1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 #include "../perf.h" 8 #include "../builtin.h" 9 #include "../util/util.h" 10 #include "../util/parse-options.h" 11 #include "../util/cloexec.h" 12 13 #include "bench.h" 14 15 #include <errno.h> 16 #include <sched.h> 17 #include <stdio.h> 18 #include <assert.h> 19 #include <malloc.h> 20 #include <signal.h> 21 #include <stdlib.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <pthread.h> 25 #include <sys/mman.h> 26 #include <sys/time.h> 27 #include <sys/resource.h> 28 #include <sys/wait.h> 29 #include <sys/prctl.h> 30 #include <sys/types.h> 31 32 #include <numa.h> 33 #include <numaif.h> 34 35 /* 36 * Regular printout to the terminal, supressed if -q is specified: 37 */ 38 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 39 40 /* 41 * Debug printf: 42 */ 43 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 44 45 struct thread_data { 46 int curr_cpu; 47 cpu_set_t bind_cpumask; 48 int bind_node; 49 u8 *process_data; 50 int process_nr; 51 int thread_nr; 52 int task_nr; 53 unsigned int loops_done; 54 u64 val; 55 u64 runtime_ns; 56 u64 system_time_ns; 57 u64 user_time_ns; 58 double speed_gbs; 59 pthread_mutex_t *process_lock; 60 }; 61 62 /* Parameters set by options: */ 63 64 struct params { 65 /* Startup synchronization: */ 66 bool serialize_startup; 67 68 /* Task hierarchy: */ 69 int nr_proc; 70 int nr_threads; 71 72 /* Working set sizes: */ 73 const char *mb_global_str; 74 const char *mb_proc_str; 75 const char *mb_proc_locked_str; 76 const char *mb_thread_str; 77 78 double mb_global; 79 double mb_proc; 80 double mb_proc_locked; 81 double mb_thread; 82 83 /* Access patterns to the working set: */ 84 bool data_reads; 85 bool data_writes; 86 bool data_backwards; 87 bool data_zero_memset; 88 bool data_rand_walk; 89 u32 nr_loops; 90 u32 nr_secs; 91 u32 sleep_usecs; 92 93 /* Working set initialization: */ 94 bool init_zero; 95 bool init_random; 96 bool init_cpu0; 97 98 /* Misc options: */ 99 int show_details; 100 int run_all; 101 int thp; 102 103 long bytes_global; 104 long bytes_process; 105 long bytes_process_locked; 106 long bytes_thread; 107 108 int nr_tasks; 109 bool show_quiet; 110 111 bool show_convergence; 112 bool measure_convergence; 113 114 int perturb_secs; 115 int nr_cpus; 116 int nr_nodes; 117 118 /* Affinity options -C and -N: */ 119 char *cpu_list_str; 120 char *node_list_str; 121 }; 122 123 124 /* Global, read-writable area, accessible to all processes and threads: */ 125 126 struct global_info { 127 u8 *data; 128 129 pthread_mutex_t startup_mutex; 130 int nr_tasks_started; 131 132 pthread_mutex_t startup_done_mutex; 133 134 pthread_mutex_t start_work_mutex; 135 int nr_tasks_working; 136 137 pthread_mutex_t stop_work_mutex; 138 u64 bytes_done; 139 140 struct thread_data *threads; 141 142 /* Convergence latency measurement: */ 143 bool all_converged; 144 bool stop_work; 145 146 int print_once; 147 148 struct params p; 149 }; 150 151 static struct global_info *g = NULL; 152 153 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 154 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 155 156 struct params p0; 157 158 static const struct option options[] = { 159 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 160 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 161 162 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 163 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 164 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 165 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 166 167 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), 168 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), 169 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 170 171 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 172 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 173 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 174 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 175 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 176 177 178 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 179 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 180 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 181 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 182 183 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 184 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 185 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 186 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 187 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 188 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 189 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 190 191 /* Special option string parsing callbacks: */ 192 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 193 "bind the first N tasks to these specific cpus (the rest is unbound)", 194 parse_cpus_opt), 195 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 196 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 197 parse_nodes_opt), 198 OPT_END() 199 }; 200 201 static const char * const bench_numa_usage[] = { 202 "perf bench numa <options>", 203 NULL 204 }; 205 206 static const char * const numa_usage[] = { 207 "perf bench numa mem [<options>]", 208 NULL 209 }; 210 211 static cpu_set_t bind_to_cpu(int target_cpu) 212 { 213 cpu_set_t orig_mask, mask; 214 int ret; 215 216 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 217 BUG_ON(ret); 218 219 CPU_ZERO(&mask); 220 221 if (target_cpu == -1) { 222 int cpu; 223 224 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 225 CPU_SET(cpu, &mask); 226 } else { 227 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 228 CPU_SET(target_cpu, &mask); 229 } 230 231 ret = sched_setaffinity(0, sizeof(mask), &mask); 232 BUG_ON(ret); 233 234 return orig_mask; 235 } 236 237 static cpu_set_t bind_to_node(int target_node) 238 { 239 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 240 cpu_set_t orig_mask, mask; 241 int cpu; 242 int ret; 243 244 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 245 BUG_ON(!cpus_per_node); 246 247 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 248 BUG_ON(ret); 249 250 CPU_ZERO(&mask); 251 252 if (target_node == -1) { 253 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 254 CPU_SET(cpu, &mask); 255 } else { 256 int cpu_start = (target_node + 0) * cpus_per_node; 257 int cpu_stop = (target_node + 1) * cpus_per_node; 258 259 BUG_ON(cpu_stop > g->p.nr_cpus); 260 261 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 262 CPU_SET(cpu, &mask); 263 } 264 265 ret = sched_setaffinity(0, sizeof(mask), &mask); 266 BUG_ON(ret); 267 268 return orig_mask; 269 } 270 271 static void bind_to_cpumask(cpu_set_t mask) 272 { 273 int ret; 274 275 ret = sched_setaffinity(0, sizeof(mask), &mask); 276 BUG_ON(ret); 277 } 278 279 static void mempol_restore(void) 280 { 281 int ret; 282 283 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 284 285 BUG_ON(ret); 286 } 287 288 static void bind_to_memnode(int node) 289 { 290 unsigned long nodemask; 291 int ret; 292 293 if (node == -1) 294 return; 295 296 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); 297 nodemask = 1L << node; 298 299 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 300 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 301 302 BUG_ON(ret); 303 } 304 305 #define HPSIZE (2*1024*1024) 306 307 #define set_taskname(fmt...) \ 308 do { \ 309 char name[20]; \ 310 \ 311 snprintf(name, 20, fmt); \ 312 prctl(PR_SET_NAME, name); \ 313 } while (0) 314 315 static u8 *alloc_data(ssize_t bytes0, int map_flags, 316 int init_zero, int init_cpu0, int thp, int init_random) 317 { 318 cpu_set_t orig_mask; 319 ssize_t bytes; 320 u8 *buf; 321 int ret; 322 323 if (!bytes0) 324 return NULL; 325 326 /* Allocate and initialize all memory on CPU#0: */ 327 if (init_cpu0) { 328 orig_mask = bind_to_node(0); 329 bind_to_memnode(0); 330 } 331 332 bytes = bytes0 + HPSIZE; 333 334 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 335 BUG_ON(buf == (void *)-1); 336 337 if (map_flags == MAP_PRIVATE) { 338 if (thp > 0) { 339 ret = madvise(buf, bytes, MADV_HUGEPAGE); 340 if (ret && !g->print_once) { 341 g->print_once = 1; 342 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 343 } 344 } 345 if (thp < 0) { 346 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 347 if (ret && !g->print_once) { 348 g->print_once = 1; 349 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 350 } 351 } 352 } 353 354 if (init_zero) { 355 bzero(buf, bytes); 356 } else { 357 /* Initialize random contents, different in each word: */ 358 if (init_random) { 359 u64 *wbuf = (void *)buf; 360 long off = rand(); 361 long i; 362 363 for (i = 0; i < bytes/8; i++) 364 wbuf[i] = i + off; 365 } 366 } 367 368 /* Align to 2MB boundary: */ 369 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 370 371 /* Restore affinity: */ 372 if (init_cpu0) { 373 bind_to_cpumask(orig_mask); 374 mempol_restore(); 375 } 376 377 return buf; 378 } 379 380 static void free_data(void *data, ssize_t bytes) 381 { 382 int ret; 383 384 if (!data) 385 return; 386 387 ret = munmap(data, bytes); 388 BUG_ON(ret); 389 } 390 391 /* 392 * Create a shared memory buffer that can be shared between processes, zeroed: 393 */ 394 static void * zalloc_shared_data(ssize_t bytes) 395 { 396 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 397 } 398 399 /* 400 * Create a shared memory buffer that can be shared between processes: 401 */ 402 static void * setup_shared_data(ssize_t bytes) 403 { 404 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 405 } 406 407 /* 408 * Allocate process-local memory - this will either be shared between 409 * threads of this process, or only be accessed by this thread: 410 */ 411 static void * setup_private_data(ssize_t bytes) 412 { 413 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 414 } 415 416 /* 417 * Return a process-shared (global) mutex: 418 */ 419 static void init_global_mutex(pthread_mutex_t *mutex) 420 { 421 pthread_mutexattr_t attr; 422 423 pthread_mutexattr_init(&attr); 424 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 425 pthread_mutex_init(mutex, &attr); 426 } 427 428 static int parse_cpu_list(const char *arg) 429 { 430 p0.cpu_list_str = strdup(arg); 431 432 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 433 434 return 0; 435 } 436 437 static int parse_setup_cpu_list(void) 438 { 439 struct thread_data *td; 440 char *str0, *str; 441 int t; 442 443 if (!g->p.cpu_list_str) 444 return 0; 445 446 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 447 448 str0 = str = strdup(g->p.cpu_list_str); 449 t = 0; 450 451 BUG_ON(!str); 452 453 tprintf("# binding tasks to CPUs:\n"); 454 tprintf("# "); 455 456 while (true) { 457 int bind_cpu, bind_cpu_0, bind_cpu_1; 458 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 459 int bind_len; 460 int step; 461 int mul; 462 463 tok = strsep(&str, ","); 464 if (!tok) 465 break; 466 467 tok_end = strstr(tok, "-"); 468 469 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 470 if (!tok_end) { 471 /* Single CPU specified: */ 472 bind_cpu_0 = bind_cpu_1 = atol(tok); 473 } else { 474 /* CPU range specified (for example: "5-11"): */ 475 bind_cpu_0 = atol(tok); 476 bind_cpu_1 = atol(tok_end + 1); 477 } 478 479 step = 1; 480 tok_step = strstr(tok, "#"); 481 if (tok_step) { 482 step = atol(tok_step + 1); 483 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 484 } 485 486 /* 487 * Mask length. 488 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 489 * where the _4 means the next 4 CPUs are allowed. 490 */ 491 bind_len = 1; 492 tok_len = strstr(tok, "_"); 493 if (tok_len) { 494 bind_len = atol(tok_len + 1); 495 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 496 } 497 498 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 499 mul = 1; 500 tok_mul = strstr(tok, "x"); 501 if (tok_mul) { 502 mul = atol(tok_mul + 1); 503 BUG_ON(mul <= 0); 504 } 505 506 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 507 508 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 509 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 510 return -1; 511 } 512 513 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 514 BUG_ON(bind_cpu_0 > bind_cpu_1); 515 516 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 517 int i; 518 519 for (i = 0; i < mul; i++) { 520 int cpu; 521 522 if (t >= g->p.nr_tasks) { 523 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 524 goto out; 525 } 526 td = g->threads + t; 527 528 if (t) 529 tprintf(","); 530 if (bind_len > 1) { 531 tprintf("%2d/%d", bind_cpu, bind_len); 532 } else { 533 tprintf("%2d", bind_cpu); 534 } 535 536 CPU_ZERO(&td->bind_cpumask); 537 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 538 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 539 CPU_SET(cpu, &td->bind_cpumask); 540 } 541 t++; 542 } 543 } 544 } 545 out: 546 547 tprintf("\n"); 548 549 if (t < g->p.nr_tasks) 550 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 551 552 free(str0); 553 return 0; 554 } 555 556 static int parse_cpus_opt(const struct option *opt __maybe_unused, 557 const char *arg, int unset __maybe_unused) 558 { 559 if (!arg) 560 return -1; 561 562 return parse_cpu_list(arg); 563 } 564 565 static int parse_node_list(const char *arg) 566 { 567 p0.node_list_str = strdup(arg); 568 569 dprintf("got NODE list: {%s}\n", p0.node_list_str); 570 571 return 0; 572 } 573 574 static int parse_setup_node_list(void) 575 { 576 struct thread_data *td; 577 char *str0, *str; 578 int t; 579 580 if (!g->p.node_list_str) 581 return 0; 582 583 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 584 585 str0 = str = strdup(g->p.node_list_str); 586 t = 0; 587 588 BUG_ON(!str); 589 590 tprintf("# binding tasks to NODEs:\n"); 591 tprintf("# "); 592 593 while (true) { 594 int bind_node, bind_node_0, bind_node_1; 595 char *tok, *tok_end, *tok_step, *tok_mul; 596 int step; 597 int mul; 598 599 tok = strsep(&str, ","); 600 if (!tok) 601 break; 602 603 tok_end = strstr(tok, "-"); 604 605 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 606 if (!tok_end) { 607 /* Single NODE specified: */ 608 bind_node_0 = bind_node_1 = atol(tok); 609 } else { 610 /* NODE range specified (for example: "5-11"): */ 611 bind_node_0 = atol(tok); 612 bind_node_1 = atol(tok_end + 1); 613 } 614 615 step = 1; 616 tok_step = strstr(tok, "#"); 617 if (tok_step) { 618 step = atol(tok_step + 1); 619 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 620 } 621 622 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 623 mul = 1; 624 tok_mul = strstr(tok, "x"); 625 if (tok_mul) { 626 mul = atol(tok_mul + 1); 627 BUG_ON(mul <= 0); 628 } 629 630 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 631 632 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 633 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 634 return -1; 635 } 636 637 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 638 BUG_ON(bind_node_0 > bind_node_1); 639 640 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 641 int i; 642 643 for (i = 0; i < mul; i++) { 644 if (t >= g->p.nr_tasks) { 645 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 646 goto out; 647 } 648 td = g->threads + t; 649 650 if (!t) 651 tprintf(" %2d", bind_node); 652 else 653 tprintf(",%2d", bind_node); 654 655 td->bind_node = bind_node; 656 t++; 657 } 658 } 659 } 660 out: 661 662 tprintf("\n"); 663 664 if (t < g->p.nr_tasks) 665 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 666 667 free(str0); 668 return 0; 669 } 670 671 static int parse_nodes_opt(const struct option *opt __maybe_unused, 672 const char *arg, int unset __maybe_unused) 673 { 674 if (!arg) 675 return -1; 676 677 return parse_node_list(arg); 678 679 return 0; 680 } 681 682 #define BIT(x) (1ul << x) 683 684 static inline uint32_t lfsr_32(uint32_t lfsr) 685 { 686 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 687 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 688 } 689 690 /* 691 * Make sure there's real data dependency to RAM (when read 692 * accesses are enabled), so the compiler, the CPU and the 693 * kernel (KSM, zero page, etc.) cannot optimize away RAM 694 * accesses: 695 */ 696 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 697 { 698 if (g->p.data_reads) 699 val += *data; 700 if (g->p.data_writes) 701 *data = val + 1; 702 return val; 703 } 704 705 /* 706 * The worker process does two types of work, a forwards going 707 * loop and a backwards going loop. 708 * 709 * We do this so that on multiprocessor systems we do not create 710 * a 'train' of processing, with highly synchronized processes, 711 * skewing the whole benchmark. 712 */ 713 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 714 { 715 long words = bytes/sizeof(u64); 716 u64 *data = (void *)__data; 717 long chunk_0, chunk_1; 718 u64 *d0, *d, *d1; 719 long off; 720 long i; 721 722 BUG_ON(!data && words); 723 BUG_ON(data && !words); 724 725 if (!data) 726 return val; 727 728 /* Very simple memset() work variant: */ 729 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 730 bzero(data, bytes); 731 return val; 732 } 733 734 /* Spread out by PID/TID nr and by loop nr: */ 735 chunk_0 = words/nr_max; 736 chunk_1 = words/g->p.nr_loops; 737 off = nr*chunk_0 + loop*chunk_1; 738 739 while (off >= words) 740 off -= words; 741 742 if (g->p.data_rand_walk) { 743 u32 lfsr = nr + loop + val; 744 int j; 745 746 for (i = 0; i < words/1024; i++) { 747 long start, end; 748 749 lfsr = lfsr_32(lfsr); 750 751 start = lfsr % words; 752 end = min(start + 1024, words-1); 753 754 if (g->p.data_zero_memset) { 755 bzero(data + start, (end-start) * sizeof(u64)); 756 } else { 757 for (j = start; j < end; j++) 758 val = access_data(data + j, val); 759 } 760 } 761 } else if (!g->p.data_backwards || (nr + loop) & 1) { 762 763 d0 = data + off; 764 d = data + off + 1; 765 d1 = data + words; 766 767 /* Process data forwards: */ 768 for (;;) { 769 if (unlikely(d >= d1)) 770 d = data; 771 if (unlikely(d == d0)) 772 break; 773 774 val = access_data(d, val); 775 776 d++; 777 } 778 } else { 779 /* Process data backwards: */ 780 781 d0 = data + off; 782 d = data + off - 1; 783 d1 = data + words; 784 785 /* Process data forwards: */ 786 for (;;) { 787 if (unlikely(d < data)) 788 d = data + words-1; 789 if (unlikely(d == d0)) 790 break; 791 792 val = access_data(d, val); 793 794 d--; 795 } 796 } 797 798 return val; 799 } 800 801 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 802 { 803 unsigned int cpu; 804 805 cpu = sched_getcpu(); 806 807 g->threads[task_nr].curr_cpu = cpu; 808 prctl(0, bytes_worked); 809 } 810 811 #define MAX_NR_NODES 64 812 813 /* 814 * Count the number of nodes a process's threads 815 * are spread out on. 816 * 817 * A count of 1 means that the process is compressed 818 * to a single node. A count of g->p.nr_nodes means it's 819 * spread out on the whole system. 820 */ 821 static int count_process_nodes(int process_nr) 822 { 823 char node_present[MAX_NR_NODES] = { 0, }; 824 int nodes; 825 int n, t; 826 827 for (t = 0; t < g->p.nr_threads; t++) { 828 struct thread_data *td; 829 int task_nr; 830 int node; 831 832 task_nr = process_nr*g->p.nr_threads + t; 833 td = g->threads + task_nr; 834 835 node = numa_node_of_cpu(td->curr_cpu); 836 if (node < 0) /* curr_cpu was likely still -1 */ 837 return 0; 838 839 node_present[node] = 1; 840 } 841 842 nodes = 0; 843 844 for (n = 0; n < MAX_NR_NODES; n++) 845 nodes += node_present[n]; 846 847 return nodes; 848 } 849 850 /* 851 * Count the number of distinct process-threads a node contains. 852 * 853 * A count of 1 means that the node contains only a single 854 * process. If all nodes on the system contain at most one 855 * process then we are well-converged. 856 */ 857 static int count_node_processes(int node) 858 { 859 int processes = 0; 860 int t, p; 861 862 for (p = 0; p < g->p.nr_proc; p++) { 863 for (t = 0; t < g->p.nr_threads; t++) { 864 struct thread_data *td; 865 int task_nr; 866 int n; 867 868 task_nr = p*g->p.nr_threads + t; 869 td = g->threads + task_nr; 870 871 n = numa_node_of_cpu(td->curr_cpu); 872 if (n == node) { 873 processes++; 874 break; 875 } 876 } 877 } 878 879 return processes; 880 } 881 882 static void calc_convergence_compression(int *strong) 883 { 884 unsigned int nodes_min, nodes_max; 885 int p; 886 887 nodes_min = -1; 888 nodes_max = 0; 889 890 for (p = 0; p < g->p.nr_proc; p++) { 891 unsigned int nodes = count_process_nodes(p); 892 893 if (!nodes) { 894 *strong = 0; 895 return; 896 } 897 898 nodes_min = min(nodes, nodes_min); 899 nodes_max = max(nodes, nodes_max); 900 } 901 902 /* Strong convergence: all threads compress on a single node: */ 903 if (nodes_min == 1 && nodes_max == 1) { 904 *strong = 1; 905 } else { 906 *strong = 0; 907 tprintf(" {%d-%d}", nodes_min, nodes_max); 908 } 909 } 910 911 static void calc_convergence(double runtime_ns_max, double *convergence) 912 { 913 unsigned int loops_done_min, loops_done_max; 914 int process_groups; 915 int nodes[MAX_NR_NODES]; 916 int distance; 917 int nr_min; 918 int nr_max; 919 int strong; 920 int sum; 921 int nr; 922 int node; 923 int cpu; 924 int t; 925 926 if (!g->p.show_convergence && !g->p.measure_convergence) 927 return; 928 929 for (node = 0; node < g->p.nr_nodes; node++) 930 nodes[node] = 0; 931 932 loops_done_min = -1; 933 loops_done_max = 0; 934 935 for (t = 0; t < g->p.nr_tasks; t++) { 936 struct thread_data *td = g->threads + t; 937 unsigned int loops_done; 938 939 cpu = td->curr_cpu; 940 941 /* Not all threads have written it yet: */ 942 if (cpu < 0) 943 continue; 944 945 node = numa_node_of_cpu(cpu); 946 947 nodes[node]++; 948 949 loops_done = td->loops_done; 950 loops_done_min = min(loops_done, loops_done_min); 951 loops_done_max = max(loops_done, loops_done_max); 952 } 953 954 nr_max = 0; 955 nr_min = g->p.nr_tasks; 956 sum = 0; 957 958 for (node = 0; node < g->p.nr_nodes; node++) { 959 nr = nodes[node]; 960 nr_min = min(nr, nr_min); 961 nr_max = max(nr, nr_max); 962 sum += nr; 963 } 964 BUG_ON(nr_min > nr_max); 965 966 BUG_ON(sum > g->p.nr_tasks); 967 968 if (0 && (sum < g->p.nr_tasks)) 969 return; 970 971 /* 972 * Count the number of distinct process groups present 973 * on nodes - when we are converged this will decrease 974 * to g->p.nr_proc: 975 */ 976 process_groups = 0; 977 978 for (node = 0; node < g->p.nr_nodes; node++) { 979 int processes = count_node_processes(node); 980 981 nr = nodes[node]; 982 tprintf(" %2d/%-2d", nr, processes); 983 984 process_groups += processes; 985 } 986 987 distance = nr_max - nr_min; 988 989 tprintf(" [%2d/%-2d]", distance, process_groups); 990 991 tprintf(" l:%3d-%-3d (%3d)", 992 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 993 994 if (loops_done_min && loops_done_max) { 995 double skew = 1.0 - (double)loops_done_min/loops_done_max; 996 997 tprintf(" [%4.1f%%]", skew * 100.0); 998 } 999 1000 calc_convergence_compression(&strong); 1001 1002 if (strong && process_groups == g->p.nr_proc) { 1003 if (!*convergence) { 1004 *convergence = runtime_ns_max; 1005 tprintf(" (%6.1fs converged)\n", *convergence/1e9); 1006 if (g->p.measure_convergence) { 1007 g->all_converged = true; 1008 g->stop_work = true; 1009 } 1010 } 1011 } else { 1012 if (*convergence) { 1013 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); 1014 *convergence = 0; 1015 } 1016 tprintf("\n"); 1017 } 1018 } 1019 1020 static void show_summary(double runtime_ns_max, int l, double *convergence) 1021 { 1022 tprintf("\r # %5.1f%% [%.1f mins]", 1023 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); 1024 1025 calc_convergence(runtime_ns_max, convergence); 1026 1027 if (g->p.show_details >= 0) 1028 fflush(stdout); 1029 } 1030 1031 static void *worker_thread(void *__tdata) 1032 { 1033 struct thread_data *td = __tdata; 1034 struct timeval start0, start, stop, diff; 1035 int process_nr = td->process_nr; 1036 int thread_nr = td->thread_nr; 1037 unsigned long last_perturbance; 1038 int task_nr = td->task_nr; 1039 int details = g->p.show_details; 1040 int first_task, last_task; 1041 double convergence = 0; 1042 u64 val = td->val; 1043 double runtime_ns_max; 1044 u8 *global_data; 1045 u8 *process_data; 1046 u8 *thread_data; 1047 u64 bytes_done; 1048 long work_done; 1049 u32 l; 1050 struct rusage rusage; 1051 1052 bind_to_cpumask(td->bind_cpumask); 1053 bind_to_memnode(td->bind_node); 1054 1055 set_taskname("thread %d/%d", process_nr, thread_nr); 1056 1057 global_data = g->data; 1058 process_data = td->process_data; 1059 thread_data = setup_private_data(g->p.bytes_thread); 1060 1061 bytes_done = 0; 1062 1063 last_task = 0; 1064 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1065 last_task = 1; 1066 1067 first_task = 0; 1068 if (process_nr == 0 && thread_nr == 0) 1069 first_task = 1; 1070 1071 if (details >= 2) { 1072 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1073 process_nr, thread_nr, global_data, process_data, thread_data); 1074 } 1075 1076 if (g->p.serialize_startup) { 1077 pthread_mutex_lock(&g->startup_mutex); 1078 g->nr_tasks_started++; 1079 pthread_mutex_unlock(&g->startup_mutex); 1080 1081 /* Here we will wait for the main process to start us all at once: */ 1082 pthread_mutex_lock(&g->start_work_mutex); 1083 g->nr_tasks_working++; 1084 1085 /* Last one wake the main process: */ 1086 if (g->nr_tasks_working == g->p.nr_tasks) 1087 pthread_mutex_unlock(&g->startup_done_mutex); 1088 1089 pthread_mutex_unlock(&g->start_work_mutex); 1090 } 1091 1092 gettimeofday(&start0, NULL); 1093 1094 start = stop = start0; 1095 last_perturbance = start.tv_sec; 1096 1097 for (l = 0; l < g->p.nr_loops; l++) { 1098 start = stop; 1099 1100 if (g->stop_work) 1101 break; 1102 1103 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1104 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1105 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1106 1107 if (g->p.sleep_usecs) { 1108 pthread_mutex_lock(td->process_lock); 1109 usleep(g->p.sleep_usecs); 1110 pthread_mutex_unlock(td->process_lock); 1111 } 1112 /* 1113 * Amount of work to be done under a process-global lock: 1114 */ 1115 if (g->p.bytes_process_locked) { 1116 pthread_mutex_lock(td->process_lock); 1117 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1118 pthread_mutex_unlock(td->process_lock); 1119 } 1120 1121 work_done = g->p.bytes_global + g->p.bytes_process + 1122 g->p.bytes_process_locked + g->p.bytes_thread; 1123 1124 update_curr_cpu(task_nr, work_done); 1125 bytes_done += work_done; 1126 1127 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1128 continue; 1129 1130 td->loops_done = l; 1131 1132 gettimeofday(&stop, NULL); 1133 1134 /* Check whether our max runtime timed out: */ 1135 if (g->p.nr_secs) { 1136 timersub(&stop, &start0, &diff); 1137 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1138 g->stop_work = true; 1139 break; 1140 } 1141 } 1142 1143 /* Update the summary at most once per second: */ 1144 if (start.tv_sec == stop.tv_sec) 1145 continue; 1146 1147 /* 1148 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1149 * by migrating to CPU#0: 1150 */ 1151 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1152 cpu_set_t orig_mask; 1153 int target_cpu; 1154 int this_cpu; 1155 1156 last_perturbance = stop.tv_sec; 1157 1158 /* 1159 * Depending on where we are running, move into 1160 * the other half of the system, to create some 1161 * real disturbance: 1162 */ 1163 this_cpu = g->threads[task_nr].curr_cpu; 1164 if (this_cpu < g->p.nr_cpus/2) 1165 target_cpu = g->p.nr_cpus-1; 1166 else 1167 target_cpu = 0; 1168 1169 orig_mask = bind_to_cpu(target_cpu); 1170 1171 /* Here we are running on the target CPU already */ 1172 if (details >= 1) 1173 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1174 1175 bind_to_cpumask(orig_mask); 1176 } 1177 1178 if (details >= 3) { 1179 timersub(&stop, &start, &diff); 1180 runtime_ns_max = diff.tv_sec * 1000000000; 1181 runtime_ns_max += diff.tv_usec * 1000; 1182 1183 if (details >= 0) { 1184 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1185 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1186 } 1187 fflush(stdout); 1188 } 1189 if (!last_task) 1190 continue; 1191 1192 timersub(&stop, &start0, &diff); 1193 runtime_ns_max = diff.tv_sec * 1000000000ULL; 1194 runtime_ns_max += diff.tv_usec * 1000ULL; 1195 1196 show_summary(runtime_ns_max, l, &convergence); 1197 } 1198 1199 gettimeofday(&stop, NULL); 1200 timersub(&stop, &start0, &diff); 1201 td->runtime_ns = diff.tv_sec * 1000000000ULL; 1202 td->runtime_ns += diff.tv_usec * 1000ULL; 1203 td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9; 1204 1205 getrusage(RUSAGE_THREAD, &rusage); 1206 td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL; 1207 td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL; 1208 td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL; 1209 td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL; 1210 1211 free_data(thread_data, g->p.bytes_thread); 1212 1213 pthread_mutex_lock(&g->stop_work_mutex); 1214 g->bytes_done += bytes_done; 1215 pthread_mutex_unlock(&g->stop_work_mutex); 1216 1217 return NULL; 1218 } 1219 1220 /* 1221 * A worker process starts a couple of threads: 1222 */ 1223 static void worker_process(int process_nr) 1224 { 1225 pthread_mutex_t process_lock; 1226 struct thread_data *td; 1227 pthread_t *pthreads; 1228 u8 *process_data; 1229 int task_nr; 1230 int ret; 1231 int t; 1232 1233 pthread_mutex_init(&process_lock, NULL); 1234 set_taskname("process %d", process_nr); 1235 1236 /* 1237 * Pick up the memory policy and the CPU binding of our first thread, 1238 * so that we initialize memory accordingly: 1239 */ 1240 task_nr = process_nr*g->p.nr_threads; 1241 td = g->threads + task_nr; 1242 1243 bind_to_memnode(td->bind_node); 1244 bind_to_cpumask(td->bind_cpumask); 1245 1246 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1247 process_data = setup_private_data(g->p.bytes_process); 1248 1249 if (g->p.show_details >= 3) { 1250 printf(" # process %2d global mem: %p, process mem: %p\n", 1251 process_nr, g->data, process_data); 1252 } 1253 1254 for (t = 0; t < g->p.nr_threads; t++) { 1255 task_nr = process_nr*g->p.nr_threads + t; 1256 td = g->threads + task_nr; 1257 1258 td->process_data = process_data; 1259 td->process_nr = process_nr; 1260 td->thread_nr = t; 1261 td->task_nr = task_nr; 1262 td->val = rand(); 1263 td->curr_cpu = -1; 1264 td->process_lock = &process_lock; 1265 1266 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1267 BUG_ON(ret); 1268 } 1269 1270 for (t = 0; t < g->p.nr_threads; t++) { 1271 ret = pthread_join(pthreads[t], NULL); 1272 BUG_ON(ret); 1273 } 1274 1275 free_data(process_data, g->p.bytes_process); 1276 free(pthreads); 1277 } 1278 1279 static void print_summary(void) 1280 { 1281 if (g->p.show_details < 0) 1282 return; 1283 1284 printf("\n ###\n"); 1285 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1286 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1287 printf(" # %5dx %5ldMB global shared mem operations\n", 1288 g->p.nr_loops, g->p.bytes_global/1024/1024); 1289 printf(" # %5dx %5ldMB process shared mem operations\n", 1290 g->p.nr_loops, g->p.bytes_process/1024/1024); 1291 printf(" # %5dx %5ldMB thread local mem operations\n", 1292 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1293 1294 printf(" ###\n"); 1295 1296 printf("\n ###\n"); fflush(stdout); 1297 } 1298 1299 static void init_thread_data(void) 1300 { 1301 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1302 int t; 1303 1304 g->threads = zalloc_shared_data(size); 1305 1306 for (t = 0; t < g->p.nr_tasks; t++) { 1307 struct thread_data *td = g->threads + t; 1308 int cpu; 1309 1310 /* Allow all nodes by default: */ 1311 td->bind_node = -1; 1312 1313 /* Allow all CPUs by default: */ 1314 CPU_ZERO(&td->bind_cpumask); 1315 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1316 CPU_SET(cpu, &td->bind_cpumask); 1317 } 1318 } 1319 1320 static void deinit_thread_data(void) 1321 { 1322 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1323 1324 free_data(g->threads, size); 1325 } 1326 1327 static int init(void) 1328 { 1329 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1330 1331 /* Copy over options: */ 1332 g->p = p0; 1333 1334 g->p.nr_cpus = numa_num_configured_cpus(); 1335 1336 g->p.nr_nodes = numa_max_node() + 1; 1337 1338 /* char array in count_process_nodes(): */ 1339 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1340 1341 if (g->p.show_quiet && !g->p.show_details) 1342 g->p.show_details = -1; 1343 1344 /* Some memory should be specified: */ 1345 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1346 return -1; 1347 1348 if (g->p.mb_global_str) { 1349 g->p.mb_global = atof(g->p.mb_global_str); 1350 BUG_ON(g->p.mb_global < 0); 1351 } 1352 1353 if (g->p.mb_proc_str) { 1354 g->p.mb_proc = atof(g->p.mb_proc_str); 1355 BUG_ON(g->p.mb_proc < 0); 1356 } 1357 1358 if (g->p.mb_proc_locked_str) { 1359 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1360 BUG_ON(g->p.mb_proc_locked < 0); 1361 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1362 } 1363 1364 if (g->p.mb_thread_str) { 1365 g->p.mb_thread = atof(g->p.mb_thread_str); 1366 BUG_ON(g->p.mb_thread < 0); 1367 } 1368 1369 BUG_ON(g->p.nr_threads <= 0); 1370 BUG_ON(g->p.nr_proc <= 0); 1371 1372 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1373 1374 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1375 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1376 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1377 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1378 1379 g->data = setup_shared_data(g->p.bytes_global); 1380 1381 /* Startup serialization: */ 1382 init_global_mutex(&g->start_work_mutex); 1383 init_global_mutex(&g->startup_mutex); 1384 init_global_mutex(&g->startup_done_mutex); 1385 init_global_mutex(&g->stop_work_mutex); 1386 1387 init_thread_data(); 1388 1389 tprintf("#\n"); 1390 if (parse_setup_cpu_list() || parse_setup_node_list()) 1391 return -1; 1392 tprintf("#\n"); 1393 1394 print_summary(); 1395 1396 return 0; 1397 } 1398 1399 static void deinit(void) 1400 { 1401 free_data(g->data, g->p.bytes_global); 1402 g->data = NULL; 1403 1404 deinit_thread_data(); 1405 1406 free_data(g, sizeof(*g)); 1407 g = NULL; 1408 } 1409 1410 /* 1411 * Print a short or long result, depending on the verbosity setting: 1412 */ 1413 static void print_res(const char *name, double val, 1414 const char *txt_unit, const char *txt_short, const char *txt_long) 1415 { 1416 if (!name) 1417 name = "main,"; 1418 1419 if (!g->p.show_quiet) 1420 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1421 else 1422 printf(" %14.3f %s\n", val, txt_long); 1423 } 1424 1425 static int __bench_numa(const char *name) 1426 { 1427 struct timeval start, stop, diff; 1428 u64 runtime_ns_min, runtime_ns_sum; 1429 pid_t *pids, pid, wpid; 1430 double delta_runtime; 1431 double runtime_avg; 1432 double runtime_sec_max; 1433 double runtime_sec_min; 1434 int wait_stat; 1435 double bytes; 1436 int i, t, p; 1437 1438 if (init()) 1439 return -1; 1440 1441 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1442 pid = -1; 1443 1444 /* All threads try to acquire it, this way we can wait for them to start up: */ 1445 pthread_mutex_lock(&g->start_work_mutex); 1446 1447 if (g->p.serialize_startup) { 1448 tprintf(" #\n"); 1449 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1450 } 1451 1452 gettimeofday(&start, NULL); 1453 1454 for (i = 0; i < g->p.nr_proc; i++) { 1455 pid = fork(); 1456 dprintf(" # process %2d: PID %d\n", i, pid); 1457 1458 BUG_ON(pid < 0); 1459 if (!pid) { 1460 /* Child process: */ 1461 worker_process(i); 1462 1463 exit(0); 1464 } 1465 pids[i] = pid; 1466 1467 } 1468 /* Wait for all the threads to start up: */ 1469 while (g->nr_tasks_started != g->p.nr_tasks) 1470 usleep(1000); 1471 1472 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1473 1474 if (g->p.serialize_startup) { 1475 double startup_sec; 1476 1477 pthread_mutex_lock(&g->startup_done_mutex); 1478 1479 /* This will start all threads: */ 1480 pthread_mutex_unlock(&g->start_work_mutex); 1481 1482 /* This mutex is locked - the last started thread will wake us: */ 1483 pthread_mutex_lock(&g->startup_done_mutex); 1484 1485 gettimeofday(&stop, NULL); 1486 1487 timersub(&stop, &start, &diff); 1488 1489 startup_sec = diff.tv_sec * 1000000000.0; 1490 startup_sec += diff.tv_usec * 1000.0; 1491 startup_sec /= 1e9; 1492 1493 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1494 tprintf(" #\n"); 1495 1496 start = stop; 1497 pthread_mutex_unlock(&g->startup_done_mutex); 1498 } else { 1499 gettimeofday(&start, NULL); 1500 } 1501 1502 /* Parent process: */ 1503 1504 1505 for (i = 0; i < g->p.nr_proc; i++) { 1506 wpid = waitpid(pids[i], &wait_stat, 0); 1507 BUG_ON(wpid < 0); 1508 BUG_ON(!WIFEXITED(wait_stat)); 1509 1510 } 1511 1512 runtime_ns_sum = 0; 1513 runtime_ns_min = -1LL; 1514 1515 for (t = 0; t < g->p.nr_tasks; t++) { 1516 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1517 1518 runtime_ns_sum += thread_runtime_ns; 1519 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1520 } 1521 1522 gettimeofday(&stop, NULL); 1523 timersub(&stop, &start, &diff); 1524 1525 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1526 1527 tprintf("\n ###\n"); 1528 tprintf("\n"); 1529 1530 runtime_sec_max = diff.tv_sec * 1000000000.0; 1531 runtime_sec_max += diff.tv_usec * 1000.0; 1532 runtime_sec_max /= 1e9; 1533 1534 runtime_sec_min = runtime_ns_min/1e9; 1535 1536 bytes = g->bytes_done; 1537 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; 1538 1539 if (g->p.measure_convergence) { 1540 print_res(name, runtime_sec_max, 1541 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1542 } 1543 1544 print_res(name, runtime_sec_max, 1545 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1546 1547 print_res(name, runtime_sec_min, 1548 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1549 1550 print_res(name, runtime_avg, 1551 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1552 1553 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1554 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1555 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1556 1557 print_res(name, bytes / g->p.nr_tasks / 1e9, 1558 "GB,", "data/thread", "GB data processed, per thread"); 1559 1560 print_res(name, bytes / 1e9, 1561 "GB,", "data-total", "GB data processed, total"); 1562 1563 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), 1564 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1565 1566 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1567 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1568 1569 print_res(name, bytes / runtime_sec_max / 1e9, 1570 "GB/sec,", "total-speed", "GB/sec total speed"); 1571 1572 if (g->p.show_details >= 2) { 1573 char tname[32]; 1574 struct thread_data *td; 1575 for (p = 0; p < g->p.nr_proc; p++) { 1576 for (t = 0; t < g->p.nr_threads; t++) { 1577 memset(tname, 0, 32); 1578 td = g->threads + p*g->p.nr_threads + t; 1579 snprintf(tname, 32, "process%d:thread%d", p, t); 1580 print_res(tname, td->speed_gbs, 1581 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1582 print_res(tname, td->system_time_ns / 1e9, 1583 "secs", "thread-system-time", "system CPU time/thread"); 1584 print_res(tname, td->user_time_ns / 1e9, 1585 "secs", "thread-user-time", "user CPU time/thread"); 1586 } 1587 } 1588 } 1589 1590 free(pids); 1591 1592 deinit(); 1593 1594 return 0; 1595 } 1596 1597 #define MAX_ARGS 50 1598 1599 static int command_size(const char **argv) 1600 { 1601 int size = 0; 1602 1603 while (*argv) { 1604 size++; 1605 argv++; 1606 } 1607 1608 BUG_ON(size >= MAX_ARGS); 1609 1610 return size; 1611 } 1612 1613 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1614 { 1615 int i; 1616 1617 printf("\n # Running %s \"perf bench numa", name); 1618 1619 for (i = 0; i < argc; i++) 1620 printf(" %s", argv[i]); 1621 1622 printf("\"\n"); 1623 1624 memset(p, 0, sizeof(*p)); 1625 1626 /* Initialize nonzero defaults: */ 1627 1628 p->serialize_startup = 1; 1629 p->data_reads = true; 1630 p->data_writes = true; 1631 p->data_backwards = true; 1632 p->data_rand_walk = true; 1633 p->nr_loops = -1; 1634 p->init_random = true; 1635 p->mb_global_str = "1"; 1636 p->nr_proc = 1; 1637 p->nr_threads = 1; 1638 p->nr_secs = 5; 1639 p->run_all = argc == 1; 1640 } 1641 1642 static int run_bench_numa(const char *name, const char **argv) 1643 { 1644 int argc = command_size(argv); 1645 1646 init_params(&p0, name, argc, argv); 1647 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1648 if (argc) 1649 goto err; 1650 1651 if (__bench_numa(name)) 1652 goto err; 1653 1654 return 0; 1655 1656 err: 1657 return -1; 1658 } 1659 1660 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1661 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1662 1663 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1664 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1665 1666 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1667 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1668 1669 /* 1670 * The built-in test-suite executed by "perf bench numa -a". 1671 * 1672 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1673 */ 1674 static const char *tests[][MAX_ARGS] = { 1675 /* Basic single-stream NUMA bandwidth measurements: */ 1676 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1677 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1678 { "RAM-bw-local-NOTHP,", 1679 "mem", "-p", "1", "-t", "1", "-P", "1024", 1680 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1681 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1682 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1683 1684 /* 2-stream NUMA bandwidth measurements: */ 1685 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1686 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1687 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1688 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1689 1690 /* Cross-stream NUMA bandwidth measurement: */ 1691 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1692 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1693 1694 /* Convergence latency measurements: */ 1695 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1696 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1697 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1698 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1699 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1700 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1701 { " 4x4-convergence-NOTHP,", 1702 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1703 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1704 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1705 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1706 { " 8x4-convergence-NOTHP,", 1707 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1708 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1709 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1710 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1711 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1712 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1713 1714 /* Various NUMA process/thread layout bandwidth measurements: */ 1715 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1716 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1717 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1718 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1719 { " 8x1-bw-process-NOTHP,", 1720 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1721 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1722 1723 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1724 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1725 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1726 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1727 1728 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1729 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1730 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1731 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1732 { " 4x8-bw-thread-NOTHP,", 1733 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1734 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1735 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1736 1737 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1738 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1739 1740 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1741 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1742 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1743 { "numa01-bw-thread-NOTHP,", 1744 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1745 }; 1746 1747 static int bench_all(void) 1748 { 1749 int nr = ARRAY_SIZE(tests); 1750 int ret; 1751 int i; 1752 1753 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1754 BUG_ON(ret < 0); 1755 1756 for (i = 0; i < nr; i++) { 1757 run_bench_numa(tests[i][0], tests[i] + 1); 1758 } 1759 1760 printf("\n"); 1761 1762 return 0; 1763 } 1764 1765 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1766 { 1767 init_params(&p0, "main,", argc, argv); 1768 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1769 if (argc) 1770 goto err; 1771 1772 if (p0.run_all) 1773 return bench_all(); 1774 1775 if (__bench_numa(NULL)) 1776 goto err; 1777 1778 return 0; 1779 1780 err: 1781 usage_with_options(numa_usage, options); 1782 return -1; 1783 } 1784