1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 #include "../perf.h" 8 #include "../builtin.h" 9 #include "../util/util.h" 10 #include "../util/parse-options.h" 11 12 #include "bench.h" 13 14 #include <errno.h> 15 #include <sched.h> 16 #include <stdio.h> 17 #include <assert.h> 18 #include <malloc.h> 19 #include <signal.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <unistd.h> 23 #include <pthread.h> 24 #include <sys/mman.h> 25 #include <sys/time.h> 26 #include <sys/wait.h> 27 #include <sys/prctl.h> 28 #include <sys/types.h> 29 30 #include <numa.h> 31 #include <numaif.h> 32 33 /* 34 * Regular printout to the terminal, supressed if -q is specified: 35 */ 36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 37 38 /* 39 * Debug printf: 40 */ 41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 42 43 struct thread_data { 44 int curr_cpu; 45 cpu_set_t bind_cpumask; 46 int bind_node; 47 u8 *process_data; 48 int process_nr; 49 int thread_nr; 50 int task_nr; 51 unsigned int loops_done; 52 u64 val; 53 u64 runtime_ns; 54 pthread_mutex_t *process_lock; 55 }; 56 57 /* Parameters set by options: */ 58 59 struct params { 60 /* Startup synchronization: */ 61 bool serialize_startup; 62 63 /* Task hierarchy: */ 64 int nr_proc; 65 int nr_threads; 66 67 /* Working set sizes: */ 68 const char *mb_global_str; 69 const char *mb_proc_str; 70 const char *mb_proc_locked_str; 71 const char *mb_thread_str; 72 73 double mb_global; 74 double mb_proc; 75 double mb_proc_locked; 76 double mb_thread; 77 78 /* Access patterns to the working set: */ 79 bool data_reads; 80 bool data_writes; 81 bool data_backwards; 82 bool data_zero_memset; 83 bool data_rand_walk; 84 u32 nr_loops; 85 u32 nr_secs; 86 u32 sleep_usecs; 87 88 /* Working set initialization: */ 89 bool init_zero; 90 bool init_random; 91 bool init_cpu0; 92 93 /* Misc options: */ 94 int show_details; 95 int run_all; 96 int thp; 97 98 long bytes_global; 99 long bytes_process; 100 long bytes_process_locked; 101 long bytes_thread; 102 103 int nr_tasks; 104 bool show_quiet; 105 106 bool show_convergence; 107 bool measure_convergence; 108 109 int perturb_secs; 110 int nr_cpus; 111 int nr_nodes; 112 113 /* Affinity options -C and -N: */ 114 char *cpu_list_str; 115 char *node_list_str; 116 }; 117 118 119 /* Global, read-writable area, accessible to all processes and threads: */ 120 121 struct global_info { 122 u8 *data; 123 124 pthread_mutex_t startup_mutex; 125 int nr_tasks_started; 126 127 pthread_mutex_t startup_done_mutex; 128 129 pthread_mutex_t start_work_mutex; 130 int nr_tasks_working; 131 132 pthread_mutex_t stop_work_mutex; 133 u64 bytes_done; 134 135 struct thread_data *threads; 136 137 /* Convergence latency measurement: */ 138 bool all_converged; 139 bool stop_work; 140 141 int print_once; 142 143 struct params p; 144 }; 145 146 static struct global_info *g = NULL; 147 148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 150 151 struct params p0; 152 153 static const struct option options[] = { 154 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 155 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 156 157 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 158 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 159 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 160 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 161 162 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), 163 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), 164 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 165 166 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 167 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 168 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 169 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 170 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 171 172 173 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 174 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 175 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 176 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 177 178 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 179 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 180 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 181 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 182 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 183 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 184 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 185 186 /* Special option string parsing callbacks: */ 187 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 188 "bind the first N tasks to these specific cpus (the rest is unbound)", 189 parse_cpus_opt), 190 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 191 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 192 parse_nodes_opt), 193 OPT_END() 194 }; 195 196 static const char * const bench_numa_usage[] = { 197 "perf bench numa <options>", 198 NULL 199 }; 200 201 static const char * const numa_usage[] = { 202 "perf bench numa mem [<options>]", 203 NULL 204 }; 205 206 static cpu_set_t bind_to_cpu(int target_cpu) 207 { 208 cpu_set_t orig_mask, mask; 209 int ret; 210 211 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 212 BUG_ON(ret); 213 214 CPU_ZERO(&mask); 215 216 if (target_cpu == -1) { 217 int cpu; 218 219 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 220 CPU_SET(cpu, &mask); 221 } else { 222 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 223 CPU_SET(target_cpu, &mask); 224 } 225 226 ret = sched_setaffinity(0, sizeof(mask), &mask); 227 BUG_ON(ret); 228 229 return orig_mask; 230 } 231 232 static cpu_set_t bind_to_node(int target_node) 233 { 234 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 235 cpu_set_t orig_mask, mask; 236 int cpu; 237 int ret; 238 239 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 240 BUG_ON(!cpus_per_node); 241 242 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 243 BUG_ON(ret); 244 245 CPU_ZERO(&mask); 246 247 if (target_node == -1) { 248 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 249 CPU_SET(cpu, &mask); 250 } else { 251 int cpu_start = (target_node + 0) * cpus_per_node; 252 int cpu_stop = (target_node + 1) * cpus_per_node; 253 254 BUG_ON(cpu_stop > g->p.nr_cpus); 255 256 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 257 CPU_SET(cpu, &mask); 258 } 259 260 ret = sched_setaffinity(0, sizeof(mask), &mask); 261 BUG_ON(ret); 262 263 return orig_mask; 264 } 265 266 static void bind_to_cpumask(cpu_set_t mask) 267 { 268 int ret; 269 270 ret = sched_setaffinity(0, sizeof(mask), &mask); 271 BUG_ON(ret); 272 } 273 274 static void mempol_restore(void) 275 { 276 int ret; 277 278 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 279 280 BUG_ON(ret); 281 } 282 283 static void bind_to_memnode(int node) 284 { 285 unsigned long nodemask; 286 int ret; 287 288 if (node == -1) 289 return; 290 291 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); 292 nodemask = 1L << node; 293 294 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 295 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 296 297 BUG_ON(ret); 298 } 299 300 #define HPSIZE (2*1024*1024) 301 302 #define set_taskname(fmt...) \ 303 do { \ 304 char name[20]; \ 305 \ 306 snprintf(name, 20, fmt); \ 307 prctl(PR_SET_NAME, name); \ 308 } while (0) 309 310 static u8 *alloc_data(ssize_t bytes0, int map_flags, 311 int init_zero, int init_cpu0, int thp, int init_random) 312 { 313 cpu_set_t orig_mask; 314 ssize_t bytes; 315 u8 *buf; 316 int ret; 317 318 if (!bytes0) 319 return NULL; 320 321 /* Allocate and initialize all memory on CPU#0: */ 322 if (init_cpu0) { 323 orig_mask = bind_to_node(0); 324 bind_to_memnode(0); 325 } 326 327 bytes = bytes0 + HPSIZE; 328 329 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 330 BUG_ON(buf == (void *)-1); 331 332 if (map_flags == MAP_PRIVATE) { 333 if (thp > 0) { 334 ret = madvise(buf, bytes, MADV_HUGEPAGE); 335 if (ret && !g->print_once) { 336 g->print_once = 1; 337 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 338 } 339 } 340 if (thp < 0) { 341 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 342 if (ret && !g->print_once) { 343 g->print_once = 1; 344 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 345 } 346 } 347 } 348 349 if (init_zero) { 350 bzero(buf, bytes); 351 } else { 352 /* Initialize random contents, different in each word: */ 353 if (init_random) { 354 u64 *wbuf = (void *)buf; 355 long off = rand(); 356 long i; 357 358 for (i = 0; i < bytes/8; i++) 359 wbuf[i] = i + off; 360 } 361 } 362 363 /* Align to 2MB boundary: */ 364 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 365 366 /* Restore affinity: */ 367 if (init_cpu0) { 368 bind_to_cpumask(orig_mask); 369 mempol_restore(); 370 } 371 372 return buf; 373 } 374 375 static void free_data(void *data, ssize_t bytes) 376 { 377 int ret; 378 379 if (!data) 380 return; 381 382 ret = munmap(data, bytes); 383 BUG_ON(ret); 384 } 385 386 /* 387 * Create a shared memory buffer that can be shared between processes, zeroed: 388 */ 389 static void * zalloc_shared_data(ssize_t bytes) 390 { 391 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 392 } 393 394 /* 395 * Create a shared memory buffer that can be shared between processes: 396 */ 397 static void * setup_shared_data(ssize_t bytes) 398 { 399 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 400 } 401 402 /* 403 * Allocate process-local memory - this will either be shared between 404 * threads of this process, or only be accessed by this thread: 405 */ 406 static void * setup_private_data(ssize_t bytes) 407 { 408 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 409 } 410 411 /* 412 * Return a process-shared (global) mutex: 413 */ 414 static void init_global_mutex(pthread_mutex_t *mutex) 415 { 416 pthread_mutexattr_t attr; 417 418 pthread_mutexattr_init(&attr); 419 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 420 pthread_mutex_init(mutex, &attr); 421 } 422 423 static int parse_cpu_list(const char *arg) 424 { 425 p0.cpu_list_str = strdup(arg); 426 427 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 428 429 return 0; 430 } 431 432 static int parse_setup_cpu_list(void) 433 { 434 struct thread_data *td; 435 char *str0, *str; 436 int t; 437 438 if (!g->p.cpu_list_str) 439 return 0; 440 441 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 442 443 str0 = str = strdup(g->p.cpu_list_str); 444 t = 0; 445 446 BUG_ON(!str); 447 448 tprintf("# binding tasks to CPUs:\n"); 449 tprintf("# "); 450 451 while (true) { 452 int bind_cpu, bind_cpu_0, bind_cpu_1; 453 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 454 int bind_len; 455 int step; 456 int mul; 457 458 tok = strsep(&str, ","); 459 if (!tok) 460 break; 461 462 tok_end = strstr(tok, "-"); 463 464 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 465 if (!tok_end) { 466 /* Single CPU specified: */ 467 bind_cpu_0 = bind_cpu_1 = atol(tok); 468 } else { 469 /* CPU range specified (for example: "5-11"): */ 470 bind_cpu_0 = atol(tok); 471 bind_cpu_1 = atol(tok_end + 1); 472 } 473 474 step = 1; 475 tok_step = strstr(tok, "#"); 476 if (tok_step) { 477 step = atol(tok_step + 1); 478 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 479 } 480 481 /* 482 * Mask length. 483 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 484 * where the _4 means the next 4 CPUs are allowed. 485 */ 486 bind_len = 1; 487 tok_len = strstr(tok, "_"); 488 if (tok_len) { 489 bind_len = atol(tok_len + 1); 490 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 491 } 492 493 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 494 mul = 1; 495 tok_mul = strstr(tok, "x"); 496 if (tok_mul) { 497 mul = atol(tok_mul + 1); 498 BUG_ON(mul <= 0); 499 } 500 501 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 502 503 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 504 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 505 return -1; 506 } 507 508 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 509 BUG_ON(bind_cpu_0 > bind_cpu_1); 510 511 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 512 int i; 513 514 for (i = 0; i < mul; i++) { 515 int cpu; 516 517 if (t >= g->p.nr_tasks) { 518 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 519 goto out; 520 } 521 td = g->threads + t; 522 523 if (t) 524 tprintf(","); 525 if (bind_len > 1) { 526 tprintf("%2d/%d", bind_cpu, bind_len); 527 } else { 528 tprintf("%2d", bind_cpu); 529 } 530 531 CPU_ZERO(&td->bind_cpumask); 532 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 533 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 534 CPU_SET(cpu, &td->bind_cpumask); 535 } 536 t++; 537 } 538 } 539 } 540 out: 541 542 tprintf("\n"); 543 544 if (t < g->p.nr_tasks) 545 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 546 547 free(str0); 548 return 0; 549 } 550 551 static int parse_cpus_opt(const struct option *opt __maybe_unused, 552 const char *arg, int unset __maybe_unused) 553 { 554 if (!arg) 555 return -1; 556 557 return parse_cpu_list(arg); 558 } 559 560 static int parse_node_list(const char *arg) 561 { 562 p0.node_list_str = strdup(arg); 563 564 dprintf("got NODE list: {%s}\n", p0.node_list_str); 565 566 return 0; 567 } 568 569 static int parse_setup_node_list(void) 570 { 571 struct thread_data *td; 572 char *str0, *str; 573 int t; 574 575 if (!g->p.node_list_str) 576 return 0; 577 578 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 579 580 str0 = str = strdup(g->p.node_list_str); 581 t = 0; 582 583 BUG_ON(!str); 584 585 tprintf("# binding tasks to NODEs:\n"); 586 tprintf("# "); 587 588 while (true) { 589 int bind_node, bind_node_0, bind_node_1; 590 char *tok, *tok_end, *tok_step, *tok_mul; 591 int step; 592 int mul; 593 594 tok = strsep(&str, ","); 595 if (!tok) 596 break; 597 598 tok_end = strstr(tok, "-"); 599 600 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 601 if (!tok_end) { 602 /* Single NODE specified: */ 603 bind_node_0 = bind_node_1 = atol(tok); 604 } else { 605 /* NODE range specified (for example: "5-11"): */ 606 bind_node_0 = atol(tok); 607 bind_node_1 = atol(tok_end + 1); 608 } 609 610 step = 1; 611 tok_step = strstr(tok, "#"); 612 if (tok_step) { 613 step = atol(tok_step + 1); 614 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 615 } 616 617 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 618 mul = 1; 619 tok_mul = strstr(tok, "x"); 620 if (tok_mul) { 621 mul = atol(tok_mul + 1); 622 BUG_ON(mul <= 0); 623 } 624 625 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 626 627 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 628 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 629 return -1; 630 } 631 632 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 633 BUG_ON(bind_node_0 > bind_node_1); 634 635 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 636 int i; 637 638 for (i = 0; i < mul; i++) { 639 if (t >= g->p.nr_tasks) { 640 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 641 goto out; 642 } 643 td = g->threads + t; 644 645 if (!t) 646 tprintf(" %2d", bind_node); 647 else 648 tprintf(",%2d", bind_node); 649 650 td->bind_node = bind_node; 651 t++; 652 } 653 } 654 } 655 out: 656 657 tprintf("\n"); 658 659 if (t < g->p.nr_tasks) 660 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 661 662 free(str0); 663 return 0; 664 } 665 666 static int parse_nodes_opt(const struct option *opt __maybe_unused, 667 const char *arg, int unset __maybe_unused) 668 { 669 if (!arg) 670 return -1; 671 672 return parse_node_list(arg); 673 674 return 0; 675 } 676 677 #define BIT(x) (1ul << x) 678 679 static inline uint32_t lfsr_32(uint32_t lfsr) 680 { 681 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 682 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 683 } 684 685 /* 686 * Make sure there's real data dependency to RAM (when read 687 * accesses are enabled), so the compiler, the CPU and the 688 * kernel (KSM, zero page, etc.) cannot optimize away RAM 689 * accesses: 690 */ 691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 692 { 693 if (g->p.data_reads) 694 val += *data; 695 if (g->p.data_writes) 696 *data = val + 1; 697 return val; 698 } 699 700 /* 701 * The worker process does two types of work, a forwards going 702 * loop and a backwards going loop. 703 * 704 * We do this so that on multiprocessor systems we do not create 705 * a 'train' of processing, with highly synchronized processes, 706 * skewing the whole benchmark. 707 */ 708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 709 { 710 long words = bytes/sizeof(u64); 711 u64 *data = (void *)__data; 712 long chunk_0, chunk_1; 713 u64 *d0, *d, *d1; 714 long off; 715 long i; 716 717 BUG_ON(!data && words); 718 BUG_ON(data && !words); 719 720 if (!data) 721 return val; 722 723 /* Very simple memset() work variant: */ 724 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 725 bzero(data, bytes); 726 return val; 727 } 728 729 /* Spread out by PID/TID nr and by loop nr: */ 730 chunk_0 = words/nr_max; 731 chunk_1 = words/g->p.nr_loops; 732 off = nr*chunk_0 + loop*chunk_1; 733 734 while (off >= words) 735 off -= words; 736 737 if (g->p.data_rand_walk) { 738 u32 lfsr = nr + loop + val; 739 int j; 740 741 for (i = 0; i < words/1024; i++) { 742 long start, end; 743 744 lfsr = lfsr_32(lfsr); 745 746 start = lfsr % words; 747 end = min(start + 1024, words-1); 748 749 if (g->p.data_zero_memset) { 750 bzero(data + start, (end-start) * sizeof(u64)); 751 } else { 752 for (j = start; j < end; j++) 753 val = access_data(data + j, val); 754 } 755 } 756 } else if (!g->p.data_backwards || (nr + loop) & 1) { 757 758 d0 = data + off; 759 d = data + off + 1; 760 d1 = data + words; 761 762 /* Process data forwards: */ 763 for (;;) { 764 if (unlikely(d >= d1)) 765 d = data; 766 if (unlikely(d == d0)) 767 break; 768 769 val = access_data(d, val); 770 771 d++; 772 } 773 } else { 774 /* Process data backwards: */ 775 776 d0 = data + off; 777 d = data + off - 1; 778 d1 = data + words; 779 780 /* Process data forwards: */ 781 for (;;) { 782 if (unlikely(d < data)) 783 d = data + words-1; 784 if (unlikely(d == d0)) 785 break; 786 787 val = access_data(d, val); 788 789 d--; 790 } 791 } 792 793 return val; 794 } 795 796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 797 { 798 unsigned int cpu; 799 800 cpu = sched_getcpu(); 801 802 g->threads[task_nr].curr_cpu = cpu; 803 prctl(0, bytes_worked); 804 } 805 806 #define MAX_NR_NODES 64 807 808 /* 809 * Count the number of nodes a process's threads 810 * are spread out on. 811 * 812 * A count of 1 means that the process is compressed 813 * to a single node. A count of g->p.nr_nodes means it's 814 * spread out on the whole system. 815 */ 816 static int count_process_nodes(int process_nr) 817 { 818 char node_present[MAX_NR_NODES] = { 0, }; 819 int nodes; 820 int n, t; 821 822 for (t = 0; t < g->p.nr_threads; t++) { 823 struct thread_data *td; 824 int task_nr; 825 int node; 826 827 task_nr = process_nr*g->p.nr_threads + t; 828 td = g->threads + task_nr; 829 830 node = numa_node_of_cpu(td->curr_cpu); 831 if (node < 0) /* curr_cpu was likely still -1 */ 832 return 0; 833 834 node_present[node] = 1; 835 } 836 837 nodes = 0; 838 839 for (n = 0; n < MAX_NR_NODES; n++) 840 nodes += node_present[n]; 841 842 return nodes; 843 } 844 845 /* 846 * Count the number of distinct process-threads a node contains. 847 * 848 * A count of 1 means that the node contains only a single 849 * process. If all nodes on the system contain at most one 850 * process then we are well-converged. 851 */ 852 static int count_node_processes(int node) 853 { 854 int processes = 0; 855 int t, p; 856 857 for (p = 0; p < g->p.nr_proc; p++) { 858 for (t = 0; t < g->p.nr_threads; t++) { 859 struct thread_data *td; 860 int task_nr; 861 int n; 862 863 task_nr = p*g->p.nr_threads + t; 864 td = g->threads + task_nr; 865 866 n = numa_node_of_cpu(td->curr_cpu); 867 if (n == node) { 868 processes++; 869 break; 870 } 871 } 872 } 873 874 return processes; 875 } 876 877 static void calc_convergence_compression(int *strong) 878 { 879 unsigned int nodes_min, nodes_max; 880 int p; 881 882 nodes_min = -1; 883 nodes_max = 0; 884 885 for (p = 0; p < g->p.nr_proc; p++) { 886 unsigned int nodes = count_process_nodes(p); 887 888 if (!nodes) { 889 *strong = 0; 890 return; 891 } 892 893 nodes_min = min(nodes, nodes_min); 894 nodes_max = max(nodes, nodes_max); 895 } 896 897 /* Strong convergence: all threads compress on a single node: */ 898 if (nodes_min == 1 && nodes_max == 1) { 899 *strong = 1; 900 } else { 901 *strong = 0; 902 tprintf(" {%d-%d}", nodes_min, nodes_max); 903 } 904 } 905 906 static void calc_convergence(double runtime_ns_max, double *convergence) 907 { 908 unsigned int loops_done_min, loops_done_max; 909 int process_groups; 910 int nodes[MAX_NR_NODES]; 911 int distance; 912 int nr_min; 913 int nr_max; 914 int strong; 915 int sum; 916 int nr; 917 int node; 918 int cpu; 919 int t; 920 921 if (!g->p.show_convergence && !g->p.measure_convergence) 922 return; 923 924 for (node = 0; node < g->p.nr_nodes; node++) 925 nodes[node] = 0; 926 927 loops_done_min = -1; 928 loops_done_max = 0; 929 930 for (t = 0; t < g->p.nr_tasks; t++) { 931 struct thread_data *td = g->threads + t; 932 unsigned int loops_done; 933 934 cpu = td->curr_cpu; 935 936 /* Not all threads have written it yet: */ 937 if (cpu < 0) 938 continue; 939 940 node = numa_node_of_cpu(cpu); 941 942 nodes[node]++; 943 944 loops_done = td->loops_done; 945 loops_done_min = min(loops_done, loops_done_min); 946 loops_done_max = max(loops_done, loops_done_max); 947 } 948 949 nr_max = 0; 950 nr_min = g->p.nr_tasks; 951 sum = 0; 952 953 for (node = 0; node < g->p.nr_nodes; node++) { 954 nr = nodes[node]; 955 nr_min = min(nr, nr_min); 956 nr_max = max(nr, nr_max); 957 sum += nr; 958 } 959 BUG_ON(nr_min > nr_max); 960 961 BUG_ON(sum > g->p.nr_tasks); 962 963 if (0 && (sum < g->p.nr_tasks)) 964 return; 965 966 /* 967 * Count the number of distinct process groups present 968 * on nodes - when we are converged this will decrease 969 * to g->p.nr_proc: 970 */ 971 process_groups = 0; 972 973 for (node = 0; node < g->p.nr_nodes; node++) { 974 int processes = count_node_processes(node); 975 976 nr = nodes[node]; 977 tprintf(" %2d/%-2d", nr, processes); 978 979 process_groups += processes; 980 } 981 982 distance = nr_max - nr_min; 983 984 tprintf(" [%2d/%-2d]", distance, process_groups); 985 986 tprintf(" l:%3d-%-3d (%3d)", 987 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 988 989 if (loops_done_min && loops_done_max) { 990 double skew = 1.0 - (double)loops_done_min/loops_done_max; 991 992 tprintf(" [%4.1f%%]", skew * 100.0); 993 } 994 995 calc_convergence_compression(&strong); 996 997 if (strong && process_groups == g->p.nr_proc) { 998 if (!*convergence) { 999 *convergence = runtime_ns_max; 1000 tprintf(" (%6.1fs converged)\n", *convergence/1e9); 1001 if (g->p.measure_convergence) { 1002 g->all_converged = true; 1003 g->stop_work = true; 1004 } 1005 } 1006 } else { 1007 if (*convergence) { 1008 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); 1009 *convergence = 0; 1010 } 1011 tprintf("\n"); 1012 } 1013 } 1014 1015 static void show_summary(double runtime_ns_max, int l, double *convergence) 1016 { 1017 tprintf("\r # %5.1f%% [%.1f mins]", 1018 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); 1019 1020 calc_convergence(runtime_ns_max, convergence); 1021 1022 if (g->p.show_details >= 0) 1023 fflush(stdout); 1024 } 1025 1026 static void *worker_thread(void *__tdata) 1027 { 1028 struct thread_data *td = __tdata; 1029 struct timeval start0, start, stop, diff; 1030 int process_nr = td->process_nr; 1031 int thread_nr = td->thread_nr; 1032 unsigned long last_perturbance; 1033 int task_nr = td->task_nr; 1034 int details = g->p.show_details; 1035 int first_task, last_task; 1036 double convergence = 0; 1037 u64 val = td->val; 1038 double runtime_ns_max; 1039 u8 *global_data; 1040 u8 *process_data; 1041 u8 *thread_data; 1042 u64 bytes_done; 1043 long work_done; 1044 u32 l; 1045 1046 bind_to_cpumask(td->bind_cpumask); 1047 bind_to_memnode(td->bind_node); 1048 1049 set_taskname("thread %d/%d", process_nr, thread_nr); 1050 1051 global_data = g->data; 1052 process_data = td->process_data; 1053 thread_data = setup_private_data(g->p.bytes_thread); 1054 1055 bytes_done = 0; 1056 1057 last_task = 0; 1058 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1059 last_task = 1; 1060 1061 first_task = 0; 1062 if (process_nr == 0 && thread_nr == 0) 1063 first_task = 1; 1064 1065 if (details >= 2) { 1066 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1067 process_nr, thread_nr, global_data, process_data, thread_data); 1068 } 1069 1070 if (g->p.serialize_startup) { 1071 pthread_mutex_lock(&g->startup_mutex); 1072 g->nr_tasks_started++; 1073 pthread_mutex_unlock(&g->startup_mutex); 1074 1075 /* Here we will wait for the main process to start us all at once: */ 1076 pthread_mutex_lock(&g->start_work_mutex); 1077 g->nr_tasks_working++; 1078 1079 /* Last one wake the main process: */ 1080 if (g->nr_tasks_working == g->p.nr_tasks) 1081 pthread_mutex_unlock(&g->startup_done_mutex); 1082 1083 pthread_mutex_unlock(&g->start_work_mutex); 1084 } 1085 1086 gettimeofday(&start0, NULL); 1087 1088 start = stop = start0; 1089 last_perturbance = start.tv_sec; 1090 1091 for (l = 0; l < g->p.nr_loops; l++) { 1092 start = stop; 1093 1094 if (g->stop_work) 1095 break; 1096 1097 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1098 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1099 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1100 1101 if (g->p.sleep_usecs) { 1102 pthread_mutex_lock(td->process_lock); 1103 usleep(g->p.sleep_usecs); 1104 pthread_mutex_unlock(td->process_lock); 1105 } 1106 /* 1107 * Amount of work to be done under a process-global lock: 1108 */ 1109 if (g->p.bytes_process_locked) { 1110 pthread_mutex_lock(td->process_lock); 1111 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1112 pthread_mutex_unlock(td->process_lock); 1113 } 1114 1115 work_done = g->p.bytes_global + g->p.bytes_process + 1116 g->p.bytes_process_locked + g->p.bytes_thread; 1117 1118 update_curr_cpu(task_nr, work_done); 1119 bytes_done += work_done; 1120 1121 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1122 continue; 1123 1124 td->loops_done = l; 1125 1126 gettimeofday(&stop, NULL); 1127 1128 /* Check whether our max runtime timed out: */ 1129 if (g->p.nr_secs) { 1130 timersub(&stop, &start0, &diff); 1131 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1132 g->stop_work = true; 1133 break; 1134 } 1135 } 1136 1137 /* Update the summary at most once per second: */ 1138 if (start.tv_sec == stop.tv_sec) 1139 continue; 1140 1141 /* 1142 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1143 * by migrating to CPU#0: 1144 */ 1145 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1146 cpu_set_t orig_mask; 1147 int target_cpu; 1148 int this_cpu; 1149 1150 last_perturbance = stop.tv_sec; 1151 1152 /* 1153 * Depending on where we are running, move into 1154 * the other half of the system, to create some 1155 * real disturbance: 1156 */ 1157 this_cpu = g->threads[task_nr].curr_cpu; 1158 if (this_cpu < g->p.nr_cpus/2) 1159 target_cpu = g->p.nr_cpus-1; 1160 else 1161 target_cpu = 0; 1162 1163 orig_mask = bind_to_cpu(target_cpu); 1164 1165 /* Here we are running on the target CPU already */ 1166 if (details >= 1) 1167 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1168 1169 bind_to_cpumask(orig_mask); 1170 } 1171 1172 if (details >= 3) { 1173 timersub(&stop, &start, &diff); 1174 runtime_ns_max = diff.tv_sec * 1000000000; 1175 runtime_ns_max += diff.tv_usec * 1000; 1176 1177 if (details >= 0) { 1178 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1179 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1180 } 1181 fflush(stdout); 1182 } 1183 if (!last_task) 1184 continue; 1185 1186 timersub(&stop, &start0, &diff); 1187 runtime_ns_max = diff.tv_sec * 1000000000ULL; 1188 runtime_ns_max += diff.tv_usec * 1000ULL; 1189 1190 show_summary(runtime_ns_max, l, &convergence); 1191 } 1192 1193 gettimeofday(&stop, NULL); 1194 timersub(&stop, &start0, &diff); 1195 td->runtime_ns = diff.tv_sec * 1000000000ULL; 1196 td->runtime_ns += diff.tv_usec * 1000ULL; 1197 1198 free_data(thread_data, g->p.bytes_thread); 1199 1200 pthread_mutex_lock(&g->stop_work_mutex); 1201 g->bytes_done += bytes_done; 1202 pthread_mutex_unlock(&g->stop_work_mutex); 1203 1204 return NULL; 1205 } 1206 1207 /* 1208 * A worker process starts a couple of threads: 1209 */ 1210 static void worker_process(int process_nr) 1211 { 1212 pthread_mutex_t process_lock; 1213 struct thread_data *td; 1214 pthread_t *pthreads; 1215 u8 *process_data; 1216 int task_nr; 1217 int ret; 1218 int t; 1219 1220 pthread_mutex_init(&process_lock, NULL); 1221 set_taskname("process %d", process_nr); 1222 1223 /* 1224 * Pick up the memory policy and the CPU binding of our first thread, 1225 * so that we initialize memory accordingly: 1226 */ 1227 task_nr = process_nr*g->p.nr_threads; 1228 td = g->threads + task_nr; 1229 1230 bind_to_memnode(td->bind_node); 1231 bind_to_cpumask(td->bind_cpumask); 1232 1233 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1234 process_data = setup_private_data(g->p.bytes_process); 1235 1236 if (g->p.show_details >= 3) { 1237 printf(" # process %2d global mem: %p, process mem: %p\n", 1238 process_nr, g->data, process_data); 1239 } 1240 1241 for (t = 0; t < g->p.nr_threads; t++) { 1242 task_nr = process_nr*g->p.nr_threads + t; 1243 td = g->threads + task_nr; 1244 1245 td->process_data = process_data; 1246 td->process_nr = process_nr; 1247 td->thread_nr = t; 1248 td->task_nr = task_nr; 1249 td->val = rand(); 1250 td->curr_cpu = -1; 1251 td->process_lock = &process_lock; 1252 1253 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1254 BUG_ON(ret); 1255 } 1256 1257 for (t = 0; t < g->p.nr_threads; t++) { 1258 ret = pthread_join(pthreads[t], NULL); 1259 BUG_ON(ret); 1260 } 1261 1262 free_data(process_data, g->p.bytes_process); 1263 free(pthreads); 1264 } 1265 1266 static void print_summary(void) 1267 { 1268 if (g->p.show_details < 0) 1269 return; 1270 1271 printf("\n ###\n"); 1272 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1273 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1274 printf(" # %5dx %5ldMB global shared mem operations\n", 1275 g->p.nr_loops, g->p.bytes_global/1024/1024); 1276 printf(" # %5dx %5ldMB process shared mem operations\n", 1277 g->p.nr_loops, g->p.bytes_process/1024/1024); 1278 printf(" # %5dx %5ldMB thread local mem operations\n", 1279 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1280 1281 printf(" ###\n"); 1282 1283 printf("\n ###\n"); fflush(stdout); 1284 } 1285 1286 static void init_thread_data(void) 1287 { 1288 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1289 int t; 1290 1291 g->threads = zalloc_shared_data(size); 1292 1293 for (t = 0; t < g->p.nr_tasks; t++) { 1294 struct thread_data *td = g->threads + t; 1295 int cpu; 1296 1297 /* Allow all nodes by default: */ 1298 td->bind_node = -1; 1299 1300 /* Allow all CPUs by default: */ 1301 CPU_ZERO(&td->bind_cpumask); 1302 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1303 CPU_SET(cpu, &td->bind_cpumask); 1304 } 1305 } 1306 1307 static void deinit_thread_data(void) 1308 { 1309 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1310 1311 free_data(g->threads, size); 1312 } 1313 1314 static int init(void) 1315 { 1316 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1317 1318 /* Copy over options: */ 1319 g->p = p0; 1320 1321 g->p.nr_cpus = numa_num_configured_cpus(); 1322 1323 g->p.nr_nodes = numa_max_node() + 1; 1324 1325 /* char array in count_process_nodes(): */ 1326 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1327 1328 if (g->p.show_quiet && !g->p.show_details) 1329 g->p.show_details = -1; 1330 1331 /* Some memory should be specified: */ 1332 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1333 return -1; 1334 1335 if (g->p.mb_global_str) { 1336 g->p.mb_global = atof(g->p.mb_global_str); 1337 BUG_ON(g->p.mb_global < 0); 1338 } 1339 1340 if (g->p.mb_proc_str) { 1341 g->p.mb_proc = atof(g->p.mb_proc_str); 1342 BUG_ON(g->p.mb_proc < 0); 1343 } 1344 1345 if (g->p.mb_proc_locked_str) { 1346 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1347 BUG_ON(g->p.mb_proc_locked < 0); 1348 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1349 } 1350 1351 if (g->p.mb_thread_str) { 1352 g->p.mb_thread = atof(g->p.mb_thread_str); 1353 BUG_ON(g->p.mb_thread < 0); 1354 } 1355 1356 BUG_ON(g->p.nr_threads <= 0); 1357 BUG_ON(g->p.nr_proc <= 0); 1358 1359 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1360 1361 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1362 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1363 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1364 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1365 1366 g->data = setup_shared_data(g->p.bytes_global); 1367 1368 /* Startup serialization: */ 1369 init_global_mutex(&g->start_work_mutex); 1370 init_global_mutex(&g->startup_mutex); 1371 init_global_mutex(&g->startup_done_mutex); 1372 init_global_mutex(&g->stop_work_mutex); 1373 1374 init_thread_data(); 1375 1376 tprintf("#\n"); 1377 if (parse_setup_cpu_list() || parse_setup_node_list()) 1378 return -1; 1379 tprintf("#\n"); 1380 1381 print_summary(); 1382 1383 return 0; 1384 } 1385 1386 static void deinit(void) 1387 { 1388 free_data(g->data, g->p.bytes_global); 1389 g->data = NULL; 1390 1391 deinit_thread_data(); 1392 1393 free_data(g, sizeof(*g)); 1394 g = NULL; 1395 } 1396 1397 /* 1398 * Print a short or long result, depending on the verbosity setting: 1399 */ 1400 static void print_res(const char *name, double val, 1401 const char *txt_unit, const char *txt_short, const char *txt_long) 1402 { 1403 if (!name) 1404 name = "main,"; 1405 1406 if (!g->p.show_quiet) 1407 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1408 else 1409 printf(" %14.3f %s\n", val, txt_long); 1410 } 1411 1412 static int __bench_numa(const char *name) 1413 { 1414 struct timeval start, stop, diff; 1415 u64 runtime_ns_min, runtime_ns_sum; 1416 pid_t *pids, pid, wpid; 1417 double delta_runtime; 1418 double runtime_avg; 1419 double runtime_sec_max; 1420 double runtime_sec_min; 1421 int wait_stat; 1422 double bytes; 1423 int i, t; 1424 1425 if (init()) 1426 return -1; 1427 1428 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1429 pid = -1; 1430 1431 /* All threads try to acquire it, this way we can wait for them to start up: */ 1432 pthread_mutex_lock(&g->start_work_mutex); 1433 1434 if (g->p.serialize_startup) { 1435 tprintf(" #\n"); 1436 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1437 } 1438 1439 gettimeofday(&start, NULL); 1440 1441 for (i = 0; i < g->p.nr_proc; i++) { 1442 pid = fork(); 1443 dprintf(" # process %2d: PID %d\n", i, pid); 1444 1445 BUG_ON(pid < 0); 1446 if (!pid) { 1447 /* Child process: */ 1448 worker_process(i); 1449 1450 exit(0); 1451 } 1452 pids[i] = pid; 1453 1454 } 1455 /* Wait for all the threads to start up: */ 1456 while (g->nr_tasks_started != g->p.nr_tasks) 1457 usleep(1000); 1458 1459 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1460 1461 if (g->p.serialize_startup) { 1462 double startup_sec; 1463 1464 pthread_mutex_lock(&g->startup_done_mutex); 1465 1466 /* This will start all threads: */ 1467 pthread_mutex_unlock(&g->start_work_mutex); 1468 1469 /* This mutex is locked - the last started thread will wake us: */ 1470 pthread_mutex_lock(&g->startup_done_mutex); 1471 1472 gettimeofday(&stop, NULL); 1473 1474 timersub(&stop, &start, &diff); 1475 1476 startup_sec = diff.tv_sec * 1000000000.0; 1477 startup_sec += diff.tv_usec * 1000.0; 1478 startup_sec /= 1e9; 1479 1480 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1481 tprintf(" #\n"); 1482 1483 start = stop; 1484 pthread_mutex_unlock(&g->startup_done_mutex); 1485 } else { 1486 gettimeofday(&start, NULL); 1487 } 1488 1489 /* Parent process: */ 1490 1491 1492 for (i = 0; i < g->p.nr_proc; i++) { 1493 wpid = waitpid(pids[i], &wait_stat, 0); 1494 BUG_ON(wpid < 0); 1495 BUG_ON(!WIFEXITED(wait_stat)); 1496 1497 } 1498 1499 runtime_ns_sum = 0; 1500 runtime_ns_min = -1LL; 1501 1502 for (t = 0; t < g->p.nr_tasks; t++) { 1503 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1504 1505 runtime_ns_sum += thread_runtime_ns; 1506 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1507 } 1508 1509 gettimeofday(&stop, NULL); 1510 timersub(&stop, &start, &diff); 1511 1512 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1513 1514 tprintf("\n ###\n"); 1515 tprintf("\n"); 1516 1517 runtime_sec_max = diff.tv_sec * 1000000000.0; 1518 runtime_sec_max += diff.tv_usec * 1000.0; 1519 runtime_sec_max /= 1e9; 1520 1521 runtime_sec_min = runtime_ns_min/1e9; 1522 1523 bytes = g->bytes_done; 1524 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; 1525 1526 if (g->p.measure_convergence) { 1527 print_res(name, runtime_sec_max, 1528 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1529 } 1530 1531 print_res(name, runtime_sec_max, 1532 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1533 1534 print_res(name, runtime_sec_min, 1535 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1536 1537 print_res(name, runtime_avg, 1538 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1539 1540 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1541 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1542 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1543 1544 print_res(name, bytes / g->p.nr_tasks / 1e9, 1545 "GB,", "data/thread", "GB data processed, per thread"); 1546 1547 print_res(name, bytes / 1e9, 1548 "GB,", "data-total", "GB data processed, total"); 1549 1550 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), 1551 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1552 1553 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1554 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1555 1556 print_res(name, bytes / runtime_sec_max / 1e9, 1557 "GB/sec,", "total-speed", "GB/sec total speed"); 1558 1559 free(pids); 1560 1561 deinit(); 1562 1563 return 0; 1564 } 1565 1566 #define MAX_ARGS 50 1567 1568 static int command_size(const char **argv) 1569 { 1570 int size = 0; 1571 1572 while (*argv) { 1573 size++; 1574 argv++; 1575 } 1576 1577 BUG_ON(size >= MAX_ARGS); 1578 1579 return size; 1580 } 1581 1582 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1583 { 1584 int i; 1585 1586 printf("\n # Running %s \"perf bench numa", name); 1587 1588 for (i = 0; i < argc; i++) 1589 printf(" %s", argv[i]); 1590 1591 printf("\"\n"); 1592 1593 memset(p, 0, sizeof(*p)); 1594 1595 /* Initialize nonzero defaults: */ 1596 1597 p->serialize_startup = 1; 1598 p->data_reads = true; 1599 p->data_writes = true; 1600 p->data_backwards = true; 1601 p->data_rand_walk = true; 1602 p->nr_loops = -1; 1603 p->init_random = true; 1604 p->mb_global_str = "1"; 1605 p->nr_proc = 1; 1606 p->nr_threads = 1; 1607 p->nr_secs = 5; 1608 p->run_all = argc == 1; 1609 } 1610 1611 static int run_bench_numa(const char *name, const char **argv) 1612 { 1613 int argc = command_size(argv); 1614 1615 init_params(&p0, name, argc, argv); 1616 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1617 if (argc) 1618 goto err; 1619 1620 if (__bench_numa(name)) 1621 goto err; 1622 1623 return 0; 1624 1625 err: 1626 return -1; 1627 } 1628 1629 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1630 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1631 1632 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1633 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1634 1635 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1636 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1637 1638 /* 1639 * The built-in test-suite executed by "perf bench numa -a". 1640 * 1641 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1642 */ 1643 static const char *tests[][MAX_ARGS] = { 1644 /* Basic single-stream NUMA bandwidth measurements: */ 1645 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1646 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1647 { "RAM-bw-local-NOTHP,", 1648 "mem", "-p", "1", "-t", "1", "-P", "1024", 1649 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1650 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1651 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1652 1653 /* 2-stream NUMA bandwidth measurements: */ 1654 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1655 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1656 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1657 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1658 1659 /* Cross-stream NUMA bandwidth measurement: */ 1660 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1661 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1662 1663 /* Convergence latency measurements: */ 1664 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1665 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1666 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1667 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1668 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1669 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1670 { " 4x4-convergence-NOTHP,", 1671 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1672 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1673 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1674 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1675 { " 8x4-convergence-NOTHP,", 1676 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1677 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1678 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1679 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1680 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1681 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1682 1683 /* Various NUMA process/thread layout bandwidth measurements: */ 1684 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1685 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1686 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1687 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1688 { " 8x1-bw-process-NOTHP,", 1689 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1690 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1691 1692 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1693 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1694 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1695 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1696 1697 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1698 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1699 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1700 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1701 { " 4x8-bw-thread-NOTHP,", 1702 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1703 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1704 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1705 1706 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1707 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1708 1709 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1710 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1711 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1712 { "numa01-bw-thread-NOTHP,", 1713 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1714 }; 1715 1716 static int bench_all(void) 1717 { 1718 int nr = ARRAY_SIZE(tests); 1719 int ret; 1720 int i; 1721 1722 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1723 BUG_ON(ret < 0); 1724 1725 for (i = 0; i < nr; i++) { 1726 run_bench_numa(tests[i][0], tests[i] + 1); 1727 } 1728 1729 printf("\n"); 1730 1731 return 0; 1732 } 1733 1734 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1735 { 1736 init_params(&p0, "main,", argc, argv); 1737 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1738 if (argc) 1739 goto err; 1740 1741 if (p0.run_all) 1742 return bench_all(); 1743 1744 if (__bench_numa(NULL)) 1745 goto err; 1746 1747 return 0; 1748 1749 err: 1750 usage_with_options(numa_usage, options); 1751 return -1; 1752 } 1753