory - this will either be shared between
413  * threads of this process, or only be accessed by this thread:
414  */
415 static void * setup_private_data(ssize_t bytes)
416 {
417 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
418 }
419 
420 /*
421  * Return a process-shared (global) mutex:
422  */
423 static void init_global_mutex(pthread_mutex_t *mutex)
424 {
425 	pthread_mutexattr_t attr;
426 
427 	pthread_mutexattr_init(&attr);
428 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
429 	pthread_mutex_init(mutex, &attr);
430 }
431 
432 static int parse_cpu_list(const char *arg)
433 {
434 	p0.cpu_list_str = strdup(arg);
435 
436 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
437 
438 	return 0;
439 }
440 
441 static int parse_setup_cpu_list(void)
442 {
443 	struct thread_data *td;
444 	char *str0, *str;
445 	int t;
446 
447 	if (!g->p.cpu_list_str)
448 		return 0;
449 
450 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
451 
452 	str0 = str = strdup(g->p.cpu_list_str);
453 	t = 0;
454 
455 	BUG_ON(!str);
456 
457 	tprintf("# binding tasks to CPUs:\n");
458 	tprintf("#  ");
459 
460 	while (true) {
461 		int bind_cpu, bind_cpu_0, bind_cpu_1;
462 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
463 		int bind_len;
464 		int step;
465 		int mul;
466 
467 		tok = strsep(&str, ",");
468 		if (!tok)
469 			break;
470 
471 		tok_end = strstr(tok, "-");
472 
473 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
474 		if (!tok_end) {
475 			/* Single CPU specified: */
476 			bind_cpu_0 = bind_cpu_1 = atol(tok);
477 		} else {
478 			/* CPU range specified (for example: "5-11"): */
479 			bind_cpu_0 = atol(tok);
480 			bind_cpu_1 = atol(tok_end + 1);
481 		}
482 
483 		step = 1;
484 		tok_step = strstr(tok, "#");
485 		if (tok_step) {
486 			step = atol(tok_step + 1);
487 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
488 		}
489 
490 		/*
491 		 * Mask length.
492 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
493 		 * where the _4 means the next 4 CPUs are allowed.
494 		 */
495 		bind_len = 1;
496 		tok_len = strstr(tok, "_");
497 		if (tok_len) {
498 			bind_len = atol(tok_len + 1);
499 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
500 		}
501 
502 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
503 		mul = 1;
504 		tok_mul = strstr(tok, "x");
505 		if (tok_mul) {
506 			mul = atol(tok_mul + 1);
507 			BUG_ON(mul <= 0);
508 		}
509 
510 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
511 
512 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
513 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
514 			return -1;
515 		}
516 
517 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
518 		BUG_ON(bind_cpu_0 > bind_cpu_1);
519 
520 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
521 			int i;
522 
523 			for (i = 0; i < mul; i++) {
524 				int cpu;
525 
526 				if (t >= g->p.nr_tasks) {
527 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
528 					goto out;
529 				}
530 				td = g->threads + t;
531 
532 				if (t)
533 					tprintf(",");
534 				if (bind_len > 1) {
535 					tprintf("%2d/%d", bind_cpu, bind_len);
536 				} else {
537 					tprintf("%2d", bind_cpu);
538 				}
539 
540 				CPU_ZERO(&td->bind_cpumask);
541 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
542 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
543 					CPU_SET(cpu, &td->bind_cpumask);
544 				}
545 				t++;
546 			}
547 		}
548 	}
549 out:
550 
551 	tprintf("\n");
552 
553 	if (t < g->p.nr_tasks)
554 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
555 
556 	free(str0);
557 	return 0;
558 }
559 
560 static int parse_cpus_opt(const struct option *opt __maybe_unused,
561 			  const char *arg, int unset __maybe_unused)
562 {
563 	if (!arg)
564 		return -1;
565 
566 	return parse_cpu_list(arg);
567 }
568 
569 static int parse_node_list(const char *arg)
570 {
571 	p0.node_list_str = strdup(arg);
572 
573 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
574 
575 	return 0;
576 }
577 
578 static int parse_setup_node_list(void)
579 {
580 	struct thread_data *td;
581 	char *str0, *str;
582 	int t;
583 
584 	if (!g->p.node_list_str)
585 		return 0;
586 
587 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
588 
589 	str0 = str = strdup(g->p.node_list_str);
590 	t = 0;
591 
592 	BUG_ON(!str);
593 
594 	tprintf("# binding tasks to NODEs:\n");
595 	tprintf("# ");
596 
597 	while (true) {
598 		int bind_node, bind_node_0, bind_node_1;
599 		char *tok, *tok_end, *tok_step, *tok_mul;
600 		int step;
601 		int mul;
602 
603 		tok = strsep(&str, ",");
604 		if (!tok)
605 			break;
606 
607 		tok_end = strstr(tok, "-");
608 
609 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
610 		if (!tok_end) {
611 			/* Single NODE specified: */
612 			bind_node_0 = bind_node_1 = atol(tok);
613 		} else {
614 			/* NODE range specified (for example: "5-11"): */
615 			bind_node_0 = atol(tok);
616 			bind_node_1 = atol(tok_end + 1);
617 		}
618 
619 		step = 1;
620 		tok_step = strstr(tok, "#");
621 		if (tok_step) {
622 			step = atol(tok_step + 1);
623 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
624 		}
625 
626 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
627 		mul = 1;
628 		tok_mul = strstr(tok, "x");
629 		if (tok_mul) {
630 			mul = atol(tok_mul + 1);
631 			BUG_ON(mul <= 0);
632 		}
633 
634 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
635 
636 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
637 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
638 			return -1;
639 		}
640 
641 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
642 		BUG_ON(bind_node_0 > bind_node_1);
643 
644 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
645 			int i;
646 
647 			for (i = 0; i < mul; i++) {
648 				if (t >= g->p.nr_tasks) {
649 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
650 					goto out;
651 				}
652 				td = g->threads + t;
653 
654 				if (!t)
655 					tprintf(" %2d", bind_node);
656 				else
657 					tprintf(",%2d", bind_node);
658 
659 				td->bind_node = bind_node;
660 				t++;
661 			}
662 		}
663 	}
664 out:
665 
666 	tprintf("\n");
667 
668 	if (t < g->p.nr_tasks)
669 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
670 
671 	free(str0);
672 	return 0;
673 }
674 
675 static int parse_nodes_opt(const struct option *opt __maybe_unused,
676 			  const char *arg, int unset __maybe_unused)
677 {
678 	if (!arg)
679 		return -1;
680 
681 	return parse_node_list(arg);
682 
683 	return 0;
684 }
685 
686 #define BIT(x) (1ul << x)
687 
688 static inline uint32_t lfsr_32(uint32_t lfsr)
689 {
690 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
691 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
692 }
693 
694 /*
695  * Make sure there's real data dependency to RAM (when read
696  * accesses are enabled), so the compiler, the CPU and the
697  * kernel (KSM, zero page, etc.) cannot optimize away RAM
698  * accesses:
699  */
700 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
701 {
702 	if (g->p.data_reads)
703 		val += *data;
704 	if (g->p.data_writes)
705 		*data = val + 1;
706 	return val;
707 }
708 
709 /*
710  * The worker process does two types of work, a forwards going
711  * loop and a backwards going loop.
712  *
713  * We do this so that on multiprocessor systems we do not create
714  * a 'train' of processing, with highly synchronized processes,
715  * skewing the whole benchmark.
716  */
717 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
718 {
719 	long words = bytes/sizeof(u64);
720 	u64 *data = (void *)__data;
721 	long chunk_0, chunk_1;
722 	u64 *d0, *d, *d1;
723 	long off;
724 	long i;
725 
726 	BUG_ON(!data && words);
727 	BUG_ON(data && !words);
728 
729 	if (!data)
730 		return val;
731 
732 	/* Very simple memset() work variant: */
733 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
734 		bzero(data, bytes);
735 		return val;
736 	}
737 
738 	/* Spread out by PID/TID nr and by loop nr: */
739 	chunk_0 = words/nr_max;
740 	chunk_1 = words/g->p.nr_loops;
741 	off = nr*chunk_0 + loop*chunk_1;
742 
743 	while (off >= words)
744 		off -= words;
745 
746 	if (g->p.data_rand_walk) {
747 		u32 lfsr = nr + loop + val;
748 		int j;
749 
750 		for (i = 0; i < words/1024; i++) {
751 			long start, end;
752 
753 			lfsr = lfsr_32(lfsr);
754 
755 			start = lfsr % words;
756 			end = min(start + 1024, words-1);
757 
758 			if (g->p.data_zero_memset) {
759 				bzero(data + start, (end-start) * sizeof(u64));
760 			} else {
761 				for (j = start; j < end; j++)
762 					val = access_data(data + j, val);
763 			}
764 		}
765 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
766 
767 		d0 = data + off;
768 		d  = data + off + 1;
769 		d1 = data + words;
770 
771 		/* Process data forwards: */
772 		for (;;) {
773 			if (unlikely(d >= d1))
774 				d = data;
775 			if (unlikely(d == d0))
776 				break;
777 
778 			val = access_data(d, val);
779 
780 			d++;
781 		}
782 	} else {
783 		/* Process data backwards: */
784 
785 		d0 = data + off;
786 		d  = data + off - 1;
787 		d1 = data + words;
788 
789 		/* Process data forwards: */
790 		for (;;) {
791 			if (unlikely(d < data))
792 				d = data + words-1;
793 			if (unlikely(d == d0))
794 				break;
795 
796 			val = access_data(d, val);
797 
798 			d--;
799 		}
800 	}
801 
802 	return val;
803 }
804 
805 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
806 {
807 	unsigned int cpu;
808 
809 	cpu = sched_getcpu();
810 
811 	g->threads[task_nr].curr_cpu = cpu;
812 	prctl(0, bytes_worked);
813 }
814 
815 #define MAX_NR_NODES	64
816 
817 /*
818  * Count the number of nodes a process's threads
819  * are spread out on.
820  *
821  * A count of 1 means that the process is compressed
822  * to a single node. A count of g->p.nr_nodes means it's
823  * spread out on the whole system.
824  */
825 static int count_process_nodes(int process_nr)
826 {
827 	char node_present[MAX_NR_NODES] = { 0, };
828 	int nodes;
829 	int n, t;
830 
831 	for (t = 0; t < g->p.nr_threads; t++) {
832 		struct thread_data *td;
833 		int task_nr;
834 		int node;
835 
836 		task_nr = process_nr*g->p.nr_threads + t;
837 		td = g->threads + task_nr;
838 
839 		node = numa_node_of_cpu(td->curr_cpu);
840 		if (node < 0) /* curr_cpu was likely still -1 */
841 			return 0;
842 
843 		node_present[node] = 1;
844 	}
845 
846 	nodes = 0;
847 
848 	for (n = 0; n < MAX_NR_NODES; n++)
849 		nodes += node_present[n];
850 
851 	return nodes;
852 }
853 
854 /*
855  * Count the number of distinct process-threads a node contains.
856  *
857  * A count of 1 means that the node contains only a single
858  * process. If all nodes on the system contain at most one
859  * process then we are well-converged.
860  */
861 static int count_node_processes(int node)
862 {
863 	int processes = 0;
864 	int t, p;
865 
866 	for (p = 0; p < g->p.nr_proc; p++) {
867 		for (t = 0; t < g->p.nr_threads; t++) {
868 			struct thread_data *td;
869 			int task_nr;
870 			int n;
871 
872 			task_nr = p*g->p.nr_threads + t;
873 			td = g->threads + task_nr;
874 
875 			n = numa_node_of_cpu(td->curr_cpu);
876 			if (n == node) {
877 				processes++;
878 				break;
879 			}
880 		}
881 	}
882 
883 	return processes;
884 }
885 
886 static void calc_convergence_compression(int *strong)
887 {
888 	unsigned int nodes_min, nodes_max;
889 	int p;
890 
891 	nodes_min = -1;
892 	nodes_max =  0;
893 
894 	for (p = 0; p < g->p.nr_proc; p++) {
895 		unsigned int nodes = count_process_nodes(p);
896 
897 		if (!nodes) {
898 			*strong = 0;
899 			return;
900 		}
901 
902 		nodes_min = min(nodes, nodes_min);
903 		nodes_max = max(nodes, nodes_max);
904 	}
905 
906 	/* Strong convergence: all threads compress on a single node: */
907 	if (nodes_min == 1 && nodes_max == 1) {
908 		*strong = 1;
909 	} else {
910 		*strong = 0;
911 		tprintf(" {%d-%d}", nodes_min, nodes_max);
912 	}
913 }
914 
915 static void calc_convergence(double runtime_ns_max, double *convergence)
916 {
917 	unsigned int loops_done_min, loops_done_max;
918 	int process_groups;
919 	int nodes[MAX_NR_NODES];
920 	int distance;
921 	int nr_min;
922 	int nr_max;
923 	int strong;
924 	int sum;
925 	int nr;
926 	int node;
927 	int cpu;
928 	int t;
929 
930 	if (!g->p.show_convergence && !g->p.measure_convergence)
931 		return;
932 
933 	for (node = 0; node < g->p.nr_nodes; node++)
934 		nodes[node] = 0;
935 
936 	loops_done_min = -1;
937 	loops_done_max = 0;
938 
939 	for (t = 0; t < g->p.nr_tasks; t++) {
940 		struct thread_data *td = g->threads + t;
941 		unsigned int loops_done;
942 
943 		cpu = td->curr_cpu;
944 
945 		/* Not all threads have written it yet: */
946 		if (cpu < 0)
947 			continue;
948 
949 		node = numa_node_of_cpu(cpu);
950 
951 		nodes[node]++;
952 
953 		loops_done = td->loops_done;
954 		loops_done_min = min(loops_done, loops_done_min);
955 		loops_done_max = max(loops_done, loops_done_max);
956 	}
957 
958 	nr_max = 0;
959 	nr_min = g->p.nr_tasks;
960 	sum = 0;
961 
962 	for (node = 0; node < g->p.nr_nodes; node++) {
963 		nr = nodes[node];
964 		nr_min = min(nr, nr_min);
965 		nr_max = max(nr, nr_max);
966 		sum += nr;
967 	}
968 	BUG_ON(nr_min > nr_max);
969 
970 	BUG_ON(sum > g->p.nr_tasks);
971 
972 	if (0 && (sum < g->p.nr_tasks))
973 		return;
974 
975 	/*
976 	 * Count the number of distinct process groups present
977 	 * on nodes - when we are converged this will decrease
978 	 * to g->p.nr_proc:
979 	 */
980 	process_groups = 0;
981 
982 	for (node = 0; node < g->p.nr_nodes; node++) {
983 		int processes = count_node_processes(node);
984 
985 		nr = nodes[node];
986 		tprintf(" %2d/%-2d", nr, processes);
987 
988 		process_groups += processes;
989 	}
990 
991 	distance = nr_max - nr_min;
992 
993 	tprintf(" [%2d/%-2d]", distance, process_groups);
994 
995 	tprintf(" l:%3d-%-3d (%3d)",
996 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
997 
998 	if (loops_done_min && loops_done_max) {
999 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1000 
1001 		tprintf(" [%4.1f%%]", skew * 100.0);
1002 	}
1003 
1004 	calc_convergence_compression(&strong);
1005 
1006 	if (strong && process_groups == g->p.nr_proc) {
1007 		if (!*convergence) {
1008 			*convergence = runtime_ns_max;
1009 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1010 			if (g->p.measure_convergence) {
1011 				g->all_converged = true;
1012 				g->stop_work = true;
1013 			}
1014 		}
1015 	} else {
1016 		if (*convergence) {
1017 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1018 			*convergence = 0;
1019 		}
1020 		tprintf("\n");
1021 	}
1022 }
1023 
1024 static void show_summary(double runtime_ns_max, int l, double *convergence)
1025 {
1026 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1027 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1028 
1029 	calc_convergence(runtime_ns_max, convergence);
1030 
1031 	if (g->p.show_details >= 0)
1032 		fflush(stdout);
1033 }
1034 
1035 static void *worker_thread(void *__tdata)
1036 {
1037 	struct thread_data *td = __tdata;
1038 	struct timeval start0, start, stop, diff;
1039 	int process_nr = td->process_nr;
1040 	int thread_nr = td->thread_nr;
1041 	unsigned long last_perturbance;
1042 	int task_nr = td->task_nr;
1043 	int details = g->p.show_details;
1044 	int first_task, last_task;
1045 	double convergence = 0;
1046 	u64 val = td->val;
1047 	double runtime_ns_max;
1048 	u8 *global_data;
1049 	u8 *process_data;
1050 	u8 *thread_data;
1051 	u64 bytes_done;
1052 	long work_done;
1053 	u32 l;
1054 	struct rusage rusage;
1055 
1056 	bind_to_cpumask(td->bind_cpumask);
1057 	bind_to_memnode(td->bind_node);
1058 
1059 	set_taskname("thread %d/%d", process_nr, thread_nr);
1060 
1061 	global_data = g->data;
1062 	process_data = td->process_data;
1063 	thread_data = setup_private_data(g->p.bytes_thread);
1064 
1065 	bytes_done = 0;
1066 
1067 	last_task = 0;
1068 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1069 		last_task = 1;
1070 
1071 	first_task = 0;
1072 	if (process_nr == 0 && thread_nr == 0)
1073 		first_task = 1;
1074 
1075 	if (details >= 2) {
1076 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1077 			process_nr, thread_nr, global_data, process_data, thread_data);
1078 	}
1079 
1080 	if (g->p.serialize_startup) {
1081 		pthread_mutex_lock(&g->startup_mutex);
1082 		g->nr_tasks_started++;
1083 		pthread_mutex_unlock(&g->startup_mutex);
1084 
1085 		/* Here we will wait for the main process to start us all at once: */
1086 		pthread_mutex_lock(&g->start_work_mutex);
1087 		g->nr_tasks_working++;
1088 
1089 		/* Last one wake the main process: */
1090 		if (g->nr_tasks_working == g->p.nr_tasks)
1091 			pthread_mutex_unlock(&g->startup_done_mutex);
1092 
1093 		pthread_mutex_unlock(&g->start_work_mutex);
1094 	}
1095 
1096 	gettimeofday(&start0, NULL);
1097 
1098 	start = stop = start0;
1099 	last_perturbance = start.tv_sec;
1100 
1101 	for (l = 0; l < g->p.nr_loops; l++) {
1102 		start = stop;
1103 
1104 		if (g->stop_work)
1105 			break;
1106 
1107 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1108 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1109 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1110 
1111 		if (g->p.sleep_usecs) {
1112 			pthread_mutex_lock(td->process_lock);
1113 			usleep(g->p.sleep_usecs);
1114 			pthread_mutex_unlock(td->process_lock);
1115 		}
1116 		/*
1117 		 * Amount of work to be done under a process-global lock:
1118 		 */
1119 		if (g->p.bytes_process_locked) {
1120 			pthread_mutex_lock(td->process_lock);
1121 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1122 			pthread_mutex_unlock(td->process_lock);
1123 		}
1124 
1125 		work_done = g->p.bytes_global + g->p.bytes_process +
1126 			    g->p.bytes_process_locked + g->p.bytes_thread;
1127 
1128 		update_curr_cpu(task_nr, work_done);
1129 		bytes_done += work_done;
1130 
1131 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1132 			continue;
1133 
1134 		td->loops_done = l;
1135 
1136 		gettimeofday(&stop, NULL);
1137 
1138 		/* Check whether our max runtime timed out: */
1139 		if (g->p.nr_secs) {
1140 			timersub(&stop, &start0, &diff);
1141 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1142 				g->stop_work = true;
1143 				break;
1144 			}
1145 		}
1146 
1147 		/* Update the summary at most once per second: */
1148 		if (start.tv_sec == stop.tv_sec)
1149 			continue;
1150 
1151 		/*
1152 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1153 		 * by migrating to CPU#0:
1154 		 */
1155 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1156 			cpu_set_t orig_mask;
1157 			int target_cpu;
1158 			int this_cpu;
1159 
1160 			last_perturbance = stop.tv_sec;
1161 
1162 			/*
1163 			 * Depending on where we are running, move into
1164 			 * the other half of the system, to create some
1165 			 * real disturbance:
1166 			 */
1167 			this_cpu = g->threads[task_nr].curr_cpu;
1168 			if (this_cpu < g->p.nr_cpus/2)
1169 				target_cpu = g->p.nr_cpus-1;
1170 			else
1171 				target_cpu = 0;
1172 
1173 			orig_mask = bind_to_cpu(target_cpu);
1174 
1175 			/* Here we are running on the target CPU already */
1176 			if (details >= 1)
1177 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1178 
1179 			bind_to_cpumask(orig_mask);
1180 		}
1181 
1182 		if (details >= 3) {
1183 			timersub(&stop, &start, &diff);
1184 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1185 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1186 
1187 			if (details >= 0) {
1188 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1189 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1190 			}
1191 			fflush(stdout);
1192 		}
1193 		if (!last_task)
1194 			continue;
1195 
1196 		timersub(&stop, &start0, &diff);
1197 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1198 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1199 
1200 		show_summary(runtime_ns_max, l, &convergence);
1201 	}
1202 
1203 	gettimeofday(&stop, NULL);
1204 	timersub(&stop, &start0, &diff);
1205 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1206 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1207 	td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1208 
1209 	getrusage(RUSAGE_THREAD, &rusage);
1210 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1211 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1212 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1213 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1214 
1215 	free_data(thread_data, g->p.bytes_thread);
1216 
1217 	pthread_mutex_lock(&g->stop_work_mutex);
1218 	g->bytes_done += bytes_done;
1219 	pthread_mutex_unlock(&g->stop_work_mutex);
1220 
1221 	return NULL;
1222 }
1223 
1224 /*
1225  * A worker process starts a couple of threads:
1226  */
1227 static void worker_process(int process_nr)
1228 {
1229 	pthread_mutex_t process_lock;
1230 	struct thread_data *td;
1231 	pthread_t *pthreads;
1232 	u8 *process_data;
1233 	int task_nr;
1234 	int ret;
1235 	int t;
1236 
1237 	pthread_mutex_init(&process_lock, NULL);
1238 	set_taskname("process %d", process_nr);
1239 
1240 	/*
1241 	 * Pick up the memory policy and the CPU binding of our first thread,
1242 	 * so that we initialize memory accordingly:
1243 	 */
1244 	task_nr = process_nr*g->p.nr_threads;
1245 	td = g->threads + task_nr;
1246 
1247 	bind_to_memnode(td->bind_node);
1248 	bind_to_cpumask(td->bind_cpumask);
1249 
1250 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1251 	process_data = setup_private_data(g->p.bytes_process);
1252 
1253 	if (g->p.show_details >= 3) {
1254 		printf(" # process %2d global mem: %p, process mem: %p\n",
1255 			process_nr, g->data, process_data);
1256 	}
1257 
1258 	for (t = 0; t < g->p.nr_threads; t++) {
1259 		task_nr = process_nr*g->p.nr_threads + t;
1260 		td = g->threads + task_nr;
1261 
1262 		td->process_data = process_data;
1263 		td->process_nr   = process_nr;
1264 		td->thread_nr    = t;
1265 		td->task_nr	 = task_nr;
1266 		td->val          = rand();
1267 		td->curr_cpu	 = -1;
1268 		td->process_lock = &process_lock;
1269 
1270 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1271 		BUG_ON(ret);
1272 	}
1273 
1274 	for (t = 0; t < g->p.nr_threads; t++) {
1275                 ret = pthread_join(pthreads[t], NULL);
1276 		BUG_ON(ret);
1277 	}
1278 
1279 	free_data(process_data, g->p.bytes_process);
1280 	free(pthreads);
1281 }
1282 
1283 static void print_summary(void)
1284 {
1285 	if (g->p.show_details < 0)
1286 		return;
1287 
1288 	printf("\n ###\n");
1289 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1290 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1291 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1292 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1293 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1294 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1295 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1296 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1297 
1298 	printf(" ###\n");
1299 
1300 	printf("\n ###\n"); fflush(stdout);
1301 }
1302 
1303 static void init_thread_data(void)
1304 {
1305 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1306 	int t;
1307 
1308 	g->threads = zalloc_shared_data(size);
1309 
1310 	for (t = 0; t < g->p.nr_tasks; t++) {
1311 		struct thread_data *td = g->threads + t;
1312 		int cpu;
1313 
1314 		/* Allow all nodes by default: */
1315 		td->bind_node = -1;
1316 
1317 		/* Allow all CPUs by default: */
1318 		CPU_ZERO(&td->bind_cpumask);
1319 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1320 			CPU_SET(cpu, &td->bind_cpumask);
1321 	}
1322 }
1323 
1324 static void deinit_thread_data(void)
1325 {
1326 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1327 
1328 	free_data(g->threads, size);
1329 }
1330 
1331 static int init(void)
1332 {
1333 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1334 
1335 	/* Copy over options: */
1336 	g->p = p0;
1337 
1338 	g->p.nr_cpus = numa_num_configured_cpus();
1339 
1340 	g->p.nr_nodes = numa_max_node() + 1;
1341 
1342 	/* char array in count_process_nodes(): */
1343 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1344 
1345 	if (g->p.show_quiet && !g->p.show_details)
1346 		g->p.show_details = -1;
1347 
1348 	/* Some memory should be specified: */
1349 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1350 		return -1;
1351 
1352 	if (g->p.mb_global_str) {
1353 		g->p.mb_global = atof(g->p.mb_global_str);
1354 		BUG_ON(g->p.mb_global < 0);
1355 	}
1356 
1357 	if (g->p.mb_proc_str) {
1358 		g->p.mb_proc = atof(g->p.mb_proc_str);
1359 		BUG_ON(g->p.mb_proc < 0);
1360 	}
1361 
1362 	if (g->p.mb_proc_locked_str) {
1363 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1364 		BUG_ON(g->p.mb_proc_locked < 0);
1365 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1366 	}
1367 
1368 	if (g->p.mb_thread_str) {
1369 		g->p.mb_thread = atof(g->p.mb_thread_str);
1370 		BUG_ON(g->p.mb_thread < 0);
1371 	}
1372 
1373 	BUG_ON(g->p.nr_threads <= 0);
1374 	BUG_ON(g->p.nr_proc <= 0);
1375 
1376 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1377 
1378 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1379 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1380 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1381 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1382 
1383 	g->data = setup_shared_data(g->p.bytes_global);
1384 
1385 	/* Startup serialization: */
1386 	init_global_mutex(&g->start_work_mutex);
1387 	init_global_mutex(&g->startup_mutex);
1388 	init_global_mutex(&g->startup_done_mutex);
1389 	init_global_mutex(&g->stop_work_mutex);
1390 
1391 	init_thread_data();
1392 
1393 	tprintf("#\n");
1394 	if (parse_setup_cpu_list() || parse_setup_node_list())
1395 		return -1;
1396 	tprintf("#\n");
1397 
1398 	print_summary();
1399 
1400 	return 0;
1401 }
1402 
1403 static void deinit(void)
1404 {
1405 	free_data(g->data, g->p.bytes_global);
1406 	g->data = NULL;
1407 
1408 	deinit_thread_data();
1409 
1410 	free_data(g, sizeof(*g));
1411 	g = NULL;
1412 }
1413 
1414 /*
1415  * Print a short or long result, depending on the verbosity setting:
1416  */
1417 static void print_res(const char *name, double val,
1418 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1419 {
1420 	if (!name)
1421 		name = "main,";
1422 
1423 	if (!g->p.show_quiet)
1424 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1425 	else
1426 		printf(" %14.3f %s\n", val, txt_long);
1427 }
1428 
1429 static int __bench_numa(const char *name)
1430 {
1431 	struct timeval start, stop, diff;
1432 	u64 runtime_ns_min, runtime_ns_sum;
1433 	pid_t *pids, pid, wpid;
1434 	double delta_runtime;
1435 	double runtime_avg;
1436 	double runtime_sec_max;
1437 	double runtime_sec_min;
1438 	int wait_stat;
1439 	double bytes;
1440 	int i, t, p;
1441 
1442 	if (init())
1443 		return -1;
1444 
1445 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1446 	pid = -1;
1447 
1448 	/* All threads try to acquire it, this way we can wait for them to start up: */
1449 	pthread_mutex_lock(&g->start_work_mutex);
1450 
1451 	if (g->p.serialize_startup) {
1452 		tprintf(" #\n");
1453 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1454 	}
1455 
1456 	gettimeofday(&start, NULL);
1457 
1458 	for (i = 0; i < g->p.nr_proc; i++) {
1459 		pid = fork();
1460 		dprintf(" # process %2d: PID %d\n", i, pid);
1461 
1462 		BUG_ON(pid < 0);
1463 		if (!pid) {
1464 			/* Child process: */
1465 			worker_process(i);
1466 
1467 			exit(0);
1468 		}
1469 		pids[i] = pid;
1470 
1471 	}
1472 	/* Wait for all the threads to start up: */
1473 	while (g->nr_tasks_started != g->p.nr_tasks)
1474 		usleep(USEC_PER_MSEC);
1475 
1476 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1477 
1478 	if (g->p.serialize_startup) {
1479 		double startup_sec;
1480 
1481 		pthread_mutex_lock(&g->startup_done_mutex);
1482 
1483 		/* This will start all threads: */
1484 		pthread_mutex_unlock(&g->start_work_mutex);
1485 
1486 		/* This mutex is locked - the last started thread will wake us: */
1487 		pthread_mutex_lock(&g->startup_done_mutex);
1488 
1489 		gettimeofday(&stop, NULL);
1490 
1491 		timersub(&stop, &start, &diff);
1492 
1493 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1494 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1495 		startup_sec /= NSEC_PER_SEC;
1496 
1497 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1498 		tprintf(" #\n");
1499 
1500 		start = stop;
1501 		pthread_mutex_unlock(&g->startup_done_mutex);
1502 	} else {
1503 		gettimeofday(&start, NULL);
1504 	}
1505 
1506 	/* Parent process: */
1507 
1508 
1509 	for (i = 0; i < g->p.nr_proc; i++) {
1510 		wpid = waitpid(pids[i], &wait_stat, 0);
1511 		BUG_ON(wpid < 0);
1512 		BUG_ON(!WIFEXITED(wait_stat));
1513 
1514 	}
1515 
1516 	runtime_ns_sum = 0;
1517 	runtime_ns_min = -1LL;
1518 
1519 	for (t = 0; t < g->p.nr_tasks; t++) {
1520 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1521 
1522 		runtime_ns_sum += thread_runtime_ns;
1523 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1524 	}
1525 
1526 	gettimeofday(&stop, NULL);
1527 	timersub(&stop, &start, &diff);
1528 
1529 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1530 
1531 	tprintf("\n ###\n");
1532 	tprintf("\n");
1533 
1534 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1535 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1536 	runtime_sec_max /= NSEC_PER_SEC;
1537 
1538 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1539 
1540 	bytes = g->bytes_done;
1541 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1542 
1543 	if (g->p.measure_convergence) {
1544 		print_res(name, runtime_sec_max,
1545 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1546 	}
1547 
1548 	print_res(name, runtime_sec_max,
1549 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1550 
1551 	print_res(name, runtime_sec_min,
1552 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1553 
1554 	print_res(name, runtime_avg,
1555 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1556 
1557 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1558 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1559 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1560 
1561 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1562 		"GB,", "data/thread",		"GB data processed, per thread");
1563 
1564 	print_res(name, bytes / 1e9,
1565 		"GB,", "data-total",		"GB data processed, total");
1566 
1567 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1568 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1569 
1570 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1571 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1572 
1573 	print_res(name, bytes / runtime_sec_max / 1e9,
1574 		"GB/sec,", "total-speed",	"GB/sec total speed");
1575 
1576 	if (g->p.show_details >= 2) {
1577 		char tname[14 + 2 * 10 + 1];
1578 		struct thread_data *td;
1579 		for (p = 0; p < g->p.nr_proc; p++) {
1580 			for (t = 0; t < g->p.nr_threads; t++) {
1581 				memset(tname, 0, sizeof(tname));
1582 				td = g->threads + p*g->p.nr_threads + t;
1583 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1584 				print_res(tname, td->speed_gbs,
1585 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1586 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1587 					"secs",	"thread-system-time", "system CPU time/thread");
1588 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1589 					"secs",	"thread-user-time", "user CPU time/thread");
1590 			}
1591 		}
1592 	}
1593 
1594 	free(pids);
1595 
1596 	deinit();
1597 
1598 	return 0;
1599 }
1600 
1601 #define MAX_ARGS 50
1602 
1603 static int command_size(const char **argv)
1604 {
1605 	int size = 0;
1606 
1607 	while (*argv) {
1608 		size++;
1609 		argv++;
1610 	}
1611 
1612 	BUG_ON(size >= MAX_ARGS);
1613 
1614 	return size;
1615 }
1616 
1617 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1618 {
1619 	int i;
1620 
1621 	printf("\n # Running %s \"perf bench numa", name);
1622 
1623 	for (i = 0; i < argc; i++)
1624 		printf(" %s", argv[i]);
1625 
1626 	printf("\"\n");
1627 
1628 	memset(p, 0, sizeof(*p));
1629 
1630 	/* Initialize nonzero defaults: */
1631 
1632 	p->serialize_startup		= 1;
1633 	p->data_reads			= true;
1634 	p->data_writes			= true;
1635 	p->data_backwards		= true;
1636 	p->data_rand_walk		= true;
1637 	p->nr_loops			= -1;
1638 	p->init_random			= true;
1639 	p->mb_global_str		= "1";
1640 	p->nr_proc			= 1;
1641 	p->nr_threads			= 1;
1642 	p->nr_secs			= 5;
1643 	p->run_all			= argc == 1;
1644 }
1645 
1646 static int run_bench_numa(const char *name, const char **argv)
1647 {
1648 	int argc = command_size(argv);
1649 
1650 	init_params(&p0, name, argc, argv);
1651 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1652 	if (argc)
1653 		goto err;
1654 
1655 	if (__bench_numa(name))
1656 		goto err;
1657 
1658 	return 0;
1659 
1660 err:
1661 	return -1;
1662 }
1663 
1664 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1665 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1666 
1667 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1668 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1669 
1670 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1671 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1672 
1673 /*
1674  * The built-in test-suite executed by "perf bench numa -a".
1675  *
1676  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1677  */
1678 static const char *tests[][MAX_ARGS] = {
1679    /* Basic single-stream NUMA bandwidth measurements: */
1680    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1681 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1682    { "RAM-bw-local-NOTHP,",
1683 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1685    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1686 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1687 
1688    /* 2-stream NUMA bandwidth measurements: */
1689    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1690 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1691    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1692 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1693 
1694    /* Cross-stream NUMA bandwidth measurement: */
1695    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1696 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1697 
1698    /* Convergence latency measurements: */
1699    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1700    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1701    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1702    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1703    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1704    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1705    { " 4x4-convergence-NOTHP,",
1706 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1707    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1708    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1709    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1710    { " 8x4-convergence-NOTHP,",
1711 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1712    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1713    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1714    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1715    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1716    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1717 
1718    /* Various NUMA process/thread layout bandwidth measurements: */
1719    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1720    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1721    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1722    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1723    { " 8x1-bw-process-NOTHP,",
1724 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1725    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1726 
1727    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1728    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1729    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1730    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1731 
1732    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1733    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1734    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1735    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1736    { " 4x8-bw-thread-NOTHP,",
1737 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1738    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1739    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1740 
1741    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1742    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1743 
1744    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1745    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1746    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1747    { "numa01-bw-thread-NOTHP,",
1748 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1749 };
1750 
1751 static int bench_all(void)
1752 {
1753 	int nr = ARRAY_SIZE(tests);
1754 	int ret;
1755 	int i;
1756 
1757 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1758 	BUG_ON(ret < 0);
1759 
1760 	for (i = 0; i < nr; i++) {
1761 		run_bench_numa(tests[i][0], tests[i] + 1);
1762 	}
1763 
1764 	printf("\n");
1765 
1766 	return 0;
1767 }
1768 
1769 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1770 {
1771 	init_params(&p0, "main,", argc, argv);
1772 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1773 	if (argc)
1774 		goto err;
1775 
1776 	if (p0.run_all)
1777 		return bench_all();
1778 
1779 	if (__bench_numa(NULL))
1780 		goto err;
1781 
1782 	return 0;
1783 
1784 err:
1785 	usage_with_options(numa_usage, options);
1786 	return -1;
1787 }
1788