1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include <subcmd/parse-options.h> 13 #include "../util/cloexec.h" 14 15 #include "bench.h" 16 17 #include <errno.h> 18 #include <sched.h> 19 #include <stdio.h> 20 #include <assert.h> 21 #include <malloc.h> 22 #include <signal.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <unistd.h> 26 #include <sys/mman.h> 27 #include <sys/time.h> 28 #include <sys/resource.h> 29 #include <sys/wait.h> 30 #include <sys/prctl.h> 31 #include <sys/types.h> 32 #include <linux/kernel.h> 33 #include <linux/time64.h> 34 #include <linux/numa.h> 35 #include <linux/zalloc.h> 36 37 #include "../util/header.h" 38 #include <numa.h> 39 #include <numaif.h> 40 41 #ifndef RUSAGE_THREAD 42 # define RUSAGE_THREAD 1 43 #endif 44 45 /* 46 * Regular printout to the terminal, suppressed if -q is specified: 47 */ 48 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 49 50 /* 51 * Debug printf: 52 */ 53 #undef dprintf 54 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 55 56 struct thread_data { 57 int curr_cpu; 58 cpu_set_t *bind_cpumask; 59 int bind_node; 60 u8 *process_data; 61 int process_nr; 62 int thread_nr; 63 int task_nr; 64 unsigned int loops_done; 65 u64 val; 66 u64 runtime_ns; 67 u64 system_time_ns; 68 u64 user_time_ns; 69 double speed_gbs; 70 pthread_mutex_t *process_lock; 71 }; 72 73 /* Parameters set by options: */ 74 75 struct params { 76 /* Startup synchronization: */ 77 bool serialize_startup; 78 79 /* Task hierarchy: */ 80 int nr_proc; 81 int nr_threads; 82 83 /* Working set sizes: */ 84 const char *mb_global_str; 85 const char *mb_proc_str; 86 const char *mb_proc_locked_str; 87 const char *mb_thread_str; 88 89 double mb_global; 90 double mb_proc; 91 double mb_proc_locked; 92 double mb_thread; 93 94 /* Access patterns to the working set: */ 95 bool data_reads; 96 bool data_writes; 97 bool data_backwards; 98 bool data_zero_memset; 99 bool data_rand_walk; 100 u32 nr_loops; 101 u32 nr_secs; 102 u32 sleep_usecs; 103 104 /* Working set initialization: */ 105 bool init_zero; 106 bool init_random; 107 bool init_cpu0; 108 109 /* Misc options: */ 110 int show_details; 111 int run_all; 112 int thp; 113 114 long bytes_global; 115 long bytes_process; 116 long bytes_process_locked; 117 long bytes_thread; 118 119 int nr_tasks; 120 bool show_quiet; 121 122 bool show_convergence; 123 bool measure_convergence; 124 125 int perturb_secs; 126 int nr_cpus; 127 int nr_nodes; 128 129 /* Affinity options -C and -N: */ 130 char *cpu_list_str; 131 char *node_list_str; 132 }; 133 134 135 /* Global, read-writable area, accessible to all processes and threads: */ 136 137 struct global_info { 138 u8 *data; 139 140 pthread_mutex_t startup_mutex; 141 pthread_cond_t startup_cond; 142 int nr_tasks_started; 143 144 pthread_mutex_t start_work_mutex; 145 pthread_cond_t start_work_cond; 146 int nr_tasks_working; 147 bool start_work; 148 149 pthread_mutex_t stop_work_mutex; 150 u64 bytes_done; 151 152 struct thread_data *threads; 153 154 /* Convergence latency measurement: */ 155 bool all_converged; 156 bool stop_work; 157 158 int print_once; 159 160 struct params p; 161 }; 162 163 static struct global_info *g = NULL; 164 165 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 166 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 167 168 struct params p0; 169 170 static const struct option options[] = { 171 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 172 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 173 174 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 175 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 176 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 177 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 178 179 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 180 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 181 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 182 183 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 184 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 185 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 186 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 187 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 188 189 190 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 191 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 192 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 193 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 194 195 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 196 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 197 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 198 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 199 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 200 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 201 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 202 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 203 204 /* Special option string parsing callbacks: */ 205 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 206 "bind the first N tasks to these specific cpus (the rest is unbound)", 207 parse_cpus_opt), 208 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 209 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 210 parse_nodes_opt), 211 OPT_END() 212 }; 213 214 static const char * const bench_numa_usage[] = { 215 "perf bench numa <options>", 216 NULL 217 }; 218 219 static const char * const numa_usage[] = { 220 "perf bench numa mem [<options>]", 221 NULL 222 }; 223 224 /* 225 * To get number of numa nodes present. 226 */ 227 static int nr_numa_nodes(void) 228 { 229 int i, nr_nodes = 0; 230 231 for (i = 0; i < g->p.nr_nodes; i++) { 232 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 233 nr_nodes++; 234 } 235 236 return nr_nodes; 237 } 238 239 /* 240 * To check if given numa node is present. 241 */ 242 static int is_node_present(int node) 243 { 244 return numa_bitmask_isbitset(numa_nodes_ptr, node); 245 } 246 247 /* 248 * To check given numa node has cpus. 249 */ 250 static bool node_has_cpus(int node) 251 { 252 struct bitmask *cpumask = numa_allocate_cpumask(); 253 bool ret = false; /* fall back to nocpus */ 254 int cpu; 255 256 BUG_ON(!cpumask); 257 if (!numa_node_to_cpus(node, cpumask)) { 258 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 259 if (numa_bitmask_isbitset(cpumask, cpu)) { 260 ret = true; 261 break; 262 } 263 } 264 } 265 numa_free_cpumask(cpumask); 266 267 return ret; 268 } 269 270 static cpu_set_t *bind_to_cpu(int target_cpu) 271 { 272 int nrcpus = numa_num_possible_cpus(); 273 cpu_set_t *orig_mask, *mask; 274 size_t size; 275 276 orig_mask = CPU_ALLOC(nrcpus); 277 BUG_ON(!orig_mask); 278 size = CPU_ALLOC_SIZE(nrcpus); 279 CPU_ZERO_S(size, orig_mask); 280 281 if (sched_getaffinity(0, size, orig_mask)) 282 goto err_out; 283 284 mask = CPU_ALLOC(nrcpus); 285 if (!mask) 286 goto err_out; 287 288 CPU_ZERO_S(size, mask); 289 290 if (target_cpu == -1) { 291 int cpu; 292 293 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 294 CPU_SET_S(cpu, size, mask); 295 } else { 296 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus) 297 goto err; 298 299 CPU_SET_S(target_cpu, size, mask); 300 } 301 302 if (sched_setaffinity(0, size, mask)) 303 goto err; 304 305 return orig_mask; 306 307 err: 308 CPU_FREE(mask); 309 err_out: 310 CPU_FREE(orig_mask); 311 312 /* BUG_ON due to failure in allocation of orig_mask/mask */ 313 BUG_ON(-1); 314 return NULL; 315 } 316 317 static cpu_set_t *bind_to_node(int target_node) 318 { 319 int nrcpus = numa_num_possible_cpus(); 320 size_t size; 321 cpu_set_t *orig_mask, *mask; 322 int cpu; 323 324 orig_mask = CPU_ALLOC(nrcpus); 325 BUG_ON(!orig_mask); 326 size = CPU_ALLOC_SIZE(nrcpus); 327 CPU_ZERO_S(size, orig_mask); 328 329 if (sched_getaffinity(0, size, orig_mask)) 330 goto err_out; 331 332 mask = CPU_ALLOC(nrcpus); 333 if (!mask) 334 goto err_out; 335 336 CPU_ZERO_S(size, mask); 337 338 if (target_node == NUMA_NO_NODE) { 339 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 340 CPU_SET_S(cpu, size, mask); 341 } else { 342 struct bitmask *cpumask = numa_allocate_cpumask(); 343 344 if (!cpumask) 345 goto err; 346 347 if (!numa_node_to_cpus(target_node, cpumask)) { 348 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 349 if (numa_bitmask_isbitset(cpumask, cpu)) 350 CPU_SET_S(cpu, size, mask); 351 } 352 } 353 numa_free_cpumask(cpumask); 354 } 355 356 if (sched_setaffinity(0, size, mask)) 357 goto err; 358 359 return orig_mask; 360 361 err: 362 CPU_FREE(mask); 363 err_out: 364 CPU_FREE(orig_mask); 365 366 /* BUG_ON due to failure in allocation of orig_mask/mask */ 367 BUG_ON(-1); 368 return NULL; 369 } 370 371 static void bind_to_cpumask(cpu_set_t *mask) 372 { 373 int ret; 374 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus()); 375 376 ret = sched_setaffinity(0, size, mask); 377 if (ret) { 378 CPU_FREE(mask); 379 BUG_ON(ret); 380 } 381 } 382 383 static void mempol_restore(void) 384 { 385 int ret; 386 387 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 388 389 BUG_ON(ret); 390 } 391 392 static void bind_to_memnode(int node) 393 { 394 struct bitmask *node_mask; 395 int ret; 396 397 if (node == NUMA_NO_NODE) 398 return; 399 400 node_mask = numa_allocate_nodemask(); 401 BUG_ON(!node_mask); 402 403 numa_bitmask_clearall(node_mask); 404 numa_bitmask_setbit(node_mask, node); 405 406 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1); 407 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret); 408 409 numa_bitmask_free(node_mask); 410 BUG_ON(ret); 411 } 412 413 #define HPSIZE (2*1024*1024) 414 415 #define set_taskname(fmt...) \ 416 do { \ 417 char name[20]; \ 418 \ 419 snprintf(name, 20, fmt); \ 420 prctl(PR_SET_NAME, name); \ 421 } while (0) 422 423 static u8 *alloc_data(ssize_t bytes0, int map_flags, 424 int init_zero, int init_cpu0, int thp, int init_random) 425 { 426 cpu_set_t *orig_mask = NULL; 427 ssize_t bytes; 428 u8 *buf; 429 int ret; 430 431 if (!bytes0) 432 return NULL; 433 434 /* Allocate and initialize all memory on CPU#0: */ 435 if (init_cpu0) { 436 int node = numa_node_of_cpu(0); 437 438 orig_mask = bind_to_node(node); 439 bind_to_memnode(node); 440 } 441 442 bytes = bytes0 + HPSIZE; 443 444 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 445 BUG_ON(buf == (void *)-1); 446 447 if (map_flags == MAP_PRIVATE) { 448 if (thp > 0) { 449 ret = madvise(buf, bytes, MADV_HUGEPAGE); 450 if (ret && !g->print_once) { 451 g->print_once = 1; 452 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 453 } 454 } 455 if (thp < 0) { 456 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 457 if (ret && !g->print_once) { 458 g->print_once = 1; 459 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 460 } 461 } 462 } 463 464 if (init_zero) { 465 bzero(buf, bytes); 466 } else { 467 /* Initialize random contents, different in each word: */ 468 if (init_random) { 469 u64 *wbuf = (void *)buf; 470 long off = rand(); 471 long i; 472 473 for (i = 0; i < bytes/8; i++) 474 wbuf[i] = i + off; 475 } 476 } 477 478 /* Align to 2MB boundary: */ 479 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 480 481 /* Restore affinity: */ 482 if (init_cpu0) { 483 bind_to_cpumask(orig_mask); 484 CPU_FREE(orig_mask); 485 mempol_restore(); 486 } 487 488 return buf; 489 } 490 491 static void free_data(void *data, ssize_t bytes) 492 { 493 int ret; 494 495 if (!data) 496 return; 497 498 ret = munmap(data, bytes); 499 BUG_ON(ret); 500 } 501 502 /* 503 * Create a shared memory buffer that can be shared between processes, zeroed: 504 */ 505 static void * zalloc_shared_data(ssize_t bytes) 506 { 507 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 508 } 509 510 /* 511 * Create a shared memory buffer that can be shared between processes: 512 */ 513 static void * setup_shared_data(ssize_t bytes) 514 { 515 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 516 } 517 518 /* 519 * Allocate process-local memory - this will either be shared between 520 * threads of this process, or only be accessed by this thread: 521 */ 522 static void * setup_private_data(ssize_t bytes) 523 { 524 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 525 } 526 527 /* 528 * Return a process-shared (global) mutex: 529 */ 530 static void init_global_mutex(pthread_mutex_t *mutex) 531 { 532 pthread_mutexattr_t attr; 533 534 pthread_mutexattr_init(&attr); 535 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 536 pthread_mutex_init(mutex, &attr); 537 } 538 539 /* 540 * Return a process-shared (global) condition variable: 541 */ 542 static void init_global_cond(pthread_cond_t *cond) 543 { 544 pthread_condattr_t attr; 545 546 pthread_condattr_init(&attr); 547 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 548 pthread_cond_init(cond, &attr); 549 } 550 551 static int parse_cpu_list(const char *arg) 552 { 553 p0.cpu_list_str = strdup(arg); 554 555 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 556 557 return 0; 558 } 559 560 static int parse_setup_cpu_list(void) 561 { 562 struct thread_data *td; 563 char *str0, *str; 564 int t; 565 566 if (!g->p.cpu_list_str) 567 return 0; 568 569 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 570 571 str0 = str = strdup(g->p.cpu_list_str); 572 t = 0; 573 574 BUG_ON(!str); 575 576 tprintf("# binding tasks to CPUs:\n"); 577 tprintf("# "); 578 579 while (true) { 580 int bind_cpu, bind_cpu_0, bind_cpu_1; 581 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 582 int bind_len; 583 int step; 584 int mul; 585 586 tok = strsep(&str, ","); 587 if (!tok) 588 break; 589 590 tok_end = strstr(tok, "-"); 591 592 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 593 if (!tok_end) { 594 /* Single CPU specified: */ 595 bind_cpu_0 = bind_cpu_1 = atol(tok); 596 } else { 597 /* CPU range specified (for example: "5-11"): */ 598 bind_cpu_0 = atol(tok); 599 bind_cpu_1 = atol(tok_end + 1); 600 } 601 602 step = 1; 603 tok_step = strstr(tok, "#"); 604 if (tok_step) { 605 step = atol(tok_step + 1); 606 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 607 } 608 609 /* 610 * Mask length. 611 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 612 * where the _4 means the next 4 CPUs are allowed. 613 */ 614 bind_len = 1; 615 tok_len = strstr(tok, "_"); 616 if (tok_len) { 617 bind_len = atol(tok_len + 1); 618 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 619 } 620 621 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 622 mul = 1; 623 tok_mul = strstr(tok, "x"); 624 if (tok_mul) { 625 mul = atol(tok_mul + 1); 626 BUG_ON(mul <= 0); 627 } 628 629 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 630 631 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 632 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 633 return -1; 634 } 635 636 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) { 637 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n"); 638 return -1; 639 } 640 641 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 642 BUG_ON(bind_cpu_0 > bind_cpu_1); 643 644 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 645 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus); 646 int i; 647 648 for (i = 0; i < mul; i++) { 649 int cpu; 650 651 if (t >= g->p.nr_tasks) { 652 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 653 goto out; 654 } 655 td = g->threads + t; 656 657 if (t) 658 tprintf(","); 659 if (bind_len > 1) { 660 tprintf("%2d/%d", bind_cpu, bind_len); 661 } else { 662 tprintf("%2d", bind_cpu); 663 } 664 665 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 666 BUG_ON(!td->bind_cpumask); 667 CPU_ZERO_S(size, td->bind_cpumask); 668 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 669 if (cpu < 0 || cpu >= g->p.nr_cpus) { 670 CPU_FREE(td->bind_cpumask); 671 BUG_ON(-1); 672 } 673 CPU_SET_S(cpu, size, td->bind_cpumask); 674 } 675 t++; 676 } 677 } 678 } 679 out: 680 681 tprintf("\n"); 682 683 if (t < g->p.nr_tasks) 684 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 685 686 free(str0); 687 return 0; 688 } 689 690 static int parse_cpus_opt(const struct option *opt __maybe_unused, 691 const char *arg, int unset __maybe_unused) 692 { 693 if (!arg) 694 return -1; 695 696 return parse_cpu_list(arg); 697 } 698 699 static int parse_node_list(const char *arg) 700 { 701 p0.node_list_str = strdup(arg); 702 703 dprintf("got NODE list: {%s}\n", p0.node_list_str); 704 705 return 0; 706 } 707 708 static int parse_setup_node_list(void) 709 { 710 struct thread_data *td; 711 char *str0, *str; 712 int t; 713 714 if (!g->p.node_list_str) 715 return 0; 716 717 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 718 719 str0 = str = strdup(g->p.node_list_str); 720 t = 0; 721 722 BUG_ON(!str); 723 724 tprintf("# binding tasks to NODEs:\n"); 725 tprintf("# "); 726 727 while (true) { 728 int bind_node, bind_node_0, bind_node_1; 729 char *tok, *tok_end, *tok_step, *tok_mul; 730 int step; 731 int mul; 732 733 tok = strsep(&str, ","); 734 if (!tok) 735 break; 736 737 tok_end = strstr(tok, "-"); 738 739 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 740 if (!tok_end) { 741 /* Single NODE specified: */ 742 bind_node_0 = bind_node_1 = atol(tok); 743 } else { 744 /* NODE range specified (for example: "5-11"): */ 745 bind_node_0 = atol(tok); 746 bind_node_1 = atol(tok_end + 1); 747 } 748 749 step = 1; 750 tok_step = strstr(tok, "#"); 751 if (tok_step) { 752 step = atol(tok_step + 1); 753 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 754 } 755 756 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 757 mul = 1; 758 tok_mul = strstr(tok, "x"); 759 if (tok_mul) { 760 mul = atol(tok_mul + 1); 761 BUG_ON(mul <= 0); 762 } 763 764 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 765 766 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 767 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 768 return -1; 769 } 770 771 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 772 BUG_ON(bind_node_0 > bind_node_1); 773 774 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 775 int i; 776 777 for (i = 0; i < mul; i++) { 778 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 779 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 780 goto out; 781 } 782 td = g->threads + t; 783 784 if (!t) 785 tprintf(" %2d", bind_node); 786 else 787 tprintf(",%2d", bind_node); 788 789 td->bind_node = bind_node; 790 t++; 791 } 792 } 793 } 794 out: 795 796 tprintf("\n"); 797 798 if (t < g->p.nr_tasks) 799 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 800 801 free(str0); 802 return 0; 803 } 804 805 static int parse_nodes_opt(const struct option *opt __maybe_unused, 806 const char *arg, int unset __maybe_unused) 807 { 808 if (!arg) 809 return -1; 810 811 return parse_node_list(arg); 812 } 813 814 static inline uint32_t lfsr_32(uint32_t lfsr) 815 { 816 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 817 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 818 } 819 820 /* 821 * Make sure there's real data dependency to RAM (when read 822 * accesses are enabled), so the compiler, the CPU and the 823 * kernel (KSM, zero page, etc.) cannot optimize away RAM 824 * accesses: 825 */ 826 static inline u64 access_data(u64 *data, u64 val) 827 { 828 if (g->p.data_reads) 829 val += *data; 830 if (g->p.data_writes) 831 *data = val + 1; 832 return val; 833 } 834 835 /* 836 * The worker process does two types of work, a forwards going 837 * loop and a backwards going loop. 838 * 839 * We do this so that on multiprocessor systems we do not create 840 * a 'train' of processing, with highly synchronized processes, 841 * skewing the whole benchmark. 842 */ 843 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 844 { 845 long words = bytes/sizeof(u64); 846 u64 *data = (void *)__data; 847 long chunk_0, chunk_1; 848 u64 *d0, *d, *d1; 849 long off; 850 long i; 851 852 BUG_ON(!data && words); 853 BUG_ON(data && !words); 854 855 if (!data) 856 return val; 857 858 /* Very simple memset() work variant: */ 859 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 860 bzero(data, bytes); 861 return val; 862 } 863 864 /* Spread out by PID/TID nr and by loop nr: */ 865 chunk_0 = words/nr_max; 866 chunk_1 = words/g->p.nr_loops; 867 off = nr*chunk_0 + loop*chunk_1; 868 869 while (off >= words) 870 off -= words; 871 872 if (g->p.data_rand_walk) { 873 u32 lfsr = nr + loop + val; 874 int j; 875 876 for (i = 0; i < words/1024; i++) { 877 long start, end; 878 879 lfsr = lfsr_32(lfsr); 880 881 start = lfsr % words; 882 end = min(start + 1024, words-1); 883 884 if (g->p.data_zero_memset) { 885 bzero(data + start, (end-start) * sizeof(u64)); 886 } else { 887 for (j = start; j < end; j++) 888 val = access_data(data + j, val); 889 } 890 } 891 } else if (!g->p.data_backwards || (nr + loop) & 1) { 892 /* Process data forwards: */ 893 894 d0 = data + off; 895 d = data + off + 1; 896 d1 = data + words; 897 898 for (;;) { 899 if (unlikely(d >= d1)) 900 d = data; 901 if (unlikely(d == d0)) 902 break; 903 904 val = access_data(d, val); 905 906 d++; 907 } 908 } else { 909 /* Process data backwards: */ 910 911 d0 = data + off; 912 d = data + off - 1; 913 d1 = data + words; 914 915 for (;;) { 916 if (unlikely(d < data)) 917 d = data + words-1; 918 if (unlikely(d == d0)) 919 break; 920 921 val = access_data(d, val); 922 923 d--; 924 } 925 } 926 927 return val; 928 } 929 930 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 931 { 932 unsigned int cpu; 933 934 cpu = sched_getcpu(); 935 936 g->threads[task_nr].curr_cpu = cpu; 937 prctl(0, bytes_worked); 938 } 939 940 /* 941 * Count the number of nodes a process's threads 942 * are spread out on. 943 * 944 * A count of 1 means that the process is compressed 945 * to a single node. A count of g->p.nr_nodes means it's 946 * spread out on the whole system. 947 */ 948 static int count_process_nodes(int process_nr) 949 { 950 char *node_present; 951 int nodes; 952 int n, t; 953 954 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char)); 955 BUG_ON(!node_present); 956 for (nodes = 0; nodes < g->p.nr_nodes; nodes++) 957 node_present[nodes] = 0; 958 959 for (t = 0; t < g->p.nr_threads; t++) { 960 struct thread_data *td; 961 int task_nr; 962 int node; 963 964 task_nr = process_nr*g->p.nr_threads + t; 965 td = g->threads + task_nr; 966 967 node = numa_node_of_cpu(td->curr_cpu); 968 if (node < 0) /* curr_cpu was likely still -1 */ { 969 free(node_present); 970 return 0; 971 } 972 973 node_present[node] = 1; 974 } 975 976 nodes = 0; 977 978 for (n = 0; n < g->p.nr_nodes; n++) 979 nodes += node_present[n]; 980 981 free(node_present); 982 return nodes; 983 } 984 985 /* 986 * Count the number of distinct process-threads a node contains. 987 * 988 * A count of 1 means that the node contains only a single 989 * process. If all nodes on the system contain at most one 990 * process then we are well-converged. 991 */ 992 static int count_node_processes(int node) 993 { 994 int processes = 0; 995 int t, p; 996 997 for (p = 0; p < g->p.nr_proc; p++) { 998 for (t = 0; t < g->p.nr_threads; t++) { 999 struct thread_data *td; 1000 int task_nr; 1001 int n; 1002 1003 task_nr = p*g->p.nr_threads + t; 1004 td = g->threads + task_nr; 1005 1006 n = numa_node_of_cpu(td->curr_cpu); 1007 if (n == node) { 1008 processes++; 1009 break; 1010 } 1011 } 1012 } 1013 1014 return processes; 1015 } 1016 1017 static void calc_convergence_compression(int *strong) 1018 { 1019 unsigned int nodes_min, nodes_max; 1020 int p; 1021 1022 nodes_min = -1; 1023 nodes_max = 0; 1024 1025 for (p = 0; p < g->p.nr_proc; p++) { 1026 unsigned int nodes = count_process_nodes(p); 1027 1028 if (!nodes) { 1029 *strong = 0; 1030 return; 1031 } 1032 1033 nodes_min = min(nodes, nodes_min); 1034 nodes_max = max(nodes, nodes_max); 1035 } 1036 1037 /* Strong convergence: all threads compress on a single node: */ 1038 if (nodes_min == 1 && nodes_max == 1) { 1039 *strong = 1; 1040 } else { 1041 *strong = 0; 1042 tprintf(" {%d-%d}", nodes_min, nodes_max); 1043 } 1044 } 1045 1046 static void calc_convergence(double runtime_ns_max, double *convergence) 1047 { 1048 unsigned int loops_done_min, loops_done_max; 1049 int process_groups; 1050 int *nodes; 1051 int distance; 1052 int nr_min; 1053 int nr_max; 1054 int strong; 1055 int sum; 1056 int nr; 1057 int node; 1058 int cpu; 1059 int t; 1060 1061 if (!g->p.show_convergence && !g->p.measure_convergence) 1062 return; 1063 1064 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int)); 1065 BUG_ON(!nodes); 1066 for (node = 0; node < g->p.nr_nodes; node++) 1067 nodes[node] = 0; 1068 1069 loops_done_min = -1; 1070 loops_done_max = 0; 1071 1072 for (t = 0; t < g->p.nr_tasks; t++) { 1073 struct thread_data *td = g->threads + t; 1074 unsigned int loops_done; 1075 1076 cpu = td->curr_cpu; 1077 1078 /* Not all threads have written it yet: */ 1079 if (cpu < 0) 1080 continue; 1081 1082 node = numa_node_of_cpu(cpu); 1083 1084 nodes[node]++; 1085 1086 loops_done = td->loops_done; 1087 loops_done_min = min(loops_done, loops_done_min); 1088 loops_done_max = max(loops_done, loops_done_max); 1089 } 1090 1091 nr_max = 0; 1092 nr_min = g->p.nr_tasks; 1093 sum = 0; 1094 1095 for (node = 0; node < g->p.nr_nodes; node++) { 1096 if (!is_node_present(node)) 1097 continue; 1098 nr = nodes[node]; 1099 nr_min = min(nr, nr_min); 1100 nr_max = max(nr, nr_max); 1101 sum += nr; 1102 } 1103 BUG_ON(nr_min > nr_max); 1104 1105 BUG_ON(sum > g->p.nr_tasks); 1106 1107 if (0 && (sum < g->p.nr_tasks)) { 1108 free(nodes); 1109 return; 1110 } 1111 1112 /* 1113 * Count the number of distinct process groups present 1114 * on nodes - when we are converged this will decrease 1115 * to g->p.nr_proc: 1116 */ 1117 process_groups = 0; 1118 1119 for (node = 0; node < g->p.nr_nodes; node++) { 1120 int processes; 1121 1122 if (!is_node_present(node)) 1123 continue; 1124 processes = count_node_processes(node); 1125 nr = nodes[node]; 1126 tprintf(" %2d/%-2d", nr, processes); 1127 1128 process_groups += processes; 1129 } 1130 1131 distance = nr_max - nr_min; 1132 1133 tprintf(" [%2d/%-2d]", distance, process_groups); 1134 1135 tprintf(" l:%3d-%-3d (%3d)", 1136 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1137 1138 if (loops_done_min && loops_done_max) { 1139 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1140 1141 tprintf(" [%4.1f%%]", skew * 100.0); 1142 } 1143 1144 calc_convergence_compression(&strong); 1145 1146 if (strong && process_groups == g->p.nr_proc) { 1147 if (!*convergence) { 1148 *convergence = runtime_ns_max; 1149 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1150 if (g->p.measure_convergence) { 1151 g->all_converged = true; 1152 g->stop_work = true; 1153 } 1154 } 1155 } else { 1156 if (*convergence) { 1157 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1158 *convergence = 0; 1159 } 1160 tprintf("\n"); 1161 } 1162 1163 free(nodes); 1164 } 1165 1166 static void show_summary(double runtime_ns_max, int l, double *convergence) 1167 { 1168 tprintf("\r # %5.1f%% [%.1f mins]", 1169 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1170 1171 calc_convergence(runtime_ns_max, convergence); 1172 1173 if (g->p.show_details >= 0) 1174 fflush(stdout); 1175 } 1176 1177 static void *worker_thread(void *__tdata) 1178 { 1179 struct thread_data *td = __tdata; 1180 struct timeval start0, start, stop, diff; 1181 int process_nr = td->process_nr; 1182 int thread_nr = td->thread_nr; 1183 unsigned long last_perturbance; 1184 int task_nr = td->task_nr; 1185 int details = g->p.show_details; 1186 int first_task, last_task; 1187 double convergence = 0; 1188 u64 val = td->val; 1189 double runtime_ns_max; 1190 u8 *global_data; 1191 u8 *process_data; 1192 u8 *thread_data; 1193 u64 bytes_done, secs; 1194 long work_done; 1195 u32 l; 1196 struct rusage rusage; 1197 1198 bind_to_cpumask(td->bind_cpumask); 1199 bind_to_memnode(td->bind_node); 1200 1201 set_taskname("thread %d/%d", process_nr, thread_nr); 1202 1203 global_data = g->data; 1204 process_data = td->process_data; 1205 thread_data = setup_private_data(g->p.bytes_thread); 1206 1207 bytes_done = 0; 1208 1209 last_task = 0; 1210 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1211 last_task = 1; 1212 1213 first_task = 0; 1214 if (process_nr == 0 && thread_nr == 0) 1215 first_task = 1; 1216 1217 if (details >= 2) { 1218 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1219 process_nr, thread_nr, global_data, process_data, thread_data); 1220 } 1221 1222 if (g->p.serialize_startup) { 1223 pthread_mutex_lock(&g->startup_mutex); 1224 g->nr_tasks_started++; 1225 /* The last thread wakes the main process. */ 1226 if (g->nr_tasks_started == g->p.nr_tasks) 1227 pthread_cond_signal(&g->startup_cond); 1228 1229 pthread_mutex_unlock(&g->startup_mutex); 1230 1231 /* Here we will wait for the main process to start us all at once: */ 1232 pthread_mutex_lock(&g->start_work_mutex); 1233 g->start_work = false; 1234 g->nr_tasks_working++; 1235 while (!g->start_work) 1236 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex); 1237 1238 pthread_mutex_unlock(&g->start_work_mutex); 1239 } 1240 1241 gettimeofday(&start0, NULL); 1242 1243 start = stop = start0; 1244 last_perturbance = start.tv_sec; 1245 1246 for (l = 0; l < g->p.nr_loops; l++) { 1247 start = stop; 1248 1249 if (g->stop_work) 1250 break; 1251 1252 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1253 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1254 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1255 1256 if (g->p.sleep_usecs) { 1257 pthread_mutex_lock(td->process_lock); 1258 usleep(g->p.sleep_usecs); 1259 pthread_mutex_unlock(td->process_lock); 1260 } 1261 /* 1262 * Amount of work to be done under a process-global lock: 1263 */ 1264 if (g->p.bytes_process_locked) { 1265 pthread_mutex_lock(td->process_lock); 1266 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1267 pthread_mutex_unlock(td->process_lock); 1268 } 1269 1270 work_done = g->p.bytes_global + g->p.bytes_process + 1271 g->p.bytes_process_locked + g->p.bytes_thread; 1272 1273 update_curr_cpu(task_nr, work_done); 1274 bytes_done += work_done; 1275 1276 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1277 continue; 1278 1279 td->loops_done = l; 1280 1281 gettimeofday(&stop, NULL); 1282 1283 /* Check whether our max runtime timed out: */ 1284 if (g->p.nr_secs) { 1285 timersub(&stop, &start0, &diff); 1286 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1287 g->stop_work = true; 1288 break; 1289 } 1290 } 1291 1292 /* Update the summary at most once per second: */ 1293 if (start.tv_sec == stop.tv_sec) 1294 continue; 1295 1296 /* 1297 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1298 * by migrating to CPU#0: 1299 */ 1300 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1301 cpu_set_t *orig_mask; 1302 int target_cpu; 1303 int this_cpu; 1304 1305 last_perturbance = stop.tv_sec; 1306 1307 /* 1308 * Depending on where we are running, move into 1309 * the other half of the system, to create some 1310 * real disturbance: 1311 */ 1312 this_cpu = g->threads[task_nr].curr_cpu; 1313 if (this_cpu < g->p.nr_cpus/2) 1314 target_cpu = g->p.nr_cpus-1; 1315 else 1316 target_cpu = 0; 1317 1318 orig_mask = bind_to_cpu(target_cpu); 1319 1320 /* Here we are running on the target CPU already */ 1321 if (details >= 1) 1322 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1323 1324 bind_to_cpumask(orig_mask); 1325 CPU_FREE(orig_mask); 1326 } 1327 1328 if (details >= 3) { 1329 timersub(&stop, &start, &diff); 1330 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1331 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1332 1333 if (details >= 0) { 1334 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1335 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1336 } 1337 fflush(stdout); 1338 } 1339 if (!last_task) 1340 continue; 1341 1342 timersub(&stop, &start0, &diff); 1343 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1344 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1345 1346 show_summary(runtime_ns_max, l, &convergence); 1347 } 1348 1349 gettimeofday(&stop, NULL); 1350 timersub(&stop, &start0, &diff); 1351 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1352 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1353 secs = td->runtime_ns / NSEC_PER_SEC; 1354 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1355 1356 getrusage(RUSAGE_THREAD, &rusage); 1357 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1358 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1359 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1360 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1361 1362 free_data(thread_data, g->p.bytes_thread); 1363 1364 pthread_mutex_lock(&g->stop_work_mutex); 1365 g->bytes_done += bytes_done; 1366 pthread_mutex_unlock(&g->stop_work_mutex); 1367 1368 return NULL; 1369 } 1370 1371 /* 1372 * A worker process starts a couple of threads: 1373 */ 1374 static void worker_process(int process_nr) 1375 { 1376 pthread_mutex_t process_lock; 1377 struct thread_data *td; 1378 pthread_t *pthreads; 1379 u8 *process_data; 1380 int task_nr; 1381 int ret; 1382 int t; 1383 1384 pthread_mutex_init(&process_lock, NULL); 1385 set_taskname("process %d", process_nr); 1386 1387 /* 1388 * Pick up the memory policy and the CPU binding of our first thread, 1389 * so that we initialize memory accordingly: 1390 */ 1391 task_nr = process_nr*g->p.nr_threads; 1392 td = g->threads + task_nr; 1393 1394 bind_to_memnode(td->bind_node); 1395 bind_to_cpumask(td->bind_cpumask); 1396 1397 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1398 process_data = setup_private_data(g->p.bytes_process); 1399 1400 if (g->p.show_details >= 3) { 1401 printf(" # process %2d global mem: %p, process mem: %p\n", 1402 process_nr, g->data, process_data); 1403 } 1404 1405 for (t = 0; t < g->p.nr_threads; t++) { 1406 task_nr = process_nr*g->p.nr_threads + t; 1407 td = g->threads + task_nr; 1408 1409 td->process_data = process_data; 1410 td->process_nr = process_nr; 1411 td->thread_nr = t; 1412 td->task_nr = task_nr; 1413 td->val = rand(); 1414 td->curr_cpu = -1; 1415 td->process_lock = &process_lock; 1416 1417 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1418 BUG_ON(ret); 1419 } 1420 1421 for (t = 0; t < g->p.nr_threads; t++) { 1422 ret = pthread_join(pthreads[t], NULL); 1423 BUG_ON(ret); 1424 } 1425 1426 free_data(process_data, g->p.bytes_process); 1427 free(pthreads); 1428 } 1429 1430 static void print_summary(void) 1431 { 1432 if (g->p.show_details < 0) 1433 return; 1434 1435 printf("\n ###\n"); 1436 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1437 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1438 printf(" # %5dx %5ldMB global shared mem operations\n", 1439 g->p.nr_loops, g->p.bytes_global/1024/1024); 1440 printf(" # %5dx %5ldMB process shared mem operations\n", 1441 g->p.nr_loops, g->p.bytes_process/1024/1024); 1442 printf(" # %5dx %5ldMB thread local mem operations\n", 1443 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1444 1445 printf(" ###\n"); 1446 1447 printf("\n ###\n"); fflush(stdout); 1448 } 1449 1450 static void init_thread_data(void) 1451 { 1452 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1453 int t; 1454 1455 g->threads = zalloc_shared_data(size); 1456 1457 for (t = 0; t < g->p.nr_tasks; t++) { 1458 struct thread_data *td = g->threads + t; 1459 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus); 1460 int cpu; 1461 1462 /* Allow all nodes by default: */ 1463 td->bind_node = NUMA_NO_NODE; 1464 1465 /* Allow all CPUs by default: */ 1466 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 1467 BUG_ON(!td->bind_cpumask); 1468 CPU_ZERO_S(cpuset_size, td->bind_cpumask); 1469 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1470 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask); 1471 } 1472 } 1473 1474 static void deinit_thread_data(void) 1475 { 1476 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1477 int t; 1478 1479 /* Free the bind_cpumask allocated for thread_data */ 1480 for (t = 0; t < g->p.nr_tasks; t++) { 1481 struct thread_data *td = g->threads + t; 1482 CPU_FREE(td->bind_cpumask); 1483 } 1484 1485 free_data(g->threads, size); 1486 } 1487 1488 static int init(void) 1489 { 1490 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1491 1492 /* Copy over options: */ 1493 g->p = p0; 1494 1495 g->p.nr_cpus = numa_num_configured_cpus(); 1496 1497 g->p.nr_nodes = numa_max_node() + 1; 1498 1499 /* char array in count_process_nodes(): */ 1500 BUG_ON(g->p.nr_nodes < 0); 1501 1502 if (g->p.show_quiet && !g->p.show_details) 1503 g->p.show_details = -1; 1504 1505 /* Some memory should be specified: */ 1506 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1507 return -1; 1508 1509 if (g->p.mb_global_str) { 1510 g->p.mb_global = atof(g->p.mb_global_str); 1511 BUG_ON(g->p.mb_global < 0); 1512 } 1513 1514 if (g->p.mb_proc_str) { 1515 g->p.mb_proc = atof(g->p.mb_proc_str); 1516 BUG_ON(g->p.mb_proc < 0); 1517 } 1518 1519 if (g->p.mb_proc_locked_str) { 1520 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1521 BUG_ON(g->p.mb_proc_locked < 0); 1522 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1523 } 1524 1525 if (g->p.mb_thread_str) { 1526 g->p.mb_thread = atof(g->p.mb_thread_str); 1527 BUG_ON(g->p.mb_thread < 0); 1528 } 1529 1530 BUG_ON(g->p.nr_threads <= 0); 1531 BUG_ON(g->p.nr_proc <= 0); 1532 1533 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1534 1535 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1536 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1537 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1538 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1539 1540 g->data = setup_shared_data(g->p.bytes_global); 1541 1542 /* Startup serialization: */ 1543 init_global_mutex(&g->start_work_mutex); 1544 init_global_cond(&g->start_work_cond); 1545 init_global_mutex(&g->startup_mutex); 1546 init_global_cond(&g->startup_cond); 1547 init_global_mutex(&g->stop_work_mutex); 1548 1549 init_thread_data(); 1550 1551 tprintf("#\n"); 1552 if (parse_setup_cpu_list() || parse_setup_node_list()) 1553 return -1; 1554 tprintf("#\n"); 1555 1556 print_summary(); 1557 1558 return 0; 1559 } 1560 1561 static void deinit(void) 1562 { 1563 free_data(g->data, g->p.bytes_global); 1564 g->data = NULL; 1565 1566 deinit_thread_data(); 1567 1568 free_data(g, sizeof(*g)); 1569 g = NULL; 1570 } 1571 1572 /* 1573 * Print a short or long result, depending on the verbosity setting: 1574 */ 1575 static void print_res(const char *name, double val, 1576 const char *txt_unit, const char *txt_short, const char *txt_long) 1577 { 1578 if (!name) 1579 name = "main,"; 1580 1581 if (!g->p.show_quiet) 1582 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1583 else 1584 printf(" %14.3f %s\n", val, txt_long); 1585 } 1586 1587 static int __bench_numa(const char *name) 1588 { 1589 struct timeval start, stop, diff; 1590 u64 runtime_ns_min, runtime_ns_sum; 1591 pid_t *pids, pid, wpid; 1592 double delta_runtime; 1593 double runtime_avg; 1594 double runtime_sec_max; 1595 double runtime_sec_min; 1596 int wait_stat; 1597 double bytes; 1598 int i, t, p; 1599 1600 if (init()) 1601 return -1; 1602 1603 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1604 pid = -1; 1605 1606 if (g->p.serialize_startup) { 1607 tprintf(" #\n"); 1608 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1609 } 1610 1611 gettimeofday(&start, NULL); 1612 1613 for (i = 0; i < g->p.nr_proc; i++) { 1614 pid = fork(); 1615 dprintf(" # process %2d: PID %d\n", i, pid); 1616 1617 BUG_ON(pid < 0); 1618 if (!pid) { 1619 /* Child process: */ 1620 worker_process(i); 1621 1622 exit(0); 1623 } 1624 pids[i] = pid; 1625 1626 } 1627 1628 if (g->p.serialize_startup) { 1629 bool threads_ready = false; 1630 double startup_sec; 1631 1632 /* 1633 * Wait for all the threads to start up. The last thread will 1634 * signal this process. 1635 */ 1636 pthread_mutex_lock(&g->startup_mutex); 1637 while (g->nr_tasks_started != g->p.nr_tasks) 1638 pthread_cond_wait(&g->startup_cond, &g->startup_mutex); 1639 1640 pthread_mutex_unlock(&g->startup_mutex); 1641 1642 /* Wait for all threads to be at the start_work_cond. */ 1643 while (!threads_ready) { 1644 pthread_mutex_lock(&g->start_work_mutex); 1645 threads_ready = (g->nr_tasks_working == g->p.nr_tasks); 1646 pthread_mutex_unlock(&g->start_work_mutex); 1647 if (!threads_ready) 1648 usleep(1); 1649 } 1650 1651 gettimeofday(&stop, NULL); 1652 1653 timersub(&stop, &start, &diff); 1654 1655 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1656 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1657 startup_sec /= NSEC_PER_SEC; 1658 1659 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1660 tprintf(" #\n"); 1661 1662 start = stop; 1663 /* Start all threads running. */ 1664 pthread_mutex_lock(&g->start_work_mutex); 1665 g->start_work = true; 1666 pthread_mutex_unlock(&g->start_work_mutex); 1667 pthread_cond_broadcast(&g->start_work_cond); 1668 } else { 1669 gettimeofday(&start, NULL); 1670 } 1671 1672 /* Parent process: */ 1673 1674 1675 for (i = 0; i < g->p.nr_proc; i++) { 1676 wpid = waitpid(pids[i], &wait_stat, 0); 1677 BUG_ON(wpid < 0); 1678 BUG_ON(!WIFEXITED(wait_stat)); 1679 1680 } 1681 1682 runtime_ns_sum = 0; 1683 runtime_ns_min = -1LL; 1684 1685 for (t = 0; t < g->p.nr_tasks; t++) { 1686 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1687 1688 runtime_ns_sum += thread_runtime_ns; 1689 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1690 } 1691 1692 gettimeofday(&stop, NULL); 1693 timersub(&stop, &start, &diff); 1694 1695 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1696 1697 tprintf("\n ###\n"); 1698 tprintf("\n"); 1699 1700 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1701 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1702 runtime_sec_max /= NSEC_PER_SEC; 1703 1704 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1705 1706 bytes = g->bytes_done; 1707 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1708 1709 if (g->p.measure_convergence) { 1710 print_res(name, runtime_sec_max, 1711 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1712 } 1713 1714 print_res(name, runtime_sec_max, 1715 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1716 1717 print_res(name, runtime_sec_min, 1718 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1719 1720 print_res(name, runtime_avg, 1721 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1722 1723 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1724 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1725 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1726 1727 print_res(name, bytes / g->p.nr_tasks / 1e9, 1728 "GB,", "data/thread", "GB data processed, per thread"); 1729 1730 print_res(name, bytes / 1e9, 1731 "GB,", "data-total", "GB data processed, total"); 1732 1733 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1734 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1735 1736 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1737 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1738 1739 print_res(name, bytes / runtime_sec_max / 1e9, 1740 "GB/sec,", "total-speed", "GB/sec total speed"); 1741 1742 if (g->p.show_details >= 2) { 1743 char tname[14 + 2 * 11 + 1]; 1744 struct thread_data *td; 1745 for (p = 0; p < g->p.nr_proc; p++) { 1746 for (t = 0; t < g->p.nr_threads; t++) { 1747 memset(tname, 0, sizeof(tname)); 1748 td = g->threads + p*g->p.nr_threads + t; 1749 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1750 print_res(tname, td->speed_gbs, 1751 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1752 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1753 "secs", "thread-system-time", "system CPU time/thread"); 1754 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1755 "secs", "thread-user-time", "user CPU time/thread"); 1756 } 1757 } 1758 } 1759 1760 free(pids); 1761 1762 deinit(); 1763 1764 return 0; 1765 } 1766 1767 #define MAX_ARGS 50 1768 1769 static int command_size(const char **argv) 1770 { 1771 int size = 0; 1772 1773 while (*argv) { 1774 size++; 1775 argv++; 1776 } 1777 1778 BUG_ON(size >= MAX_ARGS); 1779 1780 return size; 1781 } 1782 1783 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1784 { 1785 int i; 1786 1787 printf("\n # Running %s \"perf bench numa", name); 1788 1789 for (i = 0; i < argc; i++) 1790 printf(" %s", argv[i]); 1791 1792 printf("\"\n"); 1793 1794 memset(p, 0, sizeof(*p)); 1795 1796 /* Initialize nonzero defaults: */ 1797 1798 p->serialize_startup = 1; 1799 p->data_reads = true; 1800 p->data_writes = true; 1801 p->data_backwards = true; 1802 p->data_rand_walk = true; 1803 p->nr_loops = -1; 1804 p->init_random = true; 1805 p->mb_global_str = "1"; 1806 p->nr_proc = 1; 1807 p->nr_threads = 1; 1808 p->nr_secs = 5; 1809 p->run_all = argc == 1; 1810 } 1811 1812 static int run_bench_numa(const char *name, const char **argv) 1813 { 1814 int argc = command_size(argv); 1815 1816 init_params(&p0, name, argc, argv); 1817 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1818 if (argc) 1819 goto err; 1820 1821 if (__bench_numa(name)) 1822 goto err; 1823 1824 return 0; 1825 1826 err: 1827 return -1; 1828 } 1829 1830 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1831 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1832 1833 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1834 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1835 1836 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1837 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1838 1839 /* 1840 * The built-in test-suite executed by "perf bench numa -a". 1841 * 1842 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1843 */ 1844 static const char *tests[][MAX_ARGS] = { 1845 /* Basic single-stream NUMA bandwidth measurements: */ 1846 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1847 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1848 { "RAM-bw-local-NOTHP,", 1849 "mem", "-p", "1", "-t", "1", "-P", "1024", 1850 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1851 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1852 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1853 1854 /* 2-stream NUMA bandwidth measurements: */ 1855 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1856 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1857 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1858 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1859 1860 /* Cross-stream NUMA bandwidth measurement: */ 1861 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1862 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1863 1864 /* Convergence latency measurements: */ 1865 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1866 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1867 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1868 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV }, 1869 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1870 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1871 { " 4x4-convergence-NOTHP,", 1872 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1873 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1874 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1875 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1876 { " 8x4-convergence-NOTHP,", 1877 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1878 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1879 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1880 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1881 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1882 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1883 1884 /* Various NUMA process/thread layout bandwidth measurements: */ 1885 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1886 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1887 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1888 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1889 { " 8x1-bw-process-NOTHP,", 1890 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1891 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1892 1893 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1894 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1895 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1896 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1897 1898 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1899 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1900 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1901 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1902 { " 4x8-bw-process-NOTHP,", 1903 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1904 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1905 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1906 1907 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1908 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1909 1910 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1911 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1912 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1913 { "numa01-bw-thread-NOTHP,", 1914 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1915 }; 1916 1917 static int bench_all(void) 1918 { 1919 int nr = ARRAY_SIZE(tests); 1920 int ret; 1921 int i; 1922 1923 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1924 BUG_ON(ret < 0); 1925 1926 for (i = 0; i < nr; i++) { 1927 run_bench_numa(tests[i][0], tests[i] + 1); 1928 } 1929 1930 printf("\n"); 1931 1932 return 0; 1933 } 1934 1935 int bench_numa(int argc, const char **argv) 1936 { 1937 init_params(&p0, "main,", argc, argv); 1938 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1939 if (argc) 1940 goto err; 1941 1942 if (p0.run_all) 1943 return bench_all(); 1944 1945 if (__bench_numa(NULL)) 1946 goto err; 1947 1948 return 0; 1949 1950 err: 1951 usage_with_options(numa_usage, options); 1952 return -1; 1953 } 1954