1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include "../perf.h" 13 #include "../builtin.h" 14 #include "../util/util.h" 15 #include <subcmd/parse-options.h> 16 #include "../util/cloexec.h" 17 18 #include "bench.h" 19 20 #include <errno.h> 21 #include <sched.h> 22 #include <stdio.h> 23 #include <assert.h> 24 #include <malloc.h> 25 #include <signal.h> 26 #include <stdlib.h> 27 #include <string.h> 28 #include <unistd.h> 29 #include <sys/mman.h> 30 #include <sys/time.h> 31 #include <sys/resource.h> 32 #include <sys/wait.h> 33 #include <sys/prctl.h> 34 #include <sys/types.h> 35 #include <linux/kernel.h> 36 #include <linux/time64.h> 37 38 #include <numa.h> 39 #include <numaif.h> 40 41 /* 42 * Regular printout to the terminal, supressed if -q is specified: 43 */ 44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 45 46 /* 47 * Debug printf: 48 */ 49 #undef dprintf 50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 51 52 struct thread_data { 53 int curr_cpu; 54 cpu_set_t bind_cpumask; 55 int bind_node; 56 u8 *process_data; 57 int process_nr; 58 int thread_nr; 59 int task_nr; 60 unsigned int loops_done; 61 u64 val; 62 u64 runtime_ns; 63 u64 system_time_ns; 64 u64 user_time_ns; 65 double speed_gbs; 66 pthread_mutex_t *process_lock; 67 }; 68 69 /* Parameters set by options: */ 70 71 struct params { 72 /* Startup synchronization: */ 73 bool serialize_startup; 74 75 /* Task hierarchy: */ 76 int nr_proc; 77 int nr_threads; 78 79 /* Working set sizes: */ 80 const char *mb_global_str; 81 const char *mb_proc_str; 82 const char *mb_proc_locked_str; 83 const char *mb_thread_str; 84 85 double mb_global; 86 double mb_proc; 87 double mb_proc_locked; 88 double mb_thread; 89 90 /* Access patterns to the working set: */ 91 bool data_reads; 92 bool data_writes; 93 bool data_backwards; 94 bool data_zero_memset; 95 bool data_rand_walk; 96 u32 nr_loops; 97 u32 nr_secs; 98 u32 sleep_usecs; 99 100 /* Working set initialization: */ 101 bool init_zero; 102 bool init_random; 103 bool init_cpu0; 104 105 /* Misc options: */ 106 int show_details; 107 int run_all; 108 int thp; 109 110 long bytes_global; 111 long bytes_process; 112 long bytes_process_locked; 113 long bytes_thread; 114 115 int nr_tasks; 116 bool show_quiet; 117 118 bool show_convergence; 119 bool measure_convergence; 120 121 int perturb_secs; 122 int nr_cpus; 123 int nr_nodes; 124 125 /* Affinity options -C and -N: */ 126 char *cpu_list_str; 127 char *node_list_str; 128 }; 129 130 131 /* Global, read-writable area, accessible to all processes and threads: */ 132 133 struct global_info { 134 u8 *data; 135 136 pthread_mutex_t startup_mutex; 137 int nr_tasks_started; 138 139 pthread_mutex_t startup_done_mutex; 140 141 pthread_mutex_t start_work_mutex; 142 int nr_tasks_working; 143 144 pthread_mutex_t stop_work_mutex; 145 u64 bytes_done; 146 147 struct thread_data *threads; 148 149 /* Convergence latency measurement: */ 150 bool all_converged; 151 bool stop_work; 152 153 int print_once; 154 155 struct params p; 156 }; 157 158 static struct global_info *g = NULL; 159 160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 162 163 struct params p0; 164 165 static const struct option options[] = { 166 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 167 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 168 169 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 170 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 171 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 172 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 173 174 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 175 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 176 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 177 178 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 179 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 180 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 181 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 182 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 183 184 185 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 186 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 187 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 188 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 189 190 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 191 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 192 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 193 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 194 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 195 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 196 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 197 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 198 199 /* Special option string parsing callbacks: */ 200 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 201 "bind the first N tasks to these specific cpus (the rest is unbound)", 202 parse_cpus_opt), 203 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 204 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 205 parse_nodes_opt), 206 OPT_END() 207 }; 208 209 static const char * const bench_numa_usage[] = { 210 "perf bench numa <options>", 211 NULL 212 }; 213 214 static const char * const numa_usage[] = { 215 "perf bench numa mem [<options>]", 216 NULL 217 }; 218 219 /* 220 * To get number of numa nodes present. 221 */ 222 static int nr_numa_nodes(void) 223 { 224 int i, nr_nodes = 0; 225 226 for (i = 0; i < g->p.nr_nodes; i++) { 227 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 228 nr_nodes++; 229 } 230 231 return nr_nodes; 232 } 233 234 /* 235 * To check if given numa node is present. 236 */ 237 static int is_node_present(int node) 238 { 239 return numa_bitmask_isbitset(numa_nodes_ptr, node); 240 } 241 242 /* 243 * To check given numa node has cpus. 244 */ 245 static bool node_has_cpus(int node) 246 { 247 struct bitmask *cpu = numa_allocate_cpumask(); 248 unsigned int i; 249 250 if (cpu && !numa_node_to_cpus(node, cpu)) { 251 for (i = 0; i < cpu->size; i++) { 252 if (numa_bitmask_isbitset(cpu, i)) 253 return true; 254 } 255 } 256 257 return false; /* lets fall back to nocpus safely */ 258 } 259 260 static cpu_set_t bind_to_cpu(int target_cpu) 261 { 262 cpu_set_t orig_mask, mask; 263 int ret; 264 265 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 266 BUG_ON(ret); 267 268 CPU_ZERO(&mask); 269 270 if (target_cpu == -1) { 271 int cpu; 272 273 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 274 CPU_SET(cpu, &mask); 275 } else { 276 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 277 CPU_SET(target_cpu, &mask); 278 } 279 280 ret = sched_setaffinity(0, sizeof(mask), &mask); 281 BUG_ON(ret); 282 283 return orig_mask; 284 } 285 286 static cpu_set_t bind_to_node(int target_node) 287 { 288 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes(); 289 cpu_set_t orig_mask, mask; 290 int cpu; 291 int ret; 292 293 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus); 294 BUG_ON(!cpus_per_node); 295 296 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 297 BUG_ON(ret); 298 299 CPU_ZERO(&mask); 300 301 if (target_node == -1) { 302 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 303 CPU_SET(cpu, &mask); 304 } else { 305 int cpu_start = (target_node + 0) * cpus_per_node; 306 int cpu_stop = (target_node + 1) * cpus_per_node; 307 308 BUG_ON(cpu_stop > g->p.nr_cpus); 309 310 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 311 CPU_SET(cpu, &mask); 312 } 313 314 ret = sched_setaffinity(0, sizeof(mask), &mask); 315 BUG_ON(ret); 316 317 return orig_mask; 318 } 319 320 static void bind_to_cpumask(cpu_set_t mask) 321 { 322 int ret; 323 324 ret = sched_setaffinity(0, sizeof(mask), &mask); 325 BUG_ON(ret); 326 } 327 328 static void mempol_restore(void) 329 { 330 int ret; 331 332 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 333 334 BUG_ON(ret); 335 } 336 337 static void bind_to_memnode(int node) 338 { 339 unsigned long nodemask; 340 int ret; 341 342 if (node == -1) 343 return; 344 345 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 346 nodemask = 1L << node; 347 348 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 349 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 350 351 BUG_ON(ret); 352 } 353 354 #define HPSIZE (2*1024*1024) 355 356 #define set_taskname(fmt...) \ 357 do { \ 358 char name[20]; \ 359 \ 360 snprintf(name, 20, fmt); \ 361 prctl(PR_SET_NAME, name); \ 362 } while (0) 363 364 static u8 *alloc_data(ssize_t bytes0, int map_flags, 365 int init_zero, int init_cpu0, int thp, int init_random) 366 { 367 cpu_set_t orig_mask; 368 ssize_t bytes; 369 u8 *buf; 370 int ret; 371 372 if (!bytes0) 373 return NULL; 374 375 /* Allocate and initialize all memory on CPU#0: */ 376 if (init_cpu0) { 377 orig_mask = bind_to_node(0); 378 bind_to_memnode(0); 379 } 380 381 bytes = bytes0 + HPSIZE; 382 383 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 384 BUG_ON(buf == (void *)-1); 385 386 if (map_flags == MAP_PRIVATE) { 387 if (thp > 0) { 388 ret = madvise(buf, bytes, MADV_HUGEPAGE); 389 if (ret && !g->print_once) { 390 g->print_once = 1; 391 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 392 } 393 } 394 if (thp < 0) { 395 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 396 if (ret && !g->print_once) { 397 g->print_once = 1; 398 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 399 } 400 } 401 } 402 403 if (init_zero) { 404 bzero(buf, bytes); 405 } else { 406 /* Initialize random contents, different in each word: */ 407 if (init_random) { 408 u64 *wbuf = (void *)buf; 409 long off = rand(); 410 long i; 411 412 for (i = 0; i < bytes/8; i++) 413 wbuf[i] = i + off; 414 } 415 } 416 417 /* Align to 2MB boundary: */ 418 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 419 420 /* Restore affinity: */ 421 if (init_cpu0) { 422 bind_to_cpumask(orig_mask); 423 mempol_restore(); 424 } 425 426 return buf; 427 } 428 429 static void free_data(void *data, ssize_t bytes) 430 { 431 int ret; 432 433 if (!data) 434 return; 435 436 ret = munmap(data, bytes); 437 BUG_ON(ret); 438 } 439 440 /* 441 * Create a shared memory buffer that can be shared between processes, zeroed: 442 */ 443 static void * zalloc_shared_data(ssize_t bytes) 444 { 445 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 446 } 447 448 /* 449 * Create a shared memory buffer that can be shared between processes: 450 */ 451 static void * setup_shared_data(ssize_t bytes) 452 { 453 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 454 } 455 456 /* 457 * Allocate process-local memory - this will either be shared between 458 * threads of this process, or only be accessed by this thread: 459 */ 460 static void * setup_private_data(ssize_t bytes) 461 { 462 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 463 } 464 465 /* 466 * Return a process-shared (global) mutex: 467 */ 468 static void init_global_mutex(pthread_mutex_t *mutex) 469 { 470 pthread_mutexattr_t attr; 471 472 pthread_mutexattr_init(&attr); 473 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 474 pthread_mutex_init(mutex, &attr); 475 } 476 477 static int parse_cpu_list(const char *arg) 478 { 479 p0.cpu_list_str = strdup(arg); 480 481 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 482 483 return 0; 484 } 485 486 static int parse_setup_cpu_list(void) 487 { 488 struct thread_data *td; 489 char *str0, *str; 490 int t; 491 492 if (!g->p.cpu_list_str) 493 return 0; 494 495 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 496 497 str0 = str = strdup(g->p.cpu_list_str); 498 t = 0; 499 500 BUG_ON(!str); 501 502 tprintf("# binding tasks to CPUs:\n"); 503 tprintf("# "); 504 505 while (true) { 506 int bind_cpu, bind_cpu_0, bind_cpu_1; 507 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 508 int bind_len; 509 int step; 510 int mul; 511 512 tok = strsep(&str, ","); 513 if (!tok) 514 break; 515 516 tok_end = strstr(tok, "-"); 517 518 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 519 if (!tok_end) { 520 /* Single CPU specified: */ 521 bind_cpu_0 = bind_cpu_1 = atol(tok); 522 } else { 523 /* CPU range specified (for example: "5-11"): */ 524 bind_cpu_0 = atol(tok); 525 bind_cpu_1 = atol(tok_end + 1); 526 } 527 528 step = 1; 529 tok_step = strstr(tok, "#"); 530 if (tok_step) { 531 step = atol(tok_step + 1); 532 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 533 } 534 535 /* 536 * Mask length. 537 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 538 * where the _4 means the next 4 CPUs are allowed. 539 */ 540 bind_len = 1; 541 tok_len = strstr(tok, "_"); 542 if (tok_len) { 543 bind_len = atol(tok_len + 1); 544 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 545 } 546 547 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 548 mul = 1; 549 tok_mul = strstr(tok, "x"); 550 if (tok_mul) { 551 mul = atol(tok_mul + 1); 552 BUG_ON(mul <= 0); 553 } 554 555 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 556 557 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 558 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 559 return -1; 560 } 561 562 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 563 BUG_ON(bind_cpu_0 > bind_cpu_1); 564 565 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 566 int i; 567 568 for (i = 0; i < mul; i++) { 569 int cpu; 570 571 if (t >= g->p.nr_tasks) { 572 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 573 goto out; 574 } 575 td = g->threads + t; 576 577 if (t) 578 tprintf(","); 579 if (bind_len > 1) { 580 tprintf("%2d/%d", bind_cpu, bind_len); 581 } else { 582 tprintf("%2d", bind_cpu); 583 } 584 585 CPU_ZERO(&td->bind_cpumask); 586 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 587 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 588 CPU_SET(cpu, &td->bind_cpumask); 589 } 590 t++; 591 } 592 } 593 } 594 out: 595 596 tprintf("\n"); 597 598 if (t < g->p.nr_tasks) 599 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 600 601 free(str0); 602 return 0; 603 } 604 605 static int parse_cpus_opt(const struct option *opt __maybe_unused, 606 const char *arg, int unset __maybe_unused) 607 { 608 if (!arg) 609 return -1; 610 611 return parse_cpu_list(arg); 612 } 613 614 static int parse_node_list(const char *arg) 615 { 616 p0.node_list_str = strdup(arg); 617 618 dprintf("got NODE list: {%s}\n", p0.node_list_str); 619 620 return 0; 621 } 622 623 static int parse_setup_node_list(void) 624 { 625 struct thread_data *td; 626 char *str0, *str; 627 int t; 628 629 if (!g->p.node_list_str) 630 return 0; 631 632 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 633 634 str0 = str = strdup(g->p.node_list_str); 635 t = 0; 636 637 BUG_ON(!str); 638 639 tprintf("# binding tasks to NODEs:\n"); 640 tprintf("# "); 641 642 while (true) { 643 int bind_node, bind_node_0, bind_node_1; 644 char *tok, *tok_end, *tok_step, *tok_mul; 645 int step; 646 int mul; 647 648 tok = strsep(&str, ","); 649 if (!tok) 650 break; 651 652 tok_end = strstr(tok, "-"); 653 654 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 655 if (!tok_end) { 656 /* Single NODE specified: */ 657 bind_node_0 = bind_node_1 = atol(tok); 658 } else { 659 /* NODE range specified (for example: "5-11"): */ 660 bind_node_0 = atol(tok); 661 bind_node_1 = atol(tok_end + 1); 662 } 663 664 step = 1; 665 tok_step = strstr(tok, "#"); 666 if (tok_step) { 667 step = atol(tok_step + 1); 668 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 669 } 670 671 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 672 mul = 1; 673 tok_mul = strstr(tok, "x"); 674 if (tok_mul) { 675 mul = atol(tok_mul + 1); 676 BUG_ON(mul <= 0); 677 } 678 679 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 680 681 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 682 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 683 return -1; 684 } 685 686 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 687 BUG_ON(bind_node_0 > bind_node_1); 688 689 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 690 int i; 691 692 for (i = 0; i < mul; i++) { 693 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 694 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 695 goto out; 696 } 697 td = g->threads + t; 698 699 if (!t) 700 tprintf(" %2d", bind_node); 701 else 702 tprintf(",%2d", bind_node); 703 704 td->bind_node = bind_node; 705 t++; 706 } 707 } 708 } 709 out: 710 711 tprintf("\n"); 712 713 if (t < g->p.nr_tasks) 714 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 715 716 free(str0); 717 return 0; 718 } 719 720 static int parse_nodes_opt(const struct option *opt __maybe_unused, 721 const char *arg, int unset __maybe_unused) 722 { 723 if (!arg) 724 return -1; 725 726 return parse_node_list(arg); 727 728 return 0; 729 } 730 731 #define BIT(x) (1ul << x) 732 733 static inline uint32_t lfsr_32(uint32_t lfsr) 734 { 735 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 736 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 737 } 738 739 /* 740 * Make sure there's real data dependency to RAM (when read 741 * accesses are enabled), so the compiler, the CPU and the 742 * kernel (KSM, zero page, etc.) cannot optimize away RAM 743 * accesses: 744 */ 745 static inline u64 access_data(u64 *data, u64 val) 746 { 747 if (g->p.data_reads) 748 val += *data; 749 if (g->p.data_writes) 750 *data = val + 1; 751 return val; 752 } 753 754 /* 755 * The worker process does two types of work, a forwards going 756 * loop and a backwards going loop. 757 * 758 * We do this so that on multiprocessor systems we do not create 759 * a 'train' of processing, with highly synchronized processes, 760 * skewing the whole benchmark. 761 */ 762 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 763 { 764 long words = bytes/sizeof(u64); 765 u64 *data = (void *)__data; 766 long chunk_0, chunk_1; 767 u64 *d0, *d, *d1; 768 long off; 769 long i; 770 771 BUG_ON(!data && words); 772 BUG_ON(data && !words); 773 774 if (!data) 775 return val; 776 777 /* Very simple memset() work variant: */ 778 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 779 bzero(data, bytes); 780 return val; 781 } 782 783 /* Spread out by PID/TID nr and by loop nr: */ 784 chunk_0 = words/nr_max; 785 chunk_1 = words/g->p.nr_loops; 786 off = nr*chunk_0 + loop*chunk_1; 787 788 while (off >= words) 789 off -= words; 790 791 if (g->p.data_rand_walk) { 792 u32 lfsr = nr + loop + val; 793 int j; 794 795 for (i = 0; i < words/1024; i++) { 796 long start, end; 797 798 lfsr = lfsr_32(lfsr); 799 800 start = lfsr % words; 801 end = min(start + 1024, words-1); 802 803 if (g->p.data_zero_memset) { 804 bzero(data + start, (end-start) * sizeof(u64)); 805 } else { 806 for (j = start; j < end; j++) 807 val = access_data(data + j, val); 808 } 809 } 810 } else if (!g->p.data_backwards || (nr + loop) & 1) { 811 812 d0 = data + off; 813 d = data + off + 1; 814 d1 = data + words; 815 816 /* Process data forwards: */ 817 for (;;) { 818 if (unlikely(d >= d1)) 819 d = data; 820 if (unlikely(d == d0)) 821 break; 822 823 val = access_data(d, val); 824 825 d++; 826 } 827 } else { 828 /* Process data backwards: */ 829 830 d0 = data + off; 831 d = data + off - 1; 832 d1 = data + words; 833 834 /* Process data forwards: */ 835 for (;;) { 836 if (unlikely(d < data)) 837 d = data + words-1; 838 if (unlikely(d == d0)) 839 break; 840 841 val = access_data(d, val); 842 843 d--; 844 } 845 } 846 847 return val; 848 } 849 850 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 851 { 852 unsigned int cpu; 853 854 cpu = sched_getcpu(); 855 856 g->threads[task_nr].curr_cpu = cpu; 857 prctl(0, bytes_worked); 858 } 859 860 #define MAX_NR_NODES 64 861 862 /* 863 * Count the number of nodes a process's threads 864 * are spread out on. 865 * 866 * A count of 1 means that the process is compressed 867 * to a single node. A count of g->p.nr_nodes means it's 868 * spread out on the whole system. 869 */ 870 static int count_process_nodes(int process_nr) 871 { 872 char node_present[MAX_NR_NODES] = { 0, }; 873 int nodes; 874 int n, t; 875 876 for (t = 0; t < g->p.nr_threads; t++) { 877 struct thread_data *td; 878 int task_nr; 879 int node; 880 881 task_nr = process_nr*g->p.nr_threads + t; 882 td = g->threads + task_nr; 883 884 node = numa_node_of_cpu(td->curr_cpu); 885 if (node < 0) /* curr_cpu was likely still -1 */ 886 return 0; 887 888 node_present[node] = 1; 889 } 890 891 nodes = 0; 892 893 for (n = 0; n < MAX_NR_NODES; n++) 894 nodes += node_present[n]; 895 896 return nodes; 897 } 898 899 /* 900 * Count the number of distinct process-threads a node contains. 901 * 902 * A count of 1 means that the node contains only a single 903 * process. If all nodes on the system contain at most one 904 * process then we are well-converged. 905 */ 906 static int count_node_processes(int node) 907 { 908 int processes = 0; 909 int t, p; 910 911 for (p = 0; p < g->p.nr_proc; p++) { 912 for (t = 0; t < g->p.nr_threads; t++) { 913 struct thread_data *td; 914 int task_nr; 915 int n; 916 917 task_nr = p*g->p.nr_threads + t; 918 td = g->threads + task_nr; 919 920 n = numa_node_of_cpu(td->curr_cpu); 921 if (n == node) { 922 processes++; 923 break; 924 } 925 } 926 } 927 928 return processes; 929 } 930 931 static void calc_convergence_compression(int *strong) 932 { 933 unsigned int nodes_min, nodes_max; 934 int p; 935 936 nodes_min = -1; 937 nodes_max = 0; 938 939 for (p = 0; p < g->p.nr_proc; p++) { 940 unsigned int nodes = count_process_nodes(p); 941 942 if (!nodes) { 943 *strong = 0; 944 return; 945 } 946 947 nodes_min = min(nodes, nodes_min); 948 nodes_max = max(nodes, nodes_max); 949 } 950 951 /* Strong convergence: all threads compress on a single node: */ 952 if (nodes_min == 1 && nodes_max == 1) { 953 *strong = 1; 954 } else { 955 *strong = 0; 956 tprintf(" {%d-%d}", nodes_min, nodes_max); 957 } 958 } 959 960 static void calc_convergence(double runtime_ns_max, double *convergence) 961 { 962 unsigned int loops_done_min, loops_done_max; 963 int process_groups; 964 int nodes[MAX_NR_NODES]; 965 int distance; 966 int nr_min; 967 int nr_max; 968 int strong; 969 int sum; 970 int nr; 971 int node; 972 int cpu; 973 int t; 974 975 if (!g->p.show_convergence && !g->p.measure_convergence) 976 return; 977 978 for (node = 0; node < g->p.nr_nodes; node++) 979 nodes[node] = 0; 980 981 loops_done_min = -1; 982 loops_done_max = 0; 983 984 for (t = 0; t < g->p.nr_tasks; t++) { 985 struct thread_data *td = g->threads + t; 986 unsigned int loops_done; 987 988 cpu = td->curr_cpu; 989 990 /* Not all threads have written it yet: */ 991 if (cpu < 0) 992 continue; 993 994 node = numa_node_of_cpu(cpu); 995 996 nodes[node]++; 997 998 loops_done = td->loops_done; 999 loops_done_min = min(loops_done, loops_done_min); 1000 loops_done_max = max(loops_done, loops_done_max); 1001 } 1002 1003 nr_max = 0; 1004 nr_min = g->p.nr_tasks; 1005 sum = 0; 1006 1007 for (node = 0; node < g->p.nr_nodes; node++) { 1008 if (!is_node_present(node)) 1009 continue; 1010 nr = nodes[node]; 1011 nr_min = min(nr, nr_min); 1012 nr_max = max(nr, nr_max); 1013 sum += nr; 1014 } 1015 BUG_ON(nr_min > nr_max); 1016 1017 BUG_ON(sum > g->p.nr_tasks); 1018 1019 if (0 && (sum < g->p.nr_tasks)) 1020 return; 1021 1022 /* 1023 * Count the number of distinct process groups present 1024 * on nodes - when we are converged this will decrease 1025 * to g->p.nr_proc: 1026 */ 1027 process_groups = 0; 1028 1029 for (node = 0; node < g->p.nr_nodes; node++) { 1030 int processes; 1031 1032 if (!is_node_present(node)) 1033 continue; 1034 processes = count_node_processes(node); 1035 nr = nodes[node]; 1036 tprintf(" %2d/%-2d", nr, processes); 1037 1038 process_groups += processes; 1039 } 1040 1041 distance = nr_max - nr_min; 1042 1043 tprintf(" [%2d/%-2d]", distance, process_groups); 1044 1045 tprintf(" l:%3d-%-3d (%3d)", 1046 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1047 1048 if (loops_done_min && loops_done_max) { 1049 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1050 1051 tprintf(" [%4.1f%%]", skew * 100.0); 1052 } 1053 1054 calc_convergence_compression(&strong); 1055 1056 if (strong && process_groups == g->p.nr_proc) { 1057 if (!*convergence) { 1058 *convergence = runtime_ns_max; 1059 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1060 if (g->p.measure_convergence) { 1061 g->all_converged = true; 1062 g->stop_work = true; 1063 } 1064 } 1065 } else { 1066 if (*convergence) { 1067 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1068 *convergence = 0; 1069 } 1070 tprintf("\n"); 1071 } 1072 } 1073 1074 static void show_summary(double runtime_ns_max, int l, double *convergence) 1075 { 1076 tprintf("\r # %5.1f%% [%.1f mins]", 1077 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1078 1079 calc_convergence(runtime_ns_max, convergence); 1080 1081 if (g->p.show_details >= 0) 1082 fflush(stdout); 1083 } 1084 1085 static void *worker_thread(void *__tdata) 1086 { 1087 struct thread_data *td = __tdata; 1088 struct timeval start0, start, stop, diff; 1089 int process_nr = td->process_nr; 1090 int thread_nr = td->thread_nr; 1091 unsigned long last_perturbance; 1092 int task_nr = td->task_nr; 1093 int details = g->p.show_details; 1094 int first_task, last_task; 1095 double convergence = 0; 1096 u64 val = td->val; 1097 double runtime_ns_max; 1098 u8 *global_data; 1099 u8 *process_data; 1100 u8 *thread_data; 1101 u64 bytes_done; 1102 long work_done; 1103 u32 l; 1104 struct rusage rusage; 1105 1106 bind_to_cpumask(td->bind_cpumask); 1107 bind_to_memnode(td->bind_node); 1108 1109 set_taskname("thread %d/%d", process_nr, thread_nr); 1110 1111 global_data = g->data; 1112 process_data = td->process_data; 1113 thread_data = setup_private_data(g->p.bytes_thread); 1114 1115 bytes_done = 0; 1116 1117 last_task = 0; 1118 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1119 last_task = 1; 1120 1121 first_task = 0; 1122 if (process_nr == 0 && thread_nr == 0) 1123 first_task = 1; 1124 1125 if (details >= 2) { 1126 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1127 process_nr, thread_nr, global_data, process_data, thread_data); 1128 } 1129 1130 if (g->p.serialize_startup) { 1131 pthread_mutex_lock(&g->startup_mutex); 1132 g->nr_tasks_started++; 1133 pthread_mutex_unlock(&g->startup_mutex); 1134 1135 /* Here we will wait for the main process to start us all at once: */ 1136 pthread_mutex_lock(&g->start_work_mutex); 1137 g->nr_tasks_working++; 1138 1139 /* Last one wake the main process: */ 1140 if (g->nr_tasks_working == g->p.nr_tasks) 1141 pthread_mutex_unlock(&g->startup_done_mutex); 1142 1143 pthread_mutex_unlock(&g->start_work_mutex); 1144 } 1145 1146 gettimeofday(&start0, NULL); 1147 1148 start = stop = start0; 1149 last_perturbance = start.tv_sec; 1150 1151 for (l = 0; l < g->p.nr_loops; l++) { 1152 start = stop; 1153 1154 if (g->stop_work) 1155 break; 1156 1157 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1158 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1159 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1160 1161 if (g->p.sleep_usecs) { 1162 pthread_mutex_lock(td->process_lock); 1163 usleep(g->p.sleep_usecs); 1164 pthread_mutex_unlock(td->process_lock); 1165 } 1166 /* 1167 * Amount of work to be done under a process-global lock: 1168 */ 1169 if (g->p.bytes_process_locked) { 1170 pthread_mutex_lock(td->process_lock); 1171 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1172 pthread_mutex_unlock(td->process_lock); 1173 } 1174 1175 work_done = g->p.bytes_global + g->p.bytes_process + 1176 g->p.bytes_process_locked + g->p.bytes_thread; 1177 1178 update_curr_cpu(task_nr, work_done); 1179 bytes_done += work_done; 1180 1181 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1182 continue; 1183 1184 td->loops_done = l; 1185 1186 gettimeofday(&stop, NULL); 1187 1188 /* Check whether our max runtime timed out: */ 1189 if (g->p.nr_secs) { 1190 timersub(&stop, &start0, &diff); 1191 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1192 g->stop_work = true; 1193 break; 1194 } 1195 } 1196 1197 /* Update the summary at most once per second: */ 1198 if (start.tv_sec == stop.tv_sec) 1199 continue; 1200 1201 /* 1202 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1203 * by migrating to CPU#0: 1204 */ 1205 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1206 cpu_set_t orig_mask; 1207 int target_cpu; 1208 int this_cpu; 1209 1210 last_perturbance = stop.tv_sec; 1211 1212 /* 1213 * Depending on where we are running, move into 1214 * the other half of the system, to create some 1215 * real disturbance: 1216 */ 1217 this_cpu = g->threads[task_nr].curr_cpu; 1218 if (this_cpu < g->p.nr_cpus/2) 1219 target_cpu = g->p.nr_cpus-1; 1220 else 1221 target_cpu = 0; 1222 1223 orig_mask = bind_to_cpu(target_cpu); 1224 1225 /* Here we are running on the target CPU already */ 1226 if (details >= 1) 1227 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1228 1229 bind_to_cpumask(orig_mask); 1230 } 1231 1232 if (details >= 3) { 1233 timersub(&stop, &start, &diff); 1234 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1235 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1236 1237 if (details >= 0) { 1238 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1239 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1240 } 1241 fflush(stdout); 1242 } 1243 if (!last_task) 1244 continue; 1245 1246 timersub(&stop, &start0, &diff); 1247 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1248 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1249 1250 show_summary(runtime_ns_max, l, &convergence); 1251 } 1252 1253 gettimeofday(&stop, NULL); 1254 timersub(&stop, &start0, &diff); 1255 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1256 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1257 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9; 1258 1259 getrusage(RUSAGE_THREAD, &rusage); 1260 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1261 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1262 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1263 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1264 1265 free_data(thread_data, g->p.bytes_thread); 1266 1267 pthread_mutex_lock(&g->stop_work_mutex); 1268 g->bytes_done += bytes_done; 1269 pthread_mutex_unlock(&g->stop_work_mutex); 1270 1271 return NULL; 1272 } 1273 1274 /* 1275 * A worker process starts a couple of threads: 1276 */ 1277 static void worker_process(int process_nr) 1278 { 1279 pthread_mutex_t process_lock; 1280 struct thread_data *td; 1281 pthread_t *pthreads; 1282 u8 *process_data; 1283 int task_nr; 1284 int ret; 1285 int t; 1286 1287 pthread_mutex_init(&process_lock, NULL); 1288 set_taskname("process %d", process_nr); 1289 1290 /* 1291 * Pick up the memory policy and the CPU binding of our first thread, 1292 * so that we initialize memory accordingly: 1293 */ 1294 task_nr = process_nr*g->p.nr_threads; 1295 td = g->threads + task_nr; 1296 1297 bind_to_memnode(td->bind_node); 1298 bind_to_cpumask(td->bind_cpumask); 1299 1300 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1301 process_data = setup_private_data(g->p.bytes_process); 1302 1303 if (g->p.show_details >= 3) { 1304 printf(" # process %2d global mem: %p, process mem: %p\n", 1305 process_nr, g->data, process_data); 1306 } 1307 1308 for (t = 0; t < g->p.nr_threads; t++) { 1309 task_nr = process_nr*g->p.nr_threads + t; 1310 td = g->threads + task_nr; 1311 1312 td->process_data = process_data; 1313 td->process_nr = process_nr; 1314 td->thread_nr = t; 1315 td->task_nr = task_nr; 1316 td->val = rand(); 1317 td->curr_cpu = -1; 1318 td->process_lock = &process_lock; 1319 1320 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1321 BUG_ON(ret); 1322 } 1323 1324 for (t = 0; t < g->p.nr_threads; t++) { 1325 ret = pthread_join(pthreads[t], NULL); 1326 BUG_ON(ret); 1327 } 1328 1329 free_data(process_data, g->p.bytes_process); 1330 free(pthreads); 1331 } 1332 1333 static void print_summary(void) 1334 { 1335 if (g->p.show_details < 0) 1336 return; 1337 1338 printf("\n ###\n"); 1339 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1340 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1341 printf(" # %5dx %5ldMB global shared mem operations\n", 1342 g->p.nr_loops, g->p.bytes_global/1024/1024); 1343 printf(" # %5dx %5ldMB process shared mem operations\n", 1344 g->p.nr_loops, g->p.bytes_process/1024/1024); 1345 printf(" # %5dx %5ldMB thread local mem operations\n", 1346 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1347 1348 printf(" ###\n"); 1349 1350 printf("\n ###\n"); fflush(stdout); 1351 } 1352 1353 static void init_thread_data(void) 1354 { 1355 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1356 int t; 1357 1358 g->threads = zalloc_shared_data(size); 1359 1360 for (t = 0; t < g->p.nr_tasks; t++) { 1361 struct thread_data *td = g->threads + t; 1362 int cpu; 1363 1364 /* Allow all nodes by default: */ 1365 td->bind_node = -1; 1366 1367 /* Allow all CPUs by default: */ 1368 CPU_ZERO(&td->bind_cpumask); 1369 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1370 CPU_SET(cpu, &td->bind_cpumask); 1371 } 1372 } 1373 1374 static void deinit_thread_data(void) 1375 { 1376 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1377 1378 free_data(g->threads, size); 1379 } 1380 1381 static int init(void) 1382 { 1383 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1384 1385 /* Copy over options: */ 1386 g->p = p0; 1387 1388 g->p.nr_cpus = numa_num_configured_cpus(); 1389 1390 g->p.nr_nodes = numa_max_node() + 1; 1391 1392 /* char array in count_process_nodes(): */ 1393 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1394 1395 if (g->p.show_quiet && !g->p.show_details) 1396 g->p.show_details = -1; 1397 1398 /* Some memory should be specified: */ 1399 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1400 return -1; 1401 1402 if (g->p.mb_global_str) { 1403 g->p.mb_global = atof(g->p.mb_global_str); 1404 BUG_ON(g->p.mb_global < 0); 1405 } 1406 1407 if (g->p.mb_proc_str) { 1408 g->p.mb_proc = atof(g->p.mb_proc_str); 1409 BUG_ON(g->p.mb_proc < 0); 1410 } 1411 1412 if (g->p.mb_proc_locked_str) { 1413 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1414 BUG_ON(g->p.mb_proc_locked < 0); 1415 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1416 } 1417 1418 if (g->p.mb_thread_str) { 1419 g->p.mb_thread = atof(g->p.mb_thread_str); 1420 BUG_ON(g->p.mb_thread < 0); 1421 } 1422 1423 BUG_ON(g->p.nr_threads <= 0); 1424 BUG_ON(g->p.nr_proc <= 0); 1425 1426 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1427 1428 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1429 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1430 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1431 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1432 1433 g->data = setup_shared_data(g->p.bytes_global); 1434 1435 /* Startup serialization: */ 1436 init_global_mutex(&g->start_work_mutex); 1437 init_global_mutex(&g->startup_mutex); 1438 init_global_mutex(&g->startup_done_mutex); 1439 init_global_mutex(&g->stop_work_mutex); 1440 1441 init_thread_data(); 1442 1443 tprintf("#\n"); 1444 if (parse_setup_cpu_list() || parse_setup_node_list()) 1445 return -1; 1446 tprintf("#\n"); 1447 1448 print_summary(); 1449 1450 return 0; 1451 } 1452 1453 static void deinit(void) 1454 { 1455 free_data(g->data, g->p.bytes_global); 1456 g->data = NULL; 1457 1458 deinit_thread_data(); 1459 1460 free_data(g, sizeof(*g)); 1461 g = NULL; 1462 } 1463 1464 /* 1465 * Print a short or long result, depending on the verbosity setting: 1466 */ 1467 static void print_res(const char *name, double val, 1468 const char *txt_unit, const char *txt_short, const char *txt_long) 1469 { 1470 if (!name) 1471 name = "main,"; 1472 1473 if (!g->p.show_quiet) 1474 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1475 else 1476 printf(" %14.3f %s\n", val, txt_long); 1477 } 1478 1479 static int __bench_numa(const char *name) 1480 { 1481 struct timeval start, stop, diff; 1482 u64 runtime_ns_min, runtime_ns_sum; 1483 pid_t *pids, pid, wpid; 1484 double delta_runtime; 1485 double runtime_avg; 1486 double runtime_sec_max; 1487 double runtime_sec_min; 1488 int wait_stat; 1489 double bytes; 1490 int i, t, p; 1491 1492 if (init()) 1493 return -1; 1494 1495 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1496 pid = -1; 1497 1498 /* All threads try to acquire it, this way we can wait for them to start up: */ 1499 pthread_mutex_lock(&g->start_work_mutex); 1500 1501 if (g->p.serialize_startup) { 1502 tprintf(" #\n"); 1503 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1504 } 1505 1506 gettimeofday(&start, NULL); 1507 1508 for (i = 0; i < g->p.nr_proc; i++) { 1509 pid = fork(); 1510 dprintf(" # process %2d: PID %d\n", i, pid); 1511 1512 BUG_ON(pid < 0); 1513 if (!pid) { 1514 /* Child process: */ 1515 worker_process(i); 1516 1517 exit(0); 1518 } 1519 pids[i] = pid; 1520 1521 } 1522 /* Wait for all the threads to start up: */ 1523 while (g->nr_tasks_started != g->p.nr_tasks) 1524 usleep(USEC_PER_MSEC); 1525 1526 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1527 1528 if (g->p.serialize_startup) { 1529 double startup_sec; 1530 1531 pthread_mutex_lock(&g->startup_done_mutex); 1532 1533 /* This will start all threads: */ 1534 pthread_mutex_unlock(&g->start_work_mutex); 1535 1536 /* This mutex is locked - the last started thread will wake us: */ 1537 pthread_mutex_lock(&g->startup_done_mutex); 1538 1539 gettimeofday(&stop, NULL); 1540 1541 timersub(&stop, &start, &diff); 1542 1543 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1544 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1545 startup_sec /= NSEC_PER_SEC; 1546 1547 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1548 tprintf(" #\n"); 1549 1550 start = stop; 1551 pthread_mutex_unlock(&g->startup_done_mutex); 1552 } else { 1553 gettimeofday(&start, NULL); 1554 } 1555 1556 /* Parent process: */ 1557 1558 1559 for (i = 0; i < g->p.nr_proc; i++) { 1560 wpid = waitpid(pids[i], &wait_stat, 0); 1561 BUG_ON(wpid < 0); 1562 BUG_ON(!WIFEXITED(wait_stat)); 1563 1564 } 1565 1566 runtime_ns_sum = 0; 1567 runtime_ns_min = -1LL; 1568 1569 for (t = 0; t < g->p.nr_tasks; t++) { 1570 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1571 1572 runtime_ns_sum += thread_runtime_ns; 1573 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1574 } 1575 1576 gettimeofday(&stop, NULL); 1577 timersub(&stop, &start, &diff); 1578 1579 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1580 1581 tprintf("\n ###\n"); 1582 tprintf("\n"); 1583 1584 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1585 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1586 runtime_sec_max /= NSEC_PER_SEC; 1587 1588 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1589 1590 bytes = g->bytes_done; 1591 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1592 1593 if (g->p.measure_convergence) { 1594 print_res(name, runtime_sec_max, 1595 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1596 } 1597 1598 print_res(name, runtime_sec_max, 1599 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1600 1601 print_res(name, runtime_sec_min, 1602 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1603 1604 print_res(name, runtime_avg, 1605 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1606 1607 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1608 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1609 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1610 1611 print_res(name, bytes / g->p.nr_tasks / 1e9, 1612 "GB,", "data/thread", "GB data processed, per thread"); 1613 1614 print_res(name, bytes / 1e9, 1615 "GB,", "data-total", "GB data processed, total"); 1616 1617 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1618 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1619 1620 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1621 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1622 1623 print_res(name, bytes / runtime_sec_max / 1e9, 1624 "GB/sec,", "total-speed", "GB/sec total speed"); 1625 1626 if (g->p.show_details >= 2) { 1627 char tname[14 + 2 * 10 + 1]; 1628 struct thread_data *td; 1629 for (p = 0; p < g->p.nr_proc; p++) { 1630 for (t = 0; t < g->p.nr_threads; t++) { 1631 memset(tname, 0, sizeof(tname)); 1632 td = g->threads + p*g->p.nr_threads + t; 1633 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1634 print_res(tname, td->speed_gbs, 1635 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1636 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1637 "secs", "thread-system-time", "system CPU time/thread"); 1638 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1639 "secs", "thread-user-time", "user CPU time/thread"); 1640 } 1641 } 1642 } 1643 1644 free(pids); 1645 1646 deinit(); 1647 1648 return 0; 1649 } 1650 1651 #define MAX_ARGS 50 1652 1653 static int command_size(const char **argv) 1654 { 1655 int size = 0; 1656 1657 while (*argv) { 1658 size++; 1659 argv++; 1660 } 1661 1662 BUG_ON(size >= MAX_ARGS); 1663 1664 return size; 1665 } 1666 1667 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1668 { 1669 int i; 1670 1671 printf("\n # Running %s \"perf bench numa", name); 1672 1673 for (i = 0; i < argc; i++) 1674 printf(" %s", argv[i]); 1675 1676 printf("\"\n"); 1677 1678 memset(p, 0, sizeof(*p)); 1679 1680 /* Initialize nonzero defaults: */ 1681 1682 p->serialize_startup = 1; 1683 p->data_reads = true; 1684 p->data_writes = true; 1685 p->data_backwards = true; 1686 p->data_rand_walk = true; 1687 p->nr_loops = -1; 1688 p->init_random = true; 1689 p->mb_global_str = "1"; 1690 p->nr_proc = 1; 1691 p->nr_threads = 1; 1692 p->nr_secs = 5; 1693 p->run_all = argc == 1; 1694 } 1695 1696 static int run_bench_numa(const char *name, const char **argv) 1697 { 1698 int argc = command_size(argv); 1699 1700 init_params(&p0, name, argc, argv); 1701 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1702 if (argc) 1703 goto err; 1704 1705 if (__bench_numa(name)) 1706 goto err; 1707 1708 return 0; 1709 1710 err: 1711 return -1; 1712 } 1713 1714 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1715 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1716 1717 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1718 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1719 1720 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1721 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1722 1723 /* 1724 * The built-in test-suite executed by "perf bench numa -a". 1725 * 1726 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1727 */ 1728 static const char *tests[][MAX_ARGS] = { 1729 /* Basic single-stream NUMA bandwidth measurements: */ 1730 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1731 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1732 { "RAM-bw-local-NOTHP,", 1733 "mem", "-p", "1", "-t", "1", "-P", "1024", 1734 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1735 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1736 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1737 1738 /* 2-stream NUMA bandwidth measurements: */ 1739 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1740 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1741 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1742 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1743 1744 /* Cross-stream NUMA bandwidth measurement: */ 1745 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1746 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1747 1748 /* Convergence latency measurements: */ 1749 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1750 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1751 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1752 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1753 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1754 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1755 { " 4x4-convergence-NOTHP,", 1756 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1757 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1758 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1759 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1760 { " 8x4-convergence-NOTHP,", 1761 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1762 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1763 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1764 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1765 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1766 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1767 1768 /* Various NUMA process/thread layout bandwidth measurements: */ 1769 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1770 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1771 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1772 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1773 { " 8x1-bw-process-NOTHP,", 1774 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1775 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1776 1777 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1778 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1779 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1780 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1781 1782 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1783 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1784 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1785 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1786 { " 4x8-bw-thread-NOTHP,", 1787 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1788 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1789 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1790 1791 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1792 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1793 1794 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1795 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1796 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1797 { "numa01-bw-thread-NOTHP,", 1798 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1799 }; 1800 1801 static int bench_all(void) 1802 { 1803 int nr = ARRAY_SIZE(tests); 1804 int ret; 1805 int i; 1806 1807 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1808 BUG_ON(ret < 0); 1809 1810 for (i = 0; i < nr; i++) { 1811 run_bench_numa(tests[i][0], tests[i] + 1); 1812 } 1813 1814 printf("\n"); 1815 1816 return 0; 1817 } 1818 1819 int bench_numa(int argc, const char **argv) 1820 { 1821 init_params(&p0, "main,", argc, argv); 1822 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1823 if (argc) 1824 goto err; 1825 1826 if (p0.run_all) 1827 return bench_all(); 1828 1829 if (__bench_numa(NULL)) 1830 goto err; 1831 1832 return 0; 1833 1834 err: 1835 usage_with_options(numa_usage, options); 1836 return -1; 1837 } 1838