xref: /openbmc/linux/tools/perf/bench/numa.c (revision d0bd7f2a)
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6 
7 #include "../perf.h"
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
11 
12 #include "bench.h"
13 
14 #include <errno.h>
15 #include <sched.h>
16 #include <stdio.h>
17 #include <assert.h>
18 #include <malloc.h>
19 #include <signal.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <unistd.h>
23 #include <pthread.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/wait.h>
27 #include <sys/prctl.h>
28 #include <sys/types.h>
29 
30 #include <numa.h>
31 #include <numaif.h>
32 
33 /*
34  * Regular printout to the terminal, supressed if -q is specified:
35  */
36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37 
38 /*
39  * Debug printf:
40  */
41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42 
43 struct thread_data {
44 	int			curr_cpu;
45 	cpu_set_t		bind_cpumask;
46 	int			bind_node;
47 	u8			*process_data;
48 	int			process_nr;
49 	int			thread_nr;
50 	int			task_nr;
51 	unsigned int		loops_done;
52 	u64			val;
53 	u64			runtime_ns;
54 	pthread_mutex_t		*process_lock;
55 };
56 
57 /* Parameters set by options: */
58 
59 struct params {
60 	/* Startup synchronization: */
61 	bool			serialize_startup;
62 
63 	/* Task hierarchy: */
64 	int			nr_proc;
65 	int			nr_threads;
66 
67 	/* Working set sizes: */
68 	const char		*mb_global_str;
69 	const char		*mb_proc_str;
70 	const char		*mb_proc_locked_str;
71 	const char		*mb_thread_str;
72 
73 	double			mb_global;
74 	double			mb_proc;
75 	double			mb_proc_locked;
76 	double			mb_thread;
77 
78 	/* Access patterns to the working set: */
79 	bool			data_reads;
80 	bool			data_writes;
81 	bool			data_backwards;
82 	bool			data_zero_memset;
83 	bool			data_rand_walk;
84 	u32			nr_loops;
85 	u32			nr_secs;
86 	u32			sleep_usecs;
87 
88 	/* Working set initialization: */
89 	bool			init_zero;
90 	bool			init_random;
91 	bool			init_cpu0;
92 
93 	/* Misc options: */
94 	int			show_details;
95 	int			run_all;
96 	int			thp;
97 
98 	long			bytes_global;
99 	long			bytes_process;
100 	long			bytes_process_locked;
101 	long			bytes_thread;
102 
103 	int			nr_tasks;
104 	bool			show_quiet;
105 
106 	bool			show_convergence;
107 	bool			measure_convergence;
108 
109 	int			perturb_secs;
110 	int			nr_cpus;
111 	int			nr_nodes;
112 
113 	/* Affinity options -C and -N: */
114 	char			*cpu_list_str;
115 	char			*node_list_str;
116 };
117 
118 
119 /* Global, read-writable area, accessible to all processes and threads: */
120 
121 struct global_info {
122 	u8			*data;
123 
124 	pthread_mutex_t		startup_mutex;
125 	int			nr_tasks_started;
126 
127 	pthread_mutex_t		startup_done_mutex;
128 
129 	pthread_mutex_t		start_work_mutex;
130 	int			nr_tasks_working;
131 
132 	pthread_mutex_t		stop_work_mutex;
133 	u64			bytes_done;
134 
135 	struct thread_data	*threads;
136 
137 	/* Convergence latency measurement: */
138 	bool			all_converged;
139 	bool			stop_work;
140 
141 	int			print_once;
142 
143 	struct params		p;
144 };
145 
146 static struct global_info	*g = NULL;
147 
148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150 
151 struct params p0;
152 
153 static const struct option options[] = {
154 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
155 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
156 
157 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
158 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
159 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
161 
162 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
163 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
164 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
165 
166 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
167 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
168 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
169 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
171 
172 
173 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
174 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
175 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
176 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
177 
178 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
179 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
180 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
183 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
184 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185 
186 	/* Special option string parsing callbacks: */
187         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188 			"bind the first N tasks to these specific cpus (the rest is unbound)",
189 			parse_cpus_opt),
190         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
192 			parse_nodes_opt),
193 	OPT_END()
194 };
195 
196 static const char * const bench_numa_usage[] = {
197 	"perf bench numa <options>",
198 	NULL
199 };
200 
201 static const char * const numa_usage[] = {
202 	"perf bench numa mem [<options>]",
203 	NULL
204 };
205 
206 static cpu_set_t bind_to_cpu(int target_cpu)
207 {
208 	cpu_set_t orig_mask, mask;
209 	int ret;
210 
211 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212 	BUG_ON(ret);
213 
214 	CPU_ZERO(&mask);
215 
216 	if (target_cpu == -1) {
217 		int cpu;
218 
219 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220 			CPU_SET(cpu, &mask);
221 	} else {
222 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223 		CPU_SET(target_cpu, &mask);
224 	}
225 
226 	ret = sched_setaffinity(0, sizeof(mask), &mask);
227 	BUG_ON(ret);
228 
229 	return orig_mask;
230 }
231 
232 static cpu_set_t bind_to_node(int target_node)
233 {
234 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235 	cpu_set_t orig_mask, mask;
236 	int cpu;
237 	int ret;
238 
239 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240 	BUG_ON(!cpus_per_node);
241 
242 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243 	BUG_ON(ret);
244 
245 	CPU_ZERO(&mask);
246 
247 	if (target_node == -1) {
248 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249 			CPU_SET(cpu, &mask);
250 	} else {
251 		int cpu_start = (target_node + 0) * cpus_per_node;
252 		int cpu_stop  = (target_node + 1) * cpus_per_node;
253 
254 		BUG_ON(cpu_stop > g->p.nr_cpus);
255 
256 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257 			CPU_SET(cpu, &mask);
258 	}
259 
260 	ret = sched_setaffinity(0, sizeof(mask), &mask);
261 	BUG_ON(ret);
262 
263 	return orig_mask;
264 }
265 
266 static void bind_to_cpumask(cpu_set_t mask)
267 {
268 	int ret;
269 
270 	ret = sched_setaffinity(0, sizeof(mask), &mask);
271 	BUG_ON(ret);
272 }
273 
274 static void mempol_restore(void)
275 {
276 	int ret;
277 
278 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279 
280 	BUG_ON(ret);
281 }
282 
283 static void bind_to_memnode(int node)
284 {
285 	unsigned long nodemask;
286 	int ret;
287 
288 	if (node == -1)
289 		return;
290 
291 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292 	nodemask = 1L << node;
293 
294 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296 
297 	BUG_ON(ret);
298 }
299 
300 #define HPSIZE (2*1024*1024)
301 
302 #define set_taskname(fmt...)				\
303 do {							\
304 	char name[20];					\
305 							\
306 	snprintf(name, 20, fmt);			\
307 	prctl(PR_SET_NAME, name);			\
308 } while (0)
309 
310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
311 		      int init_zero, int init_cpu0, int thp, int init_random)
312 {
313 	cpu_set_t orig_mask;
314 	ssize_t bytes;
315 	u8 *buf;
316 	int ret;
317 
318 	if (!bytes0)
319 		return NULL;
320 
321 	/* Allocate and initialize all memory on CPU#0: */
322 	if (init_cpu0) {
323 		orig_mask = bind_to_node(0);
324 		bind_to_memnode(0);
325 	}
326 
327 	bytes = bytes0 + HPSIZE;
328 
329 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330 	BUG_ON(buf == (void *)-1);
331 
332 	if (map_flags == MAP_PRIVATE) {
333 		if (thp > 0) {
334 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
335 			if (ret && !g->print_once) {
336 				g->print_once = 1;
337 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338 			}
339 		}
340 		if (thp < 0) {
341 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342 			if (ret && !g->print_once) {
343 				g->print_once = 1;
344 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345 			}
346 		}
347 	}
348 
349 	if (init_zero) {
350 		bzero(buf, bytes);
351 	} else {
352 		/* Initialize random contents, different in each word: */
353 		if (init_random) {
354 			u64 *wbuf = (void *)buf;
355 			long off = rand();
356 			long i;
357 
358 			for (i = 0; i < bytes/8; i++)
359 				wbuf[i] = i + off;
360 		}
361 	}
362 
363 	/* Align to 2MB boundary: */
364 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365 
366 	/* Restore affinity: */
367 	if (init_cpu0) {
368 		bind_to_cpumask(orig_mask);
369 		mempol_restore();
370 	}
371 
372 	return buf;
373 }
374 
375 static void free_data(void *data, ssize_t bytes)
376 {
377 	int ret;
378 
379 	if (!data)
380 		return;
381 
382 	ret = munmap(data, bytes);
383 	BUG_ON(ret);
384 }
385 
386 /*
387  * Create a shared memory buffer that can be shared between processes, zeroed:
388  */
389 static void * zalloc_shared_data(ssize_t bytes)
390 {
391 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
392 }
393 
394 /*
395  * Create a shared memory buffer that can be shared between processes:
396  */
397 static void * setup_shared_data(ssize_t bytes)
398 {
399 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400 }
401 
402 /*
403  * Allocate process-local memory - this will either be shared between
404  * threads of this process, or only be accessed by this thread:
405  */
406 static void * setup_private_data(ssize_t bytes)
407 {
408 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410 
411 /*
412  * Return a process-shared (global) mutex:
413  */
414 static void init_global_mutex(pthread_mutex_t *mutex)
415 {
416 	pthread_mutexattr_t attr;
417 
418 	pthread_mutexattr_init(&attr);
419 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420 	pthread_mutex_init(mutex, &attr);
421 }
422 
423 static int parse_cpu_list(const char *arg)
424 {
425 	p0.cpu_list_str = strdup(arg);
426 
427 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428 
429 	return 0;
430 }
431 
432 static int parse_setup_cpu_list(void)
433 {
434 	struct thread_data *td;
435 	char *str0, *str;
436 	int t;
437 
438 	if (!g->p.cpu_list_str)
439 		return 0;
440 
441 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442 
443 	str0 = str = strdup(g->p.cpu_list_str);
444 	t = 0;
445 
446 	BUG_ON(!str);
447 
448 	tprintf("# binding tasks to CPUs:\n");
449 	tprintf("#  ");
450 
451 	while (true) {
452 		int bind_cpu, bind_cpu_0, bind_cpu_1;
453 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454 		int bind_len;
455 		int step;
456 		int mul;
457 
458 		tok = strsep(&str, ",");
459 		if (!tok)
460 			break;
461 
462 		tok_end = strstr(tok, "-");
463 
464 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465 		if (!tok_end) {
466 			/* Single CPU specified: */
467 			bind_cpu_0 = bind_cpu_1 = atol(tok);
468 		} else {
469 			/* CPU range specified (for example: "5-11"): */
470 			bind_cpu_0 = atol(tok);
471 			bind_cpu_1 = atol(tok_end + 1);
472 		}
473 
474 		step = 1;
475 		tok_step = strstr(tok, "#");
476 		if (tok_step) {
477 			step = atol(tok_step + 1);
478 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479 		}
480 
481 		/*
482 		 * Mask length.
483 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484 		 * where the _4 means the next 4 CPUs are allowed.
485 		 */
486 		bind_len = 1;
487 		tok_len = strstr(tok, "_");
488 		if (tok_len) {
489 			bind_len = atol(tok_len + 1);
490 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491 		}
492 
493 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494 		mul = 1;
495 		tok_mul = strstr(tok, "x");
496 		if (tok_mul) {
497 			mul = atol(tok_mul + 1);
498 			BUG_ON(mul <= 0);
499 		}
500 
501 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502 
503 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
504 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
505 			return -1;
506 		}
507 
508 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
509 		BUG_ON(bind_cpu_0 > bind_cpu_1);
510 
511 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
512 			int i;
513 
514 			for (i = 0; i < mul; i++) {
515 				int cpu;
516 
517 				if (t >= g->p.nr_tasks) {
518 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
519 					goto out;
520 				}
521 				td = g->threads + t;
522 
523 				if (t)
524 					tprintf(",");
525 				if (bind_len > 1) {
526 					tprintf("%2d/%d", bind_cpu, bind_len);
527 				} else {
528 					tprintf("%2d", bind_cpu);
529 				}
530 
531 				CPU_ZERO(&td->bind_cpumask);
532 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
533 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
534 					CPU_SET(cpu, &td->bind_cpumask);
535 				}
536 				t++;
537 			}
538 		}
539 	}
540 out:
541 
542 	tprintf("\n");
543 
544 	if (t < g->p.nr_tasks)
545 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
546 
547 	free(str0);
548 	return 0;
549 }
550 
551 static int parse_cpus_opt(const struct option *opt __maybe_unused,
552 			  const char *arg, int unset __maybe_unused)
553 {
554 	if (!arg)
555 		return -1;
556 
557 	return parse_cpu_list(arg);
558 }
559 
560 static int parse_node_list(const char *arg)
561 {
562 	p0.node_list_str = strdup(arg);
563 
564 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
565 
566 	return 0;
567 }
568 
569 static int parse_setup_node_list(void)
570 {
571 	struct thread_data *td;
572 	char *str0, *str;
573 	int t;
574 
575 	if (!g->p.node_list_str)
576 		return 0;
577 
578 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
579 
580 	str0 = str = strdup(g->p.node_list_str);
581 	t = 0;
582 
583 	BUG_ON(!str);
584 
585 	tprintf("# binding tasks to NODEs:\n");
586 	tprintf("# ");
587 
588 	while (true) {
589 		int bind_node, bind_node_0, bind_node_1;
590 		char *tok, *tok_end, *tok_step, *tok_mul;
591 		int step;
592 		int mul;
593 
594 		tok = strsep(&str, ",");
595 		if (!tok)
596 			break;
597 
598 		tok_end = strstr(tok, "-");
599 
600 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
601 		if (!tok_end) {
602 			/* Single NODE specified: */
603 			bind_node_0 = bind_node_1 = atol(tok);
604 		} else {
605 			/* NODE range specified (for example: "5-11"): */
606 			bind_node_0 = atol(tok);
607 			bind_node_1 = atol(tok_end + 1);
608 		}
609 
610 		step = 1;
611 		tok_step = strstr(tok, "#");
612 		if (tok_step) {
613 			step = atol(tok_step + 1);
614 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
615 		}
616 
617 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
618 		mul = 1;
619 		tok_mul = strstr(tok, "x");
620 		if (tok_mul) {
621 			mul = atol(tok_mul + 1);
622 			BUG_ON(mul <= 0);
623 		}
624 
625 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
626 
627 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
628 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
629 			return -1;
630 		}
631 
632 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
633 		BUG_ON(bind_node_0 > bind_node_1);
634 
635 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
636 			int i;
637 
638 			for (i = 0; i < mul; i++) {
639 				if (t >= g->p.nr_tasks) {
640 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
641 					goto out;
642 				}
643 				td = g->threads + t;
644 
645 				if (!t)
646 					tprintf(" %2d", bind_node);
647 				else
648 					tprintf(",%2d", bind_node);
649 
650 				td->bind_node = bind_node;
651 				t++;
652 			}
653 		}
654 	}
655 out:
656 
657 	tprintf("\n");
658 
659 	if (t < g->p.nr_tasks)
660 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661 
662 	free(str0);
663 	return 0;
664 }
665 
666 static int parse_nodes_opt(const struct option *opt __maybe_unused,
667 			  const char *arg, int unset __maybe_unused)
668 {
669 	if (!arg)
670 		return -1;
671 
672 	return parse_node_list(arg);
673 
674 	return 0;
675 }
676 
677 #define BIT(x) (1ul << x)
678 
679 static inline uint32_t lfsr_32(uint32_t lfsr)
680 {
681 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
682 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
683 }
684 
685 /*
686  * Make sure there's real data dependency to RAM (when read
687  * accesses are enabled), so the compiler, the CPU and the
688  * kernel (KSM, zero page, etc.) cannot optimize away RAM
689  * accesses:
690  */
691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
692 {
693 	if (g->p.data_reads)
694 		val += *data;
695 	if (g->p.data_writes)
696 		*data = val + 1;
697 	return val;
698 }
699 
700 /*
701  * The worker process does two types of work, a forwards going
702  * loop and a backwards going loop.
703  *
704  * We do this so that on multiprocessor systems we do not create
705  * a 'train' of processing, with highly synchronized processes,
706  * skewing the whole benchmark.
707  */
708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
709 {
710 	long words = bytes/sizeof(u64);
711 	u64 *data = (void *)__data;
712 	long chunk_0, chunk_1;
713 	u64 *d0, *d, *d1;
714 	long off;
715 	long i;
716 
717 	BUG_ON(!data && words);
718 	BUG_ON(data && !words);
719 
720 	if (!data)
721 		return val;
722 
723 	/* Very simple memset() work variant: */
724 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
725 		bzero(data, bytes);
726 		return val;
727 	}
728 
729 	/* Spread out by PID/TID nr and by loop nr: */
730 	chunk_0 = words/nr_max;
731 	chunk_1 = words/g->p.nr_loops;
732 	off = nr*chunk_0 + loop*chunk_1;
733 
734 	while (off >= words)
735 		off -= words;
736 
737 	if (g->p.data_rand_walk) {
738 		u32 lfsr = nr + loop + val;
739 		int j;
740 
741 		for (i = 0; i < words/1024; i++) {
742 			long start, end;
743 
744 			lfsr = lfsr_32(lfsr);
745 
746 			start = lfsr % words;
747 			end = min(start + 1024, words-1);
748 
749 			if (g->p.data_zero_memset) {
750 				bzero(data + start, (end-start) * sizeof(u64));
751 			} else {
752 				for (j = start; j < end; j++)
753 					val = access_data(data + j, val);
754 			}
755 		}
756 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
757 
758 		d0 = data + off;
759 		d  = data + off + 1;
760 		d1 = data + words;
761 
762 		/* Process data forwards: */
763 		for (;;) {
764 			if (unlikely(d >= d1))
765 				d = data;
766 			if (unlikely(d == d0))
767 				break;
768 
769 			val = access_data(d, val);
770 
771 			d++;
772 		}
773 	} else {
774 		/* Process data backwards: */
775 
776 		d0 = data + off;
777 		d  = data + off - 1;
778 		d1 = data + words;
779 
780 		/* Process data forwards: */
781 		for (;;) {
782 			if (unlikely(d < data))
783 				d = data + words-1;
784 			if (unlikely(d == d0))
785 				break;
786 
787 			val = access_data(d, val);
788 
789 			d--;
790 		}
791 	}
792 
793 	return val;
794 }
795 
796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
797 {
798 	unsigned int cpu;
799 
800 	cpu = sched_getcpu();
801 
802 	g->threads[task_nr].curr_cpu = cpu;
803 	prctl(0, bytes_worked);
804 }
805 
806 #define MAX_NR_NODES	64
807 
808 /*
809  * Count the number of nodes a process's threads
810  * are spread out on.
811  *
812  * A count of 1 means that the process is compressed
813  * to a single node. A count of g->p.nr_nodes means it's
814  * spread out on the whole system.
815  */
816 static int count_process_nodes(int process_nr)
817 {
818 	char node_present[MAX_NR_NODES] = { 0, };
819 	int nodes;
820 	int n, t;
821 
822 	for (t = 0; t < g->p.nr_threads; t++) {
823 		struct thread_data *td;
824 		int task_nr;
825 		int node;
826 
827 		task_nr = process_nr*g->p.nr_threads + t;
828 		td = g->threads + task_nr;
829 
830 		node = numa_node_of_cpu(td->curr_cpu);
831 		if (node < 0) /* curr_cpu was likely still -1 */
832 			return 0;
833 
834 		node_present[node] = 1;
835 	}
836 
837 	nodes = 0;
838 
839 	for (n = 0; n < MAX_NR_NODES; n++)
840 		nodes += node_present[n];
841 
842 	return nodes;
843 }
844 
845 /*
846  * Count the number of distinct process-threads a node contains.
847  *
848  * A count of 1 means that the node contains only a single
849  * process. If all nodes on the system contain at most one
850  * process then we are well-converged.
851  */
852 static int count_node_processes(int node)
853 {
854 	int processes = 0;
855 	int t, p;
856 
857 	for (p = 0; p < g->p.nr_proc; p++) {
858 		for (t = 0; t < g->p.nr_threads; t++) {
859 			struct thread_data *td;
860 			int task_nr;
861 			int n;
862 
863 			task_nr = p*g->p.nr_threads + t;
864 			td = g->threads + task_nr;
865 
866 			n = numa_node_of_cpu(td->curr_cpu);
867 			if (n == node) {
868 				processes++;
869 				break;
870 			}
871 		}
872 	}
873 
874 	return processes;
875 }
876 
877 static void calc_convergence_compression(int *strong)
878 {
879 	unsigned int nodes_min, nodes_max;
880 	int p;
881 
882 	nodes_min = -1;
883 	nodes_max =  0;
884 
885 	for (p = 0; p < g->p.nr_proc; p++) {
886 		unsigned int nodes = count_process_nodes(p);
887 
888 		if (!nodes) {
889 			*strong = 0;
890 			return;
891 		}
892 
893 		nodes_min = min(nodes, nodes_min);
894 		nodes_max = max(nodes, nodes_max);
895 	}
896 
897 	/* Strong convergence: all threads compress on a single node: */
898 	if (nodes_min == 1 && nodes_max == 1) {
899 		*strong = 1;
900 	} else {
901 		*strong = 0;
902 		tprintf(" {%d-%d}", nodes_min, nodes_max);
903 	}
904 }
905 
906 static void calc_convergence(double runtime_ns_max, double *convergence)
907 {
908 	unsigned int loops_done_min, loops_done_max;
909 	int process_groups;
910 	int nodes[MAX_NR_NODES];
911 	int distance;
912 	int nr_min;
913 	int nr_max;
914 	int strong;
915 	int sum;
916 	int nr;
917 	int node;
918 	int cpu;
919 	int t;
920 
921 	if (!g->p.show_convergence && !g->p.measure_convergence)
922 		return;
923 
924 	for (node = 0; node < g->p.nr_nodes; node++)
925 		nodes[node] = 0;
926 
927 	loops_done_min = -1;
928 	loops_done_max = 0;
929 
930 	for (t = 0; t < g->p.nr_tasks; t++) {
931 		struct thread_data *td = g->threads + t;
932 		unsigned int loops_done;
933 
934 		cpu = td->curr_cpu;
935 
936 		/* Not all threads have written it yet: */
937 		if (cpu < 0)
938 			continue;
939 
940 		node = numa_node_of_cpu(cpu);
941 
942 		nodes[node]++;
943 
944 		loops_done = td->loops_done;
945 		loops_done_min = min(loops_done, loops_done_min);
946 		loops_done_max = max(loops_done, loops_done_max);
947 	}
948 
949 	nr_max = 0;
950 	nr_min = g->p.nr_tasks;
951 	sum = 0;
952 
953 	for (node = 0; node < g->p.nr_nodes; node++) {
954 		nr = nodes[node];
955 		nr_min = min(nr, nr_min);
956 		nr_max = max(nr, nr_max);
957 		sum += nr;
958 	}
959 	BUG_ON(nr_min > nr_max);
960 
961 	BUG_ON(sum > g->p.nr_tasks);
962 
963 	if (0 && (sum < g->p.nr_tasks))
964 		return;
965 
966 	/*
967 	 * Count the number of distinct process groups present
968 	 * on nodes - when we are converged this will decrease
969 	 * to g->p.nr_proc:
970 	 */
971 	process_groups = 0;
972 
973 	for (node = 0; node < g->p.nr_nodes; node++) {
974 		int processes = count_node_processes(node);
975 
976 		nr = nodes[node];
977 		tprintf(" %2d/%-2d", nr, processes);
978 
979 		process_groups += processes;
980 	}
981 
982 	distance = nr_max - nr_min;
983 
984 	tprintf(" [%2d/%-2d]", distance, process_groups);
985 
986 	tprintf(" l:%3d-%-3d (%3d)",
987 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
988 
989 	if (loops_done_min && loops_done_max) {
990 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
991 
992 		tprintf(" [%4.1f%%]", skew * 100.0);
993 	}
994 
995 	calc_convergence_compression(&strong);
996 
997 	if (strong && process_groups == g->p.nr_proc) {
998 		if (!*convergence) {
999 			*convergence = runtime_ns_max;
1000 			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1001 			if (g->p.measure_convergence) {
1002 				g->all_converged = true;
1003 				g->stop_work = true;
1004 			}
1005 		}
1006 	} else {
1007 		if (*convergence) {
1008 			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1009 			*convergence = 0;
1010 		}
1011 		tprintf("\n");
1012 	}
1013 }
1014 
1015 static void show_summary(double runtime_ns_max, int l, double *convergence)
1016 {
1017 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1018 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1019 
1020 	calc_convergence(runtime_ns_max, convergence);
1021 
1022 	if (g->p.show_details >= 0)
1023 		fflush(stdout);
1024 }
1025 
1026 static void *worker_thread(void *__tdata)
1027 {
1028 	struct thread_data *td = __tdata;
1029 	struct timeval start0, start, stop, diff;
1030 	int process_nr = td->process_nr;
1031 	int thread_nr = td->thread_nr;
1032 	unsigned long last_perturbance;
1033 	int task_nr = td->task_nr;
1034 	int details = g->p.show_details;
1035 	int first_task, last_task;
1036 	double convergence = 0;
1037 	u64 val = td->val;
1038 	double runtime_ns_max;
1039 	u8 *global_data;
1040 	u8 *process_data;
1041 	u8 *thread_data;
1042 	u64 bytes_done;
1043 	long work_done;
1044 	u32 l;
1045 
1046 	bind_to_cpumask(td->bind_cpumask);
1047 	bind_to_memnode(td->bind_node);
1048 
1049 	set_taskname("thread %d/%d", process_nr, thread_nr);
1050 
1051 	global_data = g->data;
1052 	process_data = td->process_data;
1053 	thread_data = setup_private_data(g->p.bytes_thread);
1054 
1055 	bytes_done = 0;
1056 
1057 	last_task = 0;
1058 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1059 		last_task = 1;
1060 
1061 	first_task = 0;
1062 	if (process_nr == 0 && thread_nr == 0)
1063 		first_task = 1;
1064 
1065 	if (details >= 2) {
1066 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1067 			process_nr, thread_nr, global_data, process_data, thread_data);
1068 	}
1069 
1070 	if (g->p.serialize_startup) {
1071 		pthread_mutex_lock(&g->startup_mutex);
1072 		g->nr_tasks_started++;
1073 		pthread_mutex_unlock(&g->startup_mutex);
1074 
1075 		/* Here we will wait for the main process to start us all at once: */
1076 		pthread_mutex_lock(&g->start_work_mutex);
1077 		g->nr_tasks_working++;
1078 
1079 		/* Last one wake the main process: */
1080 		if (g->nr_tasks_working == g->p.nr_tasks)
1081 			pthread_mutex_unlock(&g->startup_done_mutex);
1082 
1083 		pthread_mutex_unlock(&g->start_work_mutex);
1084 	}
1085 
1086 	gettimeofday(&start0, NULL);
1087 
1088 	start = stop = start0;
1089 	last_perturbance = start.tv_sec;
1090 
1091 	for (l = 0; l < g->p.nr_loops; l++) {
1092 		start = stop;
1093 
1094 		if (g->stop_work)
1095 			break;
1096 
1097 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1098 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1099 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1100 
1101 		if (g->p.sleep_usecs) {
1102 			pthread_mutex_lock(td->process_lock);
1103 			usleep(g->p.sleep_usecs);
1104 			pthread_mutex_unlock(td->process_lock);
1105 		}
1106 		/*
1107 		 * Amount of work to be done under a process-global lock:
1108 		 */
1109 		if (g->p.bytes_process_locked) {
1110 			pthread_mutex_lock(td->process_lock);
1111 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1112 			pthread_mutex_unlock(td->process_lock);
1113 		}
1114 
1115 		work_done = g->p.bytes_global + g->p.bytes_process +
1116 			    g->p.bytes_process_locked + g->p.bytes_thread;
1117 
1118 		update_curr_cpu(task_nr, work_done);
1119 		bytes_done += work_done;
1120 
1121 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1122 			continue;
1123 
1124 		td->loops_done = l;
1125 
1126 		gettimeofday(&stop, NULL);
1127 
1128 		/* Check whether our max runtime timed out: */
1129 		if (g->p.nr_secs) {
1130 			timersub(&stop, &start0, &diff);
1131 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1132 				g->stop_work = true;
1133 				break;
1134 			}
1135 		}
1136 
1137 		/* Update the summary at most once per second: */
1138 		if (start.tv_sec == stop.tv_sec)
1139 			continue;
1140 
1141 		/*
1142 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1143 		 * by migrating to CPU#0:
1144 		 */
1145 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1146 			cpu_set_t orig_mask;
1147 			int target_cpu;
1148 			int this_cpu;
1149 
1150 			last_perturbance = stop.tv_sec;
1151 
1152 			/*
1153 			 * Depending on where we are running, move into
1154 			 * the other half of the system, to create some
1155 			 * real disturbance:
1156 			 */
1157 			this_cpu = g->threads[task_nr].curr_cpu;
1158 			if (this_cpu < g->p.nr_cpus/2)
1159 				target_cpu = g->p.nr_cpus-1;
1160 			else
1161 				target_cpu = 0;
1162 
1163 			orig_mask = bind_to_cpu(target_cpu);
1164 
1165 			/* Here we are running on the target CPU already */
1166 			if (details >= 1)
1167 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1168 
1169 			bind_to_cpumask(orig_mask);
1170 		}
1171 
1172 		if (details >= 3) {
1173 			timersub(&stop, &start, &diff);
1174 			runtime_ns_max = diff.tv_sec * 1000000000;
1175 			runtime_ns_max += diff.tv_usec * 1000;
1176 
1177 			if (details >= 0) {
1178 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1179 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1180 			}
1181 			fflush(stdout);
1182 		}
1183 		if (!last_task)
1184 			continue;
1185 
1186 		timersub(&stop, &start0, &diff);
1187 		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1188 		runtime_ns_max += diff.tv_usec * 1000ULL;
1189 
1190 		show_summary(runtime_ns_max, l, &convergence);
1191 	}
1192 
1193 	gettimeofday(&stop, NULL);
1194 	timersub(&stop, &start0, &diff);
1195 	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1196 	td->runtime_ns += diff.tv_usec * 1000ULL;
1197 
1198 	free_data(thread_data, g->p.bytes_thread);
1199 
1200 	pthread_mutex_lock(&g->stop_work_mutex);
1201 	g->bytes_done += bytes_done;
1202 	pthread_mutex_unlock(&g->stop_work_mutex);
1203 
1204 	return NULL;
1205 }
1206 
1207 /*
1208  * A worker process starts a couple of threads:
1209  */
1210 static void worker_process(int process_nr)
1211 {
1212 	pthread_mutex_t process_lock;
1213 	struct thread_data *td;
1214 	pthread_t *pthreads;
1215 	u8 *process_data;
1216 	int task_nr;
1217 	int ret;
1218 	int t;
1219 
1220 	pthread_mutex_init(&process_lock, NULL);
1221 	set_taskname("process %d", process_nr);
1222 
1223 	/*
1224 	 * Pick up the memory policy and the CPU binding of our first thread,
1225 	 * so that we initialize memory accordingly:
1226 	 */
1227 	task_nr = process_nr*g->p.nr_threads;
1228 	td = g->threads + task_nr;
1229 
1230 	bind_to_memnode(td->bind_node);
1231 	bind_to_cpumask(td->bind_cpumask);
1232 
1233 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1234 	process_data = setup_private_data(g->p.bytes_process);
1235 
1236 	if (g->p.show_details >= 3) {
1237 		printf(" # process %2d global mem: %p, process mem: %p\n",
1238 			process_nr, g->data, process_data);
1239 	}
1240 
1241 	for (t = 0; t < g->p.nr_threads; t++) {
1242 		task_nr = process_nr*g->p.nr_threads + t;
1243 		td = g->threads + task_nr;
1244 
1245 		td->process_data = process_data;
1246 		td->process_nr   = process_nr;
1247 		td->thread_nr    = t;
1248 		td->task_nr	 = task_nr;
1249 		td->val          = rand();
1250 		td->curr_cpu	 = -1;
1251 		td->process_lock = &process_lock;
1252 
1253 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1254 		BUG_ON(ret);
1255 	}
1256 
1257 	for (t = 0; t < g->p.nr_threads; t++) {
1258                 ret = pthread_join(pthreads[t], NULL);
1259 		BUG_ON(ret);
1260 	}
1261 
1262 	free_data(process_data, g->p.bytes_process);
1263 	free(pthreads);
1264 }
1265 
1266 static void print_summary(void)
1267 {
1268 	if (g->p.show_details < 0)
1269 		return;
1270 
1271 	printf("\n ###\n");
1272 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1273 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1274 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1275 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1276 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1277 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1278 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1279 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1280 
1281 	printf(" ###\n");
1282 
1283 	printf("\n ###\n"); fflush(stdout);
1284 }
1285 
1286 static void init_thread_data(void)
1287 {
1288 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1289 	int t;
1290 
1291 	g->threads = zalloc_shared_data(size);
1292 
1293 	for (t = 0; t < g->p.nr_tasks; t++) {
1294 		struct thread_data *td = g->threads + t;
1295 		int cpu;
1296 
1297 		/* Allow all nodes by default: */
1298 		td->bind_node = -1;
1299 
1300 		/* Allow all CPUs by default: */
1301 		CPU_ZERO(&td->bind_cpumask);
1302 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1303 			CPU_SET(cpu, &td->bind_cpumask);
1304 	}
1305 }
1306 
1307 static void deinit_thread_data(void)
1308 {
1309 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1310 
1311 	free_data(g->threads, size);
1312 }
1313 
1314 static int init(void)
1315 {
1316 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1317 
1318 	/* Copy over options: */
1319 	g->p = p0;
1320 
1321 	g->p.nr_cpus = numa_num_configured_cpus();
1322 
1323 	g->p.nr_nodes = numa_max_node() + 1;
1324 
1325 	/* char array in count_process_nodes(): */
1326 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1327 
1328 	if (g->p.show_quiet && !g->p.show_details)
1329 		g->p.show_details = -1;
1330 
1331 	/* Some memory should be specified: */
1332 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1333 		return -1;
1334 
1335 	if (g->p.mb_global_str) {
1336 		g->p.mb_global = atof(g->p.mb_global_str);
1337 		BUG_ON(g->p.mb_global < 0);
1338 	}
1339 
1340 	if (g->p.mb_proc_str) {
1341 		g->p.mb_proc = atof(g->p.mb_proc_str);
1342 		BUG_ON(g->p.mb_proc < 0);
1343 	}
1344 
1345 	if (g->p.mb_proc_locked_str) {
1346 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1347 		BUG_ON(g->p.mb_proc_locked < 0);
1348 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1349 	}
1350 
1351 	if (g->p.mb_thread_str) {
1352 		g->p.mb_thread = atof(g->p.mb_thread_str);
1353 		BUG_ON(g->p.mb_thread < 0);
1354 	}
1355 
1356 	BUG_ON(g->p.nr_threads <= 0);
1357 	BUG_ON(g->p.nr_proc <= 0);
1358 
1359 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1360 
1361 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1362 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1363 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1364 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1365 
1366 	g->data = setup_shared_data(g->p.bytes_global);
1367 
1368 	/* Startup serialization: */
1369 	init_global_mutex(&g->start_work_mutex);
1370 	init_global_mutex(&g->startup_mutex);
1371 	init_global_mutex(&g->startup_done_mutex);
1372 	init_global_mutex(&g->stop_work_mutex);
1373 
1374 	init_thread_data();
1375 
1376 	tprintf("#\n");
1377 	if (parse_setup_cpu_list() || parse_setup_node_list())
1378 		return -1;
1379 	tprintf("#\n");
1380 
1381 	print_summary();
1382 
1383 	return 0;
1384 }
1385 
1386 static void deinit(void)
1387 {
1388 	free_data(g->data, g->p.bytes_global);
1389 	g->data = NULL;
1390 
1391 	deinit_thread_data();
1392 
1393 	free_data(g, sizeof(*g));
1394 	g = NULL;
1395 }
1396 
1397 /*
1398  * Print a short or long result, depending on the verbosity setting:
1399  */
1400 static void print_res(const char *name, double val,
1401 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1402 {
1403 	if (!name)
1404 		name = "main,";
1405 
1406 	if (!g->p.show_quiet)
1407 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1408 	else
1409 		printf(" %14.3f %s\n", val, txt_long);
1410 }
1411 
1412 static int __bench_numa(const char *name)
1413 {
1414 	struct timeval start, stop, diff;
1415 	u64 runtime_ns_min, runtime_ns_sum;
1416 	pid_t *pids, pid, wpid;
1417 	double delta_runtime;
1418 	double runtime_avg;
1419 	double runtime_sec_max;
1420 	double runtime_sec_min;
1421 	int wait_stat;
1422 	double bytes;
1423 	int i, t;
1424 
1425 	if (init())
1426 		return -1;
1427 
1428 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1429 	pid = -1;
1430 
1431 	/* All threads try to acquire it, this way we can wait for them to start up: */
1432 	pthread_mutex_lock(&g->start_work_mutex);
1433 
1434 	if (g->p.serialize_startup) {
1435 		tprintf(" #\n");
1436 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1437 	}
1438 
1439 	gettimeofday(&start, NULL);
1440 
1441 	for (i = 0; i < g->p.nr_proc; i++) {
1442 		pid = fork();
1443 		dprintf(" # process %2d: PID %d\n", i, pid);
1444 
1445 		BUG_ON(pid < 0);
1446 		if (!pid) {
1447 			/* Child process: */
1448 			worker_process(i);
1449 
1450 			exit(0);
1451 		}
1452 		pids[i] = pid;
1453 
1454 	}
1455 	/* Wait for all the threads to start up: */
1456 	while (g->nr_tasks_started != g->p.nr_tasks)
1457 		usleep(1000);
1458 
1459 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1460 
1461 	if (g->p.serialize_startup) {
1462 		double startup_sec;
1463 
1464 		pthread_mutex_lock(&g->startup_done_mutex);
1465 
1466 		/* This will start all threads: */
1467 		pthread_mutex_unlock(&g->start_work_mutex);
1468 
1469 		/* This mutex is locked - the last started thread will wake us: */
1470 		pthread_mutex_lock(&g->startup_done_mutex);
1471 
1472 		gettimeofday(&stop, NULL);
1473 
1474 		timersub(&stop, &start, &diff);
1475 
1476 		startup_sec = diff.tv_sec * 1000000000.0;
1477 		startup_sec += diff.tv_usec * 1000.0;
1478 		startup_sec /= 1e9;
1479 
1480 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1481 		tprintf(" #\n");
1482 
1483 		start = stop;
1484 		pthread_mutex_unlock(&g->startup_done_mutex);
1485 	} else {
1486 		gettimeofday(&start, NULL);
1487 	}
1488 
1489 	/* Parent process: */
1490 
1491 
1492 	for (i = 0; i < g->p.nr_proc; i++) {
1493 		wpid = waitpid(pids[i], &wait_stat, 0);
1494 		BUG_ON(wpid < 0);
1495 		BUG_ON(!WIFEXITED(wait_stat));
1496 
1497 	}
1498 
1499 	runtime_ns_sum = 0;
1500 	runtime_ns_min = -1LL;
1501 
1502 	for (t = 0; t < g->p.nr_tasks; t++) {
1503 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1504 
1505 		runtime_ns_sum += thread_runtime_ns;
1506 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1507 	}
1508 
1509 	gettimeofday(&stop, NULL);
1510 	timersub(&stop, &start, &diff);
1511 
1512 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1513 
1514 	tprintf("\n ###\n");
1515 	tprintf("\n");
1516 
1517 	runtime_sec_max = diff.tv_sec * 1000000000.0;
1518 	runtime_sec_max += diff.tv_usec * 1000.0;
1519 	runtime_sec_max /= 1e9;
1520 
1521 	runtime_sec_min = runtime_ns_min/1e9;
1522 
1523 	bytes = g->bytes_done;
1524 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1525 
1526 	if (g->p.measure_convergence) {
1527 		print_res(name, runtime_sec_max,
1528 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1529 	}
1530 
1531 	print_res(name, runtime_sec_max,
1532 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1533 
1534 	print_res(name, runtime_sec_min,
1535 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1536 
1537 	print_res(name, runtime_avg,
1538 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1539 
1540 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1541 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1542 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1543 
1544 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1545 		"GB,", "data/thread",		"GB data processed, per thread");
1546 
1547 	print_res(name, bytes / 1e9,
1548 		"GB,", "data-total",		"GB data processed, total");
1549 
1550 	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1551 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1552 
1553 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1554 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1555 
1556 	print_res(name, bytes / runtime_sec_max / 1e9,
1557 		"GB/sec,", "total-speed",	"GB/sec total speed");
1558 
1559 	free(pids);
1560 
1561 	deinit();
1562 
1563 	return 0;
1564 }
1565 
1566 #define MAX_ARGS 50
1567 
1568 static int command_size(const char **argv)
1569 {
1570 	int size = 0;
1571 
1572 	while (*argv) {
1573 		size++;
1574 		argv++;
1575 	}
1576 
1577 	BUG_ON(size >= MAX_ARGS);
1578 
1579 	return size;
1580 }
1581 
1582 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1583 {
1584 	int i;
1585 
1586 	printf("\n # Running %s \"perf bench numa", name);
1587 
1588 	for (i = 0; i < argc; i++)
1589 		printf(" %s", argv[i]);
1590 
1591 	printf("\"\n");
1592 
1593 	memset(p, 0, sizeof(*p));
1594 
1595 	/* Initialize nonzero defaults: */
1596 
1597 	p->serialize_startup		= 1;
1598 	p->data_reads			= true;
1599 	p->data_writes			= true;
1600 	p->data_backwards		= true;
1601 	p->data_rand_walk		= true;
1602 	p->nr_loops			= -1;
1603 	p->init_random			= true;
1604 	p->mb_global_str		= "1";
1605 	p->nr_proc			= 1;
1606 	p->nr_threads			= 1;
1607 	p->nr_secs			= 5;
1608 	p->run_all			= argc == 1;
1609 }
1610 
1611 static int run_bench_numa(const char *name, const char **argv)
1612 {
1613 	int argc = command_size(argv);
1614 
1615 	init_params(&p0, name, argc, argv);
1616 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1617 	if (argc)
1618 		goto err;
1619 
1620 	if (__bench_numa(name))
1621 		goto err;
1622 
1623 	return 0;
1624 
1625 err:
1626 	return -1;
1627 }
1628 
1629 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1630 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1631 
1632 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1633 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1634 
1635 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1636 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1637 
1638 /*
1639  * The built-in test-suite executed by "perf bench numa -a".
1640  *
1641  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1642  */
1643 static const char *tests[][MAX_ARGS] = {
1644    /* Basic single-stream NUMA bandwidth measurements: */
1645    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1646 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1647    { "RAM-bw-local-NOTHP,",
1648 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1649 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1650    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1651 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1652 
1653    /* 2-stream NUMA bandwidth measurements: */
1654    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1655 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1656    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1657 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1658 
1659    /* Cross-stream NUMA bandwidth measurement: */
1660    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1661 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1662 
1663    /* Convergence latency measurements: */
1664    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1665    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1666    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1667    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1668    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1669    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1670    { " 4x4-convergence-NOTHP,",
1671 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1672    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1673    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1674    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1675    { " 8x4-convergence-NOTHP,",
1676 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1677    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1678    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1679    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1680    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1681    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1682 
1683    /* Various NUMA process/thread layout bandwidth measurements: */
1684    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1685    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1686    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1687    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1688    { " 8x1-bw-process-NOTHP,",
1689 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1690    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1691 
1692    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1693    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1694    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1695    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1696 
1697    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1698    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1699    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1700    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1701    { " 4x8-bw-thread-NOTHP,",
1702 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1703    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1704    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1705 
1706    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1707    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1708 
1709    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1710    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1711    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1712    { "numa01-bw-thread-NOTHP,",
1713 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1714 };
1715 
1716 static int bench_all(void)
1717 {
1718 	int nr = ARRAY_SIZE(tests);
1719 	int ret;
1720 	int i;
1721 
1722 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1723 	BUG_ON(ret < 0);
1724 
1725 	for (i = 0; i < nr; i++) {
1726 		run_bench_numa(tests[i][0], tests[i] + 1);
1727 	}
1728 
1729 	printf("\n");
1730 
1731 	return 0;
1732 }
1733 
1734 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1735 {
1736 	init_params(&p0, "main,", argc, argv);
1737 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1738 	if (argc)
1739 		goto err;
1740 
1741 	if (p0.run_all)
1742 		return bench_all();
1743 
1744 	if (__bench_numa(NULL))
1745 		goto err;
1746 
1747 	return 0;
1748 
1749 err:
1750 	usage_with_options(numa_usage, options);
1751 	return -1;
1752 }
1753