1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 #include "../perf.h" 8 #include "../builtin.h" 9 #include "../util/util.h" 10 #include "../util/parse-options.h" 11 12 #include "bench.h" 13 14 #include <errno.h> 15 #include <sched.h> 16 #include <stdio.h> 17 #include <assert.h> 18 #include <malloc.h> 19 #include <signal.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <unistd.h> 23 #include <pthread.h> 24 #include <sys/mman.h> 25 #include <sys/time.h> 26 #include <sys/wait.h> 27 #include <sys/prctl.h> 28 #include <sys/types.h> 29 30 #include <numa.h> 31 #include <numaif.h> 32 33 /* 34 * Regular printout to the terminal, supressed if -q is specified: 35 */ 36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 37 38 /* 39 * Debug printf: 40 */ 41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 42 43 struct thread_data { 44 int curr_cpu; 45 cpu_set_t bind_cpumask; 46 int bind_node; 47 u8 *process_data; 48 int process_nr; 49 int thread_nr; 50 int task_nr; 51 unsigned int loops_done; 52 u64 val; 53 u64 runtime_ns; 54 pthread_mutex_t *process_lock; 55 }; 56 57 /* Parameters set by options: */ 58 59 struct params { 60 /* Startup synchronization: */ 61 bool serialize_startup; 62 63 /* Task hierarchy: */ 64 int nr_proc; 65 int nr_threads; 66 67 /* Working set sizes: */ 68 const char *mb_global_str; 69 const char *mb_proc_str; 70 const char *mb_proc_locked_str; 71 const char *mb_thread_str; 72 73 double mb_global; 74 double mb_proc; 75 double mb_proc_locked; 76 double mb_thread; 77 78 /* Access patterns to the working set: */ 79 bool data_reads; 80 bool data_writes; 81 bool data_backwards; 82 bool data_zero_memset; 83 bool data_rand_walk; 84 u32 nr_loops; 85 u32 nr_secs; 86 u32 sleep_usecs; 87 88 /* Working set initialization: */ 89 bool init_zero; 90 bool init_random; 91 bool init_cpu0; 92 93 /* Misc options: */ 94 int show_details; 95 int run_all; 96 int thp; 97 98 long bytes_global; 99 long bytes_process; 100 long bytes_process_locked; 101 long bytes_thread; 102 103 int nr_tasks; 104 bool show_quiet; 105 106 bool show_convergence; 107 bool measure_convergence; 108 109 int perturb_secs; 110 int nr_cpus; 111 int nr_nodes; 112 113 /* Affinity options -C and -N: */ 114 char *cpu_list_str; 115 char *node_list_str; 116 }; 117 118 119 /* Global, read-writable area, accessible to all processes and threads: */ 120 121 struct global_info { 122 u8 *data; 123 124 pthread_mutex_t startup_mutex; 125 int nr_tasks_started; 126 127 pthread_mutex_t startup_done_mutex; 128 129 pthread_mutex_t start_work_mutex; 130 int nr_tasks_working; 131 132 pthread_mutex_t stop_work_mutex; 133 u64 bytes_done; 134 135 struct thread_data *threads; 136 137 /* Convergence latency measurement: */ 138 bool all_converged; 139 bool stop_work; 140 141 int print_once; 142 143 struct params p; 144 }; 145 146 static struct global_info *g = NULL; 147 148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 150 151 struct params p0; 152 153 static const struct option options[] = { 154 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 155 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 156 157 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 158 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 159 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 160 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 161 162 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), 163 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), 164 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 165 166 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 167 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 168 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 169 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 170 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 171 172 173 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 174 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 175 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 176 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 177 178 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 179 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 180 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 181 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 182 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 183 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"), 184 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 185 186 /* Special option string parsing callbacks: */ 187 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 188 "bind the first N tasks to these specific cpus (the rest is unbound)", 189 parse_cpus_opt), 190 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 191 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 192 parse_nodes_opt), 193 OPT_END() 194 }; 195 196 static const char * const bench_numa_usage[] = { 197 "perf bench numa <options>", 198 NULL 199 }; 200 201 static const char * const numa_usage[] = { 202 "perf bench numa mem [<options>]", 203 NULL 204 }; 205 206 static cpu_set_t bind_to_cpu(int target_cpu) 207 { 208 cpu_set_t orig_mask, mask; 209 int ret; 210 211 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 212 BUG_ON(ret); 213 214 CPU_ZERO(&mask); 215 216 if (target_cpu == -1) { 217 int cpu; 218 219 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 220 CPU_SET(cpu, &mask); 221 } else { 222 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 223 CPU_SET(target_cpu, &mask); 224 } 225 226 ret = sched_setaffinity(0, sizeof(mask), &mask); 227 BUG_ON(ret); 228 229 return orig_mask; 230 } 231 232 static cpu_set_t bind_to_node(int target_node) 233 { 234 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 235 cpu_set_t orig_mask, mask; 236 int cpu; 237 int ret; 238 239 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 240 BUG_ON(!cpus_per_node); 241 242 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 243 BUG_ON(ret); 244 245 CPU_ZERO(&mask); 246 247 if (target_node == -1) { 248 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 249 CPU_SET(cpu, &mask); 250 } else { 251 int cpu_start = (target_node + 0) * cpus_per_node; 252 int cpu_stop = (target_node + 1) * cpus_per_node; 253 254 BUG_ON(cpu_stop > g->p.nr_cpus); 255 256 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 257 CPU_SET(cpu, &mask); 258 } 259 260 ret = sched_setaffinity(0, sizeof(mask), &mask); 261 BUG_ON(ret); 262 263 return orig_mask; 264 } 265 266 static void bind_to_cpumask(cpu_set_t mask) 267 { 268 int ret; 269 270 ret = sched_setaffinity(0, sizeof(mask), &mask); 271 BUG_ON(ret); 272 } 273 274 static void mempol_restore(void) 275 { 276 int ret; 277 278 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 279 280 BUG_ON(ret); 281 } 282 283 static void bind_to_memnode(int node) 284 { 285 unsigned long nodemask; 286 int ret; 287 288 if (node == -1) 289 return; 290 291 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); 292 nodemask = 1L << node; 293 294 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 295 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 296 297 BUG_ON(ret); 298 } 299 300 #define HPSIZE (2*1024*1024) 301 302 #define set_taskname(fmt...) \ 303 do { \ 304 char name[20]; \ 305 \ 306 snprintf(name, 20, fmt); \ 307 prctl(PR_SET_NAME, name); \ 308 } while (0) 309 310 static u8 *alloc_data(ssize_t bytes0, int map_flags, 311 int init_zero, int init_cpu0, int thp, int init_random) 312 { 313 cpu_set_t orig_mask; 314 ssize_t bytes; 315 u8 *buf; 316 int ret; 317 318 if (!bytes0) 319 return NULL; 320 321 /* Allocate and initialize all memory on CPU#0: */ 322 if (init_cpu0) { 323 orig_mask = bind_to_node(0); 324 bind_to_memnode(0); 325 } 326 327 bytes = bytes0 + HPSIZE; 328 329 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 330 BUG_ON(buf == (void *)-1); 331 332 if (map_flags == MAP_PRIVATE) { 333 if (thp > 0) { 334 ret = madvise(buf, bytes, MADV_HUGEPAGE); 335 if (ret && !g->print_once) { 336 g->print_once = 1; 337 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 338 } 339 } 340 if (thp < 0) { 341 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 342 if (ret && !g->print_once) { 343 g->print_once = 1; 344 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 345 } 346 } 347 } 348 349 if (init_zero) { 350 bzero(buf, bytes); 351 } else { 352 /* Initialize random contents, different in each word: */ 353 if (init_random) { 354 u64 *wbuf = (void *)buf; 355 long off = rand(); 356 long i; 357 358 for (i = 0; i < bytes/8; i++) 359 wbuf[i] = i + off; 360 } 361 } 362 363 /* Align to 2MB boundary: */ 364 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 365 366 /* Restore affinity: */ 367 if (init_cpu0) { 368 bind_to_cpumask(orig_mask); 369 mempol_restore(); 370 } 371 372 return buf; 373 } 374 375 static void free_data(void *data, ssize_t bytes) 376 { 377 int ret; 378 379 if (!data) 380 return; 381 382 ret = munmap(data, bytes); 383 BUG_ON(ret); 384 } 385 386 /* 387 * Create a shared memory buffer that can be shared between processes, zeroed: 388 */ 389 static void * zalloc_shared_data(ssize_t bytes) 390 { 391 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 392 } 393 394 /* 395 * Create a shared memory buffer that can be shared between processes: 396 */ 397 static void * setup_shared_data(ssize_t bytes) 398 { 399 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 400 } 401 402 /* 403 * Allocate process-local memory - this will either be shared between 404 * threads of this process, or only be accessed by this thread: 405 */ 406 static void * setup_private_data(ssize_t bytes) 407 { 408 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 409 } 410 411 /* 412 * Return a process-shared (global) mutex: 413 */ 414 static void init_global_mutex(pthread_mutex_t *mutex) 415 { 416 pthread_mutexattr_t attr; 417 418 pthread_mutexattr_init(&attr); 419 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 420 pthread_mutex_init(mutex, &attr); 421 } 422 423 static int parse_cpu_list(const char *arg) 424 { 425 p0.cpu_list_str = strdup(arg); 426 427 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 428 429 return 0; 430 } 431 432 static void parse_setup_cpu_list(void) 433 { 434 struct thread_data *td; 435 char *str0, *str; 436 int t; 437 438 if (!g->p.cpu_list_str) 439 return; 440 441 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 442 443 str0 = str = strdup(g->p.cpu_list_str); 444 t = 0; 445 446 BUG_ON(!str); 447 448 tprintf("# binding tasks to CPUs:\n"); 449 tprintf("# "); 450 451 while (true) { 452 int bind_cpu, bind_cpu_0, bind_cpu_1; 453 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 454 int bind_len; 455 int step; 456 int mul; 457 458 tok = strsep(&str, ","); 459 if (!tok) 460 break; 461 462 tok_end = strstr(tok, "-"); 463 464 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 465 if (!tok_end) { 466 /* Single CPU specified: */ 467 bind_cpu_0 = bind_cpu_1 = atol(tok); 468 } else { 469 /* CPU range specified (for example: "5-11"): */ 470 bind_cpu_0 = atol(tok); 471 bind_cpu_1 = atol(tok_end + 1); 472 } 473 474 step = 1; 475 tok_step = strstr(tok, "#"); 476 if (tok_step) { 477 step = atol(tok_step + 1); 478 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 479 } 480 481 /* 482 * Mask length. 483 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 484 * where the _4 means the next 4 CPUs are allowed. 485 */ 486 bind_len = 1; 487 tok_len = strstr(tok, "_"); 488 if (tok_len) { 489 bind_len = atol(tok_len + 1); 490 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 491 } 492 493 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 494 mul = 1; 495 tok_mul = strstr(tok, "x"); 496 if (tok_mul) { 497 mul = atol(tok_mul + 1); 498 BUG_ON(mul <= 0); 499 } 500 501 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 502 503 BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus); 504 BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus); 505 BUG_ON(bind_cpu_0 > bind_cpu_1); 506 507 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 508 int i; 509 510 for (i = 0; i < mul; i++) { 511 int cpu; 512 513 if (t >= g->p.nr_tasks) { 514 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 515 goto out; 516 } 517 td = g->threads + t; 518 519 if (t) 520 tprintf(","); 521 if (bind_len > 1) { 522 tprintf("%2d/%d", bind_cpu, bind_len); 523 } else { 524 tprintf("%2d", bind_cpu); 525 } 526 527 CPU_ZERO(&td->bind_cpumask); 528 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 529 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 530 CPU_SET(cpu, &td->bind_cpumask); 531 } 532 t++; 533 } 534 } 535 } 536 out: 537 538 tprintf("\n"); 539 540 if (t < g->p.nr_tasks) 541 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 542 543 free(str0); 544 } 545 546 static int parse_cpus_opt(const struct option *opt __maybe_unused, 547 const char *arg, int unset __maybe_unused) 548 { 549 if (!arg) 550 return -1; 551 552 return parse_cpu_list(arg); 553 } 554 555 static int parse_node_list(const char *arg) 556 { 557 p0.node_list_str = strdup(arg); 558 559 dprintf("got NODE list: {%s}\n", p0.node_list_str); 560 561 return 0; 562 } 563 564 static void parse_setup_node_list(void) 565 { 566 struct thread_data *td; 567 char *str0, *str; 568 int t; 569 570 if (!g->p.node_list_str) 571 return; 572 573 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 574 575 str0 = str = strdup(g->p.node_list_str); 576 t = 0; 577 578 BUG_ON(!str); 579 580 tprintf("# binding tasks to NODEs:\n"); 581 tprintf("# "); 582 583 while (true) { 584 int bind_node, bind_node_0, bind_node_1; 585 char *tok, *tok_end, *tok_step, *tok_mul; 586 int step; 587 int mul; 588 589 tok = strsep(&str, ","); 590 if (!tok) 591 break; 592 593 tok_end = strstr(tok, "-"); 594 595 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 596 if (!tok_end) { 597 /* Single NODE specified: */ 598 bind_node_0 = bind_node_1 = atol(tok); 599 } else { 600 /* NODE range specified (for example: "5-11"): */ 601 bind_node_0 = atol(tok); 602 bind_node_1 = atol(tok_end + 1); 603 } 604 605 step = 1; 606 tok_step = strstr(tok, "#"); 607 if (tok_step) { 608 step = atol(tok_step + 1); 609 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 610 } 611 612 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 613 mul = 1; 614 tok_mul = strstr(tok, "x"); 615 if (tok_mul) { 616 mul = atol(tok_mul + 1); 617 BUG_ON(mul <= 0); 618 } 619 620 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 621 622 BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes); 623 BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes); 624 BUG_ON(bind_node_0 > bind_node_1); 625 626 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 627 int i; 628 629 for (i = 0; i < mul; i++) { 630 if (t >= g->p.nr_tasks) { 631 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 632 goto out; 633 } 634 td = g->threads + t; 635 636 if (!t) 637 tprintf(" %2d", bind_node); 638 else 639 tprintf(",%2d", bind_node); 640 641 td->bind_node = bind_node; 642 t++; 643 } 644 } 645 } 646 out: 647 648 tprintf("\n"); 649 650 if (t < g->p.nr_tasks) 651 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 652 653 free(str0); 654 } 655 656 static int parse_nodes_opt(const struct option *opt __maybe_unused, 657 const char *arg, int unset __maybe_unused) 658 { 659 if (!arg) 660 return -1; 661 662 return parse_node_list(arg); 663 664 return 0; 665 } 666 667 #define BIT(x) (1ul << x) 668 669 static inline uint32_t lfsr_32(uint32_t lfsr) 670 { 671 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 672 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 673 } 674 675 /* 676 * Make sure there's real data dependency to RAM (when read 677 * accesses are enabled), so the compiler, the CPU and the 678 * kernel (KSM, zero page, etc.) cannot optimize away RAM 679 * accesses: 680 */ 681 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 682 { 683 if (g->p.data_reads) 684 val += *data; 685 if (g->p.data_writes) 686 *data = val + 1; 687 return val; 688 } 689 690 /* 691 * The worker process does two types of work, a forwards going 692 * loop and a backwards going loop. 693 * 694 * We do this so that on multiprocessor systems we do not create 695 * a 'train' of processing, with highly synchronized processes, 696 * skewing the whole benchmark. 697 */ 698 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 699 { 700 long words = bytes/sizeof(u64); 701 u64 *data = (void *)__data; 702 long chunk_0, chunk_1; 703 u64 *d0, *d, *d1; 704 long off; 705 long i; 706 707 BUG_ON(!data && words); 708 BUG_ON(data && !words); 709 710 if (!data) 711 return val; 712 713 /* Very simple memset() work variant: */ 714 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 715 bzero(data, bytes); 716 return val; 717 } 718 719 /* Spread out by PID/TID nr and by loop nr: */ 720 chunk_0 = words/nr_max; 721 chunk_1 = words/g->p.nr_loops; 722 off = nr*chunk_0 + loop*chunk_1; 723 724 while (off >= words) 725 off -= words; 726 727 if (g->p.data_rand_walk) { 728 u32 lfsr = nr + loop + val; 729 int j; 730 731 for (i = 0; i < words/1024; i++) { 732 long start, end; 733 734 lfsr = lfsr_32(lfsr); 735 736 start = lfsr % words; 737 end = min(start + 1024, words-1); 738 739 if (g->p.data_zero_memset) { 740 bzero(data + start, (end-start) * sizeof(u64)); 741 } else { 742 for (j = start; j < end; j++) 743 val = access_data(data + j, val); 744 } 745 } 746 } else if (!g->p.data_backwards || (nr + loop) & 1) { 747 748 d0 = data + off; 749 d = data + off + 1; 750 d1 = data + words; 751 752 /* Process data forwards: */ 753 for (;;) { 754 if (unlikely(d >= d1)) 755 d = data; 756 if (unlikely(d == d0)) 757 break; 758 759 val = access_data(d, val); 760 761 d++; 762 } 763 } else { 764 /* Process data backwards: */ 765 766 d0 = data + off; 767 d = data + off - 1; 768 d1 = data + words; 769 770 /* Process data forwards: */ 771 for (;;) { 772 if (unlikely(d < data)) 773 d = data + words-1; 774 if (unlikely(d == d0)) 775 break; 776 777 val = access_data(d, val); 778 779 d--; 780 } 781 } 782 783 return val; 784 } 785 786 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 787 { 788 unsigned int cpu; 789 790 cpu = sched_getcpu(); 791 792 g->threads[task_nr].curr_cpu = cpu; 793 prctl(0, bytes_worked); 794 } 795 796 #define MAX_NR_NODES 64 797 798 /* 799 * Count the number of nodes a process's threads 800 * are spread out on. 801 * 802 * A count of 1 means that the process is compressed 803 * to a single node. A count of g->p.nr_nodes means it's 804 * spread out on the whole system. 805 */ 806 static int count_process_nodes(int process_nr) 807 { 808 char node_present[MAX_NR_NODES] = { 0, }; 809 int nodes; 810 int n, t; 811 812 for (t = 0; t < g->p.nr_threads; t++) { 813 struct thread_data *td; 814 int task_nr; 815 int node; 816 817 task_nr = process_nr*g->p.nr_threads + t; 818 td = g->threads + task_nr; 819 820 node = numa_node_of_cpu(td->curr_cpu); 821 node_present[node] = 1; 822 } 823 824 nodes = 0; 825 826 for (n = 0; n < MAX_NR_NODES; n++) 827 nodes += node_present[n]; 828 829 return nodes; 830 } 831 832 /* 833 * Count the number of distinct process-threads a node contains. 834 * 835 * A count of 1 means that the node contains only a single 836 * process. If all nodes on the system contain at most one 837 * process then we are well-converged. 838 */ 839 static int count_node_processes(int node) 840 { 841 int processes = 0; 842 int t, p; 843 844 for (p = 0; p < g->p.nr_proc; p++) { 845 for (t = 0; t < g->p.nr_threads; t++) { 846 struct thread_data *td; 847 int task_nr; 848 int n; 849 850 task_nr = p*g->p.nr_threads + t; 851 td = g->threads + task_nr; 852 853 n = numa_node_of_cpu(td->curr_cpu); 854 if (n == node) { 855 processes++; 856 break; 857 } 858 } 859 } 860 861 return processes; 862 } 863 864 static void calc_convergence_compression(int *strong) 865 { 866 unsigned int nodes_min, nodes_max; 867 int p; 868 869 nodes_min = -1; 870 nodes_max = 0; 871 872 for (p = 0; p < g->p.nr_proc; p++) { 873 unsigned int nodes = count_process_nodes(p); 874 875 nodes_min = min(nodes, nodes_min); 876 nodes_max = max(nodes, nodes_max); 877 } 878 879 /* Strong convergence: all threads compress on a single node: */ 880 if (nodes_min == 1 && nodes_max == 1) { 881 *strong = 1; 882 } else { 883 *strong = 0; 884 tprintf(" {%d-%d}", nodes_min, nodes_max); 885 } 886 } 887 888 static void calc_convergence(double runtime_ns_max, double *convergence) 889 { 890 unsigned int loops_done_min, loops_done_max; 891 int process_groups; 892 int nodes[MAX_NR_NODES]; 893 int distance; 894 int nr_min; 895 int nr_max; 896 int strong; 897 int sum; 898 int nr; 899 int node; 900 int cpu; 901 int t; 902 903 if (!g->p.show_convergence && !g->p.measure_convergence) 904 return; 905 906 for (node = 0; node < g->p.nr_nodes; node++) 907 nodes[node] = 0; 908 909 loops_done_min = -1; 910 loops_done_max = 0; 911 912 for (t = 0; t < g->p.nr_tasks; t++) { 913 struct thread_data *td = g->threads + t; 914 unsigned int loops_done; 915 916 cpu = td->curr_cpu; 917 918 /* Not all threads have written it yet: */ 919 if (cpu < 0) 920 continue; 921 922 node = numa_node_of_cpu(cpu); 923 924 nodes[node]++; 925 926 loops_done = td->loops_done; 927 loops_done_min = min(loops_done, loops_done_min); 928 loops_done_max = max(loops_done, loops_done_max); 929 } 930 931 nr_max = 0; 932 nr_min = g->p.nr_tasks; 933 sum = 0; 934 935 for (node = 0; node < g->p.nr_nodes; node++) { 936 nr = nodes[node]; 937 nr_min = min(nr, nr_min); 938 nr_max = max(nr, nr_max); 939 sum += nr; 940 } 941 BUG_ON(nr_min > nr_max); 942 943 BUG_ON(sum > g->p.nr_tasks); 944 945 if (0 && (sum < g->p.nr_tasks)) 946 return; 947 948 /* 949 * Count the number of distinct process groups present 950 * on nodes - when we are converged this will decrease 951 * to g->p.nr_proc: 952 */ 953 process_groups = 0; 954 955 for (node = 0; node < g->p.nr_nodes; node++) { 956 int processes = count_node_processes(node); 957 958 nr = nodes[node]; 959 tprintf(" %2d/%-2d", nr, processes); 960 961 process_groups += processes; 962 } 963 964 distance = nr_max - nr_min; 965 966 tprintf(" [%2d/%-2d]", distance, process_groups); 967 968 tprintf(" l:%3d-%-3d (%3d)", 969 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 970 971 if (loops_done_min && loops_done_max) { 972 double skew = 1.0 - (double)loops_done_min/loops_done_max; 973 974 tprintf(" [%4.1f%%]", skew * 100.0); 975 } 976 977 calc_convergence_compression(&strong); 978 979 if (strong && process_groups == g->p.nr_proc) { 980 if (!*convergence) { 981 *convergence = runtime_ns_max; 982 tprintf(" (%6.1fs converged)\n", *convergence/1e9); 983 if (g->p.measure_convergence) { 984 g->all_converged = true; 985 g->stop_work = true; 986 } 987 } 988 } else { 989 if (*convergence) { 990 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); 991 *convergence = 0; 992 } 993 tprintf("\n"); 994 } 995 } 996 997 static void show_summary(double runtime_ns_max, int l, double *convergence) 998 { 999 tprintf("\r # %5.1f%% [%.1f mins]", 1000 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); 1001 1002 calc_convergence(runtime_ns_max, convergence); 1003 1004 if (g->p.show_details >= 0) 1005 fflush(stdout); 1006 } 1007 1008 static void *worker_thread(void *__tdata) 1009 { 1010 struct thread_data *td = __tdata; 1011 struct timeval start0, start, stop, diff; 1012 int process_nr = td->process_nr; 1013 int thread_nr = td->thread_nr; 1014 unsigned long last_perturbance; 1015 int task_nr = td->task_nr; 1016 int details = g->p.show_details; 1017 int first_task, last_task; 1018 double convergence = 0; 1019 u64 val = td->val; 1020 double runtime_ns_max; 1021 u8 *global_data; 1022 u8 *process_data; 1023 u8 *thread_data; 1024 u64 bytes_done; 1025 long work_done; 1026 u32 l; 1027 1028 bind_to_cpumask(td->bind_cpumask); 1029 bind_to_memnode(td->bind_node); 1030 1031 set_taskname("thread %d/%d", process_nr, thread_nr); 1032 1033 global_data = g->data; 1034 process_data = td->process_data; 1035 thread_data = setup_private_data(g->p.bytes_thread); 1036 1037 bytes_done = 0; 1038 1039 last_task = 0; 1040 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1041 last_task = 1; 1042 1043 first_task = 0; 1044 if (process_nr == 0 && thread_nr == 0) 1045 first_task = 1; 1046 1047 if (details >= 2) { 1048 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1049 process_nr, thread_nr, global_data, process_data, thread_data); 1050 } 1051 1052 if (g->p.serialize_startup) { 1053 pthread_mutex_lock(&g->startup_mutex); 1054 g->nr_tasks_started++; 1055 pthread_mutex_unlock(&g->startup_mutex); 1056 1057 /* Here we will wait for the main process to start us all at once: */ 1058 pthread_mutex_lock(&g->start_work_mutex); 1059 g->nr_tasks_working++; 1060 1061 /* Last one wake the main process: */ 1062 if (g->nr_tasks_working == g->p.nr_tasks) 1063 pthread_mutex_unlock(&g->startup_done_mutex); 1064 1065 pthread_mutex_unlock(&g->start_work_mutex); 1066 } 1067 1068 gettimeofday(&start0, NULL); 1069 1070 start = stop = start0; 1071 last_perturbance = start.tv_sec; 1072 1073 for (l = 0; l < g->p.nr_loops; l++) { 1074 start = stop; 1075 1076 if (g->stop_work) 1077 break; 1078 1079 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1080 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1081 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1082 1083 if (g->p.sleep_usecs) { 1084 pthread_mutex_lock(td->process_lock); 1085 usleep(g->p.sleep_usecs); 1086 pthread_mutex_unlock(td->process_lock); 1087 } 1088 /* 1089 * Amount of work to be done under a process-global lock: 1090 */ 1091 if (g->p.bytes_process_locked) { 1092 pthread_mutex_lock(td->process_lock); 1093 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1094 pthread_mutex_unlock(td->process_lock); 1095 } 1096 1097 work_done = g->p.bytes_global + g->p.bytes_process + 1098 g->p.bytes_process_locked + g->p.bytes_thread; 1099 1100 update_curr_cpu(task_nr, work_done); 1101 bytes_done += work_done; 1102 1103 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1104 continue; 1105 1106 td->loops_done = l; 1107 1108 gettimeofday(&stop, NULL); 1109 1110 /* Check whether our max runtime timed out: */ 1111 if (g->p.nr_secs) { 1112 timersub(&stop, &start0, &diff); 1113 if (diff.tv_sec >= g->p.nr_secs) { 1114 g->stop_work = true; 1115 break; 1116 } 1117 } 1118 1119 /* Update the summary at most once per second: */ 1120 if (start.tv_sec == stop.tv_sec) 1121 continue; 1122 1123 /* 1124 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1125 * by migrating to CPU#0: 1126 */ 1127 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1128 cpu_set_t orig_mask; 1129 int target_cpu; 1130 int this_cpu; 1131 1132 last_perturbance = stop.tv_sec; 1133 1134 /* 1135 * Depending on where we are running, move into 1136 * the other half of the system, to create some 1137 * real disturbance: 1138 */ 1139 this_cpu = g->threads[task_nr].curr_cpu; 1140 if (this_cpu < g->p.nr_cpus/2) 1141 target_cpu = g->p.nr_cpus-1; 1142 else 1143 target_cpu = 0; 1144 1145 orig_mask = bind_to_cpu(target_cpu); 1146 1147 /* Here we are running on the target CPU already */ 1148 if (details >= 1) 1149 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1150 1151 bind_to_cpumask(orig_mask); 1152 } 1153 1154 if (details >= 3) { 1155 timersub(&stop, &start, &diff); 1156 runtime_ns_max = diff.tv_sec * 1000000000; 1157 runtime_ns_max += diff.tv_usec * 1000; 1158 1159 if (details >= 0) { 1160 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n", 1161 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1162 } 1163 fflush(stdout); 1164 } 1165 if (!last_task) 1166 continue; 1167 1168 timersub(&stop, &start0, &diff); 1169 runtime_ns_max = diff.tv_sec * 1000000000ULL; 1170 runtime_ns_max += diff.tv_usec * 1000ULL; 1171 1172 show_summary(runtime_ns_max, l, &convergence); 1173 } 1174 1175 gettimeofday(&stop, NULL); 1176 timersub(&stop, &start0, &diff); 1177 td->runtime_ns = diff.tv_sec * 1000000000ULL; 1178 td->runtime_ns += diff.tv_usec * 1000ULL; 1179 1180 free_data(thread_data, g->p.bytes_thread); 1181 1182 pthread_mutex_lock(&g->stop_work_mutex); 1183 g->bytes_done += bytes_done; 1184 pthread_mutex_unlock(&g->stop_work_mutex); 1185 1186 return NULL; 1187 } 1188 1189 /* 1190 * A worker process starts a couple of threads: 1191 */ 1192 static void worker_process(int process_nr) 1193 { 1194 pthread_mutex_t process_lock; 1195 struct thread_data *td; 1196 pthread_t *pthreads; 1197 u8 *process_data; 1198 int task_nr; 1199 int ret; 1200 int t; 1201 1202 pthread_mutex_init(&process_lock, NULL); 1203 set_taskname("process %d", process_nr); 1204 1205 /* 1206 * Pick up the memory policy and the CPU binding of our first thread, 1207 * so that we initialize memory accordingly: 1208 */ 1209 task_nr = process_nr*g->p.nr_threads; 1210 td = g->threads + task_nr; 1211 1212 bind_to_memnode(td->bind_node); 1213 bind_to_cpumask(td->bind_cpumask); 1214 1215 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1216 process_data = setup_private_data(g->p.bytes_process); 1217 1218 if (g->p.show_details >= 3) { 1219 printf(" # process %2d global mem: %p, process mem: %p\n", 1220 process_nr, g->data, process_data); 1221 } 1222 1223 for (t = 0; t < g->p.nr_threads; t++) { 1224 task_nr = process_nr*g->p.nr_threads + t; 1225 td = g->threads + task_nr; 1226 1227 td->process_data = process_data; 1228 td->process_nr = process_nr; 1229 td->thread_nr = t; 1230 td->task_nr = task_nr; 1231 td->val = rand(); 1232 td->curr_cpu = -1; 1233 td->process_lock = &process_lock; 1234 1235 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1236 BUG_ON(ret); 1237 } 1238 1239 for (t = 0; t < g->p.nr_threads; t++) { 1240 ret = pthread_join(pthreads[t], NULL); 1241 BUG_ON(ret); 1242 } 1243 1244 free_data(process_data, g->p.bytes_process); 1245 free(pthreads); 1246 } 1247 1248 static void print_summary(void) 1249 { 1250 if (g->p.show_details < 0) 1251 return; 1252 1253 printf("\n ###\n"); 1254 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1255 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1256 printf(" # %5dx %5ldMB global shared mem operations\n", 1257 g->p.nr_loops, g->p.bytes_global/1024/1024); 1258 printf(" # %5dx %5ldMB process shared mem operations\n", 1259 g->p.nr_loops, g->p.bytes_process/1024/1024); 1260 printf(" # %5dx %5ldMB thread local mem operations\n", 1261 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1262 1263 printf(" ###\n"); 1264 1265 printf("\n ###\n"); fflush(stdout); 1266 } 1267 1268 static void init_thread_data(void) 1269 { 1270 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1271 int t; 1272 1273 g->threads = zalloc_shared_data(size); 1274 1275 for (t = 0; t < g->p.nr_tasks; t++) { 1276 struct thread_data *td = g->threads + t; 1277 int cpu; 1278 1279 /* Allow all nodes by default: */ 1280 td->bind_node = -1; 1281 1282 /* Allow all CPUs by default: */ 1283 CPU_ZERO(&td->bind_cpumask); 1284 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1285 CPU_SET(cpu, &td->bind_cpumask); 1286 } 1287 } 1288 1289 static void deinit_thread_data(void) 1290 { 1291 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1292 1293 free_data(g->threads, size); 1294 } 1295 1296 static int init(void) 1297 { 1298 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1299 1300 /* Copy over options: */ 1301 g->p = p0; 1302 1303 g->p.nr_cpus = numa_num_configured_cpus(); 1304 1305 g->p.nr_nodes = numa_max_node() + 1; 1306 1307 /* char array in count_process_nodes(): */ 1308 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1309 1310 if (g->p.show_quiet && !g->p.show_details) 1311 g->p.show_details = -1; 1312 1313 /* Some memory should be specified: */ 1314 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1315 return -1; 1316 1317 if (g->p.mb_global_str) { 1318 g->p.mb_global = atof(g->p.mb_global_str); 1319 BUG_ON(g->p.mb_global < 0); 1320 } 1321 1322 if (g->p.mb_proc_str) { 1323 g->p.mb_proc = atof(g->p.mb_proc_str); 1324 BUG_ON(g->p.mb_proc < 0); 1325 } 1326 1327 if (g->p.mb_proc_locked_str) { 1328 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1329 BUG_ON(g->p.mb_proc_locked < 0); 1330 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1331 } 1332 1333 if (g->p.mb_thread_str) { 1334 g->p.mb_thread = atof(g->p.mb_thread_str); 1335 BUG_ON(g->p.mb_thread < 0); 1336 } 1337 1338 BUG_ON(g->p.nr_threads <= 0); 1339 BUG_ON(g->p.nr_proc <= 0); 1340 1341 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1342 1343 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1344 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1345 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1346 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1347 1348 g->data = setup_shared_data(g->p.bytes_global); 1349 1350 /* Startup serialization: */ 1351 init_global_mutex(&g->start_work_mutex); 1352 init_global_mutex(&g->startup_mutex); 1353 init_global_mutex(&g->startup_done_mutex); 1354 init_global_mutex(&g->stop_work_mutex); 1355 1356 init_thread_data(); 1357 1358 tprintf("#\n"); 1359 parse_setup_cpu_list(); 1360 parse_setup_node_list(); 1361 tprintf("#\n"); 1362 1363 print_summary(); 1364 1365 return 0; 1366 } 1367 1368 static void deinit(void) 1369 { 1370 free_data(g->data, g->p.bytes_global); 1371 g->data = NULL; 1372 1373 deinit_thread_data(); 1374 1375 free_data(g, sizeof(*g)); 1376 g = NULL; 1377 } 1378 1379 /* 1380 * Print a short or long result, depending on the verbosity setting: 1381 */ 1382 static void print_res(const char *name, double val, 1383 const char *txt_unit, const char *txt_short, const char *txt_long) 1384 { 1385 if (!name) 1386 name = "main,"; 1387 1388 if (g->p.show_quiet) 1389 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1390 else 1391 printf(" %14.3f %s\n", val, txt_long); 1392 } 1393 1394 static int __bench_numa(const char *name) 1395 { 1396 struct timeval start, stop, diff; 1397 u64 runtime_ns_min, runtime_ns_sum; 1398 pid_t *pids, pid, wpid; 1399 double delta_runtime; 1400 double runtime_avg; 1401 double runtime_sec_max; 1402 double runtime_sec_min; 1403 int wait_stat; 1404 double bytes; 1405 int i, t; 1406 1407 if (init()) 1408 return -1; 1409 1410 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1411 pid = -1; 1412 1413 /* All threads try to acquire it, this way we can wait for them to start up: */ 1414 pthread_mutex_lock(&g->start_work_mutex); 1415 1416 if (g->p.serialize_startup) { 1417 tprintf(" #\n"); 1418 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1419 } 1420 1421 gettimeofday(&start, NULL); 1422 1423 for (i = 0; i < g->p.nr_proc; i++) { 1424 pid = fork(); 1425 dprintf(" # process %2d: PID %d\n", i, pid); 1426 1427 BUG_ON(pid < 0); 1428 if (!pid) { 1429 /* Child process: */ 1430 worker_process(i); 1431 1432 exit(0); 1433 } 1434 pids[i] = pid; 1435 1436 } 1437 /* Wait for all the threads to start up: */ 1438 while (g->nr_tasks_started != g->p.nr_tasks) 1439 usleep(1000); 1440 1441 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1442 1443 if (g->p.serialize_startup) { 1444 double startup_sec; 1445 1446 pthread_mutex_lock(&g->startup_done_mutex); 1447 1448 /* This will start all threads: */ 1449 pthread_mutex_unlock(&g->start_work_mutex); 1450 1451 /* This mutex is locked - the last started thread will wake us: */ 1452 pthread_mutex_lock(&g->startup_done_mutex); 1453 1454 gettimeofday(&stop, NULL); 1455 1456 timersub(&stop, &start, &diff); 1457 1458 startup_sec = diff.tv_sec * 1000000000.0; 1459 startup_sec += diff.tv_usec * 1000.0; 1460 startup_sec /= 1e9; 1461 1462 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1463 tprintf(" #\n"); 1464 1465 start = stop; 1466 pthread_mutex_unlock(&g->startup_done_mutex); 1467 } else { 1468 gettimeofday(&start, NULL); 1469 } 1470 1471 /* Parent process: */ 1472 1473 1474 for (i = 0; i < g->p.nr_proc; i++) { 1475 wpid = waitpid(pids[i], &wait_stat, 0); 1476 BUG_ON(wpid < 0); 1477 BUG_ON(!WIFEXITED(wait_stat)); 1478 1479 } 1480 1481 runtime_ns_sum = 0; 1482 runtime_ns_min = -1LL; 1483 1484 for (t = 0; t < g->p.nr_tasks; t++) { 1485 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1486 1487 runtime_ns_sum += thread_runtime_ns; 1488 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1489 } 1490 1491 gettimeofday(&stop, NULL); 1492 timersub(&stop, &start, &diff); 1493 1494 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1495 1496 tprintf("\n ###\n"); 1497 tprintf("\n"); 1498 1499 runtime_sec_max = diff.tv_sec * 1000000000.0; 1500 runtime_sec_max += diff.tv_usec * 1000.0; 1501 runtime_sec_max /= 1e9; 1502 1503 runtime_sec_min = runtime_ns_min/1e9; 1504 1505 bytes = g->bytes_done; 1506 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; 1507 1508 if (g->p.measure_convergence) { 1509 print_res(name, runtime_sec_max, 1510 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1511 } 1512 1513 print_res(name, runtime_sec_max, 1514 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1515 1516 print_res(name, runtime_sec_min, 1517 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1518 1519 print_res(name, runtime_avg, 1520 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1521 1522 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1523 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1524 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1525 1526 print_res(name, bytes / g->p.nr_tasks / 1e9, 1527 "GB,", "data/thread", "GB data processed, per thread"); 1528 1529 print_res(name, bytes / 1e9, 1530 "GB,", "data-total", "GB data processed, total"); 1531 1532 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), 1533 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1534 1535 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1536 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1537 1538 print_res(name, bytes / runtime_sec_max / 1e9, 1539 "GB/sec,", "total-speed", "GB/sec total speed"); 1540 1541 free(pids); 1542 1543 deinit(); 1544 1545 return 0; 1546 } 1547 1548 #define MAX_ARGS 50 1549 1550 static int command_size(const char **argv) 1551 { 1552 int size = 0; 1553 1554 while (*argv) { 1555 size++; 1556 argv++; 1557 } 1558 1559 BUG_ON(size >= MAX_ARGS); 1560 1561 return size; 1562 } 1563 1564 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1565 { 1566 int i; 1567 1568 printf("\n # Running %s \"perf bench numa", name); 1569 1570 for (i = 0; i < argc; i++) 1571 printf(" %s", argv[i]); 1572 1573 printf("\"\n"); 1574 1575 memset(p, 0, sizeof(*p)); 1576 1577 /* Initialize nonzero defaults: */ 1578 1579 p->serialize_startup = 1; 1580 p->data_reads = true; 1581 p->data_writes = true; 1582 p->data_backwards = true; 1583 p->data_rand_walk = true; 1584 p->nr_loops = -1; 1585 p->init_random = true; 1586 } 1587 1588 static int run_bench_numa(const char *name, const char **argv) 1589 { 1590 int argc = command_size(argv); 1591 1592 init_params(&p0, name, argc, argv); 1593 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1594 if (argc) 1595 goto err; 1596 1597 if (__bench_numa(name)) 1598 goto err; 1599 1600 return 0; 1601 1602 err: 1603 usage_with_options(numa_usage, options); 1604 return -1; 1605 } 1606 1607 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1608 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1609 1610 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1611 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1612 1613 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1614 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1615 1616 /* 1617 * The built-in test-suite executed by "perf bench numa -a". 1618 * 1619 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1620 */ 1621 static const char *tests[][MAX_ARGS] = { 1622 /* Basic single-stream NUMA bandwidth measurements: */ 1623 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1624 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1625 { "RAM-bw-local-NOTHP,", 1626 "mem", "-p", "1", "-t", "1", "-P", "1024", 1627 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1628 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1629 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1630 1631 /* 2-stream NUMA bandwidth measurements: */ 1632 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1633 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1634 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1635 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1636 1637 /* Cross-stream NUMA bandwidth measurement: */ 1638 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1639 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1640 1641 /* Convergence latency measurements: */ 1642 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1643 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1644 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1645 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1646 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1647 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1648 { " 4x4-convergence-NOTHP,", 1649 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1650 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1651 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1652 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1653 { " 8x4-convergence-NOTHP,", 1654 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1655 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1656 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1657 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1658 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1659 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1660 1661 /* Various NUMA process/thread layout bandwidth measurements: */ 1662 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1663 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1664 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1665 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1666 { " 8x1-bw-process-NOTHP,", 1667 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1668 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1669 1670 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1671 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1672 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1673 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1674 1675 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1676 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1677 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1678 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1679 { " 4x8-bw-thread-NOTHP,", 1680 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1681 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1682 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1683 1684 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1685 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1686 1687 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1688 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1689 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1690 { "numa01-bw-thread-NOTHP,", 1691 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1692 }; 1693 1694 static int bench_all(void) 1695 { 1696 int nr = ARRAY_SIZE(tests); 1697 int ret; 1698 int i; 1699 1700 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1701 BUG_ON(ret < 0); 1702 1703 for (i = 0; i < nr; i++) { 1704 if (run_bench_numa(tests[i][0], tests[i] + 1)) 1705 return -1; 1706 } 1707 1708 printf("\n"); 1709 1710 return 0; 1711 } 1712 1713 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1714 { 1715 init_params(&p0, "main,", argc, argv); 1716 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1717 if (argc) 1718 goto err; 1719 1720 if (p0.run_all) 1721 return bench_all(); 1722 1723 if (__bench_numa(NULL)) 1724 goto err; 1725 1726 return 0; 1727 1728 err: 1729 usage_with_options(numa_usage, options); 1730 return -1; 1731 } 1732